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ABSTRACT The radio frequency fingerprint (RFF)-based device identification is a promising physical
layer authentication technique. However, the wireless channel significantly affects the RFF features of the
wideband wireless devices. In this paper, we extensively investigate the impact of channel variation on RFF
identification using 20 MHz IEEE 802.11 signal. A time domain least mean square (LMS) equalization-
based feature extraction method has been proposed. This method progressively restores the transmitted
signal and preserves more details of RFF features than the classical frequency domain equalization (FDE)
method. Moreover, a hybrid identifier is proposed to take advantage of both LMS-based and FDE-based
methods. With the equalized samples, a four-layer convolutional neural network is designed for device
identification. An experimental system has been set up to capture the waveform of 68 802.11 devices at
different positions. The experimental results show that the LMS-based method outperforms others when
the acquisition positions of the training dataset are the same as those of the testing dataset. On the
other hand, the FDE-based method is shown to be more effective when the acquisition positions of the
training dataset do not fully include those of the testing dataset. Moreover, the hybrid identifier achieves
an improvement of 2% for overall identification accuracy.

INDEX TERMS Physical layer security, radio frequency identification, convolutional neural network, least
mean square equalization, multipath fading.

I. INTRODUCTION

ACCESS authentication is a critical security concern for
Internet of Things (IoT), particularly in the case of

massive machine type communications. The classical access
authentication techniques involve the utilization of media
access control (MAC) address, pre-shared key or digital cer-
tificate. However, the MAC address is vulnerable to tamper-
ing, and updating the pre-shared key in IoT devices is often
challenging. Additionally, cryptography-based certification

mechanisms typically demand additional computational
resources, making them unsuitable for energy-constrained
IoT devices.
The radio frequency fingerprint (RFF)-based device iden-

tification is an emerging physical layer (PHY) authentication
technique for wireless communication systems [1], [2],
[3], [4]. Due to the minor hardware manufacturing varia-
tions among different transmission devices, the transmitted
radio frequency (RF) waveform carries the inherent features
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of the device. These unique and persistent features can be
regarded as the “fingerprint” of a device [5], [6]. Many
works in the literature have demonstrated the success of the
RFF-based device identification for IoT devices, such as for
Bluetooth [7], Wi-Fi [8], [9], [10], [11], [12], WiMax [13],
ZigBee [14], [15] and LoRa [16], [17] specifications. In
most of the works, the main concerned challenge of the RFF-
based identification is the degradation of signal strength due
to the propagation distance.
However, wireless channel effect is also a crucial challenge

for RFF-based identification of wireless device, especially
for wideband communication systems [9], [10], [12]. For
instance, IEEE 802.11a system works at 5 GHz band with
a signal bandwidth of 20 MHz [18]. As a result, the signal
is susceptible to multipath fading in the indoor environ-
ment. Additionally, considering that the half-wavelength of
the signal is about 3 cm, the wireless channel fading can be
considered uncorrelated when the device is moved a short
distance. Consequently, it becomes crucial to mitigate the
impact of channel fading on RFF features.
Several works have demonstrated that the carrier frequency

offset (CFO) can be used as an important feature for RFF
identification [8], [9], [14], [16], [19]. However, as the CFO
is a time-varying feature [20], [21], the stability of the CFO
in real wireless communication systems remains an issue
to be studied. A location-invariant RFF feature extraction
approach, referred to as amplitude of quotient (AoQ), has
been proposed in [19] for Wi-Fi devices, and the performance
has been verified with different locations. The experimental
results in [10] show that the wireless channel fading impacts
the identification accuracy significantly from 85% to 9% in
the experimental dataset. Moreover, equalizing the I/Q data
can increase the identification accuracy to 23% [10]. An
RFF extraction method using undercomplete demodulation
has been proposed in [9], which consists in reapplying the
frequency and sampling offsets after channel equalization.
An accuracy of 80%∼95% can be achieved for Wi-Fi devices
and universal software radio peripheral (USRP) radios in
static environment. The authors in [9], [22] have demon-
strated that adding active RFF feature can effectively combat
the impact of wireless channel. However, the implemen-
tation of such method requires changing the constellation
pattern or adding digital filter at the terminal device, which
brings additional cost. In order to overcome the effects of
time-varying channel on RFF features, a data augmenta-
tion method is used in [23], [24]. Many simulated channel
variations are used to generate a large number of train-
ing samples, which improves the accuracy of identification.
This method requires a priori knowledge about the chan-
nel model of the transmission environment, and the large
number of samples also increases the complexity of model
training. For multiple-input multiple-output (MIMO) system,
the authors in [25] propose to use blind channel estimation
to remove the channel effects. The classification accuracy
has been tested with simulated RF waveforms and Rayleigh
channel.

In fact, the research on the RFF extraction in presence
of channel fading has great importance. The features that
many traditional RFF methods extract contain both unique
hardware impairments and channel effects and sometimes
the channel effect may be dominant in the overall signal
representation [9]. The extracted RFF will become outdated
once the channel condition changes. In other words, the
RFF is highly location-dependent. Therefore, it is crucial to
have a reliable RFF extraction method that can overcome
the impact of channel effect. This will greatly improve the
practicality of the RFF identification technique and lead to
a much improved network security condition. For instance,
RFF identification can be used for access control of loT
devices. Gateway devices can authenticate access devices
by analyzing the physical layer signals and detect potential
spoofing or distributed denial of service attacks using RFF.
RFF identification can also be used for zero-trust authen-
tication. By performing RFF identification for each frame
of the received signal, a highly secure loT system can be
constructed.
In this work, we focus on the RFF identification of IEEE

802.11 a/g/n devices under different wireless channel con-
ditions. The main contributions of this paper are listed as
follows:

• A time domain least mean square (LMS) equalization-
based RFF extraction method has been proposed.
Compared to the existing methods, the LMS-based
method shows the best performance and reaches an
accuracy of 99.34% when the target device is trained
and tested at the same position, which means that this
method preserves more detailed RFF features. However,
when the training and testing datasets are collected from
different positions, the frequency domain equalization
(FDE)-based RFF extraction method [9] is shown to
be more effective in eliminating the channel effects.
Therefore, a hybrid identifier is proposed to combine
the advantages of both the FDE and LMS approaches.
In this identifier, two convolutional neural networks
(CNNs) are trained with the FDE and LMS processed
sequences, respectively, and the identification result is
decided by a similarity test between the channel state
information (CSI) of the testing frame and the CSI pre-
stored in training process. Experimental results show
that, using the proposed hybrid identifier, the overall
identification accuracy can be enhanced by 2%.

