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ABSTRACT Decentralized machine learning enables multiple devices to train a global model collabora-
tively and is a promising paradigm to realize ubiquitous intelligence for the Internet of Vehicles (IoV).
Existing work mainly focused on either the data privacy protection techniques or efficient topology orches-
tration of decentralized machine learning. However, these techniques cannot be directly applied to IoV
due to possible accuracy degradations and insufficient topology adaptability, not to mention the joint
secure and efficient decentralized learning designs. This paper proposes a secure and efficient hierarchical
decentralized learning framework for IoV networks with multiple fog nodes and mobile vehicles. The
proposed framework combines federated learning and distributed consensus for vehicle-fog and inter-fog
collaborative learning, respectively, and integrates masking with local training to protect data privacy. We
propose the network-level masking mechanism and consensus matrix optimization for signaling-efficient
implementations in IoV. The network-level masking can eliminate the masking pairing requirements of
inter-fog handover of mobile vehicles and is proved to be canceled via distributed consensus. Experimental
results on two popular datasets validate the superiority of the proposed framework in terms of learning
accuracy, data protection, and signaling efficiency, compared to the existing approaches.

INDEX TERMS Decentralized machine learning, Internet of Vehicles, data privacy, signaling efficiency.

I. INTRODUCTION

DECENTRALIZED machine learning at the network
edge has emerged as a promising paradigm that

enables multiple edge devices to train a global Artificial
Intelligence (AI) model collaboratively without sharing
their raw data [1]. Due to its advantage of distributed
model training, while preserving data privacy, decen-
tralized machine learning is regarded as the under-
lying technology to realize ubiquitous intelligence in
Internet-of-Vehicles (IoV) [2]. In particular, the vehicles
can share and aggregate a comprehensive and accu-
rate AI model for autonomous driving without a central
coordinator [3].

Decentralized machine learning for IoV still faces the
challenges arising from the data privacy and adaptability
for dynamic geo-distributed topology [4]. Although the raw
data is only used for local training, the intermediate results
(e.g., gradients) are shared to aggregate a global model. The
gradients can already disclose the private raw data, e.g.,
via DeepLeakage-based attacks [5], [6], [7], [8], hamper-
ing the data privacy of the participants. Nevertheless, the
IoV network is typically dynamic and geo-distributed with
multiple roadside units (RSUs) and fast-moving vehicles.
Thus, the decentralized machine learning framework needs
to operate without centralized aggregation and accommodate
dynamic vehicles.
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Overview of Related Work: Data privacy protection [9],
[10], [11], [12], [13], [14], [15] and topology orchestra-
tion [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27] have been widely studied in the topic decentralized
machine learning.
1) Data Privacy Protection. In the topic of data privacy of

federated learning, several defense techniques (such as differ-
ential privacy [9], [10], [11], homomorphic encryption [12],
[13], and masking [14], [15]) have been proposed to protect
the original client-specific gradient during global aggregation
for improving the security and privacy of federated learning.
2) Topology Orchestration. In terms of topology orches-

tration, some variants of federated learning (including
hierarchical federated learning [16], [17], [18], [19], semi-
decentralized learning [20], [21], and fully distributed
learning [22], [23], [24], [25], [26], [27]) was proposed
for efficient decentralized learning in generally distributed
graphs or hierarchical tree topologies.
Currently, many advanced resource management tech-

niques (e.g., user scheduling, task offloading, gradient
sparsification, and power control [28], [29], [30]) can be
applied to enable communication-efficient federated learn-
ing. Resource management is an important issue in the IoV
scenario with typically computation-restricted vehicles and
increasingly computation-intensive model training. We leave
task/data offloading mechanism design [29], [31] in decen-
tralized learning IoV networks for our future work. In this
paper, we mainly focus on the data privacy and topology
orchestration of decentralized learning for IoV networks.
However, the existing work cannot satisfy the require-

ments of IoV networks, due to possible model accuracy
degradations and lack of joint design of data privacy and
topology adaptability. On the one hand, model accuracy is
of paramount importance for IoV networks (e.g., autonomous
driving applications). The existing defense techniques may
degrade the learning accuracy (e.g., differential privacy [9],
[10], [11]) or incur excessive computation/signaling over-
head (e.g., homomorphic encryption and masking [12], [13],
[14], [15]). On the other hand, the existing decentralized
frameworks [22], [23], [24], [25], [26], [27] are not dedi-
cated designed for hierarchical IoV networks with typically
decentralized RSUs and moving vehicles.
To this end, the key research questions of this paper are

how to design secure and efficient (in terms of computa-
tion/signaling overhead) hierarchical learning framework for
IoV network without compromising learning accuracy.
Main Contributions: This paper proposes a secure and

efficient hierarchical decentralized learning for IoV networks
with multiple fog nodes (e.g., RSU and edge server) and
dynamic vehicles. The basic idea is to exploit the hierarchical
structure to design a hybrid decentralized learning framework
that integrates federated learning (between the vehicles and
fog nodes) and distributed consensus (among the fog nodes).
For data privacy, we adopt the masking technique to

prevent the individual local gradient being accessed by
the adversary (e.g., fog node). The masking technique is

computation-efficient but may incur additional signaling
overhead for masking seed negotiation. For the signal-
ing/learning efficiency in the dynamic IoV topology, we
propose the network-level masking mechanism to reduce
the signaling overhead and optimize the consensus matrix
between the fog nodes to speed up the consensus process.
Different from the existing approaches that separately con-

sidered the data privacy and learning efficiency (topology
orchestration), this paper combined the privacy-preserving
mechanism (i.e., masking) and communication-efficient
designs (i.e., network-level masking pairing and consensus
optimization) to achieve secure and efficient hierarchi-
cal learning for IoV. The key technical contributions are
summarized as follows.

• We design the hierarchical decentralized learning frame-
work that combines vehicle-fog federated learning and
inter-fog distributed consensus. Masking is adopted to
disturb the local gradients before sending them to the
fog node to protect individual gradients from attacks.

• We propose the network-level masking mechanism to
prevent frequent masking seed negotiation (e.g., at each
time of handover), thereby reducing signaling overhead.
We prove that the network-level masks can be canceled
via distributed consensus for learning efficiency.

• We prove the convergence guarantee of the proposed
hierarchical learning framework for general non-convex
loss functions. By reaching consensus gradients at each
round, the proposed framework follows the performance
of the FedAvg algorithm in federated learning.

• We optimize the consensus matrix to improve training
efficiency and reduce the consensus signaling overhead.
In particular, the matrix optimization problem is refor-
mulated as semi-definite programming and efficiently
solved via convex optimization.

The experiments are conducted on two popular datasets,
i.e., MNIST and Fashion-MNIST, under both IID and Non-
IID data distributions. Experimental results validate the
effectiveness of the proposed framework in terms of data pri-
vacy protection, learning accuracy, and signaling efficiency,
compared to the state-of-the-art.
Paper Organization: The rest of the paper is organized as

follows. Section II provides a brief overview of the exist-
ing work. Sections III and IV present the system model
and detailed operations of the proposed hierarchical decen-
tralized learning for IoV networks, respectively. Section V
demonstrates the dedicated designs for the signaling/learning
efficiency for IoV. The experiment results are analyzed in
Section VI, followed by the conclusion in Section VII.

