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ABSTRACT In this paper, we study the DoF of the time-selective M × N wireless X-network assisted
by an IRS. It is well-known that the DoF of the M×N wireless X-network is MN

M+N−1 . We show that the
maximum DoF of min{M,N} can be achieved when the IRS has enough elements. We consider two kinds
of active and passive IRSs. We also consider two different scenarios, where the channel coefficients for
IRS elements are either independent or correlated. For the M×N wireless X-network assisted by an active
IRS with independent channel coefficients, we derive the inner and outer bounds on the DoF region and
the lower and upper bounds on the sum DoF. We show that the maximum value for the sum DoF, i.e.,
min(M,N), is achievable if the number of elements is more than a threshold for the active IRS, which is
equal to the approximate capacity of min{M,N} log(ρ + 1) + o(log(ρ)) for the IRS-assisted X-network,
where ρ is the transmission power. For the M×N wireless X-network assisted by a passive IRS with the
assumption of independent and correlated channel coefficients for IRS elements, we introduce probabilistic
inner and outer bounds on the DoF region, and the probabilistic lower and upper bounds on the sum DoF
and show that the proposed lower bound for the sum DoF asymptotically approaches min(M,N) with an
order of at least O( 1

Q ) for independent channel coefficients (i.e., the sum DoF is min{M,N}(1 −O( 1
Q ))),

which is equal to the approximate capacity of min{M,N}(1 −O( 1
Q )) log(ρ + 1) + o(log(ρ)) and O( 1√

Q
)

for correlated channel coefficients (i.e., the sum DoF is min{M,N}(1 − O( 1√
Q

)), which is equal to the

approximate capacity of min{M,N}(1 −O( 1√
Q

)) log(ρ + 1) + o(log(ρ))), where Q is the number of IRS
elements. Thus, this decrement in the order of convergence shows the performance loss for correlated
IRS elements. In addition, we extend the lower bound of the sum DoF proposed for the active IRS with
independent channel coefficients to the scenario with correlated channel coefficients, i.e., the sum DoF
is the same as independent IRS elements for min{M,N} ≤ 5 and Q ≤ 20, and for other cases, the sum
DoF converges to min{M,N} with an order of at least O( 1√

Q
).

INDEX TERMS Time-selective M × N wireless X-network, DoF region, sum DoF, active and passive
intelligent reflecting surface, independent and correlated channel coefficients.

I. INTRODUCTION

X-NETWORK is a generalization of an interference
channel, in which each transmitter acts as an inde-

pendent broadcast channel to all receivers, thus, X-network
is a combination of interference and broadcast channels.
Therefore, transmission schemes introduced for X-network

can be useful to achieve better performances in next-
generation multiuser wireless networks. On the other hand,
intelligent reflecting surfaces (IRSs) are novel types of equip-
ment, which play an important role in the next-generation
wireless communication systems [1], [2]. Since the degree
of freedom (DoF), is an analytic metric, which is commonly
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used in the analysis of the performance of multi-user
networks, thus, the analysis of the DoF of the IRS-assisted
X-network is an important problem.

IRS-aided networks have been studied from various
aspects including channel modeling [3], [4], the optimization
of IRS elements [5], the system analysis [3], and DoF anal-
ysis [6], see [2] for a recent survey. We review some related
works to the capacity of IRS-assisted networks. In [5], the
authors studied the fundamental limits for the capacity of the
IRS-aided multiple-input multiple-output (MIMO) commu-
nication by joint optimization of the IRS phase shift matrix
and the MIMO transmit covariance matrix. In [8], the authors
studied the IRS-assisted communication systems, where the
IRS is configured by the transmitter using a finite-rate link.
They characterized fundamental limits of the system and
showed that the capacity is achievable by jointly encod-
ing the information in the transmitted signal and the IRS
operation. In [9], the authors studied the optimization of
the channel capacity of IRS-aided millimeter-wave channels
without a line-of-sight path. In [10], the authors studied
the multi-user downlink communication assisted by an IRS.
They maximized the sum rate with an individual constraint
for the quality-of-service guarantee by optimizing the IRS
phase-shift matrix and the transmit powers. In [11], the
authors studied IRS-aided downlink communication in a
multi-user multi-input single-output (MISO) system. They
assumed discrete phase shifts for the IRS and maximized
the weighted sum rate of all users by joint optimization of
the beamforming vector of the base station and the phase
shifts of the IRS. In [12], the authors studied transmission
from a multi-antenna base station to multiple users using
an IRS with discrete phase shifts in a downlink system.
They proposed a hybrid beamforming scheme considering
a reflection-dominated one-hop propagation model between
the base station and the users and maximized the sum rate by
optimizing the IRS phase-shift matrix. In [13], the authors
studied a downlink non-orthogonal multiple access (NOMA)
IRS-aided system, where a base station transmits signals to
multiple users assisted by multiple IRSs. They maximized
the sum rate of the users by jointly optimizing the beam-
forming vector of the BS and the phase shifts of the IRS,
subject to IRS scattering element and successive interference
cancellation decoding rate constraints. In [16], the authors
used IRS for rank improvement of MIMO communication
channels.
From a DoF perspective, it has been proved that the sum

DoF of the time-selective K-user interference channel in
the absence of an IRS is K

2 [17]. In [17], the proof of the
achievability of the sum DoF of K

2 is asymptotic interference
alignment, in which all interference signals are aligned into
a specific subspace and the message is aligned into another
subspace, such that these subspaces become linearly depen-
dent. Inner and outer bounds for the DoF region and lower
and upper bounds for the sum DoF of the time-selective
K-user interference channel in the presence of active and

FIGURE 1. Difference between 2-user interference channel and 2 × 2 X -network.

passive IRSs have been derived in [6] and it was proved
that the maximum K sum DoFs can be achieved by employ-
ing a sufficient number of elements for the IRS. In this
paper, we study the DoF region and sum DoF of the time-
selective M×N wireless X-network assisted by an IRS. The
main difference between the K-user interference channel and
the M×N wireless X-network is that in the X-network, the
i-th transmitter, i ∈ {1, . . . ,M}, sends N independent mes-
sages w[ji], j ∈ {1, . . . ,N}, to each receiver j ∈ {1, . . . ,N},
while in the K-user interference channel, the i-th transmit-
ter, i ∈ {1, . . . ,K}, sends only one message w[i] to the i-th
receiver. In other words, the M × N wireless X-network is
a generalized interference channel. The difference between
2-user interference channel and 2×2 X-network is illustrated
in Fig. 1. We see from Fig. 1 that in the 2-user interference
channel, the receiver Rxi can only be served by the transmit-
ter Txi, however, in the 2 × 2 X-network, each receiver can
be served by both existing transmitters. Therefore, analyzing
the DoF of the M×N X-network is more important and chal-
lenging than analyzing the DoF of the K-user interference
channel. The main difficulties in the analysis of M × N
X-network are 1) interference management, because all trans-
mitter’s signals cause interference in addition to the message,
and 2) IRS interference cancellation design may omit some
messages in addition to interferences.
The sum DoF of the time-selective M × N wireless

X-network without IRS is MN
M+N−1 [19]. In addition, an outer

bound for the DoF region of the time-selectiveM×N wireless
X-network was derived in [19]. An achievable DoF region
was found for the M × N wireless X-network with constant
channel coefficients over different channel uses [20], which
does not necessarily coincides with the outer bound, derived
in [19].
We note that IRS and relay seem to be similar. However,

they are fundamentally different. For ordinary relays, the
output in the t-th time slot is a function of the signals received
in time slots t′ ∈ {1, . . . , t − 1}. However, for the IRS, the
output in the t-th time slot is a function of the received
signal in the t-th time slot only. It has been proved in [18]
that ordinary relays cannot improve the DoF of the time-
selective K-user interference channel. Moreover, there exists
an ideal kind of relay, called instantaneous relay (IR) [21],
whose output in the t-th time slot is a function of its received
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signals in time slots t′ ∈ {1, . . . , t}. Even though the IRS
can be considered as a special case of the IR, however, the
existing works on IR cannot cover the problem of the DoF
of the M × N X-network assisted by the IRS [22].

In this paper, we study the IRS-assisted X-network for
two different types of IRSs. First, we consider active IRSs,
which can amplify or attenuate the received signal, in
addition to changing its phase, i.e., the u-th IRS element
multiplies the received wave by ρ[u] exp{jθ [u]}, ρ[u] ∈ R

+.
Then, we consider passive IRSs, which can only attenu-
ate the received signal, in addition to changing its phase,
i.e., the u-th IRS element multiplies the received wave
by ρ[u] exp{jθ [u]}, ρ[u] ∈ [0, 1]. We note that active IRSs
have been mentioned as a viable technology in some ref-
erences, see, e.g., [23], [24], [25]. We employ and extend
the techniques developed in [6] for characterizing the DoF
of the time-selective K-user interference channel. In partic-
ular, for active IRSs, the key techniques used in [6] are:
1) interference cancellation by the IRS and 2) interference
alignment after interference cancellation for the generated
equivalent channel. For passive IRSs, the main idea behind
the achievability provided in [6] is to calculate in how
many time slots, the channel coefficients are realized in
such a manner that active and passive IRSs can operate
similarly. Thus, a probabilistic DoF will be derived. In
this paper, first, we propose the extension of the methods
in [6] such as interference cancellation, interference align-
ment for the equivalent channel, and probabilistic analysis
for the X-network, assisted by either active or passive IRSs.
Moreover, we consider each of these two types of IRSs
in two different scenarios: 1) the channel coefficients for
the elements of the IRS are independent, where the spacing
between IRS elements is more than half a wavelength, and
2) the channel coefficients for the elements of the IRS are
correlated, where the spacing between IRS elements are less
than half a wavelength. We use the proposed framework for
the analysis of active IRSs as a basis for the analysis of pas-
sive IRSs. As seen in [6], the main contribution of IRS in
DoF improvement of the K-user interference channel is the
interference cancellation by eliminating cross-links between
transmitters and receivers. However, in an M × N wireless
X-network, cross-links do not necessarily play a disruptive
role, because each transmitter sends different messages to
all receivers. Thus, one of the challenges for a M×N wire-
less X-network assisted by IRSs is the interplay between the
elimination of cross-links and the sum DoF improvement.
We summarize the main results of this paper as follows:

• We define theM×N network matrix N, which character-
izes the topology of the network. Then, for the scenario
with independent channel coefficients for IRS elements,
which is an appropriate approximate model for more
than half-a-wavelength element spacing in rich scatter-
ing environments [6], we derive an inner bound for the
DoF region of the active IRS-assisted M × N wireless
X-network, when the network matrix N is forced to be
fixed in all time slots. Using this result as a basis, we

derive inner and outer bounds for the DoF region of
the active IRS-assisted M×N wireless X-network, when
the network matrix is allowed to change by the IRS in
different time slots. We also derive lower and upper
bounds on the sum DoF and show that the maximum
sum DoF of min(M,N) is achievable if the number of
IRS elements is larger than a certain finite value.