• A four-layer deep learning CNN has been designed for
RFF identification. The performance of the proposed
CNN has been investigated with different RFF extrac-
tion methods. Compared to the existing CNNs, the
proposed CNN shows the benefits on training speed
and identification accuracy for the FDE and LMS meth-
ods, which means that the proposed CNN is useful
in distinguishing the subtle features of equalized I/Q
samples.

• An experimental system has been set up with different
IEEE 802.11 devices and USRP N210 receiver for raw
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I/Q sample capture. The I/Q samples are collected from
64 802.11 access point (AP) routers of 6 manufactures
and 4 mobile phones, and the receiver has been placed
at 4 different positions. The wireless channel fluctu-
ates due to the people moving during the experiments.
This real measured database can be useful for the study
and research of the wireless channel influence on RFF
identification.

The remainder of this paper is organized as follows. In
Section II, the literature of RFF identification has been
reviewed. In Section III, the 802.11 training symbol and the
RFF model have been introduced. In Section IV, the RFF
identification framework is presented, including signal pre-
processing, channel equalization and CNN architecture. The
experimental system and identification results are presented
in Section V. Section VI concludes the paper.

II. RELATED WORK
The RFF identification technique typically comprises
two aspects, feature extraction and training/identification.
Regarding the waveform segment used, the RFF feature
extraction can be categorized into transient feature extraction
and steady-state feature extraction.
The transient features are extracted during the on-off

transient period of waveform [5]. For some IoT devices,
transient features also exist at the beginning of steady-
state period, which can also be treated as region of
interest for RFF identification [26]. The greatest advantage
of transient feature extraction is that it does not require
any prior information. Therefore, this feature extraction
method is largely used in Radio [27], GSM [28], [29],
Bluetooth [7], [30], Wi-Fi [8], [31] and ZigBee [32] device
identification. However, the accuracy of signal acquisition
poses a challenge for transient feature extraction, which
requires high-cost receivers such as spectrum analyzer or
digital storage oscilloscope [7], [28], [29], [30], [32].
The steady-state features are extracted from the transmit-

ted symbols [5]. The available sample length of steady-state
feature is longer than that of the transient feature. Therefore,
the steady-state features are more stable. The steady-state
feature extraction method is largely used in GSM and
LTE mobile communications [33], [34], Bluetooth [35],
Wi-Fi [6], [36], [37], [38], [39], WiMax [40], ZigBee [14],
[15], [41], [42], LoRa [43], and RFID [44], [45] device iden-
tification. Multi-dimensional RFF features can be extracted
from the steady-state signal, which enables the use of
multi-dimensional classifier and leads to high identifica-
tion accuracy. Hence, more and more works use steady-state
signal for RFF feature extraction.
In wireless communication systems, the source of RFF

features includes I/Q imbalance [1], CFO from crystal oscil-
lator deviation [1], amplifier non-linearity [46], etc. The CFO
feature can be estimated directly from the received signal.
However, most of the steady-state features are mixed together
in waveform and very hard to be separated. Therefore,
the RFF features need to be extracted using different

methodologies. The most commonly used RFF features
include waveform feature, modulation feature and transform
domain feature.
The waveform feature consists in using directly the

received I/Q samples as the RFF feature. For ZigBee systems,
the offset quadrature phase shift keying (O-QPSK) modu-
lated samples can be used as the input of deep-learning CNN
for RFF identification [42]. The I/Q samples are precisely
synchronized in order to eliminate the CFO. The IEEE
802.11a/g/n pilot/training waveform is employed for RFF
identification in [9], [10].
The modulation feature refers to the estimated modu-

lation parameters extracted from the received waveform.
Modulation features include I/Q imbalance [33], [39], [47],
[48], [49], CFO [7], [8], [14], [33], [35], [38], [39], [41], [43],
[50], [51], sampling offset [8], amplifier non-linearity [52],
etc. Among these features, the CFO is the most important
one for RFF identification, because it is relatively stable
with serious noise and complex wireless channel condi-
tions [14]. However, the most notable drawback of CFO
is that its value can change with time or environmental
variations [14], [41], [51].
The transform domain feature consists in transforming the

captured time domain I/Q samples into frequency domain
or other transform domain. A straightforward method is the
spectrum-based RFF identification via fast Fourier transform
(FFT) [31], [34], [46] or wavelet transform [6]. Recently,
other transform domains such as Hilbert-Huang transform
(HHT) [29], [34], [53], [54], [55], [56], [57] are applied
for RFF identification. It is worth noting that, the authors
of [46] have found that the spectrum-based RFF feature
is very sensitive to the wireless channel variation. The RFF
identification accuracy dramatically decreases when the loca-
tion of the target device changes. The authors of [58], [59]
use the tap coefficients of the LMS filter as the RFF feature
for ZigBee devices. The performance has been tested with
proximate line-of-sight channel.
Once the RFF features are extracted, the RFF identifica-

tion problem transforms into a conventional machine learning
classification problem. In the early studies of RFF identifi-
cation, many machine learning algorithms have been used,
including multiple discriminant analysis (MDA), k-nearest
neighbor (KNN), random forest (RndF) [60], support vec-
tor machine (SVM) [43], [61], etc. However, the accuracy
of identification using these algorithms is limited, partic-
ularly when the number of target devices increases. In
recent studies, deep learning based CNN has been widely
used for RFF identification [42], [62]. The waveform fea-
ture can be used as the input of CNN as 1-dimensional
(1D) sequence [9], [10], [42]. Some modulation features and
transform domain features can be used as the input of CNN
as 2-dimensional images [63], [64]. The CNN-based clas-
sification methods show high accuracy even with a large
number of target devices. However, training CNN to fully
overcome the wireless channel variation still remains an
unsolved problem.