II. RELATED WORK
This section briefly reviews the existing work on data pri-
vacy and topology orchestration in decentralized machine
learning. In the following, we analyze the existing work
on these two topics and highlight the difference of
our work.
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A. DATA PRIVACY FOR FEDERATED LEARNING
Gradient leakage attack is one of the main threat in federated
learning. In [5], DeepLeakage was proposed to efficiently
reconstruct the private raw data and label from the transmit-
ted gradient in federated learning. The reconstruction was
based on setting up virtual pairs of raw data and labels,
whose gradient is compared to and optimized to approach
the targeted/transmitted actual gradient via stochastic gradi-
ent descent. Following the basic idea in [5], some variations
were proposed to increase the attack efficiency [6], improve
the label leakage accuracy [7], and attack against well-trained
neural networks [8].

There are several defense methods against gradient leakage
attacks, such as differential privacy [9], [10], [11], homo-
morphic encryption [12], [13], and masking [14], [15]. In
particular, differential privacy adds the Laplace/Gaussian
noises into the local gradient to achieve a theoretically
provable tradeoff between data protection and learning accu-
racy [9], [10], [11] Homomorphic encryption enables the
secure aggregation based on encrypted (e.g., via additive
homomorphic encryption) local gradients to obtain the accu-
rate weighted-averaged global gradient at the aggregation
server [12], [13]. However, the accuracy loss in differential
privacy is not favorable for autonomous driving services in
IoV, and the significant computational overhead of homo-
morphic encryption would introduce an excessive delay in
data training.
The defense technique adopted in this paper is masking

from multi-party computations. In particular, multiple parties
can achieve collaborative computation of the global gradient
without any knowledge of the individual gradients [14]. For
example, in [15], the double-masking approach was proposed
the users’ local gradients and the verifiable mechanism was
implemented at the server to prove the correctness of gra-
dient aggregation. Masking would not compromise learning
accuracy and is lightweight in computational overhead, but
also requires high signaling overhead on sharing and pairing
the secret keys among the devices.

B. TOPOLOGY ORCHESTRATION FOR DECENTRALIZED
LEARNING
The existing decentralized machine learning frameworks can
be categorized into four types in terms of topology orches-
tration, including traditional federated learning (with a star
structure), hierarchical federated learning (in a tree struc-
ture) [16], [17], [18], [19], semi-decentralized learning (with
a two-layer topology) [20], [21], and fully decentralized
learning (in a general graph structure) [22], [23], [24], [25],
[26], [27]. Traditional federated learning is the typical case
with a centralized parameter server; please see the sur-
vey [32] for details. In the following, we summarize the
other three types of emerging frameworks.
1) Hierarchical Federated Learning: This is typically

referred to as the client-edge-cloud hierarchical federated
learning [16], where the clients/devices locally train the
local learning model and multiple serves are organized in

a hierarchical structure to aggregate the local gradients in
the edge-cloud order. The hierarchical federated learning fits
the tree structure, where the cloud is the root, each node of
the middle layers is the edge servers, and the leaves are the
clients. Edge association and resource allocation were opti-
mized in [17], [18], [19] to further improve the effectiveness
of the hierarchical learning framework.
2) Semi-decentralized Learning: This framework (also

known as hierarchical decentralized learning) [20], [21] is
typically studied in the network of collaborative device-to-
device (D2D) mobile devices and a base station (acting as
the parameter server). In [20], each device locally computed
a weighted-average gradient via distributed consensus and
sent the gradient to the parameter server for aggregation.
In [21], the devices were grouped into different clusters and
the devices within local clusters were designed to perform
a distributed consensus procedure.
3) Fully Decentralized Learning: There are two popular

mechanisms to realize fully decentralized learning, i.e., via
blockchain [22], [23], [24] or distributed stochastic gradient
descent (DSGD) [25], [26], [27]. The blockchain-enabled
decentralized learning exploits the distributed ledger fea-
tures of blockchain to record the local gradients and perform
global aggregation [22]. The recently emerging swarm learn-
ing [23] architecture belongs to this category and has also
been applied to autonomous vehicles [24]. However, given
the limited transaction rate of blockchain, this architecture
may not fit the case of massive devices.
DSGD is another underlying technique for enabling fully

decentralized learning in a generalized graph, which is
proved to exhibit an asymptotic convergence rate even in the
case of unreliable communication links [25]. The devices can
share their local gradients with neighbors and take weighted
averages at each iteration to obtain the global learning model.
In [26], [27], consensus optimization and distributed consen-
sus techniques (the foundations of DSGD) were exploited
to propose decentralized collaborative learning for massive
devices in the absence of a centralized controller.
Difference of This Work: We can see that the existing

defense techniques and decentralized learning frameworks
cannot satisfy the requirements of IoV networks in this paper.
• The defense techniques may degrade the learning
accuracy (e.g., differential privacy) or incur exces-
sive computation/signaling overhead (e.g., homomor-
phic encryption and masking), especially in highly
dynamic IoV networks. However, accuracy and compu-
tation/signaling efficiency are critical for autonomous
driving applications in IoV.

• The existing decentralized learning frameworks are
not dedicated and designed for the hierarchical
IoV network with typically decentralized RSUs and
moving vehicles. Hierarchical federated learning cannot
scale to the network of interest, and fully decen-
tralized learning fails to exploit the possibility of
partial centralized control by RSUs (hence suffer-
ing performance degradation). The semi-decentralized
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FIGURE 1. The hierarchical decentralized learning framework of N fog nodes and M
vehicles.

learning (i.e., hierarchical decentralized learning) is
most similar to this work in terms of topology, but may
not scale to the case of multiple RSUs for distributed
consensus.

Distinctively different from the existing work that considers
security (defense) and efficiency (learning frameworks) sep-
arately, this paper focuses on the joint design and proposes
secure and efficient hierarchical decentralized learning for
IoV networks.

III. SYSTEM MODEL
The hierarchical network consists of N fog nodes (e.g., RSUs
and edge servers) and M vehicles, as shown in Fig. 1. The
distributed learning system operates in an iterative manner to
train a global model for autonomous driving distributively.
At each iteration, each vehicle calculates its local gradient
by training based on its local sensing data and uploads the
gradient to the fog node it belongs to. Then, N fog nodes
cooperate to distributively calculate the average gradient and
send it back to the vehicles for global convergence. The
notations used in this paper are summarized in Table 1.

A. NETWORK MODEL
In the network model, we define the set of fog nodes as
N = 1, 2, 3, . . . ,N and the set of intelligent vehicles as
M = 1, 2, 3, . . . ,M. The vehicle uploads the local gradient
through the V2X links, and the average gradient is calculated
among the fog nodes in a distributed manner through the
inter-server link (e.g., via the X2 interface). Here, E = {(i, j)}
collects all the inter-server links between the fog nodes.
Given the fast mobility of driving vehicles, the topol-

ogy of the network, especially the relationship between one
intelligent vehicle to its connected fog node, can change dra-
matically over time. Let Si(t) collect the set of vehicles that
are in the coverage of fog node i at iteration t. Each vehicle
is only connected to one fog node, i.e., Si(t) ∩ Sj(t) = ∅
for i �= j. Let S(t) = {Si(t)|i ∈ N} collect the coverage
relationship of all the vehicles. In summary, the overall

TABLE 1. Summary of notations.

hierarchical network topology at iteration t can be denoted
by G(t) = {N,M,E,S(t)}.