• For the passive IRS, where the channel coefficients for
different IRS elements are assumed independent, we
derive probabilistic1 inner and outer bounds on the DoF
region of the IRS-assisted M × N wireless X-network.
Also, we derive probabilistic lower and upper bounds on
the sum DoF of the IRS-aidedM×N wireless X-network
and show that the lower bound for the sum DoF asymp-
totically approaches min(M,N) with an order of at least
O( 1

Q ), where Q is the number of IRS elements.
• Finally, we show that the proposed bounds for the passive
IRS are also applicable for the passive IRS-assisted
M × N X-network, where the channel coefficients for
different IRS elements are assumed correlated (which is
a more accurate model for less than half-a-wavelength
element spacing [32]), with the difference in the order
of convergence, which is now at least O( 1√

Q
). We also

extend the lower bound on the sumDoF for the active IRS.

The remainder of this paper is organized as follows. We
present the system model in Section II. In Sections III, IV,
and V, the main results for the DoF of the M × N wireless
X-network in the presence of the active IRS, passive IRS
with independent elements, and active and passive IRSs with
correlated elements are given, respectively. In Section VI,
we provide numerical results for DoF derivations and in
Section VII, the concluding remarks are presented.
Notations: Sets and vector spaces are denoted by calli-

graphic upper-case letters. Vectors and matrices are denoted
by bold lower-case and upper-case letters, respectively. For a
matrix V, vi,j is the element in the i-th row and the j-th col-
umn of V. |A| demonstrates the cardinality of set A. VT and
VH denote the transpose and Hermitian of matrix V, respec-
tively. diag(a1, . . . , am) is a main diagonal matrix, whose
diagonal elements are a1, . . . , am. det(H) indicates the deter-
minant of square matrix H. A sequence a(Q) converges to
its limit a∗ with an order of at least O(g(Q)), if we have
limQ→∞ |a(Q)−a∗|

|g(Q)| < ∞. A sequence a(n) goes to infinity

with an order of O(g(n)), if 0 < limn→∞ |a(n)|
|g(n)| < ∞. A

function f (ρ) is o(log(ρ)), if limρ→∞ f (ρ)
log(ρ)

= 0. The prob-
ability measure of event A is denoted by Pr{A}. R and C

are the set of real and complex numbers, respectively. In
addition, we have N = {1, 2, 3, . . .}, W = {0, 1, 2, 3, . . .},
and � = {}. We show sets {M,M+1, . . . ,N} by [M : N].
Moreover, x ∼ CN (0,C) indicates that x is a zero-mean
complex Gaussian vector with correlation matrix C. We
also define the indicator function as I(x) = 0 for |x| = 0,
otherwise, I(x) = 1.

1. This means that convergences are in probability.
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FIGURE 2. Illustration of the IRS-assisted 2 × 2 wireless X -network. The black
arrows indicate the direct links between the transmitters and the receivers, the green
arrows illustrate the links between the IRS and the transmitters, and the blue arrows
denote the links between the IRS and the receivers. The gray rectangle shows a
smooth blockage in the direct link.

II. SYSTEM MODEL AND PRELIMINARIES
A. SYSTEM MODEL
We consider a time-selective2 M×N wireless X-network [19]
assisted by a Q-element IRS, where M single antenna trans-
mitters send their messages to N single antenna receivers.
Each transmitter sends an independent message to each
receiver, i.e., the message w[ji] is sent from the i-th trans-
mitter to the j-th receiver for ∀i ∈ [1 : M],∀j ∈ [1 : N].
An illustration of the IRS-aided 2 × 2 wireless X-network
is presented in Fig. 2. We assume that the channel is time-
selective. The received signal at the j-th receiver in the t-th
time slot is denoted by Y [j](t), which is as follows:

Y [j](t) =
M∑

i=1

H[ji](t)X[i](t) +
Q∑

u=1

H[ju]
IR (t)X[u]

IRS(t) + Z[j](t), (1)

where X[i](t) indicates the transmitted signal of the i-th trans-
mitter, H[ji](t) denotes the channel coefficient between the
i-th transmitter and the j-th receiver, X[u]

IRS(t) is the transmitted
signal of the u-th IRS element u ∈ [1 : Q], H[ju]

IR (t) indicates
the channel coefficient between the u-th IRS element and
the j-th receiver, Z[j](t) is an additive white Gaussian noise
(AWGN) component at the j-th receiver in the t-th time slot,
t ∈ [1 : T], Q is the number of IRS elements, and T is
the number of time slots. The variance of Z[j](t) is denoted
by N0. Y

[u]
IRS(t) denotes the received signal at the u-th IRS

element in the t-th time slot and can be written as follows3:

Y [u]
IRS(t) =

M∑

i=1

H[ui]
TI (t)X[i](t), (2)

2. In a time-selective network, channel coefficients in different time slots
are independent.

3. Active IRSs do not have RF chains and the received signal is only
amplified [23], [24], [25]. This amplification may cause a low level of
noise, which is negligible compared to the noise caused by the RF chains
at the receivers [27]. In addition, the considered X-network is analyzed in
the high signal-to-noise ratio (SNR) regime and the power of the additive
Gaussian noise does not affect the DoF.

where H[ui]
TI (t) is the channel coefficient between the i-th

transmitter and the u-th IRS element u ∈ [1 : Q]. X[u]
IRS(t) is

written as follows:

X[u]
IRS(t) = τ [u](t)Y [u]

IRS(t) = β[u](t)ejφ
[u](t)Y [u]

IRS(t), u ∈ [1 : Q], (3)

where φ[u](t) ∈ [0, 2π) is the phase shift added to the
received signal by the u-th IRS element.4 The feasible val-
ues of β[u](t) realized by the IRS determine the active and
passive types of the IRS. For the active IRS, β[u](t) ∈ R

+ is
feasible5 and for the passive IRS, β[u](t) ∈ [0, 1] is feasible.
The physical meaning of the active IRS is that it is equipped
with a controllable amplifier and a phase shifter. Whereas,
the passive IRS is equipped with a controllable resistor in
addition to a phase shifter [7].

We assume that in the t-th time slot, the chan-
nel coefficients of the direct links (i.e., H[ji](t′), ∀i, j,
∀t′ ∈ [1 : T]) and the concatenation of the transmitters-
IRS and IRS-receivers channel coefficients (i.e., H[ui]

TI (t′)
H[ju]
IR (t′),∀i, j, u,∀t′ ∈ [1 : T]) are known causally at the

transmitters, the receivers, and the IRS (for channel estima-
tion of links between other nodes and the IRS, see, e.g., [29],
[30], [31]).
We also consider two different assumptions for IRS

channel coefficients:
1. IRS with independent channel coefficients for the ele-

ments: For IRSs with independent channel coefficients for
the elements, all channel coefficients H[ji](t), H[ju]

IR (t), and
H[qi]
TI (t) are assumed to be independent random variables

for each i, j, u, q, and t, drawn from a continuous cumula-
tive probability distribution. These channel coefficients are
complex and the real and imaginary parts of them are inde-
pendent random variables drawn by a continuous cumulative
probability distribution, e.g., complex Gaussian distribution.
For the assumption of independent channel coefficients for
each element of the active and passive IRSs, the IRS ele-
ments must be sufficiently spaced, i.e., by more than half
a wavelength [32], and the transmitter to IRS and IRS to
receiver communication channels should be rich scattering.
2. IRS with correlated channel coefficients for the ele-

ments: In this case, we assume that the IRS has Q = q2, q ∈
N, elements, which are arranged into a square array. The IRS
consists of q = √

Q elements per row and q elements per

4. We note that active IRSs do not contain RF chains and the received
wave is only amplified after reflection [23], [24], [25], [26]. Thus, a low
level of additive noise may exist, which can be neglected compared to the
noise added by the RF chains [27]. In addition, we study the channel in
the high signal-to-noise ratio (SNR). Thus, the power of the Gaussian noise
added by the active IRS does not affect the DoF results.

