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ABSTRACT We propose frequency-domain interleaver for discrete Fourier transform spread orthogonal
division multiplexing (DFT-s-OFDM) based on a linear- or quadratic permutation polynomial (LPP/QPP).
Interleaving the Fourier coefficients (i.e., the DFT precoder output) implies that the modulation symbols
become transmitted over both time- and frequency domain, which is beneficial over time-frequency
selective channels. Despite that the single-carrier property is lost due to the interleaving, the peak-to-
average-power ratio (PAPR) can be improved. The results show that a QPP can suppress the error
floor of the bit/block error rate (BER/BLER) which occurs on channels with large Doppler spread and
simultaneously reduce the PAPR. An LPP primarily decreases the PAPR, especially for BPSK, where the
gain is several dB. We derive criteria of how to analytically determine the QPPs and the LPPs.

INDEX TERMS Discrete Fourier transform spread orthogonal division multiplexing (DFT-s-OFDM),
interleaver, permutation polynomial.

I. INTRODUCTION

RELIABLE communications over channels with high
mobility is an important feature of cellular systems

and an active area of research [1], [2]. In particular, wave-
forms which perform well in such scenarios, e.g., for
high speed trains, satellites [3] etc., are of interest for
5G systems because communications at velocities up to
350 km/h should be supported, and in some cases even as
high as 500 km/h [4]. Thereto, higher frequency bands are
introduced in 5G compared to 4G systems, which further
exacerbates the Doppler effect. Orthogonal frequency divi-
sion multiplexing (OFDM) and discrete Fourier transform
spread OFDM (DFT-s-OFDM) are used in both 4G Long
Term Evolution (LTE) and 5G New Radio (NR), where DFT-
s-OFDM is confined to uplink transmission. It has been
proposed to introduce DFT-s-OFDM in the downlink for
sub-THz communications [5], [6], [7]. OFDM multiplexes
modulation symbols in the frequency domain by dividing the
frequency spectrum into subcarriers. DFT-s-OFDM, on the
other hand, is a single-carrier waveform which multiplexes
modulation symbols in the time domain. Since a modulation
symbol is transmitted over the whole frequency spectrum,
performance may be better than for OFDM on a frequency
selective channel. For OFDM, a modulation symbol is trans-
mitted over the whole OFDM symbol and performance may
be better than DFT-s-OFDM on a time selective channel.

Performance improvements for DFT-s-OFDM have been
achieved by filtering the Fourier coefficients, i.e., the DFT
precoder output. One direction is unitary frequency domain
filtering, i.e., the filter only consists of phase rotations
and is applied after the DFT precoder [8], [9]. The filter
implies that the single-carrier property of DFT-s-OFDM is
lost and the net effect is that a modulation symbol becomes
transmitted over both time- and frequency domain. The
benefit of these waveforms is that they have been shown
to outperform OFDM and DFT-s-OFDM in bit/block error
rate (BER/BLER) on a fading channel with large Doppler
spread. Another direction is non-unitary frequency domain
filtering, which is used for frequency domain spectrum
shaping (FDSS), primarily to reduce the peak-to-average-
power-ratio (PAPR) [10], [11], [12], [13]. With FDSS, the
Fourier coefficients are multiplied with a window func-
tion which in turn smoothens the amplitude of the signal.
The cost of the FDSS is typically a reduced spectral effi-
ciency and that a larger signal-to-noise ratio (SNR) is
required to maintain a given error rate. Furthermore, both
non-unitary [14] and unitary FDSS [8] were suggested
to generate chirp-based waveforms from DFT-s-OFDM,
while also other methods to produce chirp-based waveforms
have been considered [15]. These chirp-based waveforms
can also improve performance on time-frequency selective
channels.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2023 1551

HTTPS://ORCID.ORG/0000-0002-2267-0086
HTTPS://ORCID.ORG/0000-0002-9143-2831
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Another way of manipulating the Fourier coefficients
was proposed in [16], utilizing frequency domain interleav-
ing, i.e., the DFT precoded symbols are interleaved. Thus,
the single carrier property is lost and there is a potential
performance gain over DFT-s-OFDM on a time-frequency
selective channel. The benefit of this method is its simplicity,
no filter is needed, and since DFT-s-OFDM is already imple-
mented in existing 4G/5G systems, introducing interleaving
after the DFT precoder could be a rather straightforward add-
on. The existing parts of the transmit/receive chain could be
kept and there would be no significant increase of the imple-
mentation complexity. On the other hand, the full potential
of frequency domain interleaving is unclear, since prior work
used random interleaving and no insight was provided on
how to design the interleaver. Thus, it is an open issue how
a particular interleaver affects either the BER/BLER or the
PAPR. In [17], a block interleaver was utilized to interleave
modulation symbols from different OFDM symbols, which
is different from [16].

A sequence of randomly permuted integers could be
used to interleave the Fourier coefficients [16], however, its
performance impact is unpredictable. In an average sense,
especially if the permutation sequence is long, random per-
mutations may lead to improved BER/BLER. However, as
will be shown herein, some permutation sequences do not
improve the BER/BLER but improve the PAPR, and vice
versa. Hence, within the set of permutation sequences, there
are both ‘good’ ones and ‘bad’ ones, depending on the
desired performance measure, e.g., BER/BLER or PAPR.
Therefore, the performance of random interleaving can gen-
erally not be predicted or guaranteed. This leads us to
consider interleavers based on permutation polynomials,
which by their algebraic construction could be determined
to result in desirable signal properties. A second issue with
random interleaving is its implementation complexity. The
interleaving sequence from a permutation polynomial could
be computed in real-time since it is represented by a closed-
form expression. However, a pseudo-random interleaver does
not necessarily have any simple analytical structure and the
permutation sequence may need to be stored in memory
in the transmitter. A corresponding deinterleaver sequence
will be stored in the receiver. An interleaver based on a
permutation polynomial, on the other hand, can be fully
and succinctly characterized by its polynomial coefficients,
which requires less memory.
In this work, we propose the novel use of permutation

polynomials for frequency domain interleaver for DFT-s-
OFDM. A main benefit of this technique is that it is
practically applicable and can be introduced into existing
LTE and NR systems. The results show that interleaving
can improve the BER/BLER on channels with large Doppler
spread and can reduce the PAPR. The main contributions are
summarized as follows:

• Selection of quadratic permutation polynomial (QPP):
We derive a criterion for determining QPPs which
improve the BER/BLER compared to DFT-s-OFDM.

Prior methods for filtered DFT-s-OFDM may enhance
either BER/BLER or PAPR, i.e., they are not improved
simultaneously. In this work, we demonstrate that it
is possible to enhance BER/BLER and PAPR simul-
taneously and a QPP can perform better than random
interleaving.

• Selection of linear permutation polynomial (LPP): We
derive a criterion for determining LPPs which improve
the PAPR, especially for BPSK, compared to DFT-s-
OFDM.

• Signal properties: We express frequency domain inter-
leaved DFT-s-OFDM as a waveform with orthogonal
basis functions. In contrast to those obtained by ran-
dom interleaving, the basis functions are characterized
by being sparse, i.e., contain many zero samples, and the
sparsity is determined by the properties of the permuta-
tion polynomial. Moreover, we show that the property
of ideal periodic autocorrelation is invariant under any
permutation.

• Implementation aspects: We show that frequency
domain interleaving can equivalently be represented as
a linearly precoded DFT-s-OFDM signal. Furthermore,
by decomposing the QPP, we determine several ways of
generating the permutations to provide implementations
with reduced complexity.