B. HIERARCHICAL DECENTRALIZED LEARNING MODEL
This section illustrates the basics and preliminaries of the
distributed learning model in the hierarchical network. The
details of the proposed hierarchical decentralized learning
framework will be provided in Section IV. Each vehicle i
has its local training dataset Di, and the global dataset of
all the devices can be given by D = ∪i∈MDi. Let w(t) and
wi(t) denote the global model and local model of vehicle i
at iteration t, respectively.
The objective of the distributed learning system is to find

a global model w(t) that minimizes the global loss function
F(w(t)) in terms of the global dataset D. Each vehicle i also
maintains a local model wi(t) and corresponding local loss
function fi(wi(t)). The relationship between the local and
global loss functions can be given by [33]

F(w(t)) =
∑

i=1∈M |Di|fi(w(t))

|D| , (1)

where | · | is the size (number of elements) of a set (·).
Recall that the hierarchical network G(t) consists of two

layers for the vehicles and fog nodes. The vehicles i ∈ Sj(t)
in the coverage of the same fog node j can perform the
steps of federated learning. However, the fog nodes are orga-
nized in a distributed manner and need to conduct additional
distributed consensus procedures for global convergence.
Without diving into the details of distributed consensus, the
steps of the hierarchical learning at iteration t are as follows.
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Step 1 (Local Training): Consider the mini-batch gradient
descent training mechanism [34]. Each vehicle i shuffles its
local dataset and randomly select a subset (i.e., batch) of
data, denoted by Bi(t), from Di to be trained. The vehicle
calculates the batch gradient gi(t) = ∇Bi(t)fi(wi(t)) and sends
the local gradient to its corresponding fog node.
Step 2 (Fog Aggregation): Each fog node j can collect the

received gradient gi(t) from the vehicles i ∈ Sj(t) in its cov-
erage. Different from the gradient aggregation in federated
learning, to maintain the information on sizes of vehicles
(i.e., data volume), the fog-level gradient gj(t) can be cal-
culated by summarizing the local gradients, as given by
gj(t) =∑i∈Sj(t) gi(t).
Step 3 (Fog Consensus): Each fog node j shares the fog-

level gradient gj(t) with its neighboring node m with (j,m)

∈ E. The details of the consensus steps will be illustrated
in Section III-B. The final result of the fog consensus is the
global gradient g(t), satisfying

g(t) = 1

M

∑

j∈N
gj(t). (2)

Without loss of generality, the denominator takes the total
number of vehicles M, since the batch sizes |Bi(t)| are
typically the same (e.g., 32/64/128 data samples). It can
be easily extended to the cases of different batch sizes or
even heterogeneous local training epochs, e.g., by letting the
denominator be

∑
i∈M |Bi(t)|.

Step 4 (Model Update): The fog node multicasts the
global gradient g(t) to all the vehicles. Upon receiving
the global gradient, each vehicle i updates its local model
according to [35]

wi(t + 1) = wi(t)− ηg(t), (3)

where η is the adjustable learning rate that relates to the
convergence speed and model accuracy.

C. THREAT MODEL
We consider the typical curious-but-honest threat model for
the fog nodes. In other words, the adversary (e.g., the fog
nodes) would follow the standard operations of the hierarchi-
cal decentralized learning procedure, but attempt to recover
the original private data from the received gradients of the
vehicles. This is the popular gradient-based passive attacks
in federated learning [36].

Note that the participants can also be malicious, i.e., may
deviate from the standard operations of the learning pro-
cedure and conduct the adversary attacks (e.g., poisoning
attacks) to manipulate the victim’s training model. This is the
case of active attacks, which can be detected by the victims
(e.g., by comparing the model gradients of the participants
where the adversary is more likely to exhibit different gradi-
ent directions). In this paper, we focus on the passive attack
setting [36] (following the standard procedure), which can
hardly be perceived and are of practice importance.
For example, DeepLeakage [5] can reconstruct the original

input data and private label, denoted by x and y, respectively,

FIGURE 2. The operational steps of the proposed hierarchical decentralized
learning framework.

from the received gradient g. In particular, the adversary can
generate random dummy input and label pair, namely (x′, y′),
and tries to optimize the distance between the gradient of
the virtual sample pair (x′, y′) (denoted by g(x′, y′)) and the
targeted/received gradient g, i.e.,

(
x′∗, y′∗

) = arg min
(x′,y′)

||g(x′, y′)− g||2. (4)

The above optimization problem can be solved by the gra-
dient descent mechanism iteratively. When the optimization
finishes, the optimal dummy pair (x′∗, y′∗) is mostly similar
to the targeted gradient and can reveal the original private
data and label, thereby degrading the security performance
of the learning process.

IV. PROPOSED MASKING-ENABLED HIERARCHICAL
DECENTRALIZED LEARNING FRAMEWORK
This section presents the proposed masking-enabled
hierarchical decentralized federated learning framework.
Fig. 2 shows the operations of the proposed framework that
also consists of four basic steps of hierarchical decentral-
ized learning as stated in Section III-B. In particular, the
proposed framework adds the masking procedure in the first
step of local training to protect the data privacy from the
adversary (in Section IV-A), and also details the fog con-
sensus steps to obtain the global gradient distributively (in
Section IV-B). Finally, we summarize the remaining chal-
lenges of signaling and communication efficiency of the
system (in Section IV-C) and propose to optimize the con-
sensus and masking signaling process (as will be stated in
Section V).

A. LOCAL TRAINING WITH MASKING PROTECTION
In the following, we illustrate the details of the first step
on how to add masking protection in the local training
process. Recall that the malicious curious-but-honest par-
ticipants can reconstruct the private information from the
received/targeted gradient. The basic idea of the masking

VOLUME 4, 2023 1421



LIANG et al.: SECURE AND EFFICIENT HIERARCHICAL DECENTRALIZED LEARNING FOR IoV

protection is to add a random mask to the original local
gradient such that the adversary cannot retrieve the original
gradient for data attacks.
1) Operation of Masking Protection: Let ri(t) denote the

random mask generated by vehicle i at iteration t. The
masked gradient g′i(t) and the generated masks should satisfy

g′i(t) = gi(t)+ ri(t),
∑

i∈Sj(t)
ri(t) = 0, ∀j ∈ N, (5)

where the second equation ensures that all the random masks
of the vehicles served by the same fog node can be canceled.
As a result, the fog node can also obtain the correct fog-level
aggregated gradient from the masked gradient g′i(t), i.e.,

gj(t) =
∑

i∈Sj(t)
g′i(t)

=
∑

i∈Sj(t)
gi(t)+

∑

i∈Sj(t)
ri(t) =

∑

i∈Sj(t)
gi(t). (6)

2) Generation of Masks with Key Negotiation: Masking
generation is a well-established procedure based on cryptog-
raphy and key negotiation [14], [15]. In the following, we
demonstrate the details of generating the masks ri(t) satisfy-
ing Eq. (5) via the key negotiation among the vehicles. We
start by introducing the basics of the key agreement process.
A typical key agreement protocol consists of two key algo-
rithms, including KA.gen(pp) and KA.agree(sSKu , sPKv ) [37]:

1) KA.gen(pp)→ (sSKu , sPKv ) allows any vehicle u to gen-
erate a private-public key pair, where pp is a random
number to input.

2) KA.agree(sSKu , sPKv )→ su,v allows any user u to com-
bine its private key with the public key sPKv to obtain
a private shared number su,v between u and v.