5. We do not consider any constraint (βmax) for the active IRS because
of three reasons: 1) the nature of DoF is in high SNR regime and the power
constraint will tend to infinity in the DoF definition, so the constraint βmax
may become meaningless, 2) analysis of the active IRS without amplification
constraint forms the basis of the analysis of the passive IRS and is essential
in this sense, 3) if we want to consider the constraint βmax for the active IRS,
we can replace the condition of passive IRS |τ [u](t)| ≤ 1 by the constraint
|τ [u](t)| ≤ βmax, then, the derived bounds are also valid, however, the
definition of corresponding probability measures will change (we refer to
Section IV).
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column. The horizontal width and vertical height of each ele-
ment are dH and dV , respectively. For the n-th element of the
IRS, we define un = [0, dH mod (n− 1, q), dV�(n− 1)/q�].
It has been proved in [32, Proposition 1] that in an isotropic
scattering environment, the distribution of the vector of
channel coefficients from the i-th transmitter to the each ele-
ment of the IRS h[i]

TI(t) = [H[1i]
TI (t),H[2i]

TI (t), . . . ,H[Qi]
TI (t)]

T
is

CN (0, μ[i]
TIR), where:

[R]m,n =
sin
(

2π
λ

‖um − un‖
)

2π
λ

‖um − un‖
. (4)

We have μ
[i]
TI = dHdVσ 2

TI(i), where σ 2
TI(i) is the average

intensity attenuation from the i-th transmitter to the IRS.6

Similarly, the distribution of the vector of channel
coefficients from each element of the IRS to the j-th receiver

h[j]
IR(t) = [H[j1]

IR (t),H[j2]
IR (t), . . . ,H[jQ]

IR (t)]
T

is CN (0, μ[j]
IRR),

where R is given by (4). We have μ
[j]
IR = dHdVσ 2

IR(j),
where σ 2

IR(j) is the average intensity attenuation from the
IRS to the j-th receiver [32], [37], [38], [39]. In addi-
tion, for ∀i, j, vectors h[i]

TI(t) and h[j]
IR(t) are independent.

Moreover, the assumption of time-selectivity can be realized
using interleaving technique [33].
C(T, ρ,R) = {{X[i](1), . . . ,X[i](T)}|∀i ∈ [1 : M]} is

defined as the set of codes with T time slots, average
power constraint ρ, i.e., maxi( 1

T

∑T
t=1 |X[i](t)|2) ≤ ρ, and

rate vector RM×N , where the message sets are W [ji] =
[1 : 2�T×ri,j�], i ∈ [1 : M], j ∈ [1 : N], and ri,j is the trans-
mission rate from the i-th transmitter to the j-th receiver.
In addition, we define Pe(C(T, ρ,R)) as the probabil-
ity of error for the code C(T, ρ,R), i.e., Pe(C(T, ρ,R))

= Pr{⋃
i,j

{ŵ[ji] �= w[ji]}}, where ŵ[ji] is the estimation of w[ji]

at the j-th receiver.

B. PRELIMINARIES
In the following, we introduce some basic definitions that
are used throughout the paper.
Capacity Region: The closure of the set of rate vec-

tors R with power constraint ρ, for which there exists code
C(T, ρ,R) such that limT→∞ Pe(C(T, ρn,R(ρn))) = 0 is
defined as capacity region and denoted by CR(ρ).
Sum Capacity: The sum capacity is defined as C(ρ) =

max
∑M

i=1
∑N

j=1 ri,j where rate vector [ri,j] = R ∈ CR(ρ).
Degree of Freedom (DoF): Consider the sequence of

power constraints ρn = nρ0, n ∈ N, ρ0 > 0. For a M × N

6. In [32], it has been assumed that there is infinite number of multipath

components in an isotropic scattering environment, thus, for the vector of

channel coefficients from the i-th transmitter to the IRS (h[i]
TI(t)), we have:

h[i]
TI(t) = lim

L→∞

L∑

l=1

cjl√
L

[
exp
{
−jk(ϕl, θl)

Tu1

}
, . . . , exp

{
−jk(ϕl, θl)

TuQ
}]T

Distribution−−−−−−→ CN
(
0, μ[i]

TIR
)
,

where k(ϕl, θl) is the wave vector of the l-th multipath component and cjl
is its coefficient (see [32]). Moreover, the convergence is in distribution.

wireless X-network, we say a DoF matrix D is achiev-
able in T time slots, if there exist a sequence of codes
Cn(T, ρn,R(ρn)) and an integer ñ, such that for ∀n > ñ,
we have the following relations: ri,j(ρn) ≥ di,j log(ρn),∀i ∈
[1 : M],∀j ∈ [1 : N], and limn→∞ Pe(Cn(T, ρn,R(ρn))) = 0.
We define set D(T) as the set of all achievable DoF matri-
ces in T time slots, and the DoF region D is defined as
follows:

D =
⎧
⎨

⎩D ∈ R+M×N
∣∣∣∀E ∈ R+M×N :

∑

i∈[1:M],j∈[1:N]

ei,jdi,j ≤ lim sup
T→∞

∑

i∈[1 : M],j∈[1 : N]

ei,jdi,j(T)

⎫
⎬

⎭,

which concludes:

CR(ρ) = {D log(ρ) + o(log(ρ)) : D ∈ D}.
Span: The space spanned by the column vectors of

matrix V is denoted by span(V).
Dimension: We define the number of dimensions of

span(V) as the dimension of V and show it by d(V), which
is equal to the rank of matrix V.
Normalized Asymptotic Dimension: In the following

sections, for a given M,N, and Q, the dimensions of beam-
forming matrices will have the order of O(nl), l, n ∈ N due
to the proposed asymptotic interference alignment scheme.
We define the normalized asymptotic dimension (DN) of a
matrix V as DN(V) = limn→∞ d(V)

nl
, where l is the minimum

integer number, for which we have limn→∞ d(V)

nl
< ∞.

We also use these definitions for a vector space A, i.e.,
d(A) indicates the dimension of A and DN(A) denotes the
normalized asymptotic dimension of A.
Network Matrix: As seen from (1)-(3), the effective

channel coefficient between the i-th transmitter and the
j-th receiver is H[ji](t) + ∑Q

u=1 H
[ui]
TI (t)H[ju]

IR (t)τ [u](t). The
network matrix N is an M × N matrix, which characterizes
the connectivity of the X-network, i.e., ni,j = I(H[ji](t) +∑Q

u=1 H
[ui]
TI (t)H[ju]

IR (t)τ [u](t)).

III. ACTIVE IRS WITH INDEPENDENT CHANNEL
COEFFICIENTS FOR ELEMENTS
A. DOF REGION
In this section, we analyze the DoF of M × N wireless
X-network assisted by an active IRS with independent chan-
nel coefficients for elements. First of all, we show that a
Q-element active IRS can change the connectivity of the
network to realize the network matrix N including Q zero
entries with probability equal to 1. This can be achieved
by designing the IRS such that the following equations are
satisfied:

∑

u∈[1:Q]

H[ui]
TI (t)H[ju]

IR (t)τ [u](t) = −H[ji](t), (5)

i �= j, (i, j) ∈ B, |B| = Q,
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where B = {(i, j)|ni,j = 0}. Note that this set of equations
has solution almost surely because; if we write these equa-
tions in the matrix form, Hτ = h, then det(H) will become
a nonzero polynomial in terms of H[ui]

TI and H[ju]
IR and

by [7, Lemma 1], we have Pr{det(H) = 0} = 0. Also,
we introduce the following notations for the simplicity of
presentation. We rewrite Eqs. (1) and (2) in the vector forms:

y[j] =
M∑

i=1

H[ji]x[i] +
Q∑

u=1

H[ju]
IR x[u]

IRS + z[j], y[q]
IRS =

M∑

i=1

H[qi]
TI x[i], (6)

where x[i] is a T × 1 column vector containing X[i](t), i.e.,
x[i] = [X[i](1) X[i](2) · · · X[i](T) ]T . Vectors y[i], y[q]

IRS, x
[u]
IRS,

and z[j] are defined similarly. H[ji] denotes a diagonal matrix
defined as H[ji] = diag(H[ji](1),H[ji](2), . . . ,H[ji](T)).
Matrices H[ju]

IR and H[qi]
TI are defined similarly. Now, we

derive an inner bound on the DoF region of the active
IRS-assisted M × N wireless X-network, when the network
matrix is forced to be fixed in all time slots by setting IRS
coefficients such that Eqs. (5) are satisfied. This approach
is essential, because further inner bounds that we derive on
the DoF region of IRS-assisted X-network in the general
case (where the network matrix can change via different
time slots), are based on the inner bound given for the fixed
network matrix. The following achievability theorem, which
is based on interference alignment technique, will be the
basis of our further achievability theorems for active and
passive IRSs in this paper.
Theorem 1: Consider an M × N X-network assisted by a

Q-element active IRS with independent channel coefficients
for elements. Assume that based on (5), the IRS is designed
such that the network matrix N is fixed across all T time
slots and at most Q entries of it are 0. We define the set
DN as follows:

DN =

⎧
⎪⎨

⎪⎩
D ∈ R

M×N+

∣∣∣∣∣∣

∀j ∈ [1 : N]:
M∑
i′=1

ni′,jdi′,j + ∑
j′ �=j

max
i′
{
ni′,j′di′,j′

} ≤ 1

∀i ∈ [1 : M], ∀j ∈ [1 : N] : 0 ≤ di,j ≤ ni,j.

⎫
⎪⎬

⎪⎭
, (7)

where ni,j is the element in the i-th row and j-th column of
network matrix N. Then, we have DN ⊆ D(N), where D(N)

is the DoF region, when the network matrix is N across all
time slots.
Proof: The outline of the proof of this theorem is organized

in five steps, which contains: 1) generation of the message
stream, 2) designing the interference cancellation method
and the channel equalization for the network, 3) designing
the interference alignment equations for each receiver in the
X-network, 4) designing the beamforming matrices, which
satisfy the interference alignment equations, and 5) analysis
of the satisfaction of the interference alignment equations,
the decodability of message symbols and the calculation
of the achieved DoF. The complete proof is provided in
Appendix A.

