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ABSTRACT Index assignment (IA) is a low-complexity joint source-channel coding technique that has
the potential for use in low-latency and low-power applications, such as wireless sensor networks (WSNs).
Though binary IA has been extensively studied for assigning binary indices to quantized codewords (or
symbols) under the assumption of binary symmetric channels (BSCs), real-world scenarios often use M-ary
modulations. Directly applying binary IAs designed for BSCs to M-ary modulations results in suboptimal
performance. In this paper, we investigate theM-ary IA, which assignsM-ary labels to quantized codewords
(or symbols), assuming the use of a equiprobable lattice quantizer. For such a system, we derive a tight
performance bound and propose a near-optimal IA scheme based on a two-step design. In addition, we
propose explicit IA constructions for practical modulation schemes, including PAM, QAM, and PSK.
Our proposed IA design is rigorously proven to be optimal for 3-PSK and QPSK, whereas for larger
modulation orders, the proposed IA constructions approach the bounds within small gaps. Our simulations
show that the constructed IA scheme can achieve significant energy savings compared to the conventional
binary IA scheme. Specifically, in some WSN scenarios, the proposed IA for 16-QAM is shown to achieve
significant reductions in energy consumption relative to the conventional binary counterpart.

INDEX TERMS Discrete memoryless channel, index assignment, joint source-channel coding,
quantization.

I. INTRODUCTION

THEDRAMATIC growth of wireless networks in recent
decades has enabled the broad utilization of the Internet

of Things (IoT) across numerous applications, including
smart homes, smart cities, and beyond [2]. Wireless sensor
networks (WSNs) play a critical role in IoT by collecting
data from the environment and transmitting it to other sensor
nodes [2], [3], [4], [5], [6]. However, energy consumption
is a major challenge in WSNs, as sensor nodes are typically
powered by batteries and deployed in remote locations where
battery recharge is challenging or impossible [6], [7], [8].
It is important to reduce power consumption while main-
taining reliable data transmission to extend the battery life
of the sensor node. In many IoT applications, WSNs need
to transmit the sensed information with low latency in the
form of quantized data after being processed by a quan-
tizer [6]. To achieve this, joint source-channel coding (JSCC)
is an effective low-latency approach that reduces power

consumption while maintaining transmission quality [9],
[10], [11], [12]. This paper focuses on a low-complexity
JSCC technique called index assignment (IA). IA is a tech-
nique that involves assigning zero-redundancy codes to label
quantized codewords (or symbols) in a way that minimizes
the distortion of quantized codewords caused by channel
errors [13]. The design of the labeling rule can be done
offline, enabling IA to be integrated into a communication
system with low latency and low power consumption. Its low
complexity and error-resistance properties make it a promis-
ing solution for energy-efficient applications, such as WSNs
[9], [14], [15].
In conventional IA problems, binary indices are used

to label quantized codewords or symbols, which are sub-
sequently transmitted over a binary symmetric channel
(BSC) [16]. Despite the extensive research into binary IA,
finding the optimal binary IA for general quantizers and
sources is still an open problem. The only known case of
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optimal binary IA is for uniform quantizers with uniform
sources, where the natural binary code (NBC) was known
to minimize channel mean-squared distortion (MSD) [17],
[18], [19], [20]. Later, Farber and Zeger proved the optimal-
ity of the NBC for quantizers with uniform encoders and
channel-optimized decoders [21]. The problem of finding
the optimal IA for general source models and quantizers is
known to be NP-hard [22], and even finding the optimal IA
for a quantizer with a small codebook is challenging due to
its high complexity [13]. Although there are heuristics for
designing good but not necessarily optimal IAs [23], [24],
[25], [26], [27], [28], they still require a significant amount
of time to yield good results.
In practical applications, M-ary modulations, such as

M-PSK, M-PAM, and M-QAM, are often used to improve
bandwidth efficiency. To apply binary IAs designed for BSC
to M-ary transmission, a BSC can be modeled from the
M-ary transmission by considering the bit error rate (BER) as
the crossover probability [29]. Additionally, the binary Gray
code is commonly utilized to modulate index bits as channel
symbols in order to minimize the BER. However, even if the
binary IA and modulation mapping are optimally designed
individually, their combination is suboptimal for minimizing
the MSD [30]. To address this problem, we propose an alter-
native design that uses an M-ary IA to label the quantized
codewords (or symbols) of an ML-point quantizer by M-ary
channel symbols. To the best of our knowledge, there are
few works related to this M-ary IA problem. Skoglund intro-
duced a method for analyzing the channel MSD based on the
diagonalization of the transition matrix for general quantizers
and M-ary discrete memoryless channels (DMCs) [16]. Ben-
David and Malah [31] and Wu et al. [32] studied performance
bounds on the channel MSD. Chan and Mow investigated the
IA that maps quantized symbols of an equiprobable M-level
scalar quantizer directly to M-PSK symbols [33], which is
a special case of our proposed M-ary IA with L = 1. The
zigzag mapping was introduced and proven to be an optimal
IA for this special case [33], [34]. However, the zigzag map-
ping is only applicable when the size of the quantizer and
the size of the M-PSK constellation are the same. Finding
optimal or near-optimal M-ary IA designs for L > 1 and
other modulation schemes remains an open challenge.
Vector quantizers are widely used in various applications

to improve data compression efficiency. However, designing
and implementing unstructured vector quantizers have been
shown to be highly complex [35], [36]. Hence, suboptimal
structured quantizers, such as multistage vector quantizers,
tree-structured quantizers, and lattice vector quantizers, have
been proposed to simplify complexity, albeit with reduced
performance [36], [37], [38]. Lattice vector quantizers have
been demonstrated to be practical in many applications and
have been well-studied theoretically. A particular case of
lattice vector quantizers referred to as “binary lattice quan-
tizers” has been studied by Mehes and Zeger [37]. These
quantizers can also be considered as a special case of a
multistage vector quantizer, where each stage contains only

two codewords [37]. The binary lattice quantizers have been
shown to be robust against the noise of binary channels,
particularly under “channel-mismatch” conditions when the
exact level of the channel noise is not perfectly known [37].
This robustness makes the quantizer practical. Additionally,
the quantizer is compatible with IA schemes, which are also
robust to changes in channel conditions [39]. Therefore, for
M-ary transmissions, we introduce an M-ary generalized ver-
sion of the binary lattice quantizers and investigate the M-ary
IA design to achieve optimal or near-optimal performance.
In this work, we propose a design for an M-ary IA to

label the quantized codewords (or symbols) of an ML-point
quantizer using M-ary channel symbols, with the objective of
minimizing the channel MSD. We first derive a performance
bound on channel MSD and, together with a novel M-ary
generalization of NBC, devise a two-step design for the
M-ary IA. In the first stage, we assign length-L index vec-
tors consisting of M-ary index symbols to the quantized
codewords (or symbols). In the second stage, we map these
M-ary index symbols to M-ary modulated channel symbols.
Our contributions are summarized below:

1) We derive a tight lower bound on channel MSD for
equiprobable quantizers and general M-ary DMCs,
including both symmetric and asymmetric channels.
We also derive explicit forms of the bound for prac-
tical modulation schemes including PAM, QAM, and
PSK.

2) We propose a novel M-ary IA structure called the
natural M-ary code (NMC), which is generalized from
the NBC. We derive its corresponding channel MSD.
By defining a ratio to represent the gap between the
lower bound and the channel MSD, the IA problem
is transformed into a two-step design: first, label the
quantized codewords by M-ary index vectors with
NMC, and second, modulate the resulting M-ary index
symbols as channel symbols to minimizing the gap.

3) We provide explicit near-optimal IAs based on the two-
step design for specific modulation schemes including
PAM, QAM, and PSK. We derive closed-form eigen-
decompositions for the DMC arising from these mod-
ulation transmissions and analyze the performances of
the proposed IAs. Notably, the proposed IA for PSK is
rigorously proven to be optimal for 3-PSK and QPSK.

4) We introduce an energy-efficient WSN model and
demonstrate that our proposed M-ary IAs can achieve
significant energy savings compared to conventional
binary IA in the WSN application.

The remainder of the paper is organized as follows.
Section II formulates the M-ary IA problem. In Section III,
we derive a lower bound on channel MSD and propose
an M-ary IA generalized from the NBC. We then pro-
pose a two-step framework for obtaining near-optimal IA
schemes. In Section IV, we present explicit IA constructions
for specific modulations and provide asymptotic analyses to
demonstrate their near-optimality. We prove the optimality
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of the proposed IA for M-PSK when M = 3, 4. In Section V,
simulation results show that the proposed IAs have perfor-
mances that are close to the performance bounds. Finally,
we provide simulations for a WSN model to demonstrate the
significant energy savings achieved by the proposed M-ary
IA compared to the conventional binary IA scheme.
Notations: Scalars are represented by italic letters. Vectors

and matrices are represented by bold-face lower-case and
uppercase letters, respectively. The i-th element of vector a
is denoted by ai, and the (i, j)-th element of matrix A is
denoted by A(i, j). The all-1 column vector and the identity
matrix are denoted by 1 and I, respectively. The sets of real
numbers and integers are denoted by R and Z, respectively.
The superscript (·)� denotes the transpose of a matrix or
a vector. The Kronecker product is denoted by the binary
operator ⊗. The trace of a matrix is denoted by Tr(·).

II. PROBLEM FORMULATION
A. MEAN-SQUARED DISTORTION
In this paper, we consider a communication system that
employs a k-dimensional vector quantizer for data compres-
sion. It is worth noting that a scalar quantizer is a special case
of the vector quantizer when k = 1. The data source is mod-
eled as a k-dimensional real-valued random vector X ∈ R

k,
with its probability density function (PDF) pX(x), where x
denotes a realization of X. The data source is compressed
through a vector quantizer that is defined by a codebook of
ML quantized codewords, given by

Y =
{
yi ∈ R

k|i = 0, 1, . . . ,ML − 1
}
. (1)

The quantizer maps a data sample x to the codeword closest
to it, as determined by the quantization function given by

FQ(x) = yi, dE(x, yi) < dE
(
x, yj

)
, ∀j �= i. (2)

where dE(x, y) denotes the Euclidean distance between two
vectors x and y. Based on the quantization function, the
quantization cell is defined by

Ri =
{
x ∈ R

k|FQ(x) = yi
}
, i = 0, 1, . . . ,ML − 1, (3)

with ∪ML−1
i=0 Ri = R

k and Ri ∩ Rj = ∅,∀i �= j.
The performance of the system is evaluated using MSD,

which is defined by

D =
ML−1∑
i=0

ML−1∑
j=0

P
(
yj|yi

) ∫

Ri

‖x − yj‖2pX(x)dx, (4)

where P(yj|yi) is the probability that yj is reconstructed given
that yi is transmitted. The probability that x lies in the i-th
quantization cell is denoted by Pi = ∫

Ri
pX(x)dx, and the

centroid of the i-th cell is represented by ci =
∫
Ri

xpX(x)dx

Pi
.

The MSD can be decomposed into two terms [40]: source
MSD (DQ) and channel MSD (DC), given by

FIGURE 1. Block diagram of the communication system considered in this paper,
featuring a vector quantizer with ML codewords, an M-ary IA scheme, and an M-ary
DMC.