Based on the key agreement protocol, we can summarize
the process of the key initialization and masking generation
in Fig. 3. The basic idea is to first initialize the secret keys
(i.e., random seeds) at the vehicles and generate the pseudo-
randoms at each iteration. The detailed steps of masking
seed generation are as follows.

1) Key Initialization: Vehicles generate a key pair
(sSKu , sPKv ) through key generation algorithm
KA.gen(pp). The private key sSKu will be kept
confidentially by the vehicle, and the public key sPKu
will be sent to the fog node.

2) Public Key Dissemination: Each fog node j, acting
as the coordinating server, collects all messages from
the vehicles and broadcasts the vehicle identification
information and corresponding public key (v, sPKv ) to
all vehicles i ∈ Sj(t) in its coverage.

3) Seed Generation: When a vehicle receives other vehi-
cles’ public key sPKv , it can generate a random mask
su,v via KA.agree(sSKu , sPKv )→ su,v.

After finishing the above process, each vehicle u can securely
disseminate the random seed su,v and also receive the random

FIGURE 3. The process of key initialization and masking generation.

seed sv,u to/from all the vehicles v in the coverage of the
same fog node. Given the agreement of the random vector
su,v, we can generate the mask of vehicle u served by fog
node j as follows:

ru(t) =
∑

v∈Sj(t):u<v
PRG

(
su,v

)−
∑

v∈Sj(t):u>v
PRG

(
sv,u

)
, (7)

where PRG(s) is a pseudo-random generator based on ran-
dom seed s [38]. In particular, a pseudo-random generator is
a deterministic algorithm that generates a sequence of num-
bers that appear to be random. With the same sequence index
(i.e., iteration t) across the vehicles, the random number
PRG(su,v) are identical at different vehicles.
We can show that the generated masks ru(t) in Eq. (7)

satisfy the requirement in Eq. (6) to ensure the correctness
of fog-level aggregated gradient. In particular, for each fog
node j, we have
∑

u∈Sj(t)
ru(t) =

∑

u∈Sj(t)

∑

v∈Sj(t):u<v
PRG

(
su,v

)

−
∑

u∈Sj(t)

∑

v∈Sj(t):u>v
PRG

(
sv,u

)

=
∑

u∈Sj(t)

∑

v∈Sj(t):u<v

[
PRG

(
su,v

)− PRG
(
su,v

)] = 0,

(8)

where the second equality can be achieved by rearranging
the terms with PRG(sv,u).
We can see that, by applying the masking protection

approach in local training, the adversary (e.g., fog node) can-
not have the original local gradient of individual vehicles,
hence protecting data privacy. Nevertheless, the fog node can
still retrieve the accurate fog-level gradient gj(t) according to
Eq. (6), since the random masks can be canceled with each
other as shown in Eq. (8). The masking-enabled protection
would not compromise the accuracy of the learning process.

B. DISTRIBUTED FOG CONSENSUS
In the following, we detail the process of distributed fog
consensus in Step 3 to obtain the averaged global gradi-
ent g(t) without a centralized aggregator according to the
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distributed consensus technique [39]. In particular, each fog
node would iteratively exchange its fog-level gradient until
reaching a consensus. Let gi(τ ) be the consensus gradient
of fog node i at iteration τ , which is initialized as the fog-
level gradient at the iteration, i.e., gi(0) = gi(t). Each fog
node i communicates with its neighboring node j to update
the consensus gradient, i.e.,

gi(τ + 1) = Wiigi(τ )+
∑

j∈N,(i,j)∈E
Wijgj(τ ), ∀i ∈ N, (9)

where W = {Wij|(i, j) ∈ E} is the consensus weight matrix
for reaching the averaged global gradient. The consensus
matrix W should satisfy

W =WT,W1 = 1, (10)

ρ
(
W− 11T/N

)
< 1, (11)

W ∈W . (12)

Here, Eq. (10) indicates that W is symmetric and satisfies the
doubly stochastic condition. Eq. (11) (together with Eq. (10))
shows that 1 is one of the eigenvalues of W and the other
eigenvalues are less than 1 in magnitude. Eq. (12) guarantees
that the matrix cannot violate the topology in E.
According to [39], following the above consensus update

process, the consensus gradient at each fog node would
converge to the average value of the initialized fog-level
gradients, i.e., gi(τ )← 1

N

∑
j∈N gj(t), in a finite number of

update rounds. Then, the fog node can adjust the global
gradient according to the training data volume, e.g., letting
g(t) = N

Mgi(τ ) according to Eq. (2), and multicast g(t) to
all the vehicles in its coverage for model update.

C. IMPLEMENTATION DESIGN AND SIGNALING
CHALLENGES FOR INTERNET OF VEHICLES
The implementation of the proposed framework can be sum-
marized in Fig. 2. In particular, the vehicles are responsible
for Step 1 of local training with masking protection and Step
4 of model update, and the fog nodes conduct Steps 2–3 for
fog aggregation and distributed consensus. The operations
of Steps 1 and 3 are presented in Sections IV-A and IV-B
and the operations of Steps 2 and 4 remain the same as in
the learning model in Section III-B.

The proposed framework incurs lightweight additional
computations of generating pseudo randoms in Eq. (7), and
can achieve secure hierarchical decentralized learning in the
network of M vehicles and N fog nodes without a central-
ized aggregation server. However, the proposed framework
for IoV may still face the challenges of significant signal-
ing overhead due to the high mobility features of vehicles
and iterative distributed consensus among fog nodes. We
summarize the challenges as follows.
1) Signaling Overhead due to Frequent Masking Pairing:

Recall that the generated mask ru(t) needs to be fully elim-
inated at its associated fog node j, as stated in Eq. (8). This
requires that all the vehicles in the coverage of the fog node
can have the mask seed su,v via the key negotiation protocol.

The key negotiation process requires considerable signaling
overhead In the deterministic network, su,v can be initialized
at once to produce the masks via PRG at each iteration to
reduce such signaling overhead.
However, in the dynamic IoV network, the set of vehicles

served by the same fog node, i.e., Sj(t), frequently changes
over time. As a result, at each time of fog-level handover,
the vehicles entering the coverage of a new fog node need
to perform a new key negotiation process to obtain the mask
seed pairs. Given the high mobility of vehicles, the handover
would occur increasingly frequently, resulting in excessive
signaling overhead for masking generation.
2) Signaling Overhead due to Distributed Fog Consensus:

In the distributed fog consensus step, the fog nodes need to
share the consensus gradient with their neighbors for multiple
iterations for reaching the convergence. These iterations are
necessary for reaching a global consensus to obtain the global
gradient, but would also incur considerable signaling over-
head for transmitting the gradients among fog nodes. It is
critical to reduce the fog-level signaling overhead to further
increase the efficiency of the proposed framework.
The existing techniques, such as periodical synchroniza-

tion, gradient quantization, gradient pruning and sparsifi-
cation, can be applied to reduce such signaling overhead.
Nevertheless, the number of iterations in the distributed
consensus process depends on the feature of the consensus
matrix W. We need to properly design the matrix to speed
up the consensus rate and reduce the inter-fog overhead.

V. PROPOSED SIGNALING-EFFICIENT DESIGNS FOR
INTERNET OF VEHICLES
This section demonstrates the proposed signaling-efficient
designs to reduce the excessive signaling due to frequent
masking pairing and distributed fog consensus in IoV
networks. In particular, to reduce the masking signaling
overhead at the vehicles, we propose the network-level mask-
ing pairing (instead of the fog-level) mechanism and prove
the network-wide masking cancellation (to be shown in
Section V-A). To reduce the fog-level signaling, we propose
to optimize the consensus matrix to speed up the consensus
rate (to be shown in Section V-B).