Now, we give inner and outer bounds for the DoF region
of the active IRS-aided M × N wireless X-network, when
the network matrix can change across T time slots. First, we
introduce the inner bound, which is based on time-sharing
of the DoF regions provided in Theorem 1.
Theorem 2: Consider a Q-element active IRS-assisted

M × N wireless X-network with independent channel
coefficients for elements and define NQ as the set of all
possible network matrices with at most Q zero elements.
Then, we have:

Din =
⋃

a∈A

⎧
⎨

⎩

|NQ|∑

i=1

aiDi
∣∣Di ∈ DNi ,Ni ∈ NQ

⎫
⎬

⎭ ⊆ D, (8)

where the set DNi is given by (7) and

A =
⎧
⎨

⎩a

∣∣∣∣∣∣
0 ≤ ai ≤ 1,

|NQ|∑

i=1

ai = 1

⎫
⎬

⎭. (9)

Proof: We use time sharing to prove this theorem. Let
us divide T time slots into |NQ| groups, such that the i-th
group has aiT sub slots. We also design the IRS such that
in the sub slots corresponding to the i-th group, the network
matrix is Ni. Thus, the achieved DoF vector in these time
slots is a member of the region DNi according to Theorem 1.
Hence, the region (8) is achievable.
Theorem 2 is based on two main facts: 1) An active IRS

can null Q elements of the network matrix and 2) the time
sharing of the DoFs of all such network matrices with Q
non-zero entries is used. In the next step, we present an outer
bound for the DoF region of the IRS-assisted M×N wireless
X-network. This theorem indicates that similar to the inner
bound given in Theorem 2, the outer bound depends on the
network matrix of each time slot and the percentage of their
occurrence, but these bounds do not necessarily coincide.
Theorem 3: Consider a Q-element active IRS-assisted

M × N wireless X-network with independent channel
coefficients for elements and define NQ as the set of all pos-
sible network matrices with at most Q zero entries. Assume
that each network matrix Nk ∈ NQ, occurs in Tak time slots,
k ∈ [1 :

∑Q
l=0

(MN
l

)
], where a ∈ A and A is given in (9).

In addition, for each a ∈ A, we define the following sets:

D′(a) =
⋂

i∈[1:M],j∈[1:N]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
D ∈ R

M×N+

∣∣∣∣∣∣∣∣∣

M∑
i′=1

di′,j +
N∑

j′=1,j′ �=j
di,j′ ≤ 1 +

|NQ |∑
k=1

ak
(
1 − [nk]i,j

)
(
∑
j′′ �=j

[nk]i,j′′

)

0 ≤ di,j ≤
|NQ |∑
k=1

ak[nk]i,j

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (10)

where [nk]i,j is the element of the i-th row and j-th column
of network matrix Nk. Then, we have:

D ⊆ Dout =
⋃

a∈A
D′(a). (11)

Proof: The proof is provided in Appendix B.
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FIGURE 3. An exemplary illustration of the impact of a 10-element active IRS in
decomposing a 4 × 4 X -network into a 2 × 2 X -network and two interference-free
transceivers.

Corollary 1: Theorems 2 and 3 indicate that for the
approximate capacity region in the presence of active
IRS with independent channel coefficients, we obtain the
following relation:

{D log(ρ + 1) + o(log(ρ)) : D ∈ Din} ⊆ CR(ρ)

⊆ {D log(ρ + 1) + o(log(ρ)) : D ∈ Dout}. (12)

B. SUM DOF
In this subsection, we use the inner and outer bounds given
in Theorems 2 and 3 to obtain the lower and upper bounds
on the sum DoF of an active IRS-aided M × N wireless
X-network in Theorems 4 and 5.
Theorem 4: With an active IRS with Q = W(N −

1) + W(M − W) elements, where W is the number of
interference-free receivers caused by the active IRS and
W ∈ [0 : min(M,N)]. Then, the following sum DoF is
achievable:

DoFactive−low = W + (M −W)(N −W)

M + N − 2W − 1
. (13)

Proof: The outline of the proof is that we design a proper
network matrix by the IRS, which decomposes the M × N
wireless X-network, into two separate networks: 1) a network
with W interference-free receivers, which can achieve W
sum DoF, and 2) a (M−W)× (N−W) wireless X-network,
which can achieve (M−W)(N−W)

M+N−2W−1 sum DoF. This procedure
is illustrated in Fig. 3 for the 4 × 4 X-network assisted by
a 10-element active IRS. The complete proof is provided in
Appendix C.
Corollary 2: To achieve the maximum sum DoF of

min(M,N), we require to set W = min(M,N) in Q =
W(N − 1) +W(M −W) = W(M + N −W − 1).
Theorem 5: With an active IRS with Q elements, the

sum DoF is upper bounded by DoFactive−up determined as
follows:

DoFactive−up = min

{
MN + (N − 1)Q

M + N − 1
, min{M,N}

}
. (14)

Proof: The proof is provided in Appendix D.
Corollary 3: Theorems 4 and 5, indicate that the approx-

imate sum capacity of the M × N X-network assisted by

an active IRS with independent channel coefficients for ele-
ments using Q = W(N − 1) +W(M −W) elements, where
0 ≤ W ≤ min(M,N), is bounded as follows:
(
W + (M −W)(N −W)

M + N − 2W − 1
− ε

)
log(1 + ρ) + o(log(ρ)) ≤ C(ρ)

≤
(
min

{
MN + (N − 1)Q

M + N − 1
,min{M,N}

})
log(1 + ρ) + o(log(ρ)). (15)

IV. PASSIVE IRS WITH INDEPENDENT CHANNEL
COEFFICIENTS FOR ELEMENTS
Due to random realization of channel coefficients and lower
capabilities of the passive IRS compared to the active IRS
(the passive IRS cannot amplify the received signal), proba-
bilistic guarantees are given for the DoF improvement instead
of exact guarantees. The main difference between passive and
active IRSs is that for a passive IRS, the set of realizable
network matrices in a time slot is a function of the realiza-
tion of the channel coefficients in that time slot, which create
randomness in the system, whereby, for an active IRS, all
network matrices with at most Q zero entries are realizable
in a time slot. The stochastic analysis method introduced for
the passive IRS-assisted K-user interference channel in [7]
is the basis for the stochastic analysis method of the passive
IRS-assisted M × N wireless X-network.

A. DOF REGION
Define sets ÑQi , i ∈ [1, . . . , 2|NQ|−1] as all subsets of NQ

including the following matrix:

N1 : ni,j = 1, ∀i, j. (16)

Also, we define event EQi such that the passive IRS can real-
ize network matrices N ∈ ÑQi and cannot realize network
matrices N ∈ Ñ c

Qi
= NQ − ÑQi , i.e., for ∀N ∈ ÑQi ,

∃τ [u](t), u ∈ [1 : Q], such that for ∀u : |τ [u](t)| ≤ 1, and we
have:

∀(i, j) : ni,j = I

⎛

⎝H[ji](t) +
Q∑

u=1

H[ui]
TI (t)H[ju]

IR (t)τ [u](t)

⎞

⎠ (17)

and for ∀N ∈ Ñ c
Qi
, and for ∀τ [u](t), u ∈ [1 : Q], such that

∀u : |τ [u](t)| ≤ 1, we have:

∃(i, j) : ni,j �= I

⎛

⎝H[ji](t) +
Q∑

u=1

H[ui]
TI (t)H[ju]

IR (t)τ [u](t)

⎞

⎠. (18)

Now, we derive a probabilistic outer bound for the DoF
region.
Theorem 6: Define the sets D′′(a[1], . . . , a[2|NQ|−1], δ) as

follows:

D′′
⎛

⎝a[1], . . . , a

[
2|NQ|−1

]

, δ

⎞

⎠ =
⋂

i,j

2N−1⋂

n=1

⎧
⎪⎪⎨

⎪⎪⎩
D ∈ R

M×N+

∣∣∣∣∣∣∣∣

M∑

i′=1,i′ �=i
di′,j +

N∑

j′=1

di,j′ ≤
2|NQ|−1∑

l=1

(
Pr
{EQl

}+ δ
)
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×

⎛

⎜⎜⎝1 +

∣∣∣ÑQl

∣∣∣∑

k=1

a[l]
k

(
1 −

[
n[l]
k

]

i,j

)⎛

⎝
∑

j′′ �=j

[
n[l]
k

]

i,j′′

⎞

⎠

⎞

⎟⎟⎠,

0 ≤ di,j ≤
2|NQ|−1∑

l=1

(
Pr
{EQl

}+ δ
)

⎛

⎜⎜⎝

∣∣∣ÑQl

∣∣∣∑

k=1

a[l]
k

[
n[l]
k

]

i,j

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
. (19)

In the time slots, where event EQl occurs, a[l]
k is the fraction

of time slots, in which the network matrix is N[l]
k ∈ ÑQl and

[n[l]
k ]i,j is the element in the i-th row and the j-th column

of N[l]
k . We also have a[l] ∈ Al, where

Al =

⎧
⎪⎨

⎪⎩
a[l]
∣∣∣∣0 ≤ a[l]

k ≤ 1,

|ÑQl |∑

k=1

a[l]
k = 1

⎫
⎪⎬

⎪⎭
, l ∈

{
1, . . . , 2|NQ|−1

}
. (20)

Furthermore, we define the set Dout(δ) as follows:

Dout(δ) =
⋃

∀l:a[l]∈Al

D′′
(
a[1], . . . , a2|NQ|−1

, δ

)
. (21)

Then, if the channel coefficients are drawn independently and
identically distributed (i.i.d.) from a continuous cumulative
probability distribution across all T time slots, for ∀ε, δ > 0,
there exists a number T ′ such that for ∀T > T ′, we have:

Pr{D(T) ⊆ Dout(δ)} > 1 − ε, (22)

where D(T) is the DoF region in T time slots. In other
words, we have limT→∞ Pr{D ⊆ Dout(δ)} = 1,∀δ > 0.
Proof: The basis of the proof of this theorem is the

law of large numbers. The complete proof is provided in
Appendix E.
The difference of the outer bound for the passive IRS

in Theorem 6 and the outer bound for the active IRS in
Theorem 3 is that the coefficients a[l]

m are more restricted for
passive IRSs, i.e., the coefficients of the network matrices,
which are not realizable in EQl are zero. This difference will
cause the outer bound introduced in (11) for the active IRS
to contain the outer bound (21).
Next, we introduce a probabilistic inner bound for the