D = DQ + DC

=
ML−1∑
i=0

∫

Ri

‖x − ci‖2pX(x)dx

+
ML−1∑
i=0

ML−1∑
j=0

PiP
(
yj|yi

)‖ci − yj‖2. (5)

Note that the source MSD depends solely on the quantizer
and is not influenced by the channel. Hence, this paper
focuses specifically on the channel MSD.
If an optimal quantization codebook is designed to mini-

mize the source distortion, every quantized codeword will be
the centroid of its corresponding quantization cell [25]. That
is, yi = ci,∀i. Furthermore, if the quantizer forms a matched
equiprobable pair with the source, as in [20], [41], the prob-
abilities of the quantized outputs will be Pi = 1/ML,∀i. For
this equiprobale scenario, the channel MSD is

DC = 1

ML

ML−1∑
i=0

ML−1∑
j=0

P
(
yj|yi

)‖yi − yj‖2. (6)

B. M-ARY INDEX ASSIGNMENT
Let us define S = {s0, . . . , sML−1} as the set of M-ary
index vectors, each with length L. Each vector si =
[si,0, si,1, . . . , si,L−1]� in S represents the M-ary expansion
of integer i, i.e., si ∈ {0, 1, . . . ,M − 1}L and

i =
L−1∑
l=0

si,lM
L−1−l, i = 0, 1, . . . ,ML − 1. (7)

The IA is described using a bijective mapping π =
[π0, . . . , πML−1]�, where πi ∈ {0, . . . ,ML − 1} represents
the mapping between the quantized codeword yπi ∈ Y and
index vector si ∈ S . The communication system, depicted in
Fig. 1, comprises an ML-point equiprobable vector quantizer
and an M-ary IA. The process of the system begins with an
input source vector x, which is quantized to a codeword yπi .
The IA mapping π is then used to map yπi to an index vector
si. The index symbols in si, namely si,0, si,1, . . . , si,L−1, are
transmitted individually over an M-ary DMC. For example,
the DMC can be resulted from modulating every index sym-
bol into an M-ary channel symbol and transmitting it through
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a memoryless channel. At the receiver, the most likely trans-
mitted index vector is detected based on the received signals,
and the corresponding quantized codeword is reconstructed
using the inverse mapping of the IA. As the IA mapping is
bijective, we have P(yπj |yπi) = P(sj|si), which allows us to
express the channel MSD as

DC = 1

ML

ML−1∑
i=0

ML−1∑
j=0

P
(
sj|si

)‖yπi − yπj‖2. (8)

The objective of the optimal IA problem is to find the map-
ping π that minimizes the channel MSD over all possible
bijective mappings between the sets Y and S .

C. M-ARY LATTICE VECTOR QUANTIZER
In this study, we focus on a class of M-ary lattice quan-
tizers defined by the following definition. These quantizers
generalize the binary lattice quantizers studied in [20], [37]
and can also be viewed as multistage quantizers [38] with
M codewords at each stage. Therefore, the investigation of
these quantizers is of both theoretical and practical interest.
Our main focus in this paper is on the k-dimensional gen-
eralized lattice vector quantizers, and the scalar version can
be obtained by setting k to 1.
Definition 1: Suppose that B = [b0,b1, . . . ,bML−1] is

an L × ML matrix consisting of ML distinct columns
bi ∈ {0, 1, . . . ,M − 1}L, where i = 0, 1, . . . ,ML − 1. The
set {α0,α1, . . . ,αL−1} is defined as a generating set, where
αj ∈ R

k for j = 0, 1, . . . ,L − 1. The k-dimensional gener-
alized M-ary lattice vector quantizer is constructed with its
codebook Y = {y0, y1, . . . , yML−1} given by

yi = y0 +
L−1∑
j=0

αjB(j, i), i = 0, 1, . . . ,ML − 1, (9)

where y0 ∈ R
k.

Remark 1: The widely used uniform scalar quantizer [35]
is a special case of the aforementioned lattice quantizer. By
setting k = 1 and αi = ML−1−i� for i = 0, 1, . . . ,L − 1,
and arranging the columns of B in increasing lexicographic
order (c.f. Appendix C (1)), the lattice quantizer reduces to
a uniform scalar quantizer with quantization step size �.
The M-ary lattice quantizer is of interest due to its robust-

ness against channel noise, especially when the exact level of
the channel noise is not perfectly known. To verify this prop-
erty, we evaluate the performance of three vector quantizers:
an unstructured vector quantizer designed to minimize source
MSD (i.e., the source-optimized quantizer), a proposed
M-ary lattice quantizer trained to minimize source MSD, and
a channel-optimized vector quantizer [42] designed with a
channel SNR of 4 dB. We use M-PAM symbols to label
the quantized codewords and transmit them over an AWGN
channel. In the simulations, source data are grouped into
k-dimensional vectors and quantized using the three quantiz-
ers, respectively. We use the signal-to-distortion ratio (SDR)

FIGURE 2. Comparison of SDR performance for three 3-dimensional 64-point vector
quantizers: the source-optimized quantizer, the channel-optimized quantizer, and the
4-ary lattice quantizer. Source data are grouped as 3-dimensional vectors and
quantized by the quantizers. Quantized codewords are labeled by 4-ary index vectors,
and index symbols are modulated as 4-PAM symbols before being transmitted over an
AWGN channel.

as the performance measure to assess the impact of source
and channel MSD. Here, the SDR is defined as

SDR = 10 log10

(
σ 2

D/k

)
, (10)

where σ 2 is the variance of the source, and D is the over-
all MSD. The simulation results for uniform and Gaussian
sources are shown in Fig. 2. For uniform sources, the lat-
tice quantizer performs identically to the source-optimized
quantizer at high SNRs. This is because the lattice quan-
tizer is optimal in terms of source MSD for uniform
sources. For Gaussian sources, the lattice quantizer achieves
lower SDR than the source-optimized quantizer at very high
SNR regions. For both types of sources, the lattice quan-
tizers perform much better at not-too-high SNR regions
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than source-optimized quantizers. Compared to the channel-
optimized quantizer, the lattice quantizers perform better
at high SNR regions and slightly worse when the SNR
is lower than 4 dB. These results demonstrate the robust-
ness of the M-ary lattice quantizers. Furthermore, the lattice
structure reduces the implementation complexity of the quan-
tizer [36], making it a more practical option than the other
two quantizers.

III. INDEX ASSIGNMENT FOR EQUIPROBABLE LATTICE
QUANTIZERS
In this section, we derive a lower bound on the channel
MSD. We then propose a novel IA structure that is gener-
alized from the optimal NBC for binary lattice quantizers.
The generalized IA structure effectively transforms the IA
problem into a simplified mapping problem for modulation
and enables a two-step design. By designing the modula-
tion mapping to narrow the gap between the derived lower
bound and the channel MSD, our proposed approach results
in near-optimal IA schemes.
To facilitate a better understanding of our design approach,

we provide a running example that will be discussed
in Sections III-C and IV-B. This example serves as an
illustration to exemplify the relevant content.
Example 1: In a communication system, we consider a

2-dimensional 64-point lattice vector quantizer with M = 8
and L = 2, where the codebook is constructed using the
matrix

B =
[

0, 0, 0, 0, . . . , 7, 7, 7, 7
0, 1, 2, 3, . . . , 4, 5, 6, 7

]
,

and the generating set {α0,α1} given by

α0 =
[

2
1

]
, α1 =

[
0√
3

]
.

We set y0 = 0. The quantized data are modulated as 8-PSK
symbols and transmitted over the channel. To represent all
the quantized codewords using 8-PSK symbols, we need to
design an IA that maps each codeword to two PSK sym-
bols. This assignment problem is intractable due to the large
number (64!) of possible candidates to compare. Therefore,
we need to find an efficient way to solve this problem.

A. LOWER BOUND ON CHANNEL MEAN-SQUARED
DISTORTION
Let us define the average of the codewords in Y by

ȳ = 1

ML

ML−1∑
i=0

yi.

According to the definition of the channel MSD in (6), the
channel MSD can be rewritten as

DC = 1

ML

ML−1∑
i=0

ML−1∑
j=0

P
(
yj|yi

)‖(yi − ȳ) − (
yj − ȳ

)‖2.

We can define a k ×ML matrix

Z =
[
yπ0 − ȳ, yπ1 − ȳ, . . . , yπML−1

− ȳ
]
,

where the i-th column of Z is yπi − ȳ. Based on [16], we
rewrite the channel MSD as

DC = 1

ML
Tr

(
ZGZ�)

, (11)

where G is a symmetric matrix corresponding to the
transition probabilities, given by

G �
ML−1∑
i=0

ML−1∑
j=0

P
(
sj|si

)(
ei − ej

)(
ei − ej

)�
, (12)

where ei is a column vector with 1 in position i and 0s
elsewhere. It is noteworthy that the sum of each row or
column of G is 0, as the sum of each row or column of
(ei − ej)(ei − ej)� is always 0 for any i and j.
Through the eigendecomposition of G, we propose a lower

bound on the channel MSD in the form of the following
proposition.
Proposition 1: Let G be defined by (12), and let μmin(2)

denote the second-smallest eigenvalue of G. For an ML-
point equiprobable quantizer with quantized codewords
{y0, y1, . . . , yML−1}, a lower bound on channel MSD is

DC ≥ 1

ML
μmin(2)

ML−1∑
i=0

∥∥∥∥∥∥
yi − 1

ML

ML−1∑
j=0

yj

∥∥∥∥∥∥

2

. (13)

Proof: Let z�
l denote the l-th row of Z, where l =

0, . . . , k − 1. Based on the trace function property (c.f.
Appendix C (2)), the channel MSD in (11) can be
expressed as

DC = 1

ML

k−1∑
l=0

z�
l Gzl = 1

ML

k−1∑
l=0

Tr
(
Gzlz�

l

)
.

Let us define Dl = zlz�
l . Note that the sum of each row

or column of Dl is always 0 since
∑ML−1

i=0 (yi − ȳ) = 0.
By performing eigendecomposition on G and Dl, we obtain
G = U�U� and Dl = Wl�lW�

l , where � and �l are
diagonal matrices consisting of the eigenvalues of G and Dl,
respectively. The matrices U and Wl consist of eigenvectors
of G and Dl as their columns, respectively. Using these
matrices, the channel MSD can be rewritten as

DC = 1

ML

k−1∑
l=0

Tr
(
U�U�Wl�lW�

l

)
.

We introduce a matrix � l defined as � l = U�Wl. Note that
� l is a unitary matrix since � l�

�
l = U�WlW�

l U = I. With
this, the channel MSD can be expressed as

DC = 1

ML

k−1∑
l=0

Tr
(
�� l�l�

�
l

)

= 1

ML

k−1∑
l=0

ML−1∑
i=0

ML−1∑
j=0

μiωl,j�l(i, j)
2, (14)
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where μi and ωl,j represent the i-th eigenvalue in � and
the j-th eigenvalue in �l, respectively. By relaxing the
problem of minimizing (14), an optimization problem can
be formulated as

min
�0,...,�k−1

k−1∑
l=0

ML−1∑
i=0

ML−1∑
j=0

μiωl,j�l(i, j)
2

s.t.
ML−1∑
i=1

�l(i, j)
2 = 1, j = 0, 1, . . . ,ML − 1;

l = 0, 1, . . . , k − 1,

ML−1∑
j=1

�l(i, j)
2 = 1, i = 0, 1, . . . ,ML − 1;

l = 0, 1, . . . , k − 1.