A. NETWORK-LEVEL MASKING PAIRING
AND CANCELLATION FOR VEHICLE-LEVEL
SIGNALING EFFICIENCY
To address the challenge of signaling overhead due to fre-
quent masking pairing (i.e., vehicle handover), we propose to
design the network-level masking pairing (instead of the fog
level), i.e., masking pairing across the whole network. Then,
the masking pairing happens only when the vehicle runs out
of the network (e.g., the city-wide area), thereby significantly
reducing the pairing frequency (compared to the handover
in fog-level masking pairing). In the following, we intro-
duce the process of network-level masking pairing and prove
the added masks can be canceled during the fog-distributed
consensus step.
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1) Network-Level Masking Pairing: Let P = {pij|∀i, j
∈ M} be the masking paring matrix among M vehicles.
In particular, pij ∈ {0, 1} denotes the masking pairing con-
ditions, where pij = 1 indicates that vehicles i and j have
mutually mask seeds si,j and sj,i; and otherwise, not. P is
symmetric, i.e., pij = pji.
The paring matrix P can be sparse (at least ensuring that

each vehicle has its masking pairs). Let d(P) denote the min-
imum degree of all the vehicles in the matrix P. The masking
protection performance would increase with d(P) in case all
the other paired vehicles collaborate with the adversary to
retrieve the original gradient. We do not specify the detailed
process of generating P, and only require that d(P) ≥ 2 to
ensure the effectiveness of masking protection. For example,
the pairing matrix P can be induced based on the relationship
of the vehicles (e.g., the social relations of its owners), such
that the paired vehicle would not expose the random seed.
Based on the paring matrix P, the mask of vehicle i at

iteration t, i.e., ri(t), can be given by

ri(t) =
∑

j∈Pi:i<j
PRG

(
si,j
)−

∑

j∈Pi:i>j
PRG

(
sj,i
)
, (13)

where Pi = {j|pij = 1} is the set of vehicles that are paired
with vehicle i.
The other steps remain the same except that Eq. (7) is

replaced with Eq. (13) to achieve the network-level masking.
In the network-level masking case, the masks may not be
canceled within each fog node, i.e.,

∑
i∈Sj(t) ri(t) �= 0, since

the paired vehicles are not necessarily in the coverage of
the same fog node. In other words, the fog-level aggregated
gradient may be incorrect, i.e.,

gj(t) =
∑

i∈Sj(t)
gi(t)+

∑

i∈Sj(t)
ri(t) �=

∑

i∈Sj(t)
gi(t). (14)

2) Proof of Network-Level Masking Cancellation: In the
following, we prove that the added masks can be successfully
canceled during the distributed consensus process.
Theorem 1: In the case that the consensus matrix W sat-

isfies Eqs. (10)–(12), the added masks ri(t) can be canceled
during the distributed consensus, i.e.,

g(t) = 1

M

∑

i∈M
gi(t). (15)

In other words, the global gradient can converge to the
average of the local gradients of all the vehicles via the
distributed consensus.
Proof: 1) Proof of Average Consensus: We first prove that

the average consensus iterations in Eq. (9) would converge
to the average initial value, i.e.,

lim
T→∞ gi(T) = lim

T→∞WTgi(t) = (1/N)11Tgi(t). (16)

Based on Eqs. (10)–(12), we have

WT − 11T/N = WT(I − 11T/N
)

= WT(I − 11T/N
)T

= (W(
I − 11T/N

))T

= (W− 11T/N
)T
, (17)

where the first equality is due to Eq. (10), and the second
equality is because I−11T/N is a projection matrix. By fur-
ther exploiting Eq. (11) (which indicates the spectral radius
of W is less than 1), we can obtain

lim
T→∞WT − 11T/N = 0. (18)

This concludes the proof of Eq. (16). In other words, by
taking the denominator of N

M after reaching the distributed
consensus, the global gradient g(t) satisfies Eq. (2).
2) Proof of Masking Cancellation: We proceed to prove

that the added masks ri(t) can be canceled in the global
gradient. According to Eq. (2), we have

g(t) = 1

M

∑

j∈N
gj(t)

= 1

M

∑

j∈N

⎧
⎨

⎩

∑

i∈Sj(t)
gi(t)+

∑

i∈Sj(t)
ri(t)

⎫
⎬

⎭

= 1

M

∑

i∈M
{gi(t)+ ri(t)} = 1

M

∑

i∈M
gi(t), (19)

where the last equality is due to
∑

i∈M
ri(t) =

∑

i∈M

∑

j∈Pi:i<j
PRG

(
si,j
)

−
∑

i∈M

∑

j∈Pi : i>j

PRG
(
sj,i
)

=
∑

i∈M

∑

j∈Pi : i<j

[
PRG

(
si,j
)− PRG

(
si,j
)] = 0, (20)

This concludes the proof.
3) Learning Performance Analysis: We proceed to prove

the convergence guarantee the proposed hierarchical decen-
tralized learning framework. To facilitate the proof, we
consider the following typical assumptions for general
non-convex loss functions.
Assumption 1: There exist constants G ≥ 0 and B ≥ 1,

such that
1

M

∑M

i=1
||∇fi(x)||2 ≤ G2 + B2‖∇f (x)‖2,∀x,

Assumption 2: The gradient gi = ∇Bi fi(x) based on the
data samples in batch Bi is an unbiased estimation with
bounded variance, i.e.,

EBi

[
||gi −∇fi(x)||2

]
≤ σ 2, for any i, x.

Assumption 3: The loss {fi} is β-smooth, satisfying

||∇fi(x)− ∇fi(y)|| ≤ β‖x− y‖,∀i, x, y.
The assumptions above are widely adopted in the literature

for the general non-convex loss functions. By resembling the
training process of the proposed framework to the standard
FedAvg algorithm in federated learning, we can derive the

1424 VOLUME 4, 2023



theoretical convergence guarantee of the proposed framework
in the following theorem.
Theorem 2: Suppose that assumptions 1–3 hold for gen-

eral non-convex loss fi. There exist weights {w(T)}, and
for any step-size η ≤ 1

(1+B2)8βK
, the output of proposed

framework w(T) satisfies

E

[
||∇f (w(T))||2

]
≤ O

(
βσ
√
MF√

TKM
+ F2/3

(
βG2

)1/3

(T + 1)2/3

+ B2βF

T

)

where T and K are the total rounds of training itera-
tions and local batch updates, respectively. For brevity,
F = f (w(0))− f �.
Proof: According to Theorem 1, the network-level masks

can be canceled and the global gradient can converge to the
average of the local gradients via the distributed consensus
process, i.e., satisfying Eq. (15). With the same batch sizes,
this is the typical setting of the popular FedAvg algorithm
in federated learning. As a result, the convergence guarantee
analysis of the proposed framework follows the convergence
guarantee of FedAvg. Please refer to [40, Th. 5] for the
details.