DoF region of an M×N wireless X-network in the presence
of a Q-element passive IRS. For a network matrix N ∈ ÑQi ,
set MN is defined as follows:

MN = {(i, j)∣∣i ∈ [1 : M], j ∈ [1 : N], ni,j = 0
}
. (23)

To realize the network matrix N, the IRS must be designed
such that for each t ∈ [1 : T], we have:
∑

u∈[1:Q]

H[ui]
TI (t)H[ju]

IR (t)τ [u](t) = −H[ji](t), (i, j) ∈ MN. (24)

We rewrite Eqs. (24) in the matrix form (HNτN = hN),
where HN is a matrix whose elements are H[ui]

TI (t)H[ju]
IR (t),

τN is a column vector whose elements are τ [u](t), and hN
is a column vector whose elements are −H[ji](t), (i, j) ∈
MN. We note that in (24), the number of variables can

exceed the number of equations (Q ≥ |MN|), thus, we use
pseudo inverse because it is a tractable solution, for which
an interference alignment scheme and asymptotic analysis
can be provided. to obtain τN, i.e.,

τ ∗
N = HH

N

(
HNHH

N

)−1
hN. (25)

Note that the matrix HNHH
N is full rank and invertible almost

surely because if we construct a square matrix H̃N by choos-
ing |MN| columns of the matrix HN, then det(H̃N) will
be a non-zero polynomial in terms of H[ui]

TI (t) and H[ju]
IR (t)

and by [7, Lemma 1], Pr{det(H̃N) = 0} = 0. Therefore,
H̃N is full rank almost surely. On the other hand, we
have rank(HN) = rank(H̃N) = rank(HNHH

N). Note that
by increasing the number of IRS elements, the probabil-
ity of realizability of coefficients τ ∗

N using a passive IRS is
increased. Next, we define event FQi in the t-th time slot as
follows:

FQi =
{
∀u ∈ [1 : Q],∀N ∈ ÑQi :

∣∣∣τ [u]
N

∗
(t)
∣∣∣ ≤ 1

}

⋂{
∀N ∈ Ñ c

Qi : ∃u ∈ [1 : Q] → |τ [u]
N

∗
(t)| > 1

}
. (26)

We note that similar to events EQi , events FQi are disjoint
for ∀i. Now, we introduce a probabilistic inner bound for
the passive IRS-assisted M × N wireless X-network.
Theorem 7: Consider set DÑQi

as follows:

DÑQi
=
⋃

a∈Ai

⎧
⎪⎪⎨

⎪⎪⎩

∣∣∣ÑQi

∣∣∣∑

j=1

ajDj

∣∣∣Dj ∈ DNj ,Nj ∈ ÑQi

⎫
⎪⎪⎬

⎪⎪⎭
, (27)

where set DNj is given by (7) and set Ai is given by (20).
Also, set Din(δ) is defined as follows:

Din(δ) =⎧
⎨

⎩

2|NQ |−1∑

i=1

(
Pr
{FQi

}− δ
)
Di

∣∣∣∣Di ∈ DÑQi
, i ∈

[
1 : 2|NQ|−1

]
⎫
⎬

⎭. (28)

Then, if the channel coefficients are drawn i.i.d from a con-
tinuous cumulative probability distribution across all T time
slots, for ∀ε, δ > 0, there exists a number T ′ such that for
∀T > T ′, we have:

Pr{Din(δ) ⊆ D(T)} > 1 − ε, (29)

where D(T) is the DoF region in T time slots. In other
words, we have limT→∞ Pr{Din(δ) ⊆ D} = 1,∀δ > 0.
Proof: The proof of this theorem is based on the law of

large numbers and time sharing technique. The complete
proof is provided in Appendix F.
Similar to the outer bound, the inner bound for the active

IRS in Theorem 2 contains the inner bound for the passive
IRS in Theorem 7.
Corollary 4: Theorems 6 and 7 show that for the approx-

imate capacity region in the presence of passive IRS with
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independent channel coefficients, we obtain the following
relation:

{D log(ρ + 1) + o(log(ρ)) : D ∈ Din(δ)} ⊆ CR(ρ)

⊆ {D log(ρ + 1) + o(log(ρ)) : D ∈ Dout(δ)}. (30)

The behavior of Pr{FQl} and Pr{EQl} for a K-user
interference channel have been studied for large values of
Q in [7, Th. 8], where network matrices are K × K. The
proof of [7, Th. 8] is also applicable for a M × N wireless
X-network, for which network matrices are M × N. It has
been proved in [7, Th. 8] that if the imaginary and real
parts of all channel coefficients are zero mean and their
probability distributions satisfy [7, Properties (29)–(35)], for
(i, j) ∈ [1 : M] × [1 : N], then we have

lim
Q→∞ Pr

{FQ1

} = 1, lim
Q→∞ Pr

{FQi

} = 0, i �= 1,

lim
Q→∞ Pr

{EQ1

} = 1, lim
Q→∞ Pr

{EQi
} = 0, i �= 1, (31)

where ÑQ1 = NQ. All probability measures Pr{FQl} and
Pr{EQl} converges with an order of at least O( 1

Q ).

B. SUM DOF
Now, based on Theorems 6 and 7, we derive probabilistic
lower and upper bounds for the sum DoF of the M × N
X-network in the presence of a passive IRS. First, we
introduce the upper bound on the sum DoF:
Theorem 8: Consider an M × N wireless X-network

assisted by a Q-element passive IRS with independent chan-
nel coefficients for elements. Then, for ∀D(T) ∈ D(T), if
the channel coefficients for all T time slots are i.i.d. drawn
from a continuous cumulative probability distribution, for
∀ε, δ > 0, there exists a number T ′ such that for ∀T > T ′,
we have:

Pr

⎧
⎪⎨

⎪⎩
max

D(T)∈D(T)

M∑

m=1

N∑

n=1

dm,n(T) ≤

min

⎧
⎪⎨

⎪⎩
min{M,N},

2|NQ |−1∑

l=1

(
Pr
{EQl

}+ δ
)
⎛

⎜⎝

MN + (N − 1) max
N[l]
k ∈ÑQl

|MN[l]
k

|

M + N − 1

⎞

⎟⎠

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭

> 1 − ε, (32)

where MN[l]
k

is given by (23). In other words, we have:

lim
T→∞ Pr

⎧
⎪⎨

⎪⎩
max

D(T)∈D(T)

M∑

m=1

N∑

n=1

dm,n(T) ≤ min

⎧
⎪⎨

⎪⎩
min{M,N},

2|NQ |−1∑

l=1

(
Pr
{EQl

}+ δ
)
⎛

⎜⎝

MN + (N − 1) max
N[l]
k ∈ÑQl

|MN[l]
k

|

M + N − 1

⎞

⎟⎠

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
= 1.

Proof: The proof is provided in Appendix G.
To introduce the lower bound on the sum DoF, for each

set ÑQi , we define the subsets ÑW
Qi

,W ∈ [0 : min(M,N)]

such that ÑW
Qi

contains the network matrices N of ÑQi , for
which there exist sets BN, CN, |BN| = |CN| = W, so that for
∀i ∈ BN, there exists a j ∈ CN, for which ni,j = 1. In addition,

for each N ∈ ÑW
Qi
, if i ∈ BN and ni,j = ni,j′ = 1, then j = j′,

if j ∈ CN and ni,j = ni′,j = 1, then i = i′, if i /∈ BN, j ∈ CN,
then ni,j = 0, and if i /∈ BN, j /∈ CN, then ni,j = 1. Ñ 0

Qi
is the

set of all network matrices from ÑQi , which do not satisfy
the previous conditions for all W ∈ [1 : min(M,N)]. Now,
we present a probabilistic lower bound for the sum DoF.
Theorem 9: Consider an M × N wireless X-network

assisted by a Q-element passive IRS with independent chan-
nel coefficients for elements. Then, for ∀D(T) ∈ D(T), if
the channel coefficients for all T time slots are i.i.d. drawn
from a continuous cumulative probability distribution, for
∀ε, δ > 0, there exists a number T ′ such that for ∀T > T ′,
we have:

Pr

⎧
⎨

⎩ max
D(T)∈D(T)

M∑

m=1

N∑

n=1

dm,n(T) ≥

2|NQ |−1∑

i=1

(
Pr
{FQi

}− δ
)

max
ÑW
Qi

�=�

(
W + (M −W)(N −W)

M + N − 2W − 1

)⎫⎬

⎭ > 1 − ε.

(33)

In other words, we have:

lim
T→∞ Pr

⎧
⎨

⎩ max
D(T)∈D(T)

M∑

m=1

N∑

n=1

dm,n(T) ≥

2|NQ |−1∑

i=1

(
Pr
{FQi

}− δ
)

max
ÑW

Qi
�=�

(
W + (M −W)(N −W)

M + N − 2W − 1

)⎫⎬

⎭ = 1.

Proof: We can see from Theorem 7 that for every δ > 0
and for sufficiently large T , with probability higher than
1−ε, in at least T(Pr{FQi}−δ) time slots, event FQi occurs.
Thus, if we design the IRS such that the network matrix
is N ∈ ÑW∗

Qi
in these slots, where W∗ = maxÑW

Qi
�=�

W,

W∗ + (M−W∗)(N−W∗)
M+N−2W∗−1 sum DoFs can be achieved in these

slots, see the proof of Theorem 4. Therefore, the total
∑2|NQ|−1

i=1 (Pr{FQi} − δ) maxÑW
Qi

�=�
(W + (M−W)(N−W)

M+N−2W−1 ) sum

DoFs can be achieved with probability higher than 1 − ε′,
by time sharing technique.
Corollary 5: Theorem 9 indicates that the approximate

sum capacity of a M×N X-network assisted by a Q-element
passive IRS is lower bounded by D log(1 + ρ) + o(log(ρ)),
where

D =
2|NQ|−1∑

i=1

(
Pr
{FQi

}− δ
)

max
ÑW
Qi

�=�

(
W + (M −W)(N −W)

M + N − 2W − 1

)
.