The eigenvalues in � and �l are assumed to be in ascending
order, i.e., μi ≤ μi+1 and ωl,i ≤ ωl,i+1 for i = 0, 1, . . . ,

ML − 1, l = 0, 1, . . . , k − 1, without loss of generality. It
should be noted that G and Dl are positive semidefinite
matrices [16], [43], and both matrices are symmetric with
the sum of entries in each row or column equaling zero.
Therefore, they have the smallest eigenvalue zero, associated
with the eigenvector 1√

ML
1. The optimization problem above

can be reduced to the one in [31], and its solution is given by

� l =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 0
0 0 · · · ±1
... ±1

0 . .
.

0 ±1 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, l = 0, 1, . . . , k − 1.

According to the above solution, the lower bound on channel
MSD can be obtained as

DC ≥ 1

ML

k−1∑
l=0

ML−1∑
i=1

μiωl,(ML−i). (15)

It is worth noting that Dl (l = 0, 1, . . . , k − 1) is a rank-1
matrix with a unique non-zero eigenvalue of ωl,(ML−1) =
z�
l zl = ‖zl‖2. Therefore, the lower bound in (15) can be
expressed as

DC ≥ 1

ML

k−1∑
l=0

μ1‖zl‖2 = 1

ML
μ1

ML−1∑
i=0

∥∥∥∥∥∥
yi − 1

ML

ML−1∑
j=0

yj

∥∥∥∥∥∥

2

.

(16)

Recall that μ1 is the second-smallest eigenvalue of G, that
is, μ1 = μmin(2). Consequently, the lower bound in (16) is
equivalent to (13) as presented in Proposition 1.
Remark 2: An eigenvalue-based lower bound on the chan-

nel MSD of symmetric channels has been proposed in [31].
The bound can be applied to arbitrary source models and
quantizers. In the case of symmetric channels and equiprob-
able quantizers, our lower bound in (13) is identical to the
one presented in [31]. In addition, our proposed bound in

Proposition 1 can also be applied to asymmetric channels,
showcasing its flexibility.
For the lattice quantizer stated in Definition 1, the

proposed bound can be expressed as the following corollary.
Corollary 1: For an equiprobable M-ary lattice quantizer

in Definition 1, the lower bound on channel MSD is

DC ≥
(
M2 − 1

)
μmin(2)

12

L−1∑
i=0

‖αi‖2. (17)

Proof: By substituting the lattice quantizer (9) into the
lower bound (13), we get the sum in right-hand side as

ML−1∑
i=0

∥∥∥∥∥∥
yi − 1

ML

ML−1∑
l=0

yl

∥∥∥∥∥∥

2

=
ML−1∑
i=0

∥∥∥∥∥∥

⎛
⎝y0 +

L−1∑
j=0

αjB(j, i)

⎞
⎠

− 1

ML

ML−1∑
l=0

⎛
⎝y0 +

L−1∑
j=0

αjB(j, l)

⎞
⎠
∥∥∥∥∥∥

2

=
ML−1∑
i=0

∥∥∥∥∥∥
L−1∑
j=0

αjB(j, i) −
L−1∑
j=0

αj
1

ML

ML−1∑
l=0

B(j, l)

∥∥∥∥∥∥

2

.

Every row of B consists of values ranging from 0 to M− 1,
with each value appearing ML−1 times. By calculating the
row sum of B, we can simplify the above expression as

ML−1∑
i=0

∥∥∥∥∥∥
L−1∑
j=0

αj

(
B(j, i) − M − 1

2

)∥∥∥∥∥∥

2

.

Using the multinomial theorem (c.f. Appendix C (3)), we
can expand the above expression as

ML−1∑
i=0

L−1∑
j=0

∥∥∥∥αj

(
B(j, i) − M − 1

2

)∥∥∥∥
2

+ 2
ML−1∑
i=0

L−1∑
j=0

L−1∑
l=j+1

αjα
�
l

(
B(j, i) − M − 1

2

)

×
(
B(l, i) − M − 1

2

)
. (18)

Note that the second term can be rewritten as

2
L−1∑
j=0

L−1∑
l=j+1

αjα
�
l

ML−1∑
i=0

(
B(j, i) − M − 1

2

)(
B(l, i) − M − 1

2

)
.

Let us define Cj,m as the set of column indices of B where
the corresponding column has its j-th entry being m. Since
each column of matrix B represents a distinct vector in the
set {0, 1, . . . ,M− 1}L, every value in this set appears ML−1

times in each row of B. Hence, there are ML−1 elements in
the set Cj,m. Additionally, among these ML−1 columns, the
L−1 entries (excluding the j-th entry) in each column form a
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distinct vector in the set {0, 1, . . . ,M−1}L−1. Consequently,
the l-th entries of the columns in Cj,m belong to the set
{0, 1, . . . ,M − 1}, and each of these entries appears ML−2

times. Hence, we have

ML−1∑
i=0

(
B(j, i) − M − 1

2

)(
B(l, i) − M − 1

2

)

=
M−1∑
m=0

∑
i∈Cj,m

(
B(j, i) − M − 1

2

)(
B(l, i) − M − 1

2

)

=
M−1∑
m=0

(
m− M − 1

2

)
ML−2

M−1∑
n=0

(
n− M − 1

2

)

= 0.

Therefore, the second term in (18) is equal to 0. As a result,
we can simplify the lower bound in (13) as

DC ≥ 1

ML
μmin(2)

ML−1∑
i=0

L−1∑
j=0

∥∥∥∥αj

(
B(j, i) − M − 1

2

)∥∥∥∥
2

= 1

ML
μmin(2)

L−1∑
j=0

∥∥αj
∥∥2

ML−1∑
i=0

(
B(j, i) − M − 1

2

)2

.

By applying the sum of squares formula (c.f. Appendix C
(4)), the above expression can be written as

DC ≥
(
M2 − 1

)
μmin(2)

12

L−1∑
j=0

∥∥αj
∥∥2

.

Hence, the proof is complete.
Let us consider a matrix Ptr with Ptr(i, j) = P(sj|si). This

matrix, Ptr, represents the transition matrix of the index vec-
tors, and its second-largest eigenvalue is denoted by νmax(2).
Note that the matrix (ei − ej)(ei − ej)� has its (i, i)-th and
(j, j)-th entries equal to 1, its (i, j)-th and (j, i)-th entries
equal to −1, and all other entries equal to 0. According
to (12), it can be easily seen that

G(i, j) =
{∑

l∈{0,...,ML−1}\{i} P(sl|si) + P(si|sl), if i = j,

−P(sj|si
) − P

(
si|sj

)
, if i �= j.

If the channel is symmetric, we have P(sj|si) = P(si|sj).
Substituting this into the above expression, one can get G =
2(I − Ptr). To simplify the lower bound, we analyze the
eigenvalues of Ptr. Let QM represent the transition matrix of
the M-ary DMC depicted in Fig. 1, where QM(i, j) = P(j|i)
for M-ary index symbols 0 ≤ i, j ≤ M − 1 in the index
vector. The transition matrix of index vectors is obtained
through successive Kronecker products of QM , i.e.,

Ptr = QM ⊗ QM ⊗ · · · ⊗ QM︸ ︷︷ ︸
L times

.

Let λmax(1), λmax(2), . . . , λmax(M) be the eigenvalues of
matrix QM in decreasing order. Based on the fundamen-
tal property of the Kronecker product (c.f. Appendix C (5)),
as Ptr is the Kronecker product of QM repeated L times,

the eigenvalues of Ptr are computed by λ(i1)λ(i2) . . . λ(iL),
where λ(il) ∈ {λmax(1), λmax(2), . . . , λmax(M)}. There are ML

combinations of this product, corresponding to ML eigen-
values of Ptr. It is obvious that the maximum eigenvalue
among them is νmax(1) = λLmax(1), and the second maximum

eigenvalue is νmax(2) = λL−1
max(1)λmax(2). Note that QM is a

stochastic matrix with its largest eigenvalue λmax(1) = 1.
Hence, we have νmax(1) = 1 and νmax(2) = λmax(2).
Hence, the lower bound for the symmetric channel is

DC ≥
(
M2 − 1

)(
1 − λmax(2)

)

6

L−1∑
i=0

‖αi‖2. (19)

B. GENERALIZED NATURAL M-ARY CODE
Our objective is to design a universal IA scheme that is
independent of the quantizer parameters. Note that the lower
bound in (19) is a product of two independent terms: one
depends solely on QM and the other depends only on the
quantizer parameters {αi}L−1

i=0 . To use the lower bound to aid
in IA design, it deserves to find IA constructions that can
also decouple the effects of channel errors and quantizer
parameters on channel MSD. It has been established that
the NBC is the optimal binary IA for BSCs when using
equiprobable binary lattice quantizers [20]. Furthermore, the
channel MSD can be decoupled into two independent terms.
Thus, it is natural to investigate the M-ary generalization of
the NBC for M-ary lattice quantizers.

For the lattice quantizer defined in Definition 1, the code-
word yi corresponds to the i-th column of the matrix B. Let
bi denote the i-th column of B, and let us denote an ordering
ζ = [ζ0, ζ1, . . . , ζML−1]� such that

bζ0 <lex bζ1 <lex . . . <lex bζML−1
,

where x <lex y means that x is smaller than y in the lex-
icographical order (c.f. Appendix C (1)). In this section,
we introduce an M-ary IA that assigns si to the quantized
codeword corresponding to bζi , denoted as yζi . As the M-ary
IA is defined to assign si to yπi , we can describe the IA
mapping by the equation πi = ζi.
Example 2: Let us consider a 2-dimensional M-ary lat-

tice quantizer with M = 4 and L = 2. The quantizer is
constructed by the matrix B given by

B =
[

1, 1, 1, 1, 0, 0, 0, 0, 3, 3, 3, 3, 2, 2, 2, 2
0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3

]
,

and the generating set {α0,α1} given by

α0 =
[

2
1

]
, α1 =

[
0√
3

]
.

Moreover, we set y0 = 0. The ordering ζ is given by

ζ = [4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11],

and then the corresponding IA π is

π = [4, 5, 6, 7, 0, 1, 2, 3, 12, 13, 14, 15, 8, 9, 10, 11].
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FIGURE 3. Block diagram of a communication system employing an ML-point vector quantizer, an M-ary IA, and M-ary digital modulation.