B. CONSENSUS MATRIX OPTIMIZATION FOR
FOG-LEVEL SIGNALING EFFICIENCY
To reduce the signaling overhead due to distributed fog con-
sensus, we propose to optimize the consensus matrix W
to speed up the consensus rate. We note that the matrix
optimization aims to reduce the number of iterations required
to reach the fog-level consensus, and can be readily applied
in conjunction with the existing communication-efficient
techniques (including periodical synchronization, gradient
quantization, gradient pruning and sparsification) to further
reduce the signaling overhead.
In the following, we optimize the consensus matrix

W. The consensus rate (the number of iterations before
consensus) is related to the spectral radius of W [39],
i.e., ρ(W − 11T/N). Then, the optimization problem of
minimizing the spectral radius can be formulated as

min
W

ρ
(
W− 11T/N

)

s.t. (10), (11), (12). (21)

Problem (21) can be transformed into a semi-definite pro-
gramming (SDP) problem to improve the solving efficiency.
Note that the consensus matrix W is symmetric. Then, we
can introduce a scalar variable s as the upper bound of the
spectral radius of W and reformulate the problem as

min
W

s

s.t.

[
sI W− 11T/N

W− 11T/N sI

]

� 0,

(10), (11), (12), (22)

Algorithm 1 Proposed Secure and Efficient Hierarchical
Decentralized Learning Framework
Step 1: Local Training and Masking
1: Network-level Mask Pairing: The vehicles follow the network-

level masking pairing matrix P to generate the masks according
to Eq. (13).

2: Local Training with Masks: Each vehicle conducts the local
training process, and generates the masked gradients based on
Eq. (5).

Step 2: Fog Aggregation
3: The fog nodes aggregate the masked gradients of its connected

vehicles according to Eq. (14).
Step 3: Fog Consensus
4: Consensus Matrix Optimization: Optimize the consensus matrix

W by solving the SDP problem (22).
5: Consensus Update: Each fog node updates the global gradients

according to Eq. (9) iteratively.
Step 4: Model Update
6: After receiving the multicast global gradients, the vehicles

update the local model based on Eq. (3).

where the first matrix inequality is the linear matrix inequal-
ity to bound the spectral radius of W. Problem (22) is SDP
and can be efficiently solved by a convex optimization solver.
In this paper, we adopt the CVXPY library [41] (a Python-
embedded modeling language for convex optimization) to
solve the SDP problem and obtain the optimized consensus
matrix to speed up distributed consensus (and hence, reduce
the inter-fog communication overhead).
Algorithm 1 summarizes the detailed operational process

of the proposed secure and efficient hierarchical decentral-
ized framework. The framework still follows the standard
steps in Fig. 2 (as specified in Section IV). However, in
lines 1 and 4, we propose the network-level masking pairing
(instead of the fog-level) mechanism and optimize the con-
sensus matrix to speed up the consensus rate. The excessive
signaling due to frequent masking pairing and distributed fog
consensus can be significantly reduced, as will be shown in
Figs. 6 and 7.

VI. EXPERIMENTAL RESULTS
This section evaluates the effectiveness of the proposed
hierarchical decentralized learning framework. In the fol-
lowing, we will first introduce the experimental settings and
then analyze the experimental results in terms of defense
effectiveness, model accuracy and communication overhead.

A. EXPERIMENTAL SETTING
We adopt the Pytorch project to implement the proposed
hierarchical decentralized learning framework in a simulated
network of 5 fog nodes and 20 vehicles. For simulating
the dynamic topology, we adopt the SUMO (Simulation
of Urban MObility) platform [42] to generate the positions
and mobility features of the vehicles in the four-way four-
lane crossroads with the size of 100× 100m. SUMO is an
open-source, highly portable, microscopic traffic simulation
package, used in different projects to simulate automatic
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driving or traffic management strategies. The fog nodes are
uniformly located in the simulated network, and the vehicles
are served by the fog node with the minimum distance. The
simulation duration is 20 minutes.
1) Datasets and Models: We conduct the experiments

on the MNIST and Fashion-MNIST datasets for hand-
written digits and basic images, respectively. The datasets
include 60,000 samples and 10,000 testing samples. The
convolutional-neural-network (CNN)-based LeNET learning
model [43] is adopted for the classifications of both the
MNIST and Fashion-MNIST datasets. The learning rate and
batch size are 0.001 and 64, respectively, in the model
training experiments.
2) Data Distribution: Both IID and Non-IID data dis-

tributions are considered in our experiments. In the IID
setting, the data samples are uniformly distributed among the
vehicles. In the non-IID setting, we consider the extremely
diverse data distributions, where the data samples are sorted
by different types according to their labels and assigned
to the vehicles. In particular, 60,000 training samples are
divided sequentially to 40 pieces (each of 1,500 samples),
and each vehicle is randomly assigned with two pieces of
data. The maximum label number of vehicles’ training data
is two, i.e., the resultant data distribution is more diverse
than the typical Dirichlet-based Non-IID data.
3) Attack Method: The adversary (e.g., the curious-but-

honest fog node) has access to the transmitted local gradient
and conducts DeepLeakage [5] to reconstruct the pri-
vate original data of the vehicles. Some basic designs of
DeepLeakage can be found in Section III-C.
4) Comparison Benchmark: For comparison purposes,

we also simulate the following benchmark approaches to
evaluate the performances of accuracy, defense and commu-
nication overhead, as follows.

• Centralized-Aggregated Federated Learning (FL): This
is the case of basic federated learning where the vehicles
upload the local gradient to one centralized server for
global synchronization. Here, we assume the availability
of a central server in the network and this serves for the
evaluation of the learning performance (and provides an
upper bound) of the proposed framework.

• Federated Learning with Differential Privacy (DP-FL):
This is to implement the differential privacy to feder-
ated learning for data privacy [9]. The artificial noise
is added to the local gradients at the vehicles (instead
of adding masks) and the other operations remain the
same as the proposed framework.

• Basic Hierarchical Decentralized Learning (Basic-
Hierarchical): This is the basic design of the proposed
framework with fog-level masking and no consensus
matrix optimization, as stated in Section IV. The bench-
mark hierarchical-FL approach serves for evaluating the
effectiveness of the dedicated designs in Section V in
terms of communication overhead.

The proposed framework is denoted by “Proposed” in the
following experimental results. We also note that homomor-
phic encryption can protect data privacy but would incur 104

times of additional computation times (typically about 100s
per-round additional training time for each client) than the
random generators. Thus, homomorphic encryption is not
simulated due to its excessive runtime overhead.

B. RESULT ANALYSIS
In the following, we evaluate the effectiveness of the
proposed approach in terms of accuracy performance, data
protection performance, and signaling overhead.
1) Accuracy Performance: Fig. 4 plots the accuracy per-

formances of centralized FL, the proposed framework, and
DP-FL on the MNIST and Fashion-MNIST datasets under
both the IID and non-IID data distributions. Here, we con-
sider two different levels of artificial noises in differential
privacy, where the noise control parameter ε is set to 1.5
(mild noise) and 0.5 (moderate noise).
We can see in Fig. 4-(a) that, in both the IID and non-IID

distributions of the MNIST dataset, the proposed frame-
work can achieve the same accuracy performance (up to
98% accuracy) with the centralized FL benchmark (which
assumed a centralized server to aggregate all the gradient
of the vehicles and served as the upper bound of accuracy
performance). This validates the accuracy performance of
the proposed framework. In contrast, the DP-FL would suf-
fer from a lower convergence rate and accuracy losses due
to the added artificial noises at the local gradients of the
vehicles. The performance degradation also increases with
the noise levels of differential privacy.
The results show a similar phenomenon in the Fashion-