The rest of the paper is organized as follows. Section II
gives the system model and we analyze properties of the
interleaved DFT-s-OFDM signal. Based on these insights,
Section III focuses on constructing permutation polyno-
mials for reducing BER/BLER and PAPR, respectively.
Implementation aspects are discussed in Section IV and the
conclusions are drawn in Section V.
Notation: Throughout the paper, vectors are denoted by

bold lowercase letters and matrices are denoted by bold
uppercase letters, I is the identity matrix, (·)′ and (·)†

indicate the transpose and Hermitian transpose operators,
respectively. The modulo-M operator is denoted by (modM),
gcd(x, y) gives the greatest common divisor of x and y and
arg(z) gives the angle of z. The conjugate operator is denoted
by (·)∗, and �·� and �·� indicate the floor and ceiling oper-
ators, respectively. δ[k] corresponds to the Kronecker delta
function satisfying δ[0] = 1, δ[k] = 0 for all k �= 0 u(x) is
the unit step function and j = √−1.

II. FREQUENCY DOMAIN INTERLEAVED DFT-S-OFDM
A. SIGNAL DEFINITION
We consider interleavers based on permutation polynomials
and

π [k] = f [k] (modM) (1)

for k = 0, 1, . . . ,M − 1 with

f [k] = fpk
p + fp−1k

p−1 + . . . + f0 (2)

is a pth degree permutation polynomial if it permutes the
integers in the set {0, 1, . . . ,M − 1}. The coefficients fi are
integers and it can be assumed that fi ∈ {0, 1, . . . ,M − 1}
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since π [k] has period M. It is known that there exists at least
one inverse permutation polynomial, π−1[k], to each permu-
tation polynomial, such that π−1[π [k]] = k, cf. [18], [19].
Let x[m],m = 0, 1, . . . ,M − 1, be the modulation symbols
which could be, e.g., data carried by pulse amplitude mod-
ulated (PAM) or quadrature amplitude modulated (QAM)
symbols, or consist of predetermined reference symbols or
be symbols of a synchronization sequence. The modulation
symbols are DFT precoded as

X[k] = 1√
M

M−1∑

m=0

x[m]e−j
2π
M mk. (3)

We define the interleaver using the permutation polynomial
π [k] which is applied to X[k] such that with (3), the low-
pass equivalent time-discrete signal for n = 0, 1, . . . ,N − 1
becomes

s[n] = 1√
M

M−1∑

k=0

X[π [k]]ej
2π
N nk (4)

=
M−1∑

m=0

x[m]g[m, n] (5)

where the basis function for symbol m is defined as

g[m, n] = 1

M

M−1∑

k=0

e−j
2π
M mπ [k]ej

2π
N nk (6)

and N (N ≥ M) is the number of subcarriers. A cyclic prefix
(CP) of length NCP is prepended to the signal for n =
−NCP,−NCP + 1, . . . ,−1. The allocated M subcarriers are
assumed to be located contiguously, which is in accordance
with the uplink frequency resource allocation in LTE/NR.
The term N/M can be regarded as an oversampling factor.
In the following analysis in Section II and for the evaluations
of BER/BLER in Sections III-A and III-B, we will consider
N = M and return to the case of N > M in Section III-C,
where we consider the PAPR issue.

B. CHANNEL MODEL
We assume a time-discrete channel

h[n] =
L−1∑

l=0

√
Plh̃l[n]δ[n− τl] (7)

with the relative channel tap power Pl and sample delay
τl ∀l = 0, 1, . . . ,L − 1. A time-variant channel based
on Clarke’s two-dimensional isotropic scattering Rayleigh
fading model [20] is used

h̃l[n] = 1√
P

P∑

p=1

ej(2π fDn cos θp+φp) (8)

where P is the number of propagation paths per channel tap,
fD is the maximum Doppler frequency and θp and φp are the
angle of arrival and initial phase of the pth propagation path,
respectively. Both θp and φp are random variables uniformly
distributed over [ − π, π) for all p and they are mutually
independent.

C. RECEIVED SIGNAL
The received signal, r[n], is obtained from convolution of
s[n] with h[n], and by adding additive white Gaussian noise
(AWGN), η[n]. Assuming that NCP ≥ τL−1, after removing
the CP, r[n] can be expressed as

r[n] =
L−1∑

l=0

√
Plh̃l[n]s[n− τl (mod N)] + η[n] (9)

=
M−1∑

m=0

x[m]
1

M

M−1∑

k=0

(
L−1∑

l=0

√
Plh̃l[n]e−j

2π
N τlk

)

× e−j
2π
M mπ [k]ej

2π
N nk + η[n] (10)

where (5) and (6) were inserted in (9). By defining

H[n, k] =
L−1∑

l=0

√
Plh̃l[n]e−j

2π
N τlk (11)

D[v, k] = 1√
N

N−1∑

n=0

H[n, k]e−j
2π
N vn (12)

where (11) is the time-frequency channel transfer function
and (12) is the Doppler-frequency channel transfer function,
the received signal at subcarrier c = 0, 1, . . . ,M − 1 is

R[c] = 1√
N

N−1∑

n=0

r[n]e−j
2π
N cn (13)

=
M−1∑

m=0

x[m]
1

M

M−1∑

k=0

D[c− k, k]e−j
2π
M mπ [k] + η̃[c] (14)

= D[0, c]X[π [c]] +
M−1∑

k=0
k �=c

D[c− k, k]X[π [k]] + η̃[c]

(15)

where η̃[c] = 1/
√
N

∑N−1
n=0 η[n]e−j 2π

N cn. From (10), we could
identify the effective basis function subject to the channel
as ḡ[m, n] = 1

M

∑M−1
k=0 H[n, k]e−j 2π

M mπ [k]ej
2π
N nk. From (15), it

can be observed that the effect of the channel is a scaling and
phase rotation factor (D[0, c]) and the sum which comprises
inter-carrier interference (ICI) that may lead to an error floor.

D. LINEAR PERMUTATION POLYNOMIAL
An LPP is defined by π [k] = f1k + f0 (modM) where
gcd(f1,M) = 1 and f0 is any integer. An interleaver based on
an LPP results in a permuted DFT-s-OFDM signal, which is
contained in the following property proven in Appendix A-A.
Property 1: With an LPP interleaver, s[n] is a time-

interleaved and phase modulated DFT-s-OFDM signal,

s[n] = x
[
nf−1

1 (modM)
]
e−j

2π
M nf−1

1 f0 (16)

where f−1
1 f1 ≡ 1 (modM).

From the proof of Property 1, the basis function can be
identified as

g[m, n] = e−j
2π
M f0mδ

[
n− mf1 (modM)

]
. (17)
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Since (16) and (17) describe time division multiplexing
(TDM) of the modulation symbols, it is not expected
that an LPP will improve the BER/BLER compared to
DFT-s-OFDM.

E. QUADRATIC PERMUTATION POLYNOMIAL
A QPP is defined by π [k] = f2k2 + f1k + f0 (modM).
Conditions on the f2 and f1 coefficients can be found in,
e.g., [18], and f0 is any integer. Let M = pl00 p

l1
1 · . . . · plrr

be the prime factorization of M where pi, i = 0, 1, . . . , r
are prime numbers and the multiplicities li > 0 are inte-
gers. Then, the conditions on the QPP coefficients can be
succinctly stated as [21]:

i. If pi = 2, li = 1 then f1 + f2 �= 0 (mod 2).
ii. If pi = 2, li > 1 then f1 �= 0 (mod 2) and f2 ≡