We propose a proposition for thisM-ary IA and its channel
MSD, which can also serve as an upper bound on the optimal
channel MSD.
Proposition 2: Suppose an ML-point equiprobable M-ary

lattice quantizer is described in Definition 1. Consider an
M-ary IA defined by

πi = ζi, i = 0, 1, . . . ,ML − 1, (20)

where ζi is the column index of the i-th smallest column
of B in the lexicographic order. The channel MSD for the
symmetric M-ary DMC depicted in Fig. 1, referred to as
QM , is given by

DC = EM

L−1∑
l=0

‖αl‖2, (21)

where EM is

EM = 1

M

M−1∑
i=0

M−1∑
j=0

QM(i, j)(i− j)2. (22)

Proof: The proof is provided in Appendix A.
Consider a lattice quantizer that corresponds to a matrix

B with the columns arranged in lexicographic order. The
corresponding IA is

πi = i, i = 0, 1, . . . ,ML − 1. (23)

The IA is a mapping that associates the quantized codeword
yi with the index vector si for i = 0, 1, . . . ,ML−1. This IA is
referred to as the natural M-ary code (NMC) in this paper. It
is important to note that when M = 2, the NBC is a specific
case of the NMC. Furthermore, similar to NBC [37], NMC
is a linear IA that can be implemented with low complexity,
making it well-suited for applications with power-efficient
requirements. For ease of discussion, we will mainly focus
on the NMC throughout the rest of the paper. It is worth
mentioning that any other IA described in Proposition 2 has
equivalent properties to the NMC.

C. INDEX ASSIGNMENT FOR M-ARY MODULATIONS
Based on the lower bound in (19) and the channel MSD
in (21), one can eliminate the influence of the quantizer
parameters by computing the ratio of the two, i.e.,

η =
(
M2 − 1

)(
1 − λmax(2)

)

6EM
. (24)

Note that the ratio η depends on λmax(2) and EM , both of
which are determined solely by QM .
The value of η represents the gap between the lower bound

and channel MSD for NMC. When η is close to 1, the
gap between them is small, indicating that the proposed
NMC yields near-optimal performance. It is worth noting that
the IA structure only defines the mapping from quantized
codewords to M-ary index vectors under the assumption that
the DMC, QM , is given. However, QM is dependent on
the transmission of index symbols over the real channel. In
order to achieve a near-optimal IA solution, it is necessary
to investigate methods for transmitting index symbols over a
real channel to make η close to 1. The IA solution comprises
two steps, namely mapping quantized codewords to index
vectors and designing a method to transmit index symbols
over a real channel.
In communication systems, digital modulation schemes

are often employed. Index symbols are modulated as channel
symbols and then transmitted over a real channel, as depicted
in Fig. 3. As shown in the figure, the modulator, the channel,
and the demodulator can be grouped together and viewed
as the equivalent M-ary DMC illustrated in Fig. 1. In this
paper, we focus on M-ary modulations. The alphabet of
M-ary index symbols is denoted by IM = {0, 1, . . . ,M−1},
and the set of M-ary channel symbols is defined as CM =
{c0, c1, . . . , cM−1}. To describe the modulation, a bijective
mapping, ξ = [ξ0, ξ1, . . . , ξM−1], is defined, where ξi ∈
{0, 1, . . . ,M− 1} indicates that the index symbol ξi ∈ IM is
modulated as the channel symbol ci ∈ CM .
Denote the transition matrix for channel symbols as Q̂M ,

where Q̂M(i, j) = P(cj|ci) is the probability of detecting
cj given that ci was transmitted over the channel. Given a
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modulation scheme and the channel condition, represented
by Q̂M , the transition matrix for index symbols, QM , can be
determined by the mapping ξ , given by

QM
(
ξi, ξj

) = Q̂M(i, j), i, j = 0, 1, 2, . . . ,M − 1. (25)

Therefore, the IA problem can be addressed by designing a
mapping ξ to maximize the ratio η in (24) for a given M-ary
modulation scheme and channel condition. This leads to the
two-step design procedure based on the NMC, as follows:
1) Label quantized codewords with M-ary index vectors

using NMC.
2) Modulate index symbols as channel symbols using the

mapping ξ to transmit over the real channel.
Recall the running example (c.f. Example 1) stated at

the beginning of Section III. The objective is to label each
quantized codeword by two PSK symbols. In the proposed
two-step design, the first step involves labeling the quantized
codeword using the NMC mapping, given by

S → Y
[0, 0] → y0

[0, 1] → y1

[0, 2] → y2
...

...
...

[7, 5] → y61

[7, 6] → y62

[7, 7] → y63

, (26)

where S represents the set of M-ary index vectors, where
each index vector consists of M-ary index symbols, and
Y represents the codebook for the quantizer. Note that the
mapping remains independent of the generating set {αj}1

j=0,
which highlights the generality of our proposed design.
The second step involves modulating si as two 8-PSK sym-

bols and transmitting them over the channel. The remaining
problem is to optimize ξ to maximize η.
The two-step design based on the NMC can provide

optimal or near-optimal M-ary IAs for M-ary modulation
schemes. In the following section, we will show that the two-
step design can achieve optimal or near-optimal performance
for some commonly used modulations.

IV. NEAR-OPTIMAL INDEX ASSIGNMENT SCHEMES FOR
SPECIFIC M-ARY MODULATIONS
The M-ary modulation schemes, such as M-PAM, M-QAM,
and M-PSK, are widely used in practice. As previously dis-
cussed, for a given modulation scheme, the mapping ξ that
maximizes the ratio η can be found to obtain an optimal
or near-optimal channel MSD performance. In this section,
we will discuss the mapping problems for each of the three
modulation schemes separately.

A. INDEX ASSIGNMENT SCHEME FOR PAM AND QAM
Generally, the channel matrix resulting from M-PAM trans-
mission is asymmetric [44]. To obtain a symmetric transition

matrix, we assume that erroneous signals are limited to the
decision regions of the nearest neighbors of the transmitted
signal, which typically occurs in high SNR scenarios [44].
Denoting the conditional transition probability as ε, the
transition matrix for M-PAM symbols can be expressed as

Q̂M =

⎡
⎢⎢⎢⎢⎢⎣

1 − ε ε 0 · · · 0
ε 1 − 2ε ε · · · 0
...

. . .
. . .

. . .
...

0 · · · ε 1 − 2ε ε

0 · · · 0 ε 1 − ε

⎤
⎥⎥⎥⎥⎥⎦

. (27)

As previously discussed, the eigenvalue of QM is impor-
tant for both the mapping design and performance analysis.
Thus, we present Proposition 3 for the closed-form eigen-
decomposition of the M-ary DMC QM .
Proposition 3: Let QM be defined by the channel symbol

transition matrix Q̂M , as given in (27), and the mapping ξ ,
as described in (25). The eigenpair (λk, vk) of QM is

λk = 1 − 2ε

(
1 − cos

(
πk

M

))
, k = 0, 1, . . . ,M − 1, (28)

and vk = [vk,0, vk,1, vk,2, . . . , vk,M−1]� in which

vk,i =
⎧
⎨
⎩

1√
M

, k = 0,√
2
M cos

(
πk
M

(
φi + 1

2

))
, 1 ≤ k ≤ M − 1,

(29)

where i = 0, 1, . . . ,M − 1, and φ = [φ0, φ1, . . . , φM−1]�
denotes the inverse mapping of ξ with φξi = i.
Proof: Let us define v̂k = [v̂k,0, v̂k,1, v̂k,2, . . . , v̂k,M−1]�

with

v̂k,i =
⎧⎨
⎩

1√
M

, k = 0,√
2
M cos

(
πk
M

(
i+ 1

2

))
, 1 ≤ k ≤ M − 1.

It is straightforward to verify that (λk, v̂k) is an eigenpair of
Q̂M by checking that Q̂M v̂k = λkv̂k. According to (25), we
can define a permutation matrix 
 to represent the mapping
ξ as Q̂M = 
QM
�. Then we get


QM
�v̂k = λkv̂k.

By left-multiplying both sides of the equation by 
�, we
have


�
QM
�v̂k = λk

�v̂k.

Note that for a permutation matrix 
, its transpose is equal
to its inverse. Hence, we have 
�
 = I and 
� = 
−1.
The above equation can be rewritten as

QM
−1v̂k = λk

−1v̂k.

According to the definition, 
−1 corresponds to the inverse
mapping ξ , namely, φ. Therefore, we have 
−1v̂k = vk.
Substituting this to the equation above, we get QMvk = λkvk,
which proves the proposition.
It is simple to check that the second largest eigenvalue

of QM is λ1. By substituting λ1 into the lower bound given
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in (19), the lower bound on the channel MSD for M-PAM
transmission can be obtained as follows.
Corollary 2: The lower bound on channel MSD for

M-PAM transmission is

DC ≥
(
M2 − 1

)
ε

3

(
1 − cos

( π

M

)) L−1∑
l=0

‖αl‖2. (30)

The eigenvalues of QM are independent of the mapping ξ .
According to (24), finding ξ that maximizes η is equivalent
to finding ξ that minimizes EM . For the channel symbol
transition matrix Q̂M in (27), EM can be expressed as

EM = 1

M

M−1∑
i=0

M−1∑
j=0

Q̂M(i, j)
(
ξi − ξj

)2

= 1

M

M−1∑
i=0

∑
0≤j≤M−1,

|j−i|=1

ε
(
ξi − ξj

)2

(a)≥ 1

M

M−1∑
i=0

∑
0≤j≤M−1,

|j−i|=1

ε.

The equality in (a) holds if (ξi − ξj)
2 = 1 for |j − i| = 1.

In other words, EM is minimized by the identical mapping
given by

ξi = i, i = 0, 1, 2, . . . ,M − 1. (31)

By combining the NMC and the identical mapping, we
obtain the NMC-identical scheme, which serves as the M-ary
IA scheme for M-PAM transmission. The quantized code-
words of the ML-point quantizer are labeled using M-ary
index vectors following the NMC, and then, M-ary index
symbols are mapped to M-PAM symbols based on the
identical mapping. The channel MSD associated with the
NMC-identical scheme can be obtained as

DC = 2(M − 1)ε

M

L−1∑
l=0

‖αl‖2. (32)

Based on (30) and (32), the ratio η for the NMC-identical
scheme can be obtained as

η = 1

6
M(M + 1)

(
1 − cos

( π

M

))
. (33)

For M = 2, 3, the ratio η = 1, indicating the optimality
of the NMC-identical scheme. When M > 3, the NMC-
identical scheme is suboptimal in terms of channel MSD
performance. However, for practical values of M, such as 4,
8, and 16, the scheme is near-optimal, with values of η being
0.98, 0.91, and 0.87, respectively. Although η decreases as
M increases, it is lower-bounded by π2

12 , guaranteeing the
near-optimality of the NMC-identical scheme even for big
values of M.