1670 VOLUME 4, 2023



FIGURE 1. A sample of the preamble of IEEE 802.11 signal (in-phase component).

III. PRELIMINARY
A. IEEE 802.11 PACKET FORMAT
IEEE 802.11 specification adopts the orthogonal frequency
division multiplexing (OFDM) modulation. The transmitted
data bits are firstly mapped to phase shift keying (PSK)
or quadrature amplitude modulation (QAM) symbols. These
modulated symbols are then distributed across different
frequency domain subcarriers and transformed into the time
domain using the inverse fast Fourier transform (IFFT). The
resulting time domain OFDM waveform is dependent on
the combination of the frequency domain data symbols.
However, due to the random nature of the information data,
the signal waveform exhibits random variations, making it
challenging to extract stable and data-independent RFF. In
this paper, we will leverage the a priori information of the
preamble of IEEE 802.11 system to extract RFF from the
preamble signal part.
A captured preamble part of 802.11 signal is depicted in

Fig. 1. A preamble consists of ten short training symbols
(STSs) and two long training symbols (LTSs), resulting in
a total duration of 16 μs [18]. The STS is mainly used for
synchronization purpose and is generated from a frequency
domain sequence

XS(0,63)
=

√
13

6
× {0, 0, 0, 0, 0, 0, 0, 0, 1 + j, 0, 0, 0,−1 − j,

0, 0, 0, 1 + j, 0, 0, 0,−1 − j, 0, 0, 0,−1 − j, 0, 0,

0, 1 + j, 0, 0, 0, 0, 0, 0, 0,−1 − j, 0, 0, 0,−1 − j,

0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0, 0, 1 + j, 0, 0, 0,

1 + j, 0, 0, 0, 0, 0, 0, 0}. (1)

The time domain STS is obtained after a 64-point IFFT

xS(t) = IFFT64
(
XS(0,63)

)
. (2)

In XS(0,63)
as defined in (1), one subcarrier of every four sub-

carriers carries non-zero symbol. This leads to a periodically
changing time domain signal xS(t), cf. Fig. 1. For 20 MHz
channel spacing, the sampling time is Ts = 0.05 μs. The
corresponding IFFT period with 64 points is TFFT = 3.2 μs.
The length of one STS period is TFFT/4 = 0.8 μs. The total
length of ten STSs takes up 8 μs.

The LTS, on the other hand, is mainly used for fine CFO
and channel estimation. Like STS, it is also generated from

a frequency domain sequence

XL(0,63)
= {0, 0, 0, 0, 0, 0, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1,

1, 1, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 0, 1,

−1,−1, 1, 1,−1, 1,−1, 1,−1,−1,−1,−1,−1,

1, 1,−1,−1, 1,−1, 1,−1, 1, 1, 1, 1, 0, 0, 0, 0, 0}
(3)

where 53 subcarriers are loaded by non-zero symbols, while
others being set to 0. The time domain LTS sequence is
generated by a 64-point IFFT

xL(t) = IFFT64
(
XL(0,63)

)
. (4)

Afterwards, two repetitions of xL(t) sequence, preceded by a
guard interval (GI) form the overall LTS part. The duration
of LTS part is 2 × 3.2 + 1.6 = 8 μs.

Overall, the preamble part of IEEE 802.11 specification
can be expressed as

x = {
xS(32,63)

, xS, xS, xL(32,63)
, xL, xL

}
(5)

where xS(32,63)
and xL(32,63)

are the sequences of the 32th to
63th elements of xS and xL, respectively. As can be seen
from the specification, the preamble consists of determin-
istic sequences and is known by the receiver. This a priori
knowledge can be exploited to exclude the influence of data
randomness in the RFF extraction.

B. RFF MODEL
The transmitted signal of an 802.11 device is affected by
the hardware impairments of RF components, including local
oscillator, mixer, filter and amplifier, which leave some traces
of RFF in the signal. These RFF features can be identified in
time and frequency domains. For instance, CFO often man-
ifests as a continuous phase shift in the time domain signal.
Similarly, the frequency distortion caused by the imperfect
filter response can be observed in the frequency domain sig-
nal. Additionally, the band-limited and non-linearity effects
of power amplifier exhibit memory effect and non-linear
distortion in both time and frequency domain signal wave-
forms. In general, the 802.11 signal with RFF effects can
be noted as

x̂(t) = x̃(t) ∗ hRFF(t) · e−jωCFOt (6)

where x̃(t) is the standard transmit signal x(t) affected by
the time domain RFF features including non-linear distor-
tion, I/Q offset, etc. The operator ∗ denotes the convolution
operation. hRFF(t) denotes the response of comprehensive
frequency domain RFF distortions. e−jωCFOt is the time
domain phase rotation caused by CFO ωCFO.

After passing the wireless channel, the received signal can
be written as

y(t) = x̂(t) ∗ hCh(t) + n (7)

where hCh(t) is the wireless channel response, and n is the
additive white Gaussian noise (AWGN) with variance σ 2

n .
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FIGURE 2. The RFF identification with LMS and FDE based channel fading compensation.