MNIST dataset in Fig. 4-(b). The differences are the lower
accuracy of the proposed and FL approaches (due to the
increased complexity of Fashion-MNIST) and the increased
performance degradation (up to 15% and 5% accuracy losses
during the training and after convergence, respectively).
Such performance degradation is already unacceptable for
accuracy-critical services. By comparing Figs. 4-(a) and (b),
we can see that the performance degradation would become
increasingly significant with the complexity of datasets. As
a result, the accuracy loss would prevent differential privacy
from applications in IoV (especially, autonomous driving).
2) Data Protection Performance: Fig. 5 shows the data

attack (via DeepLeakage [5]) results on MNIST and Fashion-
MNIST datasets for the centralized FL, the proposed
framework, and DP-FL (ε = {0.5, 1.5}), as the attack itera-
tions increase to 100. We can see that, in both the MNIST and
Fashion-MNIST datasets, the attack method can accurately
reconstruct the original data for the centralized FL (with-
out protection where the local gradient is available), and
cannot retrieve any information for the proposed framework
by adding random masks to protect the local gradient. This
validates the data protection performance of the proposed
masking-enabled framework.
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FIGURE 4. The accuracy performances (top-1 accuracy) of centralized FL, the proposed framework, and DP-FL on the MNIST and Fashion-MNIST datasets under IID and
non-IID distributions.

The protection performance of DP-FL depends on the level
of injected noises into the local gradients. In particular, in
the case of mild noises (when ε = 1.5), the data can be
successfully reconstructed (i.e., one can easily classify the
original picture). With the increase of the noise levels, the
reconstructed data are increasingly disturbed by many noises
and increasingly hard to be classified. In the case of ε = 0.5,
the reconstructed data for MNIST can hardly be classified.
However, the increase in noise levels would also lead to
increasing accuracy losses, as already shown in Fig. 4.
3) Signaling Overhead: In the following, we evaluate the

fog-level and vehicle-level signaling overhead (due to dis-
tributed fog consensus and masking pairing) of the proposed
framework and the basic hierarchical decentralized learn-
ing (without the signaling reduction designs in Section V).
In particular, we evaluate the fog-level signaling overhead
via the number of consensus iterations and the vehicle-level
signaling overhead via the masking pairing times.
Fig. 6 shows the number of iterations required consen-

sus iterations for reaching a global average among the fog
nodes, achieved by the proposed framework and basic hierar-
chical decentralized learning, as the number of fog nodes N

increases. We can see that the number of required iterations
decreases with N. This is because, following the stochastic
topology generation rule, we generate the fog node topology
by setting a constant link establishment probability of 0.3.
As a result, with the increase of N, the number of links also
increases and the fog nodes are increasingly close to each
other, resulting in a decrease of required iterations. Moreover,
by optimizing the consensus matrix, the proposed framework
can reduce 24.8% average iterations (i.e., signaling overhead)
when N = 10.
Fig. 7 plots the required masking pairing times of the

proposed framework (network-level pairing) and the basic
hierarchical decentralized learning (fog-level pairing) as
the simulation duration increases. We can see in Fig. 7
that the proposed network-level masking can significantly
reduce the signaling overhead, where the pairing times
(i.e., corresponding signaling overhead) of the proposed
framework is only about 20% of the benchmark (i.e., the
fog-level pairing mechanism). This is because the vehicles
need to regenerate the pairing seeds at each time of inter-fog
handover. In contrast, in the network-level pairing, the pair-
ing seeds are regenerated when the vehicles run out of the
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FIGURE 5. The data attack results on MNIST and Fashion-MNIST datasets, as the
attack iterations increase to 100.

FIGURE 6. The number of iterations required consensus iterations for reaching a
global average under different number of fog nodes.

network area, eliminating the unnecessary inter-fog handover
overhead. This validates the signaling effectiveness of the
proposed network-level masking pairing mechanism.

VII. CONCLUSION
This paper proposed a secure and efficient hierarchical
decentralized learning framework for IoV, where federated
learning and distributed consensus were integrated for effi-
cient vehicle-fog and inter-fog collaborative learning. We
designed the network-level masking mechanism to protect
data privacy with reduced signaling overhead, where the

FIGURE 7. The required masking pairing times of the proposed network-level
pairing mechanism and the fog-level pairing benchmark.

vehicles can be paired across the coverage of different fog
nodes to eliminate the inter-fog handover repairing in the
traditional fog-level pairing. The random masks via the
network-level pairing were proved to be canceled via dis-
tributed consensus, hence preserving learning accuracy. The
consensus matrix was optimized via SDP to reduce the sig-
naling due to inter-fog consensus iterations. Experiments
were conducted on MNIST and Fashion-MNIST datasets
under IID and non-IID distributions. The results validate
the effectiveness of the proposed framework in terms of
data privacy protection, learning accuracy, and signaling
efficiency.

REFERENCES
[1] O. A. Wahab, A. Mourad, H. Otrok, and T. Taleb, “Federated machine

learning: Survey, multi-level classification, desirable criteria and future
directions in communication and networking systems,” IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1342–1397, 2nd Quart., 2021.

[2] B. Fan, Z. Su, Y. Chen, Y. Wu, C. Xu, and T. Q. S. Quek, “Ubiquitous
control over heterogeneous vehicles: A digital twin empowered edge
AI approach,” IEEE Wireless Commun., vol. 30, no. 1, pp. 166–173,
Feb. 2023.

[3] M. Chen et al., “Distributed learning in wireless networks: Recent
progress and future challenges,” IEEE J. Sel. Areas Commun., vol. 39,
no. 12, pp. 3579–3605, Dec. 2021.

[4] M. Dibaei et al., “Investigating the prospect of leveraging blockchain
and machine learning to secure vehicular networks: A survey,” IEEE
Trans. Intell. Transp. Syst., vol. 23, no. 2, pp. 683–700, Feb. 2022.

[5] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 14747–14756.

[6] B. Zhao, K. R. Mopuri, and H. Bilen, “IDLG: Improved deep leakage
from gradients,” 2020, arXiv:2001.02610.

[7] A. Wainakh et al., “User-label leakage from gradients in federated
learning,” 2021, arXiv:2105.09369.

[8] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?” in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 16937–16947.

[9] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” 2017, arXiv:1712.07557.

[10] W. Wei, L. Liu, Y. Wut, G. Su, and A. Iyengar, “Gradient-leakage
resilient federated learning,” in Proc. IEEE 41st Int. Conf. Distrib.
Comput. Syst. (ICDCS), 2021, pp. 797–807.

[11] K. Wei et al., “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Trans. Inf. Forensics Security,
vol. 15, pp. 3454–3469, 2020.

[12] Y. Aono, T. Hayashi, L. Wang, S. Moriai, and others, “Privacy-
preserving deep learning via additively homomorphic encryption,”
IEEE Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1333–1345,
2017.

1428 VOLUME 4, 2023



[13] J. Ma, S.-A. Naas, S. Sigg, and X. Lyu, “Privacy-preserving federated
learning based on multi-key homomorphic encryption,” Int. J. Intell.
Syst., vol. 37, no. 9, pp. 5880–5901, 2022.

[14] C. Zhang, S. Ekanut, L. Zhen, and Z. Li, “Augmented multi-
party computation against gradient leakage in federated learn-
ing,” IEEE Trans. Big Data, early access, Sep. 22, 2022,
doi: 10.1109/TBDATA.2022.3208736.

[15] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure and veri-
fiable federated learning,” IEEE Trans. Inf. Forensics Security, vol. 15,
pp. 911–926, 2019.