Moreover, Theorem 8 shows that the approximate sum
capacity is upper bounded by D′ log(1 + ρ) + o(log(ρ)),
where

D′ = min

⎧
⎪⎨

⎪⎩
min{M,N},

2|NQ |−1∑

l=1

(
Pr
{EQl

}+ δ
)
⎛

⎜⎝

MN + (N − 1) max
N[l]
k ∈ÑQl

|MN[l]
k

|

M + N − 1

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
. (34)
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Also, the sum DoF tends to min(M,N) in probability,
because we have Ñmin(M,N)

Q1
�= � and by [7, Th. 7], we

have limQ→∞ Pr{FQ1} = 1, i.e., the DoF is lower bounded
by min(M,N)(1−O( 1

Q )) for sufficiently large Q. Therefore,
the approximate sum capacity of the M × N wireless
X-network assisted by a passive IRS is lower bounded by
(min(M,N)−ε) log(1+ρ)+o(log(ρ)),∀ε > 0, by choosing
a sufficiently large Q.

V. ACTIVE AND PASSIVE IRSS WITH CORRELATED
CHANNEL COEFFICIENTS FOR ELEMENTS
The outer and inner bounds on the DoF region and upper
and lower bounds on the sum DoF of the M × N wireless
X-network in the presence of a passive IRS with correlated
channel coefficients for elements, are the same as what have
been stated in Theorems 6, 7, 8, and 9, respectively, except
three following facts:
Fact 1: Our main achievability theorems (Theorems 1

and 7), were based on the independence of channel
coefficients.
Fact 2: For the passive IRS with correlated channel

coefficients for elements, we have to ensure that HNHH
N

is invertible in (25).
Fact 3: The probability measures Pr{FQl} and Pr{EQl} and

the slope of their decay may change.
For Fact 1, in the proof of Theorems 1 and 7,

using [7, Lemma 2], we stated that if we choose the
variables xk as H[ji](t), (i, j) /∈ N , and T [ji](t), (i, j) ∈ N ,
yk as H[ji](t), (i, j) ∈ N , and zk as H[ju]

IR (t),H[u′i]
TI (t), (i, j) ∈

[1 : M] × [1 : N], u, u′ ∈ [1 : Q], then by [7, Lemmas 1–3],
the subspaces Ãk,j, k �= j, and C̃i,j, i ∈ Bj, will be full rank
and linearly independent almost surely. In the case of passive
IRS with correlated channel coefficients for elements, the
variables h[i]

TI(t) and h[j]
IR(t) are correlated Gaussian random

variables for different values of u (note that these vectors
are independent for different values of i and j). Without loss
of generality, we assume that matrix R is full rank because
if R is not full rank, then we can choose some elements
of h[i]

TI(t) and h[j]
IR(t), for which the covariance matrix is full

rank and other elements become a linear combination of the
mentioned elements. Then, by [34, Th. 3], there exists com-
plex Gaussian vectors ĥ[i]

TI(t) and ĥ[j]
IR(t) with independent

elements (the real and imaginary parts are also independent

and E{h[i]
TI(t)(h

[i]
TI(t))

H} = E{h[j]
IR(t)(h[j]

IR(t))
H} = I), for which

h[i]
TI(t) = C

√
μ

[i]
TIĥ

[i]
TI(t) and h[j]

IR(t) = C
√

μ
[j]
IRĥ

[j]
IR(t), where

R = CCH . Therefore, if we consider the elements of ĥ[i]
TI(t)

and ĥ[j]
IR(t) as zk in [7, Lemma 2], this part of proof remains

valid. We study Facts 2 and 3 in the following theorem.
Theorem 10: Assume that the imaginary and real parts of

the channel coefficients of the direct links are zero mean and
their probability distributions have the following properties:
∫

|h|nf
H

[ji′]
r (t)

(h)dh < ∞,

∫
|h|nf

H
[ji′]
i (t)

(h)dh < ∞, (35)
(
i′, j
) ∈ [1 : M] × [1 : N], 0 ≤ n ≤ 2.

where indices r and i denote the real and imaginary parts
of the channel coefficients, respectively. In addition, without
loss of generality, assume that ÑQ1 = NQ. Then, we have:

lim
Q→∞ Pr

{
det
(
HNHH

N

)
�= 0
}

= 1, (36)

lim
Q→∞ Pr

{FQ1

} = 1, lim
Q→∞ Pr

{FQi

} = 0, i �= 1, (37)

where the order of convergences is at least O( 1√
Q

).
Proof: The proof is provided in Appendix H.
Remark 1: We can see 1−O( 1√

Q
) ≤ Pr{EQ1} ≤ 1, because

FQ1 ⊆ EQ1 . Hence, we have:

lim
Q→∞ Pr

{EQ1

} = 1, lim
Q→∞ Pr

{EQi
} = 0, i �= 1, (38)

where the order of convergence is at least O( 1√
Q

).
Corollary 6: Theorem 10 is applicable to the

K-user interference channel studied in [7]. Therefore,
using [7, Th. 10], the sum DoF of the K-user interference
channel assisted by a passive IRS with correlated channel
coefficients for elements will be K(1 − O( 1√

Q
)).

Remark 2: For the M × N wireless X-network assisted
by an active IRS with correlated channel coefficients for
the elements, from the proof of [7, Lemma 1], we can see
that the assumption of independence of random variables
X1, . . . ,Xk with a continuous cumulative probability distri-
bution can be replaced by the assumption of the continuity
of the conditional cumulative probability functions, defined
as follows:

fi,A(h) = Pr
{
Xi ≤ h

∣∣{Xj,∀j ∈ A} : A ⊆{1, . . . , k} − {i}},∀A, i. (39)

For min{M,N} ≤ 5 and Q ≤ 20, we can numerically make
sure that det(R) �= 0 in (4). Therefore, conditions (39) are
satisfied and the sum DoF in (13) is achievable. For higher
values of M and N, for which det(R) �= 0 cannot be guar-
anteed, the statement (36) of Theorem 10 can be used,
which shows an order of at least O( 1√

Q
) for the conver-

gence of sum DoF to min(M,N), i.e., for ∀ε, δ > 0 and
Q ≥ MN − min{M,N}, there exists a number T ′ such that
for ∀T > T ′, we have:

Pr

⎧
⎨

⎩max
M∑

i=1

N∑

j=1

di,j ≥ min{M,N}×
(

Pr
{

det
(
HÑH

H
Ñ

)
�= 0
}

− δ
)
⎫
⎬

⎭ > 1 − ε,

where
[
Ñ
]

i,j
=
{

1, if i = j
0, if i �= j

.

We remind that in this case, we must use the pseudo inverse
in (25).

VI. NUMERICAL RESULT
In this section, we present numerical results to quantify the
proposed bounds. We have used a path loss model for chan-
nel coefficients. All channel coefficients are drawn from a
zero-mean complex Gaussian distribution. For the indepen-
dent channel coefficients scenario, the variance of channel

1238 VOLUME 4, 2023



FIGURE 4. Lower and upper bounds on the sum DoF of the 4 × 4 wireless X -network
assisted by an active IRS.

coefficients from the transmitters to the IRS and from the
IRS to the receivers is σ 2

1 = ( λ
4πρ1

)2 and the variance of
the direct links between each transmitter and each receiver
is σ 2

2 = ( λ
4πρ2

)2ĥ, where ρ1 denotes the distance between
the IRS and users, ρ2 represents the distance between each
transmitter and each receiver, and ĥ characterizes a block-
age in the direct links between each transmitter and each
receiver. For the correlated channel coefficients scenario,
the variance of the direct links between each transmitter and
each receiver will change, which will be discussed later. We
assumed that the carrier frequency is 5 GHz, i.e., λ ≈ 0.06m,
and ρ1 = ρ2 = 5

√
2m. In these simulations, we evaluate:

1) the impact of the number of IRS elements Q on the
asymptotic behavior of DoF (for independent IRS elements
the order of convergence is O( 1

Q ) and for correlated IRS

elements the order of convergence is O( 1√
Q

)), 2) the gap
between the upper and lower bounds for different values of
Q, and 3) the impact of distance of the IRS between other
nodes.
In Fig. 4, we plot lower and upper bounds on the sum DoF

for 4 × 4 wireless X-network assisted by an active IRS. We
note that in this figure, independent and correlated channel
coefficients for the elements of the IRS do not change the
curves. This figure demonstrates that the proposed lower
bound grows stepwise until it approaches the maximum sum
DoF, however, the upper bound grows linearly. This behavior
follows from the fact that the proposed lower bound does
not grow for the values of Q in the interval [W(N − 1) +
W(M −W) : (W + 1)(N − 1) + (W + 1)(M −W − 1) − 1].
We note that the sum DoF plotted in this figure does not
depend on the value of parameters ρ1, ρ2, and ĥ, because
the achievable sum DoF for active IRSs does not depend on
the realization of channel coefficients.
In Fig. 5, we present the lower and upper bounds on the

sum DoF of 4 × 4 wireless X-network assisted by a passive
IRS with independent and correlated channel coefficients for
elements. For the correlated IRS, we consider dH = dV = λ

4 .
In addition, for the IRS with correlated elements, to have a
fair comparison, we assume μ

[i]
TI = μ

[i]
IR = dHdV

4πρ2 because the
physical surface (upper bound of the effective surface) of
each element is equal to dHdV and the received power at the
IRS position is 1

4πρ2 . Moreover, we assume ĥ = 10−5, which

FIGURE 5. The comparison of the lower and upper bounds on the sum DoF of the
4 × 4 wireless X -network assisted by passive IRSs with independent and correlated
channel coefficients for elements, where dH = dV = λ

4 .