Obviously, the RFF features embedded in (6) is affected
by the fading of wireless channel as shown in (7). This
motivates us to investigate mechanism that can mitigate the
influence of wireless channel when extracting the RFF from
the received signal.

IV. RFF IDENTIFICATION FOR IEEE 802.11 DEVICES
This section proposes an RFF identification method that
involves time and/or frequency domain approaches to mit-
igate the channel effect before extracting RFF. The global
diagram of the RFF identification method is shown in Fig. 2.
The received RF signal is first processed to detect the coarse
start of frame, synchronize the time signal, and compen-
sate the CFO. Then, the FDE or LMS based equalization
is performed to compensate the channel fading effect in the
received signal. Afterwards, the restored preamble signal is
input into a 1D CNN for RFF extraction and device identifi-
cation. Additionally, a hybrid identifier that aims to exploit
the advantages of both FDE and LMS methods is proposed
for further performance improvement. The details of the
proposed method are presented in the following sections.

A. PREAMBLE PRE-PROCESSING
As mentioned in the previous section, in order to extract
RFF, it is necessary to properly locate the preamble part in
the received signal. We begin by detecting the coarse start of
a signal frame from the captured raw data using a spectrum
detection method. The received time domain signal within
a 64-sample observation window starting from time t, is
first converted to the frequency domain signal Y(t) by the
64-point FFT. Then, for each sampling time t, a metric is
evaluated such that

D(t) =
∑12

m=1 Y
(t)
S (m)∑52

n=1 Y
(t)
0 (n)

(8)

where the sequence Y(t)
S (m) corresponds to 12 elements

of Y(t) with the indices that are same to the 12 non-zero
elements in XS(0,63)

. The sequence Y(t)
0 (n) corresponds to

52 elements of Y(t) with the indices that are same to the
52 zero elements in XS(0,63)

. When D(t) is larger than a
threshold γ , denoted as D(t†) > γ , then the signal y(t),
t ∈ [t† − 30, t† + 420] is used for time synchronization,
which contains the preamble part of the signal frame.
The time synchronization can be performed by computing

the cross-correlation of the signal y(t), t ∈ [t† −30, t† +420],

such that

tSyn = arg max
t

32∑
m=0

y(t + m)y∗(t + 64 + m)

+ y(t + 64 + m)y∗(t + 128 + m) (9)

where the superscript a∗ denotes the conjugate of a complex
value a. With time synchronization, the preamble part of
the signal frame is located, which corresponds to y(t), t ∈
[tSyn, tSyn + 319].
Moreover, the CFO can be estimated using STS. As the

STS pattern repeats every 16 samples, the CFO can be
derived from the phase difference between two samples that
are 16 samples apart, such that

�̂f = 1

2π

∑143
m=0 angle

(
y
(
tSyn + m

)
y∗

(
tSyn + m+ 16

))
144 × 16

(10)

where angle(·) denotes the phase of a complex value. The
phase difference is averaged over 144 samples to reduce the
influence of noise.
As shown in (6) and (7), CFO causes a continuously

changing phase in the received signal and therefore needs
to be compensated before equalization. With the CFO �̂f

estimated in (10), the phase shift in the received signal caused
by CFO can be compensated as

ȳ(t) = y(t) · e−j2π�̂f t, t ∈ [
tSyn, tSyn + 319

]
. (11)

After the aforementioned pre-processing, we obtain the
raw IEEE 802.11 I/Q data samples containing the RFF
features and the multipath channel fading effect. A straight-
forward RFF identification method has been proposed in [42]
for ZigBee system, where the raw I/Q data samples were
directly used for CNN training and identification. The
learned features for identification included both RFF fea-
tures and channel fading effects. However, wireless channel
fading can seriously distort the wideband 802.11 signal and
dominate the overall features of the received signal. An illus-
tration of the STSs captured at four different locations is
presented in Fig. 3 (a), and the CSIs measured using LTSs
received at different locations are shown in Fig. 4 (a). It can
be seen from Fig. 3 (a) that even when the same STSs are
transmitted from the same device, the waveforms received at
different locations are quite different from one another due
to the distinct channel fading that the signal experienced as
shown in Fig. 4 (a).
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FIGURE 3. The first 80 STS samples received (a) at different locations and (b) at a
fixed location.

Meanwhile, the received RF waveforms of different frames
are also varying even observed at the same location.
Fig. 3 (b) and Fig. 4 (b) illustrate four STS waveforms and
estimated CSIs of one device, when the target device and
the receiver do not change the location. It can be seen that,
although the CSIs in Fig. 4 (b) are relatively stable, the STS
waveforms in Fig. 3 (b) are still varying due to the residual
synchronization error.
In summary, the raw IEEE 802.11 signal is not suitable for

RFF identification due to channel fading and synchronization
errors, even when the device is stationary. Therefore, we aim
to explore effective channel mitigation method to ensure
accurate RFF identification.

B. CLASSICAL FREQUENCY DOMAIN EQUALIZATION
The FDE is widely used in OFDM systems for the pur-
pose of data recovery. However, according to (6) and (7),
the received signal experiences the composite influence of
RFF features and wireless channel. The FDE may cause
the loss of some RFF features, such as the transmit filter
response.
The frequency domain channel response can be obtained

from LTS using the least square (LS) estimation

Ĥ = FFT64(ȳL)

XL(0,63)

(12)

where ȳL is the received LTS after CFO compensation, and
XL(0,63)

is the ideal LTS. Since there are two LTS sequences
in the preamble, the channel estimation can be performed
twice. We choose the average of these two estimations as the

FIGURE 4. CSIs measured (a) at different positions and (b) at a fixed position.