[16] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in Proc. IEEE Int. Conf. Commun.
(ICC), 2020, pp. 1–6.

[17] W. Y. B. Lim, J. S. Ng, Z. Xiong, D. Niyato, C. Miao, and D. I.
Kim, “Dynamic edge association and resource allocation in self-
organizing hierarchical federated learning networks,” IEEE J. Sel.
Areas Commun., vol. 39, no. 12, pp. 3640–3653, Dec. 2021.

[18] J. Feng, L. Liu, Q. Pei, and K. Li, “Min-max cost optimization for
efficient hierarchical federated learning in wireless edge networks,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 11, pp. 2687–2700,
Nov. 2022.

[19] X. Zhou, W. Liang, J. She, Z. Yan, I. Kevin, and K. Wang, “Two-
layer federated learning with heterogeneous model aggregation for 6G
supported Internet of Vehicles,” IEEE Trans. Veh. Technol., vol. 70,
no. 6, pp. 5308–5317, Jun. 2021.

[20] M. Yemini, R. Saha, E. Ozfatura, D. Gündüz, and A. J. Goldsmith,
“Semi-decentralized federated learning with collaborative relaying,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 2022, pp. 1471–1476.

[21] F. P.-C. Lin, S. Hosseinalipour, S. S. Azam, C. G. Brinton, and
N. Michelusi, “Semi-decentralized federated learning with cooper-
ative D2D local model aggregations,” IEEE J. Sel. Areas Commun.,
vol. 39, no. 12, pp. 3851–3869, Dec. 2021.

[22] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain and
federated learning for privacy-preserved data sharing in industrial IoT,”
IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 4177–4186, Jun. 2020.

[23] O. L. Saldanha et al., “Swarm learning for decentralized artificial
intelligence in cancer histopathology,” Nature Med., vol. 28, no. 6,
pp. 1232–1239, 2022.

[24] Y. Liu, L. Huo, J. Wu, and A. K. Bashir, “Swarm learning-based
dynamic optimal management for traffic congestion in 6G-Driven
intelligent transportation system,” IEEE Trans. Intell. Transp. Syst.,
early access, Jul. 1, 2020, doi: 10.1109/TITS.2023.3234444.

[25] H. Ye, L. Liang, and G. Y. Li, “Decentralized federated learning
with unreliable communications,” IEEE J. Sel. Topics Signal Process.,
vol. 16, no. 3, pp. 487–500, Apr. 2022.

[26] S. Savazzi, M. Nicoli, and V. Rampa, “Federated learning with coop-
erating devices: A consensus approach for massive IoT networks,”
IEEE Internet Things J., vol. 7, no. 5, pp. 4641–4654, May 2020.

[27] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Wireless communications
for collaborative federated learning,” IEEE Commun. Mag., vol. 58,
no. 12, pp. 48–54, Dec. 2020.

[28] M. Chen, N. Shlezinger, H. V. Poor, Y. C. Eldar, and S. Cui,
“Communication-efficient federated learning,” Proc. Nat. Acad. Sci.,
vol. 118, no. 17, 2021, Art. no. e2024789118.

[29] J. Li et al., “Budget-aware user satisfaction maximization on service
provisioning in mobile edge computing,” IEEE Trans. Mobile Comput.,
early access, Sep. 9, 2022, doi: 10.1109/TMC.2022.3205427.

[30] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1,
pp. 269–283, Jan. 2021.

[31] X. Lyu, C. Ren, W. Ni, H. Tian, R. P. Liu, and E. Dutkiewicz, “Optimal
Online data partitioning for geo-distributed machine learning in edge
of wireless networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 10,
pp. 2393–2406, Oct. 2019.

[32] Z. Yang, M. Chen, K.-K. Wong, H. V. Poor, and S. Cui,
“Federated learning for 6G: Applications, challenges, and opportu-
nities,” Engineering, vol. 8, pp. 33–41, Jan. 2022.

[33] A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, and S. Stich, “A
unified theory of decentralized SGD with changing topology and local
updates,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 5381–5393.

[34] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. 19th Int. Conf. Comput. Statist. (COMPSTAT), Paris
france, 2010, pp. 177–186.

[35] S. Ruder. “An overview of gradient descent optimization algorithms.”
2016. [Online]. Available: http://arxiv.org/abs/1609.04747.

[36] H. Yang, M. Ge, D. Xue, K. Xiang, H. Li, and R. Lu, “Gradient
leakage attacks in federated learning: Research frontiers, taxonomy
and future directions,” IEEE Netw., early access, Apr. 24, 2023,
doi: 10.1109/MNET.001.2300140.

[37] E. Klaoudatou, E. Konstantinou, G. Kambourakis, and S. Gritzalis, “A
survey on cluster-based group key agreement protocols for WSNs,”
IEEE Commun. Surveys Tuts., vol. 13, no. 3, pp. 429–442, 3rd Quart.,
2011.

[38] K. Bhattacharjee and S. Das, “A search for good pseudo-random
number generators: Survey and empirical studies,” Comput. Sci. Rev.,
vol. 45, Aug. 2022, Art. no. 100471.

[39] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, 2004.

[40] S. P. Karimireddy, S. Kale, M. Mohri, S. J. Reddi, S. U. Stich,
and A. T. Suresh, “SCAFFOLD: Stochastic controlled averaging for
federated learning,” 2019, arXiv:1910.06378.

[41] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” J. Mach. Learn. Res., vol. 17,
no. 1, pp. 2909–2913, 2016.

[42] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of SUMO-simulation of urban mobility,”
Int. J. Adv. Syst. Meas., vol. 5, nos. 3–4, pp. 128–138, 2012.

[43] Y. LeCun. “LeNet-5, convolutional neural networks.” 2015. [Online].
Available: URL: http://yann. lecun. com/exdb/lenet

ZIXUAN LIANG received the B.E. degree from the
Minzu University of China in 2021. He is currently
pursuing the master’s degree with the School of
Cyberspace Security, Beijing University of Posts
and Telecommunications. His research interests
include Internet of Vehicles, edge intelligence, and
distributed learning.

PENGLIN YANG received the Doctoral degree from
the China Academy of Space Technology in 2019.
He is currently works with China Mobile Research
Institute as a Security Engineer. His main research
interests include network security, system security,
and security issues in federated machine-learning
aspect.

CHENYU ZHANG received the B.E. degree
from the Shandong University of Science
and Technology in 2020, and the master’s
degree from the Beijing University of Posts
and Telecommunications in 2023. His research
interests include Internet of Vehicles, edge intelli-
gence, and federated learning.

XINCHEN LYU received the B.E. degree
from the Beijing University of Posts and
Telecommunications (BUPT) in 2014, and
the dual Ph.D. degrees from BUPT and the
University of Technology Sydney in 2019.
He is currently an Associate Professor with
the National Engineering Research Center for
Mobile Network Technologies, BUPT, and
an Associate Researcher with the Department
of Broadband Communication, Peng Cheng
Laboratory. His research interests include the

resource management and security of edge intelligence and its applications
in future wireless networks.

VOLUME 4, 2023 1429

http://dx.doi.org/10.1109/TBDATA.2022.3208736
http://dx.doi.org/10.1109/TITS.2023.3234444
http://dx.doi.org/10.1109/TMC.2022.3205427
http://dx.doi.org/10.1109/MNET.001.2300140


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