0 (mod 2).
iii. If pi > 2, li ≥ 1 then f1 �= 0 (mod pi) and f2 ≡

0 (mod pi).
QPP interleavers have been designed particularly for turbo
codes, cf. [22], [23]. Such QPPs have been selected to facil-
itate implementations with parallel contention-free decoding
and to achieve low error probability. However, in that context,
the interleaver is internal and part of the error correct-
ing code, and does not serve the purpose of a channel
interleaver. Herein, the main objective is channel interleaving
over time-frequency selective channels. Thus, the previous
QPP interleavers are not directly relevant and new design
criteria will be needed, which we address in Section III. With
a QPP interleaver, the signal (4) with N = M becomes,

s[n] = 1

M

M−1∑

m=0

x[m]e−j
2π
M f0m

M−1∑

k=0

ej
2π
M k(n−mf1−kmf2) (18)

where the inner sum is a generalized quadratic Gauss sum.
Certain QPPs, i.e., irreducible QPPs, produce permuta-

tions which cannot equivalently be obtained from an LPP.
It has been shown that a QPP is irreducible if and only
if M > gcd(M, 2f2) [22]. Moreover, two distinct QPPs
could produce the same permutation. The number of irre-
ducible QPPs which provide unique permutations depends
on M and can be computed by given formulas [21], [24].
In [22], it was shown that if M is divisible by 8, there
exists an irreducible QPP. More generally, according to [21],
when the prime factorization of M is such that p0 = 2,
l0 = 0, or 1, or 2 and li = 1, i = 1, 2, . . . , r, then there
exist no irreducible QPPs. Thus, such M should be excluded
for the construction of QPPs. In LTE and NR, resources
are allocated in multiples of resource blocks (RBs). The
number of RBs is for the data channel using DFT-s-OFDM
constrained to be NRB = 2k0 3k1 5k2 where k0, k1 and k2
are non-negative integers [25]. A resource block contains
NRB

sc = 12 subcarriers, i.e., M = NRBNRB
sc . Using the afore-

mentioned conditions on M, it can be shown that the only
resource allocations for which there would not exist an irre-
ducible QPP are when NRB = 1 or NRB = 5, i.e., when
M = 12 or M = 60.

FIGURE 1. Example of |g[m, n]|2 for m = 1, 2, 16 and 64 for N = M = 128 with
f [k ] = 2k 2 + k .

F. SIGNAL PROPERTIES OF INTERLEAVED DFT-S-OFDM
For the case of N = M, it is straightforward to verify that the
basis function for DFT-s-OFDM is obtained with f [k] = k,
and (6) simplifies to g[m, n] = δ[n−m]. That is, modulation
symbol x[m] is transmitted on time sample m, which results
in TDM of the symbols. The basis function is sparse since
only 1 out of M samples is non-zero, i.e., carries a modu-
lation symbol, and M − 1 samples are zeros. By using the
geometric sum identity

N−1∑

k=0

ej
2π
N nk = Nδ[n (modN)] (19)

for any integer n, it can be shown from (6) that g[0, n] = δ[n]
for any interleaver, i.e., it contains 1 non-zero sample.
However, our evaluations of (6) with random permutations
have shown that the basis functions for m > 0 are typically
such that g[m, n] �= 0. On the other hand, if a permu-
tation polynomial is used, the basis functions could still
contain many zeros. A sufficient but not a necessary condi-
tion for zero-valued samples is as follows, which is proven
in Appendix A-B.
Property 2: If

π̃ [k] = n0k − m0f [k] (modM) (20)

is a permutation for k = 0, 1, . . . ,M−1, then g[m0, n0] = 0.
Thus, through f [k], it is clear that the polynomial

coefficients will determine the zero-valued samples. Fig. 1
shows examples of basis functions obtained from a QPP,
where it can be observed that the number of non-zero
elements differ among the basis functions and that the
power is constant on the non-zero samples for a given
basis function. Since a basis function can have multiple
distinct peaks, the modulation symbols are not transmitted
by TDM.
The basis functions can be further characterized by the

periodic crosscorrelation function (PCCF), according to the
following property which is proven in Appendix A-C.

1554 VOLUME 4, 2023



Property 3: The PCCF of basis functions is

ρgmgp[d] =
M−1∑

n=0

g[m, n]g∗[p, n+ d (modM)
]

(21)

= g∗[p− m, d
]
. (22)

Using (6), (19) and (22), it can be shown that

ρgmgp [0] = δ[m− p] (23)

and

ρgmgm[d] = δ[d]. (24)

Thus, according to (23) the basis functions are orthogonal,
which simplifies a receiver and basic channel equalization
methods could be applied. Furthermore, according to (24) a
basis function has an ideal periodic autocorrelation function
(PACF), i.e., it is orthogonal to any time delayed version of
itself.
If {x[m]} is a pre-defined sequence of symbols, the signal

may be used for channel estimation, synchronization etc. In
such cases the PACF of the signal becomes important, which
is defined by

ρss[d] =
M−1∑

n=0

s[n]s∗[n+ d (modM)] (25)

and the PACF for two modulation symbol sequences is

ρxx[d] =
M−1∑

n=0

x[n]x∗[n+ d (modM)]. (26)

The relation between the PACF of the signal and the basis
functions (i.e., implicitly the interleaver) is given by the
following property, which is proven in Appendix A-D.
Property 4: The PACF of the signal is

ρss[d] =
M−1∑

n=0

ρxx[n]g∗[n, d]. (27)

By utilizing Property 3 with p = m+n, we have for any m
that g∗[n, d] = ρgmgm+n[d], which could be inserted in to (27)
to give the relation between the correlation functions of the
signal, the modulation sequence and the basis functions. If
the sequence {x[m]} has ideal PACF, i.e., ρxx[d] = δ[d], then
by using (6) and (19) in (27), it follows that ρss[d] = δ[d].
Hence, the ideal PACF property of {x[m]} is invariant under
frequency domain interleaving, which simplifies the con-
struction of a reference symbol sequence and any suitable
interleaver could be chosen.
Frequency domain interleaving does not change the power

of the signal since the modulus sum of the basis functions
in either time-domain or over basis functions is constant
according to the following property, which is proven in
Appendix A-E. Thus, for the purpose to select a permu-
tation polynomial which reduces the PAPR, it suffices to
select one to reduce the peak power of the signal.

Property 5: The power of the basis functions fulfill the
following: ∣∣∣∣∣

M−1∑

n=0

g[m, n]

∣∣∣∣∣ =
∣∣∣∣∣

M−1∑

m=0

g[m, n]

∣∣∣∣∣ = 1 (28)

M−1∑

n=0

|g[m, n]|2 =
M−1∑

m=0

|g[m, n]|2 = 1 (29)

It should be pointed out that Property 2-5 were proven
without the assumption that the interleaver is based a per-
mutation polynomial. Hence, they apply for any type of
permutation π [k], including random interleaving. In the fol-
lowing, particular aspects of signal design using LPPs and
QPPs will be considered.

III. SELECTION OF PERMUTATION POLYNOMIALS
A. QPP FOR REDUCING BER/BLER
The basis function (6) for DFT-s-OFDM with oversampling
factor N/M becomes a sinc-like function (cf. (37) with f1 = 1
and f0 = 0), i.e., its power |g[m, n]|2 has a single distinct
peak which is located at sample n = mN/M, if N/M is
an integer. We anticipate that better performance may be
achieved on a time-varying channel for basis functions hav-
ing multiple peaks, since the transmission of the modulation
symbol then experiences diversity. For the case N = M,
according to Property 2, the basis functions can have differ-
ent number of non-zero elements and these can be regarded
as the distinct peaks, cf. Fig. 1. In order to obtain basis func-
tions having multiple distinct peaks, we therefore determine
permutation polynomials that maximize the number of non-
zero elements in the basis functions when N = M. Utilizing
the unit step function u(x), the novel criterion we propose to
determine such polynomials is to select the QPP to maximize
the number of non-zero elements over all M time-samples
and M basis functions according to the function

V =
M−1∑

m=0

M−1∑

n=0

u
(
|g[m, n]|2

)
. (30)

The inner sum in (30) is the number of non-zero samples of a
basis function, i.e., the number of distinct peaks of (6) when
N = M. In Appendix A-J, the following is derived for a QPP

|g[m, n]|2 = 1

M

M−1∑

t=0

e−j
2π
M (mf2t2+(mf1−n)tδ[2mf2t (modM)]

(31)

which can be used to compute (30). Since a basis function
has from 1 to M non-zero values, it is clear that the value
range is M ≤ V ≤ M2. In particular the lower limit applies
to LPPs, according to the following property which is proven
in Appendix A-F.
Property 6: If π [k] is an LPP, then V = M.
Moreover, an upper bound of (30) can be found, according

to the following property which is proven in Appendix A-G.
Property 7: If π [k] is a QPP and M is even, then V ≤

(M − 1)M/2 + 1.
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TABLE 1. Example of QPPs and the number of non-zero values V for M = 128 and
M = 108.