CSI, denoted as H̄. Then, the received STSs can be equalized
using H̄, such that

z̄SFDE = IFFT64

(
FFT64(ȳS)

H̄

)
(13)

where ȳS is the received STSs with CFO compensation. After
removing the guard interval, the 128-point equalized STS
zSFDE can be obtained with two times FDE. It is worth noting
that the FFT and IFFT operations should be performed with-
out CFO. Otherwise, the orthogonality of OFDM modulation
will be broken, which also leads to inter-carrier interference
in the post-equalization signal.
Moreover, since CFO is an important RFF feature for

device identification, as in the work of [9], the CFO is
rebuilt after FDE operation

z̈SFDE(t) = zSFDE(t) · ej2π�̂f t. (14)

The I/Q signal after FDE and CFO restoration will be used
for the device identification via a neural network, as will be
elaborated in Section IV-D.
In summary, while the FDE may affect certain RFF

features such as the transmit filter response, removing chan-
nel fading from the signal is still beneficial for the RFF
identification of wideband wireless devices. This will be
demonstrated in the experimental results.
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C. PROPOSED TIME DOMAIN EQUALIZATION
Due to the fact that FDE can result in the loss of RFF
features in the equalized I/Q samples, it is crucial to preserve
more RFF features while eliminating channel effects. This
motivates us to propose a designated channel elimination
method for RFF identification.
In this section, we propose a time domain equalization

approach for RFF extraction in OFDM systems. The time
domain LMS adaptive equalization is widely used in wired
and wireless communication systems with single-carrier
modulations. Thanks to its low complexity and iterative pro-
cess, the LMS filter progressively equalizes the received
signal, which helps to preserve more detailed RFF features
of signal waveform.
The STS sequence is used for LMS equalization, because

the shape of STS waveform is more regular than that of
LTS, cf. Fig. 1, which helps the LMS filter to converge.
Moreover, applying LMS equalization requires long train-
ing sequence to capture the channel response with high
precision. Whereas, STS sequence of 802.11 specification is
relatively short, namely 160 samples (ten STSs) which are
not sufficient for LMS equalizer. To address this problem,
a region of interest repetition (ROIR) method is proposed
for the LMS equalization. When the channel variation is
not fast, the channel fading can be regarded as constant
for adjacent signal sequences. The ten repeated STSs can
be considered to be affected by the similar channel fading
effect. Therefore, it is feasible to repeat the received STSs
and build a long sequence for LMS equalization. Note that
the multipath fading may cause inter-symbol interference.
Hence, we discard the first two STSs, i.e., the first 32 sam-
ples of ȳS, and use the subsequent eight STSs of 128 samples
as the basis to build the longer STS sequence. The average
power of sequence of 128 samples is normalized to 1. Then,
this sequence of 128 samples is repeated twice and con-
catenated with another fragment of its first 64 samples. The
resulting long STS sequence of 320 samples is represented as

yLMS = {
ȳS(32,159)

, ȳS(32,159)
, ȳS(32,95)

}
. (15)

The sequence yLMS is input into LMS adaptive filter.
Accordingly, the desired sequence xLMS of the LMS adaptive
filter is generated from perfect STS

xLMS = {xS, xS, xS, xS, xS}. (16)

The LMS equalization process is written as

zLMS(k) =
L−1∑
i=0

ωi(k) · yLMS(k − L+ i) (17)

where zLMS is the output of the LMS equalizer, k is the
sample index, L is the filter length, [ω0, . . . , ωL−1] are the
LMS filter weights and are updated iteratively as

[
ω0(k + 1), . . . , ωL−1(k + 1)

] = [
ω0(k), . . . , ωL−1(k)

]
+ �ε(k)

[
yLMS(k − L), . . . , yLMS(k − 1)

]
(18)

FIGURE 5. Time domain LMS equalization process.

FIGURE 6. An illustration of LMS estimation error ε(k ) for 320 samples.

where � is the step size of LMS filter, ε(k) is the
estimation error

ε(k) = xLMS(k) − zLMS(k). (19)

Hence, the LMS algorithm involves L+ 1 additions and 2L
multiplications per iteration.
The process of time domain LMS equalization is presented

in Fig. 5. An example of the estimation error is shown in
Fig. 6. It can be seen from Fig. 6 that, the estimation error
ε is high at the beginning stage and decreases gradually
with the iteration process. A more detailed illustration is
given in Fig. 7 where sequences of xLMS, yLMS and zLMS are
presented. After 320 points LMS time domain equalization,
the channel effect has been removed and the final segment of
zLMS becomes similar to that of the desired signal xLMS, cf.
Fig. 7(b) in comparison with Fig. 7(a). This suggests that the
quality of signal restoration is improving over time, and the
influence of channel fading and RFF is removed gradually.
We note that this progressive elimination of channel fading
allow us to harvest the detailed signal features related to
RFF. In other words, the signal zLMS records the entire signal
process results output from the LMS equalization, where the
beginning part contains more raw I/Q signal information and
therefore more RFF features, and the ending part achieves
better signal restoration quality. The gradual changing of
equalization quality provides us rich signal samples with
a variety of channel effect mitigation levels. This diversity
offers more information and flexibility for the RFF extraction
and identification than the FDE-based method where the
signal is uniformly equalized. In next section, a deep neural
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FIGURE 7. An illustration of (a) the first and (b) the last 80 samples of the desired
perfect sequence xLMS, the input sequence yLMS and the output sequence zLMS.