Assuming M is a power of two, we compare the
proposed NMC-identical scheme to the conventional binary
IA scheme. For the case of M-ary lattice quantizers and the

optimal NBC applied to the BSC, we have Proposition 4
that provides the channel MSD.
Proposition 4: Given an ML-point equiprobable M-ary

lattice quantizer defined in Definition 1, and assuming the
crossover probability of the BSC as p, the channel MSD
corresponding to NBC is

DC = p
(
M2 − 1

)

3

L−1∑
l=0

‖αl‖2. (34)

Proof: Assume M is a power of 2. An M-ary lattice
quantizer with ML quantized codewords is equivalent to a
binary lattice quantizer with 2L

′
quantized codewords, where

L′ = L log2 M. To prove this fact, we should find a generating
set {α′

i}L
′−1
i=0 and the L′×ML matrix B′ = [b′

0,b
′
1, . . . ,b

′
ML−1

]

that consists of ML distinct column with b′
i ∈ {0, 1}L′

,
i = 0, 1, . . . ,ML − 1. The lattice quantizer defined in
Definition 1 is constructed by

yi = y0 +
L−1∑
j=0

αjB(j, i) = y0 +
L′∑
j=0

α′
jB

′(j, i), (35)

for i = 0, 1, . . . ,ML − 1. The equality in (35) holds when
we have B′ and {α′

i}L
′−1
i=0 satisfy the equalities

{
B(j, i) = ∑log2 M−1

l=0 2log2 M−1−lB′(j log2 M + l, i
)
,

α′
j log2 M+l = 2log2 M−1−lαj,

(36)

for i = 0, 1, . . . ,ML − 1, j = 0, 1, . . . ,L − 1, and l =
0, 1, . . . , log2 M− 1. Note that the first equation in (36) is a
binary expansion of B(j, i). Hence, one can always find B′
and {α′

i}L
′−1
i=0 that satisfy the two equations in (36), which

means that any M-ary lattice quantizer can be transformed
into a binary lattice quantizer. Additionally, as Proposition 1
indicates, the channel MSD for NBC can be expressed as

DC = p
L log2 M−1∑

l=0

∥∥α′
l

∥∥2 = p
(
M2 − 1

)

3

L−1∑
l=0

‖αl‖2.

Hence, the proposition is proved.
Example 3: To facilitate the comprehension of

Proposition 4 and its proof, we provide a simple example.
Consider an M-ary lattice quantizer with M = 4 and L = 2,
which is constructed by

B =
[

0 0 0 · · · 3 3 3
0 1 2 · · · 1 2 3

]
,

and

α0 =
[

2
1

]
, α1 =

[
0√
3

]
,

and y0 = 0. Its codebook is identical to the binary lattice
quantizer with M′ = 2 and L′ = 4, which is constructed by

B′ =

⎡
⎢⎢⎣

0 0 0 · · · 1 1 1
0 0 0 · · · 1 1 1
0 0 1 · · · 0 1 1
0 1 0 · · · 1 0 1

⎤
⎥⎥⎦,
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and

α′
0 =

[
4
2

]
, α′

1 =
[

2
1

]
, α′

2 =
[

0
2
√

3

]
, α′

3 =
[

0√
3

]
.

According to (21), the channel MSD can be computed by

DC = p
3∑
l=0

∥∥α′
l

∥∥2 = p
(
M2 − 1

)

3

1∑
l=0

‖αl‖2.

Conventionally, binary IA is applied to M-ary modula-
tions by mapping index bits to modulated symbols. In this
approach, a BSC is modeled by considering the BER as
the crossover probability. To minimize BER, binary Gray
code is used in the modulation process. This results in the
use of the NBC-Gray scheme. For ease of analysis, it is
assumed that the resulting binary channel is ideally memo-
ryless. Under this assumption, the crossover probability of
the BSC resulting from M-PAM transmission is calculated
as p = 2(M−1)

M log2 M
ε [44]. The channel MSD for the NBC-Gray

scheme is

DC = 2
(
M2 − 1

)
(M − 1)ε

3M log2 M

L−1∑
l=0

‖αl‖2. (37)

Let us define τ as the ratio of channel MSD of the
NBC-Gray scheme to the NMC-identical scheme. According
to (32) and (37), the ratio τ is

τ = M2 − 1

3 log2 M
. (38)

This ratio is greater than 1 when M > 2 and continues to
increase with M. This result demonstrates the superiority
of the proposed M-ary IA over the binary IA for M-PAM
transmission.
Remark 3: The M-QAM constellation can be decomposed

into two independent
√
M-PAM constellations. The M-QAM

mapping problem can be broken down into the labeling
of an M-ary index symbol by two

√
M-ary index sym-

bols, followed by the modulation of these symbols using
two independent

√
M-PAM. Hence, the M-QAM mapping

scheme is established by adopting the identical mapping for
both of the

√
M-PAMs. Therefore, the discussions regarding

M-QAM can be simplified to
√
M-PAM and will not be

further discussed in this paper.

B. INDEX ASSIGNMENT SCHEME FOR PSK
For an additive noise channel with a PDF of noise that is
symmetrically decreasing (e.g., an AWGN channel), the tran-
sition matrix Q̂M for M-PSK symbols satisfies the following
conditions⎧⎪⎨

⎪⎩

∑M−1
i=0 Q̂M(i, j) = ∑M−1

j=0 Q̂M(i, j) = 1,

Q̂M(i, j) > Q̂M
(
i′, j′

)
, d(i, j) < d

(
i′, j′

)
,

Q̂M(i, j) = Q̂M
(
i′, j′

)
, d(i, j) = d

(
i′, j′

)
,

(39)

where 0 ≤ i, j, i′, j′ ≤ M − 1, and

d(i, j) = min{|i− j|,M − |i− j|}

is the Lee distance [45]. We have Proposition 5 for the
eigendecomposition of the M-ary DMC (i.e., QM).
Proposition 5: Let QM be determined by the channel

matrix Q̂M in (39) and the mapping ξ according to (25).
The eigenpair (λk, vk) of QM is

λk =
M−1∑
j=0

QM(i, j) cos

(
2πk

M

(
φj − φi

))
, k = 0, . . . ,M − 1,

(40)

which is independent of the value 0 ≤ i ≤ M − 1, and
vk = [vk,0, vk,1, vk,2, . . . , vk,M−1]� in which

vk,l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
M

, k = 0,√
2
M cos

(
2πk
M φl

)
, 1 ≤ k < M

2 ,

1√
M

(−1)φl , k = M
2 ,√

2
M sin

(
2πk
M φl

)
, M

2 < k ≤ M − 1,

(41)

where 0 ≤ l ≤ M−1, and φ = [φ0, φ1, . . . , φM−1]� denotes
the inverse mapping of ξ with φξl = l.
Proof: Proposition 5 can be proven using a similar pro-

cedure as Proposition 3, and the proof is omitted here for
brevity.
In order to calculate the lower bound on the channel MSD,

it is necessary to find the second-largest eigenvalue of QM .
To achieve this, we present Corollary 3.
Corollary 3: In Proposition 5, λ1 is the second-largest

eigenvalue of QM .
Proof: The proof is presented in Appendix B.
The lower bound on the channel MSD of M-PSK trans-

mission is obtained as stated in the following corollary by
substituting λ1 into the lower bound in (19).
Corollary 4: The lower bound on channel MSD for

M-PSK transmission is

DC ≥ M2 − 1

6

⎛
⎝1 −

M−1∑
j=0

QM(i, j) cos

(
2π

M

(
φj − φi

))
⎞
⎠

L−1∑
l=0

‖αl‖2

= M2 − 1

6

⎛
⎝1 −

M−1∑
j=0

Q̂M(i, j) cos

(
2π

M
(j− i)

)⎞
⎠

L−1∑
l=0

‖αl‖2.

(42)

The optimization problem of maximizing η, as described
in (24), is equivalent to finding the minimum value of EM .
This problem is similar to the optimal IA problem discussed
in [33], [34] and can be solved using the zigzag mapping,
which is given by

ξ zig = [0, 1, 3, . . . ,M − 1, . . . , 4, 2]. (43)

We propose the NMC-zigzag scheme by combining the NMC
and the zigzag mapping to serve as the M-ary IA scheme for
M-PSK transmission. The NMC maps quantized codewords
of the ML-point quantizer to M-ary index vectors. The zigzag
mapping then maps the M-ary index symbols to M-PSK
symbols.
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Recall the running example (c.f. Example 1) presented in
Section III. A two-step design approach was employed for
the design of M-ary IA. The first step has been solved using
the mapping defined in (26). In the second step, the zigzag
mapping π = [0, 1, 3, 5, 7, 6, 4, 2], i.e.,

CM → IM
c0 → 0
c1 → 1
c2 → 3
...

...
...

c5 → 6
c6 → 4
c7 → 2

, (44)

where CM and IM denote the set of M-ary channel symbols
and M-ary index symbols, respectively.
To facilitate performance analysis, we make the high SNR

assumption, which means that incorrectly detected channel
symbols are limited to the nearest neighbors of the transmit-
ted symbols. As a result, we simplify Q̂M to the following
form

Q̂M =

⎡
⎢⎢⎢⎢⎢⎣

1 − 2ε ε 0 · · · ε

ε 1 − 2ε ε · · · 0
...

. . .
. . .

. . .
...

0 · · · ε 1 − 2ε ε

ε · · · 0 ε 1 − 2ε

⎤
⎥⎥⎥⎥⎥⎦

. (45)

Under the assumption, the channel MSD for the NMC-zigzag
scheme can be obtained as

DC = 4(2M − 3)ε

M

L−1∑
l=0

‖αl‖2. (46)

Hence, the ratio of the channel MSD to the lower bound is

η = M
(
M2 − 1

)

12(2M − 3)

(
1 − cos

(
2π

M

))
. (47)

The NMC-zigzag scheme is demonstrated to be optimal
for M = 2, 3, 4, as indicated by the ratio of channel MSD to
the lower bound being equal to 1. Note that when L = 1, the
scheme reduces to the IA mapping discussed in [33], [34],
and it has been proven to be optimal for any value of M
when L = 1. Though the scheme is suboptimal for M > 4
and L > 2, it still retains its near-optimality for practical
values of M, with the ratio being close to 1, specifically
0.95 and 0.89 for M = 8 and 16, respectively. The ratio
η is lower bounded by π2

12 , further ensuring that the NMC-
zigzag scheme remains near-optimal, although η decreases
with increasing M.

We also compare the NMC-zigzag scheme to the con-
ventional binary IA scheme. The binary IA scheme uses
the binary Gray code to modulate index bits to M-PSK
symbols, resulting in an equivalent BSC with crossover prob-
ability p = 2

log2 M
ε [44]. The channel MSD of the binary IA

scheme, namely the NBC-Gray scheme, can be computed
using Proposition 4, and given by

DC = 2
(
M2 − 1

)
ε

3 log2 M

L−1∑
l=0

‖αl‖2. (48)

One can compare the channel MSD of the NBC-Gray and
NMC-zigzag schemes for M-PSK transmission by finding
the ratio between the two. This ratio is

τ = M
(
M2 − 1

)

6 log2 M(2M − 3)
. (49)

For M > 4, the ratio is greater than 1 and increases with
M, indicating that the M-ary IA outperforms the binary IA
in channel MSD for M-PSK transmission.