FIGURE 2. Maximum value of V/M2 for irreducible QPPs and LPPs as function of M .

From Property 7, it follows that for QPPs with even M,
V/M2 ≤ 0.5. The values of V contained in Table 1 are
obtained by evaluating all QPPs for M = 128 and M = 108.
It should be noted that there exist multiple QPPs for each
value of V but only one is included in the table. In total
4032 and 612 unique QPPs were found for M = 128 and
M = 108, respectively.
It can be seen that when f2 = M/2, then V = M, i.e.,

the same value as for DFT-s-OFDM. That is the case where
the signal becomes on the form (16), i.e., a permuted DFT-
s-OFDM signal where a basis function is non-zero only on
one sample, as shown by Property 6. This is because the
condition M > gcd(2f2,M) does not hold when f2 = M/2
and those QPPs are reducible to an LPP, e.g., 64k2 + k ≡
65k (mod 128).
For easier comparison of V values between different M,

we consider the normalized value V/M2, which by definition
gives V/M2 ≤ 1. In Fig. 2, the maximum V/M2 of a QPP is
plotted for each feasibleM, showing that the largest values of
V/M2 are achieved in particular when M = 3k and M = 2k.
Thus, the values of M for which there are QPPs with large
V , are when the prime factorization of M is having a large
multiplicity of one term pi, i.e., its li large. The figure also
contains the curve of 1/M, which is the corresponding value
of V/M2 for an LPP.
In order to determine the QPPs which maximize the value

V , the following sufficient condition for zero values of a basis
function is useful, which is proven in Appendix A-H.
Property 8: If gcd(f2,M) > 1 and gcd(m0f2,M) �

m0f1 − n0, then g[m0, n0] = 0.

TABLE 2. Parameters for simulations of BER/BLER.

This property implies that in order for basis function m
to contain few zero samples, f2 should be chosen such that

v = (mf1 − n)/ gcd(mf2,M) (32)

becomes an integer for as many time samples n as possi-
ble. That is facilitated by minimizing the denominator of v.
Moreover, the term mf1 in (32) will, for a given m and f2, not
impact the number of instances where v is an integer. Thus,
QPPs which maximize (30) could be confined to the QPPs
minimizing gcd(f2,M). Hence, a QPP which maximizes V
could be constructed to have the smallest feasible value of
f2 for the given M, and f1 is any feasible value according
to the conditions of the coefficients of a QPP. As predicted
by Property 8, the values of V in Table 1 are in decreasing
order of gcd(f2,M). Moreover, it can be confirmed from the
conditions on the QPP coefficients that f2 = 2 and f2 = 6
are the smallest values of f2 that are feasible for a QPP, for
M = 128 and M = 108, respectively.
We have also evaluated random interleaving (i.e., the set

of values {0, 1, . . . ,M−1} is randomly permuted) and found
that typically V/M2 ≈ 1, and that V does not show large vari-
ations among random interleaving sequences. Condition (30)
is thus applicable for selecting permutation polynomials
but is not suitable for selection among random interleav-
ing sequences. It also means that the basis functions with
random interleaver are typically dense. However, the differ-
ence between QPPs and random interleaving not only relates
to V but also the distribution of power among the samples.
Since the basis functions are dense for random interleaving,
the power is much lower per sample than for basis func-
tions of a QPP interleaver. Moreover, as shown in Fig. 1,
for a QPP the power is constant for the samples where the
basis function is not zero. We have not observed constant
power for basis functions obtained from random interleav-
ing. Thus, the potential gain of the larger value V of random
interleaving may become limited by the non-uniform power
distribution among the samples of the basis function.

B. SIMULATION RESULTS FOR BER/BLER
Considering the time-varying channel and the non-linear
basis functions, it does not appear analytically tractable to
determine expressions of BER/BLER on closed-form and we
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FIGURE 3. Block diagram of the DFT-s-OFDM transmitter, using an interleaver P, and the receiver using a deinterleaver P−1 and frequency domain equalization (FDE).

FIGURE 4. Bit error rate for QPSK as function of SNR for different QPPs on a
Vehicular A channel with 500 km/h velocity for M = 128. The BER for random
interleaving is also included.

use Monte-Carlo simulations according to the assumptions
in Table 2 to compare performance with DFT-s-OFDM. A
CP with NCP ≥ τL−1 is attached to s[n] and minimum
mean square error (MMSE) frequency domain equalization
(FDE) is used (see Appendix B). Ideal channel estimation
is assumed, thus higher BER/BLER is expected in practice.
Note that in [16], advanced iterative receivers were used,
which may bring further gains. High speed scenarios for 5G
have been defined up to 500 km/h [4] and we also evalu-
ate 120 km/h and 350 km/h. We use a subcarrier spacing
of fSCS = 15 kHz and a carrier frequency of fc = 6 GHz,
which at 500 km/h corresponds to a maximum Doppler shift
of 2.78 kHz, i.e., 19% of the subcarrier spacing. For BLER
evaluation, the 3GPP NR polar code and rate matching is
used [26] with a decoding algorithm according to [27]. In
these simulations, the coded bits are mapped to modulation
symbols which are transmitted in 1 DFT-s-OFDM symbol
and the same permutation polynomial is used for all trans-
mitted OFDM symbols. Fig. 3 gives a block diagram of the
transmitter and receiver.
An issue at higher velocities is the existence of an error

floor, which arises due to that the orthogonality among the
subcarriers is not maintained, cf. (15). Fig. 4 shows uncoded
BER as function of SNR for QPSK. It confirms that poly-
nomial selection according to (30) works, since QPPs with
a large V offer lower BER and suppress the error floor.
A properly chosen QPP can result in better BER than for

FIGURE 5. Bit error rate for BPSK, QPSK and 16-QAM as function of SNR for
DFT-s-OFDM with and without QPP (f [k ] = 2k 2 + k ), on a Vehicular A channel with
0 km/h and 500 km/h velocity for M = 128.

DFT-s-OFDM, which has the same BER as that of the
reducible QPP f [k] = 64k2 + k. The BER of random inter-
leaving is also shown, i.e., a random interleaving sequence
is generated for each transmission attempt and the BER is an
average over the interleaver sequences. Thus the result can
be interpreted as the expected BER for any random inter-
leaving method. It can be concluded that the best QPP gives
a BER comparable to random interleaving, despite that it
has a value V � M2. The selection of polynomial according
to (30) is independent of modulation format, and Fig. 5 and
Fig. 6 contain the BER for DFT-s-OFDM with the best QPP
(i.e., f [k] = 2k2 + k) which shows that the error floor can
be suppressed significantly for the higher velocities, at least
by an order of a magnitude for all the modulation formats.
It can be seen that the relative gains of QPP interleaver
increases with the velocity and for BPSK and QPSK, the
BER decreases with the velocity when QPP is applied. For
16-QAM the diversity gain of QPP does not fully compen-
sate for the loss due to the ICI, in comparison to the 0 km/h
case. We apply the same condition (30) for determining a
QPP for reducing the BLER, i.e., a QPP that maximizes the
value V . The desired BLER depends on the application and
typically ranges from 10−1 for mobile broadband (MBB)
data to 10−5 for ultra reliable low-latency communication
(URLLC) [28]. A channel code will be able to capture time-
frequency diversity effects by itself. Nevertheless, Fig. 7
which contains the BLER with the same QPP as in Fig. 6,

VOLUME 4, 2023 1557
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FIGURE 6. Bit error rate for BPSK, QPSK and 16-QAM as function of SNR for
DFT-s-OFDM with and without QPP (f [k ] = 2k 2 + k ), on a Vehicular A channel with
120 km/h and 350 km/h velocity for M = 128.