FIGURE 6. The comparison of lower and upper bounds on the sum DoF of the
4-user interference channel and 4 × 4 wireless X -network assisted by a passive IRS
with correlated channel coefficients for elements, where dH = dV = λ

4 .

shows a considerable blockage in direct links between each
transmitter and each receiver. We can see the performance
loss between the independent model for the IRS (which is
an approximate model for element spacing more than λ

2 ) and
the correlated model for the IRS (which is a more accurate
model for element spacing less than λ

2 and in this case
dH = dV = λ

4 ). Also, we observe the gap between lower
and upper bounds.
As we mentioned in Corollary 2, Theorem 10 can be used

for the K-user interference channel assisted by a passive IRS
with correlated channel coefficients for IRS elements [7]. In
Fig. 6, we compare lower and upper bounds on the sum
DoF of the 4-user interference channel and 4 × 4 wireless
X-network assisted by a passive IRS with correlated channel
coefficients for elements, where dH = dV = λ

4 and ĥ = 10−5.
In addition, as we mentioned in the previous paragraph, we
assume μ

[i]
TI = μ

[i]
IR = dHdV

4πρ2 . In this figure, we observe that
the achievable sum DoF for both systems approaches the
maximum value of 4 when the number of elements grows
large. In addition, we can see that the achievable sum DoF
for the 4 × 4 wireless X-network is higher than that for the
4-user interference channel.

In Fig. 7, we compare the achievable sum DoF for both
independent and correlated IRS elements, for ρTI = ρIR =
5
√

2m, and ρTI = 5
√

2m, ρIR = 3
√

2m, where ρTI and
ρIR are distances between transmitter–IRS and IRS–receiver,
respectively. We observe that when the IRS is nearer to the
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FIGURE 7. The comparison of the achievable sum DoF of the 4 × 4 wireless
X -network assisted by a passive IRS with both independent and correlated channel
coefficients for elements, where dH = dV = λ

4 , for different values of ρIR .

receivers (ρIR decreases), the achievable sum DoF increases.
This phenomenon is symmetric, thus, if ρIR is constant and
ρTI decreases, the same observation will be seen.

VII. CONCLUSION
In this paper, we studied the DoF region and sum DoF of the
time-selective M × N wireless X-network assisted by active
and passive IRSs. We obtained inner and outer bounds on
the DoF region and lower and upper bounds on the sum
DoF of the M × N wireless X-network in the presence of
active and passive IRSs. For the active IRS case, we proved
that by choosing the number of IRS elements more than a
certain finite value, the maximum min(M,N) sum DoFs can
be achieved. For the passive IRS case, we proved that by
employing a sufficiently large number of elements for the
IRS, any value less than min(M,N) is achievable for the
sum DoF. Our future research directions are summarized as
follows: 1) finding tighter bounds for both active and passive
IRSs, 2) analyzing more physically-motivated models for
IRSs, and 3) considering imperfect CSI in DoF analysis.

APPENDIX A
The basis of the proof of this theorem is the achievability
proof of [7, Th. 1]. However, interference alignment scheme
for the X-network and analysis of the inteplay between
interference cancellation and the achieved DoF for each w[ji],
is more complicated, which is the subject of this proof. We
prove this theorem in five steps.
Step 1 (Message Stream Generation): For each transmit-

ter i ∈ [1 : M], we provide N vectors of symbol streams
x̃[ji] ∈ C

dx̃[ji]×1 for each receiver (we use the notation dx̃[ji]

because this parameter is unknown in this step and we will
determine it in step 5), and T × dx̃[ji] matrix Ṽ[ji] as the
beamforming matrix, whose columns are the beamforming
vectors corresponding to each element of x̃[ji]. Therefore, we
have:

x[i] =
N∑

j=1

Ṽ[ji]x̃[ji].

Step 2 (Interference Cancellation Method and Channel
Equalization): First, we consider the set N as follows:

N = {(i, j)∣∣i ∈ [1 : M], j ∈ [1 : N], ni,j = 0
}
, (40)

then, we design the IRS such that for each t ∈ [1 : T], we
have:
∑

u∈[1:Q]

H[ui]
TI (t)H[ju]

IR (t)τ [u](t) = −H[ji](t), (i, j) ∈ N . (41)

This procedure eliminates the links from the i-th transmitter
to the j-th receiver, for (i, j) ∈ N . If we rewrite Eqs. (41)
in the matrix form, Hτ = h, we have Pr(det(H) = 0) = 0
by [7, Lemma 1], because det(H) is a non-zero polynomial in
terms of H[ui]

TI (t) and H[ju]
IR (t). Thus, set of equations (41) are

solvable almost surely. Therefore, τ [u](t) has the following
form:

τ [u](t) =
∑

(i′,j′)∈N
H[j′i′](t)P[uj′i′]

×
({
H[u′i′′]
TI (t),H[j′′u′]

IR (t) : u′ ∈ [1 : Q],
(
i′′, j′′

) ∈ N
})

, (42)

where P[uj′i′](X ) are fractional polynomials formed by vari-
ables x ∈ X . Thus, the equivalent channel becomes into the
following form:

Y [j](t) =
∑

i∈[1:M]

H[ji](t)X[i](t)

+
∑

i∈[1:M]

∑

u∈[1:Q]

X[i](t)H[ui]
TI (t)H[ju]

IR (t)τ [u](t) + Z[j](t)

=
∑

i∈[1:M]

H̃[ji](t)X[i](t) + Z[j](t).

In our interference alignment analysis, we will need the
matrix H̃[ji], which is defined as follows:

H̃[ji] = diag
(
H̃[ji](1), H̃[ji](2), . . . , H̃[ji](T)

)
.

Step 3 (Interference Alignment Equations for the j-th
Receiver): In this step, we determine the interference align-
ment equations for each receiver. For the j-th receiver and
for the set of transmitters Bj = {i|i ∈ [1 : M], ni,j = 1.}, we
have the following interference alignment equations:

∀k �= j → span
(
H̃[ji]Ṽ[ki]

)
⊆ Ãk,j,∀i ∈ Bj, (43)

where Ãk,j is a subspace, for which we have:

max
i∈Bj

DN
(
span

(
H̃[ji]Ṽ[ki]

))
= DN

(
Ãk,j

)
. (44)

We also define the message subspaces as C̃i,j =
span(H̃[ji]Ṽ[ji]) and we want subspaces C̃i,j and Ãk,j,∀k �=
j,∀i ∈ Bj, to be full rank and linearly independent. Therefore,
we can ensure that the message streams x̃[ji],∀i ∈ Bj can be
decoded by zero forcing at the j-th receiver.
Step 4 (Beamforming Matrix Design): The beamforming

matrix Ṽ[ji], which corresponds to the symbol stream x̃[ji],
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is designed as follows:

Ṽ[ji] =

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
∏

(i′,j′)∈S̃j

( ˜̃H[j′i′])αj′ i′
⎤

⎥⎦w : αj′i′ ∈ [1 : ti,jn
]
⎫
⎪⎬

⎪⎭
, (45)

where

˜̃H[ji] =
{
H̃[ji], ni,j = 1
T[ji], ni,j = 0

,

S̃j = {(i′, j′)∣∣i′ ∈ [1 : M], j′ ∈ [1 : N], j′ �= j
}
, (46)

w = [ 1 · · · 1
]H

.

Moreover, T[ji] are independent diagonal matrices with inde-
pendent diagonal entries drawn from a continuous cumulative
probability distribution. n ∈ N is an auxiliary variable, which
can go to infinity and ti,j is a parameter, which controls the
dimension of Ṽ[ji], i.e., d(Ṽ[ji]). Note that if we have ni,j = 0
for the pair of (i, j), then we must have ti,j = 0, because
there would not be any link between that pair of transmit-
ter and receiver. Equation (45) indicates that any value of
set [1 : ti,jn] can be assumed for αj′i′ , thus, the number of
columns of Ṽ[ji] will be (ti,jn)MN−M .
Step 5 (Satisfaction of the Interference Alignment

Equations, Decodability of Message Symbols and DoF
Analysis: We derive the message subspace C̃i,j, i ∈ Bj and
the interference subspaces Ãk,j, k �= j as:

C̃i,j = span

⎧
⎨

⎩

⎡

⎣
∏

(i′,j′)∈S̃C

( ˜̃H[j′i′])αj′ i′
⎤

⎦w : αj′i′ ∈ S̃C
j′i′ji

⎫
⎬

⎭, (47)

Ãk,j = span

⎧
⎪⎨

⎪⎩

⎡

⎢⎣
∏

(i′,j′)∈S̃j

( ˜̃H[j′i′])αj′ i′
⎤

⎥⎦w : αj′i′ ∈ S̃A
j′i′jk

⎫
⎪⎬

⎪⎭
, (48)

where S̃j is given by (46), and sets S̃C , S̃C
j′i′ji, and S̃A

j′i′jk are
given as follows:

S̃C = [1 : M] × [1 : N], S̃C
j′i′ji =

⎧
⎨

⎩

[
1 : ti,jn

]
, j′ �= j

{0}, j′ = j, i′ �= i
{1}, j′ = j, i′ = i

, (49)

S̃A
j′i′jk =

[
1 :

(
max

i′′,ni′′,j=1
ti′′,k

)
n+ 1

]
. (50)