FIGURE 8. The measured CFO for the AP devices. The grayscale intensity of a grid
represents the frequency of the CFO falls into an interval.

network based method will be proposed to implicitly extract
the RFF features from the diversified signal samples and
achieve device identification.
We note that, being different from the FDE-based method,

no CFO restoration is performed for the LMS-equalized sig-
nal to avoid the influence of CFO variation over time. In
IEEE 802.11 specification, the maximum transmit frequency
tolerance is 20 ppm, which corresponds to a maximum of
48 KHz CFO for 2.4 GHz carrier frequency and 116 KHz
CFO for 5.8 GHz carrier frequency, making CFO a poten-
tial source of RFF feature. The measured CFO of 64 AP
devices is depicted in Fig. 8. From the experiments, it can
be observed that the CFO varies within a range not exceed-
ing the maximum transmit frequency tolerance. Whereas, for

some devices, the CFO fluctuates during a long observation
time. For example, the average CFO deviation of the devices
no. 11 to 38 is around 5 KHz, which is sufficiently large
to affect the accuracy of the CFO-based RFF identification.
Therefore, in the proposed LMS-based method, we choose
not to rebuild the CFO for equalized sequence zLMS.

D. PROPOSED CNN-BASED RFF EXTRACTION AND
IDENTIFICATION
After the equalization, the channel effect in the signal is mit-
igated and has less impact on the signal waveform. The next
challenge is how to efficiently synthesize the RFF features
from equalized signal. The waveform features that are useful
for the RFF identification are difficult to be measured and
expressed in a quantitative manner. Alternatively, the deep
neural network can be employed to extract the useful RFF
features and implicitly synthesize them to form high-level
features that directly serve for device identification.
In this paper, we use 1D CNN to process the equalized

time-domain I/Q samples. The 1D CNN can be immedi-
ately applied to I/Q data and performs well in identifying
features regardless the location of such features within the
data segment [9], [10]. The 1D CNN works like a filter that
goes through the I/Q data sequence and extracts the “low-
level” features that reflect the signal waveform and variation
in different dimensions. The obtained features are conse-
quently processed by several 1D convolution layers in a
cascading manner to progressively yield more sophisticated
and implicit features. Finally, a variety of high-level features
output from convolution layers will be synthesized by fully
connected layers to compute the possibilities that an input
belongs to different classes, i.e., different devices.
The detailed architecture of the proposed 1D CNN is

presented in Fig. 10. It consists of four convolution layers
and two fully connected layers. Four 1D convolution lay-
ers are composed of 16, 32, 48 and 64 convolution kernels,
respectively, with the filter size of 1×2. After the first three
convolution layers, a rectified linear units (ReLU) activation
function layer and a 1 × 2 maximum pooling (MaxPool)
layer are used to reduce complexity and parameter number.
In the last convolution layer, a ReLU activation layer and a
1 × 2 average pooling layer is used. After four convolution
layers, the output is fed to a fully connected layer of the
length 256, followed by a dropout layer with 0.5 dropout
rate. Then, a fully connected layer of the size that is the same
as the number of target devices and a softmax layer are used
to calculate the possibilities that the input sample belongs to
all the classes. Finally, the class with highest possibility is
output as the identification result. During the training stage,
we adopt the stochastic gradient descent with momentum
(SGDM) optimizer, with a momentum value of 0.9. The
training process consists of a maximum of 30 epochs with
a mini-batch size of 256. The learning rate is set to 0.02
and the factor for dropping the learning rate is 0.1 with a
number of epochs for dropping the learning rate set to 9.
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FIGURE 9. Classification performance of different numbers of CNN layers for LMS
method.

For the proposed CNN network, the influence of different
numbers of network layers has been analyzed. The classifi-
cation performance of 3-layer, 4-layer, 5-layer, and 6-layer
CNN networks has been tested. The results are presented in
Fig. 9 using box plot with 20 repetitions. It is worth noting
that as the number of network layers increases, the train-
ing time also increases. The results indicate that designing a
4-layer CNN network achieves an effective balance between
performance and complexity.
To evaluate the performance of the proposed CNN-based

RFF identification method, a few CNN structures proposed
in the literature are also implemented as baseline. Baseline1
model [42] is a first CNN that exploits raw I/Q samples
for RFF identification. It is composed of three 1D con-
volution layers with the kernel size of 1 × 19, 1 × 15 and
1×11, respectively. The number of kernels is 128, 32 and 16
for three convolution layers, respectively. Baseline2 model
proposed in [10] is a simpler CNN with one less convolution
layer and fewer convolution kernels. The kernel size is 1×7
and the number of kernel is 50 for both convolution layers.
Baseline3 model [10] adopts a more complex network archi-
tecture. The block of two 1D convolution layers (consisting
of a layer of 128 1 × 7 convolution kernels and a layer of
128 1 × 5 convolution kernels) is repeated five times, which
yields a feature extraction module of ten convolution layers.
Two dropout layers with dropout rate of 0.5 are employed
to reduce overfitting.

E. HYBRID IDENTIFIER
In previous sections, we have introduced the FDE and LMS
methods to equalize the received signal, which can offer dif-
ferent levels of channel effect elimination and RFF feature
preservation. As will be demonstrated later in Section V-B,
these two methods have their own favored application scenar-
ios. When the training and testing signal samples experience
similar CSI conditions, the LMS method shows higher accu-
racy in identification. On the other hand, when the training

FIGURE 10. The CNNs for RFF identification.