FIGURE 7. Block error rate for BPSK, QPSK and 16-QAM as function of SNR for
DFT-s-OFDM with and without QPP (f [k ] = 2k 2 + k ), for OFDM and for CCDT (with
chirp parameters α = −2.5 and β = −2 ) on a Vehicular A channel with 500 km/h
velocity for M = 128 with a polar code using code rate r = 3/4.

shows that there are substantial gains from QPP interleaving
also with channel coding, especially for BPSK and for low
BLER. It should be noted that this polar code is specified
for QPSK in 3GPP NR system and we apply it herein also
for BPSK and 16-QAM. As a further performance reference,
OFDM is included, which is shown to provide larger BLER
than the DFT-s-OFDM based schemes. Moreover, results for
the chirp-based waveform CCDT [8] are included, which is
shown to also be better than for DFT-s-OFDM.

C. LPP FOR REDUCING PAPR
The power dynamics of the baseband signal can be
characterized by the peak-to-mean envelope power ratio
(PMEPR) [29]. The PMEPR should ideally be evaluated
on the time-continuous signal but as an approximation, the
oversampled signal can be used and we define

PMEPR = max
0≤n≤N−1

|s[n]|2
1
N

∑N−1
n=0 |s[n]|2 . (33)

FIGURE 8. Example of |g[m, n]|2 for different values of m with N/M = 10, f1 = 1 and
f0 = 0.

If we consider an LPP and oversampling by a factor N/M,
the signal can be expressed for n = 0, 1, . . . ,N − 1 as

s[n] = 1

M

M−1∑

m=0

x[m]
M−1∑

k=0

e−j
2π
M m(f1k+f0)ej

2π
N nk (34)

= 1

M

M−1∑

m=0

x[m]e−j
2π
M mf0e

jπ M
N

(
n− N

M f1m
)(

1− 1
M

)

× sin
(
π M
N

(
n− N

M f1m
))

sin
(
π 1
N

(
n− N

M f1m
)) (35)

=
M−1∑

m=0

x[m] e−j
2π
M mf0 1

M
h

[
n− N

M
f1m

]

︸ ︷︷ ︸
g[m,n]

(36)

with the Dirichlet kernel

h[k] = e
jπ M

N k
(

1− 1
M

)
sin

(
π M
N k

)

sin
(
π 1
N k

) . (37)

Thus, (36) and (37) show that the signal can be expressed
by a set of basis functions, g[m, n], which are non-linear in
the LPP coefficients. According to Property 5, the interleaver
does not change the average transmitted power of the signal,
thus minimization of the PMEPR reduces to minimizing
|s[n]|2. As opposed to (16), where N = M and the PMEPR
does not depend on the interleaver, the LPP coefficients in
the basis functions for (37) could affect the PMEPR.
Fig. 8 shows an example of the power of basis function

|g[m, n]|2 for a limited set of values n, and form = 19, 20, 21,
where it is assumed that f1 = 1, f0 = 0 and N/M = 10. It
can be seen that symbol m0 is modulated on basis function
g[m0, n] which has its main power peak |g[m0, n0]|2 at sample
n0 = N/Mm0. Likewise, the basis function for symbolm1 will
have its power peak at sample n1 = N/Mm1. Fig. 8 illustrates
that the signal power contribution on samples n0 < n < n1,
where n1 = N/Mm1 = N/Mm0 +N/M and m1 = m0 +1, and
n−1 = N/Mm−1 andm−1 = m0−1, are from symbolm−1,m0
and m1. However, the main power contribution is from m0
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and m1, i.e., consecutive basis functions. The basis function
in (36) and (37) contains a phase term and an amplitude
term and it can be found that the phase term for modulation
symbol m in g[m, n] for time samples between the peaks of
two consecutive basis functions is,

θ(m) = e−j
2π
M mf0e

−jπ f1m
(

1− 1
M

)

(38)

= e
−j 2π

M m
(
f0− f1

2

)

e−jπmf1 (39)

where the phase term being dependent on the time sample
n in (36), which is common to all basis functions m, has
been removed. Thus, the phase difference between basis
functions for two consecutive modulation symbols m0 and
m1 = m0 + 1 is

arg
(
θ(m0)θ

∗(m0 + 1)
) = 2π

M

(
f0 − f1

2

)
+ π f1. (40)

To reduce the peak power on samples n0 < n < n1, different
phase values should be used for symbol m0 and m1, such
that their basis functions do not add coherently. Therefore,
f0 and f1 should be chosen to rotate the modulation symbol
constellation such that for any consecutive symbols x[m0] and
x[m1] taken from the modulation constellation, it holds that

x[m0]θ(m0) �= x[m1]θ(m1). (41)

We propose that this could be achieved by rotating the
constellation an angle according to (40) as,

2π

M

(
f0 − f1

2

)
+ π f1 ≈ π t

4
(2q+ 1) (42)

where t = 1 for QPSK and 16-QAM, t = 2 for BPSK and
q is an integer. Consider first the case f1 = 1 where q is
chosen such that f0 is a positive integer. From (42) we can
solve for f0, and it follows that

f0 =
⌊
M

2

(
t(2q+ 1)

4
− 1

)
+ 1

2

⌋
(43)

or

f0 =
⌈
M

2

(
t(2q+ 1)

4
− 1

)
+ 1

2

⌉
. (44)

The resulting phase rotations of (43) or (44) may not be
the optimal ones since, firstly, they are derived based on the
assumed phase angle of (42) which may not be optimal
and, secondly, because the desired phase angle may not
be achieved perfectly since f0 and f1 have to be integer
coefficients of an LPP. The results in Fig. 9, where the
1-percentile of the complementary cumulative distribution
function (CCDF) of the PMEPR, which is obtained from
simulations, is plotted as function of f0, confirm that (43)
and (44) reduce the PMEPR for QPSK and 16-QAM. The
PMEPR becomes periodic in f0 since (39) is periodic. The
PMEPR reduction is moderate, i.e., fractions of a dB, for
QPSK and 16-QAM. A comparison is also made to BPSK
and π/2-BPSK, where the gains are substantial, i.e., several
dB. It can be seen that the PMEPR curve for BPSK is a
cyclically shifted version of the π/2-BPSK PMEPR curve.

FIGURE 9. PMEPR [dB] at 1-percentile CCDF as function of f0 for f1 = 1, for 16-QAM
(top), QPSK, BPSK and π /2-BPSK (bottom). Oversampling by a factor N/M = 10 is
used and M = 64.

FIGURE 10. PMEPR [dB] at 1-percentile CCDF as function of f0 for f1 = 3 (top), f1 = 5
(middle) and f1 = 7 (bottom), for QPSK. Oversampling by a factor N/M = 10 is used
and M = 64.

The lowest PMEPR for BPSK is obtained with f0 = 14,
which corresponds to the effective rotation angle 27π/64,
i.e., slightly less than π/2. Notably, phase rotation angles
in the vicinity of π/2 have been identified to minimize the
PMEPR for BPSK in [30].
For the case f1 �= 1, it follows from (36) and (37)

that |g[m0, n0]|2 has its main peak at sample n0 =
N/Mf1m0 (modN) and for m1, the main peak is at sample
n1 = N/Mf1m1 (modN). Therefore, it may be that the main
power contribution on samples N/Mf1m0 < n < N/Mf1m0 +
N/M does not come from a modulation symbol being consec-
utive to m0, i.e., if N/Mf1m1 (modN) �= N/Mf1m0 +N/M.
Therefore, arg(θ(m0)θ

∗(m0 + 1)) can depend on the symbol
index m0 which makes it difficult to analytically derive a
proper value of f0. However, as shown in Fig. 10, there is a
periodicity in the PMEPR and some values of f0 are better
than others, but there is no significant gain compared to
when f1 = 1 as in Fig. 9. Fig. 11 contains the CCDF of the
PMEPR for an LPP according to (43) and for DFT-s-OFDM
(i.e., f [k] = k). The PMEPR reduction is significant for
BPSK, while being moderate for QPSK and 16-QAM.
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FIGURE 11. CCDF of PMEPR for BPSK, QPSK and 16-QAM for DFT-s-OFDM with
and without LPP. Oversampling by a factor N/M = 10 is used and M = 128.