C. OPTIMAL INDEX ASSIGNMENT FOR 3-PSK AND QPSK
In previous discussions, we have shown that our proposed
IA schemes are optimal for specific values of M under high
SNR conditions. However, for M-PSK with M = 2, 3, 4,
the NMC-zigzag scheme is optimal even without such an
assumption. The NMC-zigzag scheme is equivalent to the
NBC when M = 2, and its optimality has been proven
in [20]. For M = 3, 4, we provide the following theorem to
demonstrate the optimality of the NMC-zigzag scheme.
Theorem 1: For an ML-point equiprobable M-ary lattice

quantizer as defined in Definition 1, the NMC-zigzag scheme
is the optimal IA scheme for M-PSK when M = 3, 4.
Proof: A sufficient condition for the optimality is that the

channel MSD achieves the lower bound, i.e., η = 1. We
will prove that the DMC QM corresponding to NMC-zigzag
scheme achieves η = 1 when M = 3, 4. Since

M−1∑
i=0

QM(i, j) =
M−1∑
j=0

QM(i, j) = 1

holds for symmetric channels, EM can be rewritten as

EM = 2

M

M−1∑
i=0

(
i− M − 1

2

)2

− 2

M

M−1∑
i=0

M−1∑
j=0

QM(i, j)

(
i− M − 1

2

)(
j− M − 1

2

)
.

(50)

Define r = [r0, r1, . . . , rM−1]�, where ri = (i − M−1
2 ), and

denote the i-th eigenpair of QM by (λi, vi). Then (50) can
be written as

EM = 2

M
‖r‖2 − 2

M
r�QMr

= 2

M
‖r‖2 − 2

M

M−1∑
i=0

λi‖v�
i r‖2

(b)= 2

M
‖r‖2 − 2

M

M−1∑
i=1

λi‖v�
i r‖2

(c)≥ 2
(
1 − λmax(2)

)

M
‖r‖2,
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where (b) is because v0 = (1/
√
M)1 and v�

0 r = 0. Let E1
denote the eigenspace associated with the eigenvalue λmax(2)

(which comprises the zero vector and all the eigenvectors
related to λmax(2)). The equality in (c) holds when we have

∑
vi∈E1

∥∥∥v�
i r

∥∥∥
2 = ‖r‖2. (51)

A condition sufficient for (51) to hold is that r can be
expressed as a linear combination of eigenvectors in the
eigenspace E1. Proposition 5 states that the eigenvalue
λmax(2) has a multiplicity of 2, and the eigenspace E1
consists of two eigenvectors, v1 and vM−1. By defining
V = [v1, vM−1], we can find coefficient vectors a as

a =

⎧
⎪⎨
⎪⎩

[
−

√
6

2 , 1√
2

]�
, M = 3,

[
− 3√

2
, 1√

2

]�
, M = 4,

such that r = Va, implying that r is a linear combination
of the two eigenvectors when QM corresponds to the NMC-
zigzag scheme. Therefore, it can be shown that the equality
in (c) holds when NMC-zigzag scheme is applied, i.e.,

EM = 2
(
1 − λmax(2)

)

M
‖r‖2 =

(
M2 − 1

)(
1 − λmax(2)

)

6
.

By substituting the expression obtained above into (24), we
get η = 1, which means that the channel MSD achieves the
lower bound. Therefore, the optimality is proven.

V. NUMERICAL RESULTS
In this section, we present simulation results to demonstrate
the effectiveness of our proposed schemes. We first show the
performance of proposed IA schemes and compare them with
the derived performance bounds and the conventional binary
IA scheme. Subsequently, we introduce a WSN model and
compare the energy consumption of our proposed IA scheme
and the binary counterpart in the WSN application.

A. PERFORMANCE EVALUATION AND COMPARISON
WITH THE PERFORMANCE BOUNDS
Though our schemes are designed to minimize the channel
MSD for equiprobable M-ary lattice vector and scalar quan-
tizers, it is worth noting that equiprobable quantizers may
not always be optimal in terms of source distortion [41].
However, when the source is uniformly distributed, the
optimal lattice quantizer in terms of source distortion is also
equiprobable. Therefore, our simulations focus on this widely
used and optimal scenario, namely, lattice vector quantizers
in conjunction with uniform sources, to evaluate the proposed
schemes.
Simulation results for the three modulation schemes are

presented to evaluate the performance of the proposed M-ary
IA schemes and to compare them with SDR bounds obtained
by substituting the lower bounds on channel MSD into (10).
In each simulation, real-valued source data are generated
from a uniform distribution and grouped into k-dimensional

vectors, which are then quantized using a k-dimensional
ML-point lattice vector quantizer optimized to minimize
source distortion. The resulting quantized codewords are
labeled with M-ary index vectors, which are mapped to chan-
nel symbols and transmitted over an AWGN channel. At the
receiver, the detected channel symbols are demodulated back
into index symbols, and the source vectors are reconstructed.
The conventional binary IA scheme, namely the NBC-Gray
scheme, is also evaluated, and its simulation performance
is shown to demonstrate the benefits of the proposed
schemes. For the simulations of the binary IA, we inter-
leaved the index bits before modulation and de-interleaved
them after demodulation to obtain an ideal memoryless
BSC.
The performance of k-dimensional lattice quantizers for

PAM and QAM transmissions was evaluated through simula-
tions. To ensure a fair comparison between PAM and QAM,
we used the same lattice quantizers for both modulation
schemes. Note that although we refer to the quantizers of
interest as “lattice quantizers”, our performance analyses are
not restricted to the constraint that k ≥ L. In order to provide
a more comprehensive investigation and theoretical under-
standing, we conduct simulations for cases where k < L,
k = L, and k > L. For 4-PAM and 16-QAM, simulations
were conducted for 256-point lattice quantizers constructed
with M = 4, L = 4, and k = 3, 4, 5. For 8-PAM and
64-QAM, simulations were conducted for 64-point lattice
quantizers constructed with M = 8, L = 2, and k = 1, 2, 3.
The simulation results are depicted in Fig. 4 and Fig. 5. In
addition, simulations were also performed for PSK trans-
missions, including 512-point lattice quantizers constructed
with M = 8, L = 3, and k = 2, 3, 4 for 8-PSK, and 256-
point lattice quantizers constructed with M = 16, L = 2, and
k = 1, 2, 3 for 16-PSK. The results for PSK transmissions
are depicted in Fig. 6.

The simulation results demonstrate that the proposed
M-ary IA schemes achieve near-optimal performance and
outperform the binary IA scheme in all simulation settings.
Recall that the SDR is dependent on the overall MSD. At
asymptotically high SNR levels, the source MSD becomes
the dominant factor in the overall MSD, and the chan-
nel MSD is negligible. Although the proposed IA scheme
exhibits superior performance in reducing channel MSD
compared to the conventional one, the difference in over-
all MSD is negligible. Consequently, the SDR performance
of both schemes converges when operating at asymptoti-
cally high SNRs. However, in scenarios where the SNR is
not asymptotically high, the channel MSD has a significant
contribution to the overall MSD. As the proposed IA schemes
are better than the conventional binary scheme for reducing
channel MSD, they achieve higher SDR performance in such
regions. The SDR performance for M-PAM and M2-QAM
transmissions are identical, with the only difference being
that the channel SNR required for QAM is approximately
3 dB higher than that for PAM to achieve the same SDR
performance. This is because one M2-QAM symbol can be
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FIGURE 4. SDR performance comparison of the NMC-identical scheme, the
NBC-Gray scheme, and the SDR bound derived from (30) for PAM and QAM
transmissions for k -dimensional 256-point lattice vector quantizers constructed with
M = 4, L = 4, and k = 3, 4, 5.

viewed as two M-PAM symbols, necessitating double the
transmitted symbol power to achieve equivalent performance.
Furthermore, the proposed IA schemes provide significant
SNR gains compared to the conventional NBC-Gray scheme,
with gains of up to 5 dB and 12 dB for 4-PAM (16-QAM)
and 8-PAM (64-QAM), respectively. For PSK transmission,
the gains in SNR are up to 3 dB and 8 dB for 8-PSK and
16-PSK, respectively. It is noteworthy that these gains
increase with the modulation orders and are particularly
significant for high orders.
It is worth noting that when M and L are fixed, the

SDR performance of a lattice vector quantizer decreases
as the dimension k increases in not-too-small SNR regions.
However, when the SNR is low enough, it is observed that
the SDR performance decreases with k when 2 ≤ k < L

FIGURE 5. SDR performance comparison of the NMC-identical scheme, the
NBC-Gray scheme, and the SDR bound derived from (30) for PAM and QAM
transmissions for k -dimensional 64-point lattice vector quantizers constructed with
M = 8, L = 2, and k = 1, 2, 3.

and then increases with k when k ≥ L, whereas the SDR
performances for k = 1 and k = L are identical.

In high SNR regions, source MSD dominates overall
MSD. When k ≤ L, the generating set {αj}L−1

j=0 can span
the full space of data vectors, but since the size of the quan-
tization codebook is fixed, increasing the dimension of the
lattice vector quantizer enlarges quantization cell sizes per
dimension, resulting in increased source distortion. When
k > L, the generating set cannot span the full space of data
vectors, and some data vectors will be far from the quantized
codewords, resulting in significant source MSD. Therefore,
the source MSD per dimension increases with k.
In low enough SNR regions, the effect of channel MSD

is more significant than that of the source MSD. When
k = 1, the lattice quantizer is an ML-level uniform scalar
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FIGURE 6. SDR performance comparison of the NMC-zigzag scheme, the NBC-Gray
scheme, and the SDR bound derived from (42) for PSK transmissions for
k -dimensional lattice vector quantizers.

quantizer. On the other hand, the lattice quantizer with
k = L can be viewed as the Cartesian product of k uni-
form scalar quantizers, each having M quantization levels,
and its channel MSD per dimension is equal to that of an
M-level uniform scalar quantizer. As reported in [1], [20],
uniform scalar quantizers with varying quantization levels
have asymptotically equivalent channel MSDs, indicating
that SDR performance for k = 1 and k = L at low enough
SNR region is the same. When 2 ≤ k ≤ L, increasing k
increases quantization cell sizes per dimension, causing the
squared Euclidean distances per dimension between code-
words also to increase, resulting in an increase in channel
MSD per dimension. However, when k > L, the subspace
spanned by the generating set does not increase as much
as the dimension k, causing the squared Euclidean distances

per dimension between quantized codewords to decrease,
leading to a decrease in channel MSD per dimension.
The proposed IA schemes do not require complex encod-

ing and decoding processes like those used in systems with
channel codes. This makes the proposed schemes suitable for
low-power, low-latency applications such as WSNs. Hence,
in Section V-B, we will present experimental results for a
simple WSN to showcase the potential applications of the
proposed IA schemes.