FIGURE 11. An illustration of the proposed hybrid identifier.

and testing signal samples experience different CSI con-
ditions, the FDE method is more effective to remove the
channel effects and yields a more accurate identification
performance, although a considerable part of RFF fea-
tures is eliminated. This observation inspires us to design a
hybrid identifier that combines these two approaches, aim-
ing to achieve good performance in all scenarios. The block
diagram of the hybrid identifier is presented in Fig. 11.
The basic idea is to adaptively select the equalization

method according to the CSI condition. Specifically, two
CNN-based identifiers are trained during the training stage
using the I/Q samples obtained from the FDE and LMS
equalizers, respectively. Moreover, a database is established
to store a subset of estimated CSIs along with the corre-
sponding device identities for future reference. During the
testing stage, the received signal samples are first processed
by the LMS equalizer. Then, the equalized signal is input
into the pre-trained CNN based identifier. The identifica-
tion result is then used to retrieve the corresponding CSIs
from the database. These retrieved CSIs are then compared
with the CSI of the current signal. Once the current CSI is
found to be similar to any of the CSIs in the database, it
can be concluded that the current signal has experienced a
similar CSI as the signal samples used for training. In such
case, the LMS-based method is expected to provide better
RFF extraction and identification performance. Therefore,
the identification result given by the LMS-based method

1676 VOLUME 4, 2023



will be output as the final result. Otherwise, if the current
CSI is determined as different from any of the CSIs stored in
the database, the received I/Q signal will be processed using
the FDE-based method, and the identification result provided
by the FDE method will be output as the final result. By
combining the LMS and FDE methods in this manner, a
hybrid identifier can be constructed, allowing us to leverage
the advantages of both approaches and achieve an improved
overall RFF identification performance. The complexity of
the hybrid model mainly comes from the computation of
LMS algorithm and CNN. However, when the processing of
the model is implemented in hardware, such as field pro-
grammable gate array (FPGA), the processing speed can be
significantly improved.

V. EXPERIMENTAL RESULTS
A. DATA COLLECTION
A software defined radio (SDR) based hardware system
is designed and implemented to capture the IEEE
802.11 signal frame. A USRP N210 with CBX daugh-
terboard is employed as the signal receiver [65]. We
use 64 Wi-Fi AP routers with five brands and six
models, including HuaweiTM WS5100 (2.4 GHz/5.8 GHz
dual-band), HuaweiTM WS5200 (2.4 GHz/5.8 GHz dual-
band), XiaomiTM R4A (2.4 GHz/5.8 GHz dual-band),
TP-LINKTM TL-WDR4310 (2.4 GHz/5.8 GHz dual-band),
MERCURYTM MW305R (2.4 GHz band only) and DlinkTM

DWL-2000AP+A (2.4 GHz band only). Some AP models
only work at 2.4 GHz band, and other dual-band AP mod-
els also work at 5.8 GHz band. It is worth noting that the
IEEE 802.11 standard defines that both beacon and data
frames using OFDM modulation at 5.8 GHz band. However,
the beacon frame at 2.4 GHz band use direct sequence
spread spectrum (DSSS) modulation with forward compati-
bility considerations. To capture the OFDM data frames at
2.4 GHz band, we use four additional mobile phones, includ-
ing HuaweiTM Honor 6, Honor V10, Honor 20 and Mate 20,
to connect to the AP routers. A simple packet Internet groper
(PING) hypertext transfer protocol (HTTP) application has
been designed for mobile phones to trigger the transmission
of data frames. Because the signal of mobile phones are also
captured by the USRP, the number of target devices for RFF
identification comes to 68. The RF signal is captured at a
sampling rate of 20 MSamples/s. In order to reduce the size
of the dataset, we use the first 200 frames of each signal
capture, i.e., each 0.3 second raw I/Q samples. We also limit
the maximum number of frames for each device by 10,000.
The frames are stored based on the time of reception. For
each device, we take one frame out of every five frames to
build the training and validation set. Hence, there are 20%
frames are used for training and validation, 80% frames are
used for testing.
To obtain the IEEE 802.11 data frames with different

channel conditions, we put the USRP N210 receiver on a
trolley cart and move it in a room of 8.8 m × 8.8 m. The
received signal suffers from serious multipath fading in the

FIGURE 12. An illustration of the experimental setup with four receiver locations.

indoor environment. In each experiment, 10 AP routers are
fixed on the edges around the room. The receiver has been
placed at four different positions. After collecting the data,
we place another set of 10 AP routers and repeat the process
until all the APs are collected. All data is collected on the
same day. An illustration of the experimental setup is shown
in Fig. 12.

B. EXPERIMENTAL SETUP
To evaluate the performance of the proposed RFF iden-
tification scheme, two experimental scenarios have been
considered. In the first scenario, the RFF identifier is trained
and tested with the data samples acquired from the same
positions. This scenario represents the typical IoT applica-
tions with fixed positions, such as sensor networks and smart
appliances. In the second scenario, the data samples used to
train the RFF identifier are obtained from locations that are
different from the data samples used to test the identifier.
It indicates that the identifier will be tested with the data
samples from unknown position. This scenario represents
the communications with indoor mobility. In the sequel, the
two scenarios will be referred to as “known position” and
“unknown position”, respectively.
The proposed RFF identification based on the LMS equal-

izer is evaluated with a LMS filter length of L = 24. It is
referred to as “LMS” in the sequel. The RFF identification
methods based on the raw I/Q sample with only CFO com-
pensation ȳS (referred to as “Raw” [42]), the quotient of
two LTSs [19] (referred to as “AoQ”), and the output of
FDE with rebuild CFO z̈SFDE (referred to as “FDE” [9]) are
also evaluated for comparison. These features are extracted
from the training dataset and stored separately to train their
respective CNN models.
The CNN models are trained using MATLAB Deep

Learning Toolbox with NVIDA GTX1070 GPU. The train-
ing time are presented in Table 1. It can be seen that the
proposed CNN model requires a training time of less than
5 minutes, which is much faster than that of the Baseline3
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TABLE 1. Training time for different CNN models using LMS equalized signal.

FIGURE 13. Classification performance of different RFF extraction methods and
CNN models for known position scenario.

model. This is due to the fact that the proposed CNN model
has less parameters than other baseline models. The simpler
network structure also means lower implementation costs.