FIGURE 12. CCDF of PMEPR for QPSK using the QPPs from Table 1 and random
interleaving. Oversampling by a factor N/M = 10 is used and M = 128.

D. RELATION BETWEEN PMEPR AND BER/BLER
A basis function with QPP interleaver may not be a sinc-
like function and can have multiple peaks (in contrast to the
distinct single peak of the LPP basis function (37) shown
in Fig. 8), and it may also not have a symmetric shape.
Therefore, it is not straightforward to analytically determine
the best QPP coefficients in order to reduce the PMEPR, as
could be done for an LPP. Fig. 12 contains simulation results
of the CCDF for the PMEPR for QPSK using the QPPs of
Table 1 and for random interleaving, which is shown to
produce the largest PMEPR. Comparing with Fig. 4, it can
be concluded that the QPPs which offer the lowest PMEPR
give the highest BER.
The results in Fig. 4 and Fig. 12 suggest that either the

PMEPR or the BER/BLER is improved. To investigate this
further, we set M = 32, which makes it feasible to per-
form a complete exhaustive search. That is, we generate all
LPPs and all irreducible QPPs and for each one of them,
signals are produced and simulations are made to deter-
mine the PMEPR at the 1-percentile of the CCDF. Then we

FIGURE 13. CCDF of PMEPR for BPSK, QPSK and 16-QAM using an LPP and FDSS
with RRC window with roll off factor 0.2. Oversampling by a factor N/M = 10 is used
and M = 128.

select the polynomial which minimizes the PMEPR and the
uncoded BER is evaluated by simulations for this polynomial
to determine the required SNR to achieve 10−2 BER. These
results are contained in Table 3 and Table 5, which show
that LPP reduces the PMEPR, especially for BPSK, but not
the BER. However, we note that for BPSK, there exist QPPs
(e.g., f [k] = 8k2 + 7k+ 4) which simultaneously reduce the
PMEPR and the BER, compared to DFT-s-OFDM. The SNR
gain of random interleaving is not significant compared to
QPP, which also has much lower PMEPR. Table 4 contains
the required SNR to achieve 10−3 BLER, assuming the best
QPP from Table 1 which minimizes the BLER and the LPP
is selected to minimize the PMEPR according to (43). It
can be seen that the QPP improves the BLER more for the
higher code rate and the gains are larger for BPSK and
16-QAM. The LPP improves the PMEPR more for BPSK
than for QPSK and 16-QAM. Random interleaving has no
significant gain over a QPP interleaver.

E. LPP WITH FDSS
The PMEPR reduction methods of LPP and FDSS could be
performed jointly such that the transmitted signal becomes

s[n] = 1√
M

M−1∑

k=0

F[k]X[π [k]]ej
2π
N nk (45)

where F[k] is the FDSS window. For Fig. 13, a root raised
cosine (RRC) window with roll off factor 0.2 has been used
and the results show that the gains of the LPP method
is maintained, and are specifically substantial for BPSK
modulation.

IV. TRANSCEIVER ASPECTS
A frequency domain interleaver could be introduced for DFT-
s-OFDM with small impact. Nevertheless, a few options for
the implementation are discussed in this section.
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TABLE 3. PMEPR [dB] at the 1-percentile CCDF and required SNR [dB] for BER = 10−3 for polynomials found through exhaustive search that minimize the PMEPR for
DFT-s-OFDM with and without LPP. Oversampling by a factor N/M = 10 is used when evaluating the PMEPR and M = 32.

TABLE 4. PMEPR [dB] at the 1-percentile CCDF and required SNR [dB] for BLER = 10−3 for code rate r = 3/4 and r = 1/3, for DFT-s-OFDM with and without LPP and QPP.
Oversampling by a factor N/M = 10 is used when evaluating the PMEPR and M = 128.

TABLE 5. Polynomials found through exhaustive search to minimize the 1-percentile
CCDF of the PMEPR. Oversampling by a factor N/M = 10 is used and M = 32.

A. INVERSE PERMUTATION POLYNOMIALS
The receiver is performing the inverse operations of the trans-
mitter, i.e., an N-point DFT, FDE, deinterleaving and an
M-point inverse DFT (IDFT). Interleavers based on permu-
tation polynomials allow for simple deinterleaving, which is
applied on the received and equalized Fourier coefficients
Y[k] as Y[π−1[k]]. The degree of π−1[k] may not be the
same as for π [k]. The inverse permutation polynomial, and in
particular minimum degree inverse permutation polynomials,
could be determined by the algorithms in [18], [19], [22].
However, as will be shown, the inverse permutation polyno-
mial π−1[k] always gives the same value Vπ−1 of (30) as
for the associated permutation polynomial Vπ . Thus it is not
expected that there would be any significant difference in
BER/BLER among them, which is captured by the following
property proven in Appendix A-I.
Property 9: For a permutation polynomial π [k] and its

associated inverse permutation polynomial π−1[k],

Vπ−1 = Vπ . (46)

A large degree of the permutation polynomial may
increase the implementation complexity, which is more crit-
ical for the mobile terminal than for a base station. Thus,
it would be possible to utilize the one permutation polyno-
mial of π [k] or π−1[k] which has the smallest degree in the
mobile terminal.

B. COMPLEXITY REDUCTION OF QPP INTERLEAVER
Since M may be large, computing the values of (1) involves
squaring and modulo operation of large integers. This could
be avoided by decomposing the polynomial. In [31], it was

shown that a QPP interleaver can be expressed as

π [k] = f1k + f2(k (modQ))2 (modM) (47)

where Q (Q < M) depends on the prime factorization of M
and of f2. Hence, the number of squaring operations could be
reduced from M to Q. Alternatively, complexity reductions
can be made as follows. Suppose f [k] is a QPP with f0 = 0,
then we have

f [k + d] = f [k] + f [d] + 2f2kd (48)

and it is straightforward to verify that if

2f2kd ≡ 0 (modM) (49)

then, the permutation values can be computed by a linear
relation

π [k + d] = π [k] + π [d] (modM). (50)

Thus, the number of permutation values which need to be
computed by π [k] can be reduced. One example fulfill-
ing (49) is when kd = M. Furthermore, by letting d = 1 and
recursively utilizing (48), we obtain for k > 0

f [k] = f [k − 1] + f1 + f2(2k − 1). (51)

Moreover, by using the identity for the sum of natural
numbers

k−1∑

t=1

t = k(k − 1)

2
(52)

an equivalent representation is

f [k] = (f2 + f1)k + f2k(k − 1) (53)

= (f2 + f1)k + 2f2

k−1∑

t=1

t. (54)

Hence, by utilizing either (51) or (54), squaring operations
can be avoided in order to determine the permutation (1).
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C. ALTERNATIVE SIGNAL GENERATION
An alternative representation of frequency interleaved DFT-
s-OFDM is precoded DFT-s-OFDM, which is derived as
follows. Define the matrices:

• DFT matrix: WN = [wkl] with wkl = 1/
√
Ne−j 2π

N kl for
k, l = 0, 1, . . . ,N − 1.

• Mapping matrix: Q = [qkl] with qkl ∈ {0, 1}, k =
0, 1, . . . ,N − 1 and l = 0, 1, . . . ,M− 1, which maps a
length-M vector to the set of N(N ≥ M) subcarriers.

• Permutation matrix: P = [pkl] with k = 0, 1, . . . ,M−1
and l = 0, 1, . . . ,M − 1, which for each k, pkl = 1 if
l = π [k] and pkl = 0 otherwise.