B. APPLICATION IN ENERGY-EFFICIENT WIRELESS
SENSOR NETWORKS
1) MODEL OF ENERGY-EFFICIENT WIRELESS SENSOR
NETWORKS

To evaluate the energy consumption in a WSN, we adopt a
model described in prior studies such as [46], [47]. For
clarity, we will provide a brief overview of the model
here, but interested readers are encouraged to consult these
studies for more information. In general, a sensor node’s
energy consumption can be divided into three main cat-
egories: communication energy, computation energy, and
sensing energy [8]. In most cases, computation and sensing
energy are considered insignificant compared to communica-
tion energy [8], so we will only focus on the communication
energy component. A node’s transceiver is only working (i.e.,
in active mode) when sending or receiving data and is in
sleep mode at all other times. The energy consumption per
source symbol when transmitting Ns source symbols can be
calculated by

E = PonTon + PspTsp + PtrTtr
Ns

, (52)

where Pon, Psp, and Ptr are the power consumption when
the transceiver is in the active mode, the sleep mode, and the
transient mode (switching between active and sleep modes),
respectively, and Ton, Tsp, and Ttr are the time durations
of the three modes respectively. The power consumption in
the sleep mode is much lower than that in the active mode
and thus can be disregarded. The power and time spent in
the transient mode are constants corresponding to the given
hardwares [48]. Hence, we will only consider the energy con-
sumption in the active mode to compare the two IA schemes.
This consumption is mainly composed of two components:
the power Pt required for transmitting the signal and the
power Pct required by the radio circuit components [49]. The
energy consumption per symbol can then be expressed as

E = (Pt + Pct)Ton
Ns

. (53)

The power consumption of radio circuit components, Pct,
is composed of various circuit components, including the
power amplifier [46], [49]. The power consumption of the
amplifier, Pamp, is proportional to the transmitted signal
power Pt with Pamp = αPt, where the constant α is depen-
dent on the modulation scheme and hardware. The remaining
circuit components have power consumption independent
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TABLE 1. Simulation parameters for WSN energy consumption evaluation.

of the signal power and can be combined and considered
together as

Pc = (
Pmix + Psyn + Pfilt + PDAC

)

+ (
Pmix + Psyn + PLNA + Pfilr + PIFA + PADC

)
, (54)

where Pmix, Psyn, Pfilt, PDAC, PLNA, PIFA, and PADC are the
power consumptions in the various circuit components [49].
The expression in the first bracket of (54) represents the
power consumption of the transmitter’s circuit components,
whereas the expression in the second bracket represents the
power consumption of the receiver’s circuit components. The
total energy consumption of the node can be expressed as

E = ((1 + α)Pt + Pc)Ton
Ns

. (55)

The transmitted signal power Pt can be expressed with
the received signal power Pr at the receiver [46], given by

Pt = PrG1d
κMl, (56)

where d is the transmission distance, G1 represents the gain
factor at the distance of d = 1, κ is the path loss exponent,
and Ml denotes the link margin that accounts for any imper-
fections in the hardware process variations and noise. The
received signal power in an AWGN channel can be expressed
in terms of the received SNR γ per channel symbol, given by

Pr = γBN0Nf , (57)

where B is the bandwidth, N0/2 is the noise spectral density
for an AWGN channel, and Nf is the receiver noise figure.

The duration of the active mode, Ton, is determined by the
modulation scheme, bandwidth, and the length of the source
sequence. For a sequence of Ns data samples quantized by an
ML-point quantizer and transmitted using M-ary modulation,
the active duration is given by

Ton = NsL

B
. (58)

Using the equations (54) to (58), one can calculate the energy
consumption of a WSN sensor node with specific circuit
component and channel parameters.

2) EVALUATION OF ENERGY SAVING

To demonstrate the energy savings achieved by the proposed
M-ary IA scheme compared to the conventional binary IA
scheme in the WSN application, we conducted simulations to
calculate the energy consumption for both IA schemes using
QAM modulation. The NMC-identical scheme is adopted

for the M-ary IA design, whereas the binary counterpart
uses the NBC-Gray scheme. First, we obtained the corre-
sponding received SNRs for the desired SDR performances
through simulations. Then, we determined the energy con-
sumption for the desired SDR performances based on the
WSN model described in the previous subsection. In the
simulation, we considered a system with a uniform source,
a low-complexity analog-to-digital converter in the form of a
uniform scalar quantizer, and the QAM modulation. Table 1
lists the parameters of the WSN used in the simulation.
The percentage energy saving of the NMC-identical

scheme over the NBC-Gray scheme is used to compare the
power consumption of the two approaches and is defined as

Energy Saving (%) = Eb − Em
Eb

× 100%, (59)

where Em and Eb represent the energy consumption of the
NMC-identical and the NBC-Gray scheme, respectively.
The results for energy savings are presented in Fig. 7,

where it is shown that the proposed NMC-identical scheme
is significantly more energy-efficient for M-ary transmis-
sion compared to the conventional NBC-Gray scheme. It
is also noteworthy that the energy savings are more sig-
nificant for longer transmission distances, as the signaling
power becomes the dominant factor. In contrast, at short
distances, circuit consumption dominates the overall energy
consumption, resulting in similar energy consumption for
both schemes.

VI. CONCLUSION
In this work, we have investigated the M-ary IA problem
for equiprobable lattice quantizers and M-ary transmissions
to improve energy efficiency in wireless communication.
We have derived performance bounds on channel MSD and
proposed explicit M-ary IA constructions for three practical
M-ary modulation schemes, namely PAM, QAM, and PSK.
We have compared the proposed IAs with lower bounds
by introducing the ratio η and demonstrated their near-
optimality by showing that η is close to 1 for practical values
of M and is lower bounded by π2

12 . Moreover, we have proven
the optimality of the NMC-zigzag scheme for M-PSK trans-
missions when M = 3, 4. We have conducted simulations to
evaluate the performance of the proposed IAs under varying
settings of quantizers. The results show that the proposed
IAs can approach the upper bound on SDR performance with
negligible gaps. The simulations also show that the proposed
IAs can achieve significant SDR gains compared to the
conventional binary IA, and these gains increase with M. In
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FIGURE 7. Energy saving (%) of the NMC-identical scheme over the conventional
binary IA scheme for the WSN application, with an equiprobable uniform scalar
quantizer and 16-QAM modulation.

addition, we have demonstrated that the proposed M-ary IA
can lead to significant energy savings in WSN applications,
and such savings increase with the transmission distance.
These results indicate that the proposed M-ary IA schemes
can effectively enhance the energy efficiency of wireless
communication systems. Further research on nonbinary IA
for non-equiprobable or unstructured quantizers, as well as
error correction coded systems, can extend our findings
to more general energy-efficient wireless communication
scenarios.

APPENDIX A
PROOF OF PROPOSITION 2
As per the description of IA given in Proposition 2, yπi can
be computed by

yπi = yζi = y0 +
L−1∑
l=0

αlB(l, ζi).

Note that bζi = si. According to Definition 1, yπi can be
computed by

yπi = y0 +
L−1∑
l=0

si,lαl,

and the channel MSD can be rewritten as

DC = 1

ML

ML−1∑
i=0

ML−1∑
j=0

P
(
sj|si

)∥∥yπi − yπj

∥∥2

= 1

ML

ML−1∑
i=0

ML−1∑
j=0

P
(
sj|si

)
∥∥∥∥∥y0 +

L−1∑
l=0

si,lαl − y0 −
L−1∑
l=0

sj,lαl

∥∥∥∥∥
2

= 1

ML

ML−1∑
i=0

ML−1∑
j=0

P
(
sj|si

)
∥∥∥∥∥
L−1∑
l=0

(
si,l − sj,l

)
αl

∥∥∥∥∥
2

. (60)

Recall that the channel is memoryless and the index sym-
bols in the index vector are independent. Therefore, we can
use the property P(sj|si) = ∏L−1

l=0 P(sj,l|si,l) and substitute it
into (60), which yields

DC = 1

ML

ML−1∑
i=0

ML−1∑
j=0

L−1∏
l=0

P
(
sj,l|si,l

)
∥∥∥∥∥
L−1∑
l=0

(
si,l − sj,l

)
αl

∥∥∥∥∥
2

.

For the sake of notational convenience, let us denote si,0 and
sj,0 by si0 and sj0 , respectively. With this notation, the above
expression can be expanded as

DC = 1

ML

M−1∑
i0=0

M−1∑
j0=0

ML−1−1∑
i=0

ML−1−1∑
j=0

P
(
sj0 |si0

)

·
L−1∏
l=1

P
(
sj,l|si,l

)
∥∥∥∥∥
(
si0 − sj0

)
α0 +

L−1∑
l=1

(
si,l − sj,l

)
αl

∥∥∥∥∥
2

,

which can further be expanded as

DC = 1

ML

M−1∑
i0=0

M−1∑
j0=0

P
(
sj0 |si0

)(
si0 − sj0

)2‖α0‖2

·
ML−1−1∑
i=0

ML−1−1∑
j=0

L−1∏
l=1

P
(
sj,l|si,l

)

+ 2

ML

M−1∑
i0=0

M−1∑
j0=0

P
(
sj0 |si0

)(
si0 − sj0

)
α�

0

·
ML−1−1∑
i=0

ML−1−1∑
j=0

L−1∏
l=1

P
(
sj,l|si,l

)(L−1∑
l=1

(
si,l − sj,l

)
αl

)

+ 1

ML

ML−1−1∑
i=0

ML−1−1∑
j=0

L−1∏
l=1

P
(
sj,l|si,l

)
∥∥∥∥∥
L−1∑
l=1

(
si,l − sj,l

)
αl

∥∥∥∥∥
2

·
M−1∑
i0=0

M−1∑
j0=0

P
(
sj0 |si0

)
. (61)
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To investigate each of the three terms, let us analyze
them individually. For the first term, we can define s′i =
[si,1, si,2, . . . , si,L−1]� and rewrite the tail part as

ML−1−1∑
i=0

ML−1−1∑
j=0

L−1∏
l=1

P
(
sj,l|si,l

)

=
∑

s′i∈{0,1,...,M−1}L−1

∑

s′j∈{0,1,...,M−1}L−1

L−1∏
l=1

P
(
sj,l|si,l

)

=
∑

s′i∈{0,1,...,M−1}L−1

∑

s′j∈{0,1,...,M−1}L−1

P
(
s′j|s′i

)
.

Note that P′, with P′(i, j) = P(s′j|s′i), is a stochastic matrix
with row sums equal to 1. Hence, the above expression
equals to ML−1. We can then rewrite the first term as

1

ML

M−1∑
i0=0

M−1∑
j0=0

P
(
sj0 |si0

)(
si0 − sj0

)2‖α0‖2 ×ML−1.

By substituting si0 = i, sj0 = j, and QM(i, j) = P(sj0 |si0) into
the above expression, we have

1

M

M−1∑
i0=0

M−1∑
j0=0

QM(i, j)(i− j)2‖α0‖2.

For the second term, since QM is symmetric, we have
P(sj0 |si0) = P(si0 |sj0). Then the sum involving si0 and sj0
can be rewritten as

M−1∑
i0=0

M−1∑
j0=0

P
(
sj0 |si0

)(
si0 − sj0

)
α�

0

= 1

2

M−1∑
i0=0

M−1∑
j0=0

P
(
sj0 |si0

)(
si0 − sj0

)
α�

0

+ 1

2

M−1∑
i0=0

M−1∑
j0=0

P
(
si0 |sj0

)(
si0 − sj0

)
α�

0

= 1

2

M−1∑
i0=0

M−1∑
j0=0

P
(
sj0 |si0

)(
si0 − sj0

)
α�

0

+ 1

2

M−1∑
i0=0

M−1∑
j0=0

P
(
sj0 |si0

)(
sj0 − si0

)
α�

0

= 1

2

M−1∑
i0=0

M−1∑
j0=0

P
(
sj0 |si0

)((
si0 − sj0

) + (
sj0 − si0

))
α�

0

= 0�.