C. RFF IDENTIFICATION PERFORMANCE
We first investigate the identification performance in the
known position scenario, where the IEEE 802.11 data sam-
ples received at all four positions are used for both training
and testing. The performance of the RFF identification is
illustrated in Fig. 13 using box plot with 20 repetitions. It
can be seen that the LMS-based equalization provides the
highest identification accuracy compared with other meth-
ods. It can achieve over 98.88% the median of accuracy
with all CNN models considered in this work. In particu-
lar, the median of accuracy is as high as 99.34% with the
proposed CNN model. Moreover, the proposed CNN model
with FDE sequence also provides a considerably high accu-
racy, with a median of accuracy of 96.83%. We also notice
that the Baseline3 model also shows good performance
with input of Raw and AoQ. This is attributed to a rel-
atively deeper network of Baseline3 model with 10 layers,
which permits the network extract more details from raw I/Q
samples.
To evaluate the performance for the unknown position

scenario, we trained the CNN model using IEEE 802.11 sig-
nal samples captured from different locations. Specifically,
the data samples collected from 1 position, 2 positions and
3 positions are mixed to form the training dataset, which is
denoted as “1 position”, “2 positions” and “3 positions” in
the sequel. The testing dataset are collected from all four

FIGURE 14. Classification performance of different RFF extraction methods for
unknown position scenario.

positions.1 Only the FDE and LMS methods have been eval-
uated using the proposed CNN model, because these two
methods are more effective than the Raw and AoQ methods
in the known position scenario.

The performance of the RFF identification is presented in
Fig. 14 using box plot with 20 repetitions. It can be seen
that, when the testing dataset contains samples collected from
unknown positions than the training dataset, FDE data pro-
cessing provides better performance than other methods. For
instance, the median of accuracy can reach 70.76% when the
training dataset contains data samples captured from 1 posi-
tion and testing dataset contains data samples captured from
all four positions (i.e., “1 position” case). In contrast, the
median of accuracy of LMS method is 41.98% for this case.
This is because “1 position” represents a case where the data
samples in the testing dataset contain more unknown chan-
nel response, which affects the signal waveform. Hence, the
FDE-based method can better mitigate the channel effects
and achieve better RFF identification performance. With data
samples from more positions available in the training dataset,
higher identification accuracy can be achieved for both RFF
extraction methods. This is because more diversified train-
ing data samples are available, which helps to improve the
performance of the identifier network. In particular, with
LMS and FDE methods, the median of accuracy is higher
than 84.42% for “3 positions” case.
The hybrid identifier proposed in Section IV-E combines

the FDE and LMS methods with CSI similarity judgment.
We analyze the CSI similarity of the collected signal frames
by calculating the Pearson correlation coefficient of the mag-
nitude values of power-normalized CSIs. We first calculate
the correlation coefficient for the CSIs of the four posi-
tions of each device. The resulting correlation coefficients

1. The case where data samples of all four positions are mixed together
for both training and testing coincides with the previous “known position”
scenario.
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FIGURE 15. Correlation coefficients between (a) the CSIs of the 4 positions (b) the
CSIs of position 1 and the CSIs of the other 3 positions.

are presented in Fig. 15 (a). It can be seen that 20.47% of the
correlation coefficients have values of 1, and 11.34% have
values of 0.99. This demonstrates that the measured CSI is
relatively stable at different moments when the device loca-
tion is fixed. To test the CSI similarity between different
positions, we calculate the correlation coefficient between
the CSIs of position 1 and the CSIs of the other 3 positions,
the correlation coefficients are presented in Fig. 15 (b). It
is shown that there are 3.65% correlation coefficients have
values of 1 and about 8.32% have values of 0.99. Hence,
the CSI similarity is possible to occur between channels of
different positions.
With this basis, in the training process of hybrid identifier,

we store 10 CSIs for each device, these CSIs are estimated
from the randomly selected frames of training dataset. The
similarity judgment of CSI consists in calculating the cor-
relation coefficient between the stored CSIs and the CSI
of testing frame. When the correlation coefficient is larger
than 0.99, the similarity judgment of CSI is considered to
be passed. The performance of the hybrid identifier is also
presented in Fig. 14. It can be seen that, compared to the
FDE method, the hybrid identifier can improve the median of
accuracy by 2%. This proves that, with the stored CSIs and
CSI similarity judgement, the proposed hybrid identifier can
exploit the merits of both FDE and LMS methods. However,
for the training set of all positions, the performance of hybrid
identifier is slightly inferior to that of the LMS method.

Moreover, we note that since the CSI is estimated using the
LTSs, the resulted CSI may not fully cover the fluctuation
of channel in the STS part. This leads to the case where
the CSI similarity judgment is passed, but the classification
result is incorrect. When the CSI correlation coefficient is
larger than 0.99, the classification accuracy of LMS-based
method is 99.8%.

VI. CONCLUSION
In this paper, the performance of RFF identification using
IEEE 802.11 a/g/n devices has been investigated under vari-
ous channel conditions. To mitigate multipath fading, a time
domain LMS equalization based RFF extraction method is
proposed. Compared to the FDE-based method, the equaliza-
tion process of the LMS-based method is progressive, which
results in higher identification accuracy when the training
and testing datasets are collected from the same positions.
Furthermore, a hybrid identifier combining the LMS-based
and FDE-based methods is proposed to improve identifica-
tion accuracy when the datasets are collected from different
positions. A four-layer deep learning CNN is designed for
RFF identification, demonstrating improved accuracy and
training speed for equalized sequences. An experimental
system with 64 AP routers and 4 mobile phones has been
set up, and the 802.11 frames are captured from 4 different
positions. The experimental results show that the proposed
hybrid identifier can enhance overall identification accuracy
by 2%.
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