• Precoding matrix: G = W†
MPWM

The signal vector s = [s[n]]′ is obtained from the symbol
vector x = [x[m]]′ and since W†

NWN = WNW
†
N = I, an

equivalent representation is given by

s = W†
NQPWMx (55)

= W†
NQWMGx. (56)

Hence, from (56) it can be observed that frequency domain
interleaving can alternatively be viewed as DFT-s-OFDM
with a precoder G applied before the DFT precoder. Since
P is an orthogonal matrix, it follows that the inverse precoder,
e.g., to be used in the receiver, could be defined asG−1 = G†.
When P is derived from an LPP, the precoder G has simple

structure. Namely, if f0 = 0, then G is a permutation matrix.
If f0 �= 0 and N = M, then G is a phase modulated permuta-
tion matrix. This could be realized as follows. Suppose y[n] is
the output from the precoder and that q = f−1

1 is the inverse
of f1 modulo-M, which always exists since gcd(f1,M) = 1.
Then, with y = [y[n]]′ and y = Gx, it will hold that

y[n] = 1√
M

M−1∑

m=0

X
[
f1m+ f0

]
ej

2π
M mn (57)

= 1√
M

M−1∑

m=0

X
[
f1m+ f0

]
ej

2π
M (f1m+f0)qne−j

2π
M f0qn (58)

= e−j 2π
M f0qn

√
M

M−1∑

k=0

X[k]ej
2π
M kqn (59)

= e−j
2π
M f0qnx

[
qn (modM)

]
. (60)

Hence, the (n + 1)th row of G will contain e−j 2π
M f0qn in

column qn (modM)+1, and zeros otherwise. Generally, from
the definition of G = [gkp] for k = 0, 1, . . . ,M − 1 and
p = 0, 1, . . . ,M − 1, it can be deduced that,

gkp = 1

M

M−1∑

n=0

ej
2π
M nke−j

2π
M π [n]p

= g
[
p, k

]
(61)

where the second step follows from (6). It is straightforward
to verify that g00 = 1, g0p = 0,∀p �= 0 and gk0 = 0,∀k �= 0
for an LPP with f0 = 0, i.e., G is a permutation matrix. For
a QPP, determining G involves evaluation of the generalized

FIGURE 14. Maximum value of V normalized by M2 for irreducible QPPs as function
of M . The blue bars (dot) show the maximum value for any irreducible QPP, while the
red bars (circle) are limited to only those irreducible QPPs which are self-inverses.

quadratic Gauss sum in (61), for which there are closed-form
expressions only in some cases.

D. INVOLUTORY PERMUTATION POLYNOMIALS
A permutation matrix is involutory if P2 = I, i.e., its
inverse is the matrix itself. This means that the same per-
mutation polynomial can be used for deinterleaving and for
interleaving, i.e., the inverse permutation polynomial is the
same as the permutation polynomial. In that case, the same
interleaver can be used for transmission and reception, which
reduces the implementation complexity. This requires that the
self-inverse property holds

f [f [k]] ≡ k (modM) (62)

and inserting a QPP into (62), the following congruence
equations determine the necessary conditions.

f 3
2 ≡ 0 (modM) (63)

2f 2
2 f1 ≡ 0 (modM) (64)

f2f
2
1 + 2f 2

2 f0 + f2f1 ≡ 0 (modM) (65)

2f2f1f0 + f 2
1 ≡ 1 (modM) (66)

f2f
2
0 + f1f0 + f0 ≡ 0 (modM) (67)

For example, it can be verified that f [k] = 8k2 +63k is irre-
ducible and fulfills (62) for M = 128. The results contained
in Fig. 14 show that in most cases, a QPP which is its own
self-inverse, has the same maximum value V as any other
QPP for a given M.

It is also possible to construct LPPs which have the self-
inverse property and the conditions are given by (63)–(67)
with f2 = 0. For example, for even M such an LPP is
f1 = 1 and f0 = M/2. It has been shown that P com-
mutes with the DFT matrix [32], i.e., WMP = PWM , if P
is involutory and if it is derived from a permutation ful-
filling f [k] = f [1]k (modM) and f [1]2 ≡ 1 (modM). Thus,
such a permutation could be generated from an LPP with
f 2
1 ≡ 1 (modM) and f0 = 0, which satisfy (63)–(67). If P
commutes withWM , the basis functions become very simple,
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since G = P. The number of solutions to f 2
1 ≡ 1 (modM)

depends on M. However, there are at least two solutions, i.e.,
f1 = 1 and f1 = M − 1. To summarize, there exist plenty of
self-inverse QPPs which maximize V . However, self-inverse
LPPs do not typically fulfill any of the PMEPR minimizing
conditions (43)–(44).

V. CONCLUSION
Frequency-domain interleaving could be straightforwardly
introduced in existing 4G/5G systems utilizing DFT-s-
OFDM, without significant changes to the transmit/receive
chain implementation. The interleaver will also not impact
the spectrum of the transmitted signal, e.g., out-of-band
emissions. The proposed novel criteria for constructing per-
mutation polynomials result in improved BER/BLER on
channels with high Doppler spread and can produce lower
PAPR than for DFT-s-OFDM. Notably, for some cases,
e.g., BPSK with QPP, both the BER/BLER and PAPR can
be improved simultaneously. Random interleaving provides
much worse PAPR and has no obvious advantage, in terms
of performance or implementation complexity. With a QPP
interleaver the basis functions have different shapes, e.g.,
different number of peaks, which suggests that modulation
symbols carried on different basis functions may experience
unequal reliability. We leave for further study the construc-
tion of permutation polynomials considering this aspect as
well as use of cubic permutation polynomials. Moreover,
the case of discontiguously located subcarriers, evaluation
with advanced receivers and channel estimation could be
considered.

APPENDIX A
A. PROOF OF PROPERTY 1

s[n] = 1

M

M−1∑

m=0

x[m]
M−1∑

k=0

e−j
2π
M mπ [k]ej

2π
M nk

= 1

M

M−1∑

m=0

x[m]
M−1∑

k=0

e−j
2π
M m(f1k+f0)ej

2π
M nk

= 1

M

M−1∑

m=0

x[m]e−j
2π
M f0m

M−1∑

k=0

ej
2π
M k(n−mf1)

= x
[
nf−1

1 (modM)
]
e−j

2π
M nf−1

1 f0 (68)

In the last step, the inner sum exists only when the linear
congruence equation mf1 ≡ n (modM) has a solution. It
is known that a solution exists if n ≡ 0 (mod gcd(f1,M)).
Since π [k] is a permutation polynomial, gcd(f1,M) = 1,
therefore there exists a unique m = nf−1

1 for every n, where
f−1
1 f1 ≡ 1 (modM).

B. PROOF OF PROPERTY 2
A sufficient condition for the sum g[m0, n0] =
1
M

∑M−1
k=0 e−j 2π

M m0π [k]ej
2π
M n0k to vanish is that n0k − m0π [k]

generates a set of values {q, q+ 1, . . . , q+M − 1} for any
integer q. This occurs if π̃ [k] = n0k − m0f [k] (modM) is

a permutation. The sum could also vanish for other sets of
values, therefore the condition is sufficient but not necessary.

C. PROOF OF PROPERTY 3

ρgmgp [d] = 1

M2

M−1∑

k=0

M−1∑

r=0

ej
2π
M (pπ [r]−mπ [k])e−j

2π
M dr

×
M−1∑

n=0

ej
2π
M n(k−r)

= 1

M

M−1∑

r=0

ej
2π
M (p−m)π [r]e−j

2π
M dr

= g∗[p− m, d
]

(69)

D. PROOF OF PROPERTY 4
Using Property 3, it follows that

ρss[d] =
M−1∑

n=0

M−1∑

m=0

M−1∑

p=0

x[m] g[m, n]x∗[p] g∗[p, n+ d
]

=
M−1∑

m=0

M−1∑

p=0

x[m] x∗[p]
M−1∑

n=0

g[m, n]g∗[p, n+ d
]

=
M−1∑

m=0

M−1∑

p=0

x[m] x∗[p] ρgmgp [d]

=
M−1∑

m=0

M−1∑

p=0

x[m] x∗[p] g∗[p− m (modM), d
]

=
M−1∑

m=0

M−1∑

t=0

x[m] x∗[m+ t]g∗[t, d]

=
M−1∑

t=0

ρxx[t] g
∗[t, d] (70)

where the substitution p− m = t has been utilized.