Therefore, the second term in (61) is zero since it involves
an inner product with a zero vector.
For the third term, similar to the first term, we have

M−1∑
i0=0

M−1∑
j0=0

P
(
sj0 |si0

) = M,

and the third term can be expressed as

1

ML−1

ML−1−1∑
i=0

ML−1−1∑
j=0

L−1∏
l=1

P
(
sj,l|si,l

)∥∥∥
L−1∑
l=1

(
si,l − sj,l

)
αl

∥∥∥
2
.

Therefore, we can simplify (61) as

DC = 1

M

M−1∑
i=0

M−1∑
j=0

QM(i, j)(i− j)2‖α0‖2

+ 1

ML−1

ML−1−1∑
i=0

ML−1−1∑
j=0

L−1∏
l=1

P
(
sj,l|si,l

)

×
∥∥∥∥∥
L−1∑
l=1

(
si,l − sj,l

)
αl

∥∥∥∥∥
2

. (62)

The second term in the above equation can be interpreted as
the channel MSD for L−1, and it can be decomposed using
the same method as in (61). Hence, we can express (62) as

DC = 1

M

M−1∑
i=0

M−1∑
j=0

QM(i, j)(i− j)2
(
‖α0‖2 + ‖α1‖2

)

+ 1

ML−2

ML−2−1∑
i=0

ML−2−1∑
j=0

L−1∏
l=2

P
(
sj,l|si,l

)
∥∥∥∥∥
L−1∑
l=2

(
si,l − sj,l

)
αl

∥∥∥∥∥
2

.

By repeating the same operation, we can obtain a recursive
summation, which is shown as

DC = 1

M

M−1∑
i=0

M−1∑
j=0

QM(i, j)(i− j)2
L−1∑
l=0

‖αl‖2.

By applying the definition of EM in (22), we can demonstrate
that the above expression is equivalent to (21). Hence, we
have established the proof for Proposition 2.

APPENDIX B
PROOF OF COROLLARY 3
Since QM is a doubly stochastic matrix, its largest eigenvalue
is λ0 = 1, and all other eigenvalues are smaller than 1. Let pj
denote Q̂M(0, j). Based on the property of M-PSK as given
in (39), the eigenvalues can be written as

λk =
M−1∑
j=0

Q̂M(0, j) cos

(
2πk

M
(j− 0)

)
=

M−1∑
j=0

pj cos

(
2πk

M
j

)
.

In this proof, we only consider even values of M. The
cases of odd M can be proven similarly. We define a vector
w(k) = [w(k)

0 ,w(k)
1 , . . . ,w(k)

M/2]� with

w(k)
i =

⎧
⎨
⎩

1
2 cos

(
2ikπ
M

)
, i = 0, M2 ,

cos
(

2ikπ
M

)
, i = 1, 2, . . . , M2 − 1.

Since pj = pM−j holds for the channel matrix of M-PSK,
we can rewrite λk as

λk = 2

M
2∑
j=0

pjw
(k)
j ,

VOLUME 4, 2023 1367



YAO AND MOW: NEAR-OPTIMAL NONBINARY IA FOR EQUIPROBABLE LATTICE QUANTIZERS

which can further be expanded as

λk = 2

⎛
⎜⎝pM

2

M
2∑
j=0

w(k)
j +

(
pM

2 −1 − pM
2

) M
2 −1∑
j=0

w(k)
j

+ · · · + (p0 − p1)w
(k)
0

⎞
⎟⎠. (63)

It is worth noting that, for i = 1, 2, . . . ,M/2, the inequality
pi−1 − pi ≥ 0 holds due to the property given in (39).
According to [50], a sufficient condition for λ1 ≥ λk is

l∑
j=0

w(k)
j ≤

l∑
j=0

w(1)
j , l = 0, . . . ,

M

2
, k = 2, . . . ,M − 2.

(64)

Note that k = M − 1 is not involved since λ1 = λM−1. We
will prove the sufficient condition in (64). For l = M

2 , the
left-hand side term in (64) is a constant, given by

M
2∑
j=0

w(k)
j =

M−1∑
j=0

1

2
cos

(
2πk

M
j

)
= 0. (65)

Note that the values are independent of k. Hence, the equality
in (64) holds for l = M

2 .
For other values of l, the left-hand-side terms in (64) can

be rewritten as
l∑

j=0

w(k)
j = 1

2

l∑
j=−l

exp

(
i2πk

M
j

)

= 1

2

1 −
(

exp
(
i2πk
M

))2l+1

(
exp

(
i2πk
M

))l(
1 −

(
exp

(
i2πk
M

))) .

By applying Euler’s formula, double-angle identities, and
sum-to-product identities (c.f. Appendix C (6)), we can
simplify the above expression as

l∑
j=0

w(k)
j = 1

2

sin
(
(2l+ 1)πk

M

)

sin
(

πk
M

) . (66)

Let us define a2l+1(k) � sin((2l+1) πk
M )

sin( πk
M )

. To prove (64),

we need to show that a2l+1(1) ≥ a2l+1(k) for all l.
Since a2l+1(1) is always positive, a sufficient condition
for a2l+1(1) ≥ a2l+1(k) is that a2

2l+1(1) ≥ a2
2l+1(k). By

introducing the ratio between a2
2l+1(k) and a

2
2l+1(1), we have

(
a2l+1(k)

a2l+1(1)

)2

=

(
sin

(
(2l+1) πk

M

)

sin
(

πk
M

)
)2

(
sin((2l+1) π

M )
sin( π

M )

)2
=

1
k

(
sin

(
(2l+1) πk

M

)

sin((2l+1) π
M )

)2

1
k

(
sin

(
πk
M

)

sin( π
M )

)2
,

(67)

for l = 1, 2, . . . , M2 − 1, k = 2, 3, . . . , M2 . We aim to prove
that (67) is always smaller than 1, which is a sufficient
condition for a2l+1(1) ≥ a2l+1(k). Note that we only consider
half of the range of k since we have a2l+1(k) = a2l+1(M−k).
To do this, we introduce the definition of Fejèr kernel [51].
Definition 2: The Fejèr kernel is a closed-form expression

given by

Fn(x) = 1

n

(
sin

( nx
2

)

sin
( x

2

)
)2

, (68)

where n ∈ Z
+ and x ∈ R.

Relax l to a continuous variable l ∈ [0, M2 −1], and define
x = 2π(2l+1)

M . The ratio in (67) can be expressed as a ratio
of two Féjer kernels, i.e.,
(
a2l+1(k)

a2l+1(1)

)2

= Fk(x)

Fk
(

2π
M

) ,
2π

M
≤ x ≤ π, k = 2, 3, . . . ,

M

2
.

(69)

Note that here we also only consider half of the range of x
since Fk(x) = Fk(2π − x).

To prove that (69) is smaller than 1, we divide the range
of x into two parts, based on the first root of the Féjer kernel.
To obtain roots of Fk(x), we set Fk(xn) = 0 and then obtain

xn = 2nπ

k
, n = 1, 2, . . . ,

⌊
k

2

⌋
. (70)

Note that x1 = 2π
k . Since Fk(x) is monotonically decreasing

for x ∈ [0, 2π
k ], we can prove that Fk(x) ≤ Fk(

2π
M ) for

2π
M ≤ x < x1, i.e.,

Fk

(
2π

M

)
> Fk(x),

2π

M
< x ≤ 2π

k
, k = 2, 3, . . . ,

M

2
.

(71)

For x1 ≤ x ≤ π , we derive an upper bound on Fk(x) as

Fk(x) = 1

k

(
sin

( kx
2

)

sin
( x

2

)
)2

≤ 1

k

(
sin

( kx
2

)
x
π

)2

= π2k

4

(
sin

( kx
2

)
kx
2

)2
(d)≤ π2k

4
· 4

9π2
= k

9
, (72)

where (d) follows from the fact that the absolute value of
a sinc function in the domain [π, kπ2 ] is upper bounded by
|sinc( 3π

2 )|. Besides, we derive a lower bound on Fk( 2π
M ) as

Fk

(
2π

M

)
= 1

k

(
sin

(
πk
M

)

sin
(

π
M

)
)2

> k

(
sin

(
πk
M

)
πk
M

)2

(e)≥ k

(
sin

(
π
2

)
π
2

)2

= 4k

π2
, (73)

where (e) follows from the fact that a sinc function is
decreasing in the domain [ 2π

M , π
2 ]. It can be observed
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from (72) and (73) that the lower bound on Fk( 2π
M ) is greater

than the upper bound on Fk(x). Sufficiently, we deduce that

Fk

(
2π

M

)
> Fk(x),

2π

k
≤ x ≤ π, k = 2, 3, . . . ,

M

2
. (74)

By combining (71) and (74), we obtain

Fk

(
2π

M

)
> Fk(x),

2π

M
< x < 2π − 2π

M
, k = 2, . . . ,

M

2
.

(75)

Since x = 2π(2l+1)
M , we obtain that (75) holds for l ∈

[0, M2 − 1]. Since the range of l in (67) is a subset of
l ∈ [0, M2 −1], the inequality (75) serves as a sufficient con-
dition to establish that the ratio stated in (67) is always less
than 1. Therefore, we have demonstrated (64) as a sufficient
condition for Corollary 3.

APPENDIX C
MATHEMATICAL TOOLS AND FORMULAS
In this Appendix, we provide a collection of formulas and
properties from several mathematical fields, including linear
algebra, that serve as fundamental mathematical tools used
in this paper.
(1) Lexicographic order for integer vectors: Suppose two

integer vectors x, y ∈ Z
n and x �= y. The vector x is

smaller than x in lexicographic order, denoted as

x <lex y,

if and only if the first coordinate where x and y differ,
say xi and yi, respectively, satisfies xi < yi.

(2) For column vectors x, y ∈ R
n, Tr(xy�) = y�x.

(3) For column vectors xi ∈ R
n, i = 0, 1, . . . ,L − 1, the

multinomial theorem is
∥∥∥∥∥
L−1∑
i=0

xi

∥∥∥∥∥
2

=
L−1∑
i=0

L−1∑
i=0

x�
i xj.

(4) Sum of squares formula:

12 + 22 + · · · + n2 = n(n+ 1)(2n+ 1)

6
.

(5) Eigenpair of the Kronecker product: Suppose that
(λ,u) and (ω, v) are eigenpairs of matrices A and
B, respectively, then (λω,u ⊗ v) is an eigenpair of
the Kronecker product matrix A ⊗ B.

(6) Some formulas for trigonometric functions:
Euler’s formula:

eiα = cos(α) + i sin(α).

Double-angle identities:{
cos(2α) = 1 − 2 sin2(α),

sin(2α) = 2 sin(α) cos(α).

Sum-to-product identities:⎧⎨
⎩

cos(α) − cos(β) = −2 sin
(

α+β
2

)
sin

(
α−β

2

)
,

sin(α) − sin(β) = 2 cos
(

α+β
2

)
sin

(
α−β

2

)
.
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