E. PROOF OF PROPERTY 5
For the first relation,

∣∣∣∣∣

M−1∑

n=0

g[m, n]

∣∣∣∣∣ =
∣∣∣∣∣

M−1∑

n=0

1

M

M−1∑

k=0

e−j
2π
M mπ [k]ej

2π
M nk

∣∣∣∣∣

=
∣∣∣∣∣

1

M

M−1∑

k=0

e−j
2π
M mπ [k]

M−1∑

n=0

ej
2π
M nk

∣∣∣∣∣

=
∣∣∣∣∣

M−1∑

k=0

e−j
2π
M mπ [k]δ[k]

∣∣∣∣∣

=
∣∣∣e−j

2π
M mπ [0]

∣∣∣
= 1 (71)∣∣∣∣∣

M−1∑

m=0

g[m, n]

∣∣∣∣∣ =
∣∣∣∣∣

M−1∑

m=0

1

M

M−1∑

k=0

e−j
2π
M mπ [k]ej

2π
M nk

∣∣∣∣∣
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=
∣∣∣∣∣

1

M

M−1∑

k=0

ej
2π
M nk

M−1∑

m=0

e−j
2π
M mπ [k]

∣∣∣∣∣

=
∣∣∣∣∣

M−1∑

k=0

ej
2π
M nkδ[π [k]]

∣∣∣∣∣

=
∣∣∣ej

2π
M nk′

∣∣∣
= 1 (72)

where π [k′] = 0.
For the second relation, it follows from (24) that∑M−1
n=0 |g[m, n]|2 = ρgmgm[0] = 1. Furthermore,

M−1∑

m=0

|g[m, n]|2 =
M−1∑

m=0

1

M

M−1∑

k=0

e−j
2π
M mπ [k]ej

2π
M nk

× 1

M

M−1∑

p=0

ej
2π
M mπ [p]e−j

2π
M np

= 1

M2

M−1∑

k=0

M−1∑

p=0

ej
2π
M n(k−p)

M−1∑

m=0

ej
2π
M m(π[p]−π [k])

= 1

M

M−1∑

k=0

1

= 1 (73)

since the last sum is equal to M when π [p] = π [k], which
implies that k = p.

F. PROOF OF PROPERTY 6
From (6), the basis function with an LPP can for N = M
be simplified as

g[m, n] = 1

M

M−1∑

k=0

e−j
2π
M m(f1k+f0)ej

2π
M nk

= e−j
2π
M mf0 1

M

M−1∑

k=0

ej
2π
M k(n−mf1)

= e−j
2π
M mf0δ

[
n− mf1 (modM)

]
. (74)

Therefore, u(|g[m, n]|) = 1 when n ≡ mf1 (modM). which
implies that there is one sample n0 per basis function m for
which g[m, n0] �= 0 and it thus follows that V = M.

G. PROOF OF PROPERTY 7
The basis function is defined as

g[m, n] = e−j
2π
M f0m

M−1∑

k=0

ej
2π
M k(n−mf1−kmf2). (75)

Suppose M is even, a = 0, 1 and b = 0, 1, . . . ,M/2 − 1.
Substituting k = M

2 a+ b in (75), gives

g[m, n] = e−j
2π
M f0m

1∑

a=0

M/2−1∑

b=0

e
j 2π
M

(
M
2 a+b

)(
n−mf1−

(
M
2 a+b

)
mf2

)

= e−j
2π
M f0m

1∑

a=0

e
−j2π

(
mf2

(
M
4 a

2+ab
)
+mf1−n

2 a
)

×
M/2−1∑

b=0

ej
2π
M b(n−mf1−bmf2)

= e−j
2π
M f0m

(
1 + e

−jπ
(
mf2

M
2 +mf1−n

))

×
M/2−1∑

b=0

ej
2π
M b(n−mf1−bmf2). (76)

Thus, from (76) it can be observed that if v = m0f2
M
2 +m0f1−

n0 is an odd integer, then g[m0, n0] = 0. Furthermore, for a
given basis function m0, m0f1 + m0f2

M
2 is fixed, thus every

other value of v will be an odd integer. Hence, the number
of non-zero elements of g[m, n] is upper bounded by M/2.
Moreover, it follows from (6) that g[0, n] = δ[n],∀n. Thus,
V ≤ (M − 1)M/2 + 1.

H. PROOF OF PROPERTY 8
For any integers a and b,

e−j
2π
M

(
ak2+bk) = e−j

2π
M

(
a(k+M)2+b(k+M)

)
(77)

thus, it follows that
M−1∑

k=0

e−j
2π
M

(
ak2+bk) =

M−1∑

k=0

e−j
2π
M

(
a(k+d)2+b(k+d)) (78)

for any integer d. Let D = gcd(a,M) > 1 and d = M/D.
Then, (78) gives

M−1∑

k=0

e−j
2π
M

(
ak2+bk) =

M−1∑

k=0

e
−j 2π

M

(
ak2+bk+a

(
2k MD +

(
M
D

)2
)

+M
D b

)

= e−j2π b
D

M−1∑

k=0

e−j
2π
M

(
ak2+bk) (79)

where the last step follows from that a/D and M/D are
integers. Thus, if D � b, then e−j2π b

D �= 1, which implies
that

M−1∑

k=0

e−j
2π
M

(
ak2+bk) = 0. (80)

From (18), it follows that a = mf2 and b = mf1 − n, and
thus if

gcd(m0f2,M) � m0f1 − n0 (81)

then g[m0, n0] = 0.

I. PROOF OF PROPERTY 9
The relation between basis functions for a permutation
polynomial π [k] and its associated inverse permutation
polynomial, π−1[k] is,

gπ [m, n] = 1

M

M−1∑

k=0

e−j
2π
M mπ [k]ej

2π
M nk
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= 1

M

M−1∑

p=0

e−j
2π
M mpej

2π
M nπ−1[p]

= g∗
π−1 [n,m] (82)

where the second step follows from variable substitution
p = π [k]. Therefore, from (82) it follows that

Vπ−1 =
M−1∑

m=0

M−1∑

n=0

u
(|gπ−1 [m, n]|)

=
M−1∑

m=0

M−1∑

n=0

u
(|g∗

π [n,m]|)

=
M−1∑

m=0

M−1∑

n=0

u(|gπ [n,m]|)

=
M−1∑

m=0

M−1∑

n=0

u(|gπ [m, n]|)

= Vπ (83)

which implies the same value V .

J. DERIVATION OF (31)
From the definition (6), we obtain

|g[m, n]|2 = 1

M2

M−1∑

k=0

M−1∑

s=0

e−j
2π
M

(
mf2k2+(mf1−n)k+mf0

)

× ej
2π
M

(
mf2s2+(mf1−n)s+mf0

)

= 1

M2

M−1∑

k=0

M−1∑

s=0

e−j
2π
M

(
mf2

(
s2−k2

)+(mf1−n)(s−k)
)

= 1

M2

M−1∑

k=0

M−1∑

t=0

e−j
2π
M (mf2(2k+t)t+(mf1−n)t)

= 1

M2

M−1∑

t=0

e−j
2π
M (mf2t2+(mf1−n)t

M−1∑

k=0

e−j
2π
M 2mf2tk

= 1

M

M−1∑

t=0

e−j
2π
M (mf2t2+(mf1−n)tδ

[
2mf2t (modM)

]

where the variable substitution s− k = t has been utilized.

APPENDIX B
We assume that NCP ≥ τL−1 and the received signal in the
frequency domain, after CP removal, can then be expressed
on matrix form as

R = WMHW†
MPWMx + η̃ (84)

where η̃ is additive white Gaussian noise (AWGN) and H
is the channel convolution matrix, which for a time-varying
channel does not become circulant [33] and thus WMHW†

M
is not a diagonal matrix. We assume equalization by a MMSE
filter, i.e., for a given SNR, E = ((WMHW†

M)†WMHW†
M +

SNR−1 I)−1(WMHW†
M)†, where detection is made from x̂ =

W†
MP

−1ER.
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