Considering C̃i,j, i ∈ Bj in (47) and Ãk,j, k �= j in (48),
from the statement of [7, Lemma 2], we can see that
if we choose the variables xk as H[ji](t), (i, j) /∈ N , and
T [ji](t), (i, j) ∈ N , yk as H[ji](t), (i, j) ∈ N , and zk as
H[ju]
IR (t),H[u′i]

TI (t), i, j ∈ [1 : M] × [1 : N], u, u′ ∈ [1 : Q],
then by [7, Lemmas 1–3], the subspaces Ãk,j, k �= j, and
C̃i,j, i ∈ Bj, will be full rank and linearly independent almost
surely because if we put the column vectors of C̃i,j, i ∈ Bj,
and Ãk,j, k �= j, into a matrix and construct a square matrix
by eliminating some of its rows, then, by [7, Lemmas 2–3],
its determinant will be a non-zero polynomial constructed
by independent random variables and by [7, Lemmas 1], its
determinant will be non-zero almost surely. Note that, in the

first step, we assumed that the parameter T is sufficiently
large. In this step, we determine the value of T . For more
clarity, we review [7, Lemmas 1–3] as follows.
Reference [7, Lemma 1]: Consider k independent random

variables X1, . . . ,Xk, each constructed from a continuous
cumulative probability distribution. The probability of the
event that a nonzero polynomial Pk(X1, . . . ,Xk) constructed
from X1, . . . ,Xk with finite degree assumes the value zero
is zero, i.e., Pr{Pk(X1, . . . ,Xk) = 0} = 0.
Reference [7, Lemma 2]: Consider three sets of variables

{xi, i ∈ Ax, |Ax| < ∞}, {yi, i ∈ Ay, |Ay| < ∞}, and {zi, i ∈
Az, |Az| < ∞}. Consider the following functions:

fj =
|Ax|∏

i=1

⎛

⎝xi +
∑

i′∈Cj,i′′∈Dj

xi′yi′′P1
[i′i′′j](zk : k ∈ Az)

+ yi′′P2
[i′i′′j](zk : k ∈ Az)

⎞

⎠
aji

, (51)

(
aj1, . . . , a

j
|Ax|
)

∈ W
|Ax|, j ∈ {1, . . . , J},

where P[i′i′′j]
1 (·) and P[i′i′′j]

2 (·) are fractional polynomials and
for ∀j, we have |Cj|, |Dj| < ∞. If for ∀j, j′ with j �= j′,
(aj1, . . . , a

j
|Ax|) �= (aj

′
1, . . . , aj

′
|Ax|), then the functions fj will

be linearly independent.
Reference [7, Lemma 3]: Consider the set of nonzero

linearly independent fractional polynomials {P[j](·), j ∈
{1, . . . , J}} and consider J sets of variables Xj = {xji : i ∈
I, I ⊆ N, |I| < ∞}, j ∈ {1, . . . , J}. The determinant of the
following matrix will be a nonzero fractional polynomial:

A =

⎡

⎢⎢⎢⎣

P[1](X1) P[2](X1) · · · P[J](X1)

P[1](X2) P[2](X2) · · · P[J](X2)
...

...
. . .

...

P[1](XJ) P[2](XJ) · · · P[J](XJ)

⎤

⎥⎥⎥⎦. (52)

Finaly, we analyze the dimensions of the message and
interference subspaces. Hence, for subspaces C̃i,j, i ∈ Bj and
Ãk,j at the j-th receiver, we have:

d
(
C̃i,j
)

= (ti,jn
)MN−M

,

d
(
Ãk,j

)
=
((

max
i′′,ni′′,j=1

ti′′,k

)
n+ 1

)MN−M
, (53)

From the definition of normalized asymptotic dimension,
we have l = MN −M. Thus, the normalized asymptotic
dimension of C̃i,j and Ãk,j are:

DN
(
C̃i,j
)

= tj
MN−M,

DN
(
Ãi,j

)
=
(

max
i′′,ni′′,j=1

ti′′,k

)MN−M
= max

i′′,ni′′,j=1

(
ti′′,k

MN−M).

(54)
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Now, we consider T as following:

T = (n+ 1)MN−M, lim
n→∞

T

nMN−M = 1. (55)

By (55), for interference alignment equations (43) and (44)
to be satisfied, we must have the following conditions for
the j-th receiver:
∑

i∈Bj
DN
(
C̃i,j
)

+
∑

k �=j
DN
(
Ãk,j

)

=
∑

i∈Bj
ti,j

MN−M +
∑

k �=j
max

i′′,ni′′,j=1

(
ti′′,k

MN−M) ≤ 1, (56)

DN
(
C̃i,j
)

= ti,j
MN−M ≤ 1, DN

(
Ãk,j

)

= max
i′′,ni′′,j=1

(
ti′′,k

MN−M) ≤ 1. (57)

In addition, (55) concludes that the DoF achieved from the
i-th transmitter for the j-th receiver will be:

di,j =
DN
(
C̃i,j
)

1
= ti,j

MN−M. (58)

Therefore, by Eqs. (56)-(58), for each j ∈ {1, . . . ,N}, we
obtain region (7).

APPENDIX B
By Fano’s inequality [35, Th. 2.10.1], we have ri,j ≤
1
T I(w

[ji]; y[j]) + ε. Thus, we obtain:

M∑

i′=1

ri′,j ≤ 1

T

M∑

i′=1

I
(
w[ji′]; y[j]

)
+ ε

≤ 1

T

M∑

i′=1

I
(
w[ji′]; y[j]

∣∣∣
{
w[ji′′]∣∣i′′ ∈ [1 : i′ − 1

]})+ ε

= 1

T
I
({
w[ji′′]∣∣i′′ ∈ [1 : M]

}
; y[j]

)
+ ε

≤ 1

T
I
({
w[ji′′]∣∣i′′ ∈ [1 : M]

}
; y[j]

∣∣W−i,−j
)

+ ε (59)

which follows from the independence of messages w[ji] and
we have:

W−i,−j =
{
w[j′′i′′]∣∣i′′ �= i, j′′ �= j

}
. (60)

On the other hand, we have:
∑

j′ �=j
ri,j′ ≤ 1

T

∑

j′ �=j
I
(
w[j′i]; y[j′]

)
+ ε

≤ 1

T

∑

j′ �=j
I
(
w[j′i]; y[j′], y[j]

)
+ ε

≤ 1

T

∑

j′ �=j
I
(
w[j′i]; y[j′], y[j]

∣∣∣
{
w[ji′′]∣∣i′′ ∈ [1 : M]

}
,

{
w[j′′i]∣∣j′′ ∈ [1 : j′

]
, j′′ �= j

}
,W−i,−j

)
+ ε (61)

= 1

T

∑

j′ �=j
I
(
w[j′i]; y[j]

∣∣∣
{
w[ji′′]∣∣i′′ ∈ [1 : M]

}
,

{
w[j′′i]∣∣j′′ ∈ [1 : j′

]
, j′′ �= j

}
,W−i,−j

)

+ 1

T

∑

j′ �=j
I
(
w[j′i]; y[j′]

∣∣∣y[j],
{
w[ji′′]∣∣i′′ ∈ [1 : M]

}
,

{
w[j′′i]∣∣j′′ ∈ [1 : j′

]
, j′′ �= j

}
,W−i,−j

)
+ ε

= 1

T
I
({
w[j′′i]∣∣j′′ ∈ [1 : N] , j′′ �= j

}
; y[j]

∣∣∣
{
w[ji′′]∣∣i′′ ∈ [1 : M]

}
,W−i,−j

)

+ 1

T

∑

j′ �=j
I
(
w[j′i]; y[j′]

∣∣∣y[j],
{
w[ji′′]∣∣i′′ ∈ [1 : M]

}
,

{
w[j′′i]∣∣j′′ ∈ [1 : j′

]
, j′′ �= j

}
,W−i,−j

)
+ ε, (62)

where (61) and (62) follows from the independence of mes-
sages w[ji]. Therefore, by combining (60) and (62), we will
have:

M∑

i′=1

ri′,j +
∑

j′ �=j
ri,j′

= 1

T
I
({
w[j′′i]∣∣j′′ ∈ [1 : N] , j′′ �= j

}
,

{
w[ji′′]∣∣i′′ ∈ [1 : M]

}
; y[j]

∣∣W−i,−j
)

+ 1

T

∑

j′ �=j
I
(
w[j′i]; y[j′]

∣∣∣y[j],
{
w[ji′′]∣∣i′′ ∈ [1 : M]

}
,

{
w[j′′i]∣∣j′′ ∈ [1 : j′

]
, j′′ �= j

}
,W−i,−j

)
+ ε

= 1

T
I
({
w[j′′i]∣∣j′′ ∈ [1 : N] , j′′ �= j

}
,

{
w[ji′′]∣∣i′′ ∈ [1 : M]

}
; y[j]

∣∣W−i,−j
)

+ 1

T

∑

j′ �=j
I
(
w[j′i]; H̃[j′i]x[i] + z[j′]

∣∣∣H̃[ji]x[i] + z[j],

{
w[ji′′]|i′′ ∈ [1 : M]

}
,
{
w[j′′i]|j′′ ∈ [1 : j′

]
, j′′ �= j

}
,W−i,−j

)
+ ε

(63)

≤ log(ρ)

⎛

⎝1 +
∑

j′ �=j
∣∣∣
{
t|H̃[j′i](t) �= 0, H̃[ji](t) = 0

}∣∣∣
T

⎞

⎠+ o(log(ρ))

= log(ρ)

(
1 +

∑T
t=1
∑

j′ �=j ni,j′ (t)
(
1 − ni,j(t)

)

T

)
+ o(log(ρ)), (64)

where ni,j(t) is the element of the i-th row and the j-th
column of the network matrix N in the t-th time slot, H̃[ji] is
the diagonal matrix of equivalent channel coefficients in the
presence of the IRS, and (63) follows from the fact that con-
ditioned on {w[ji′′]|i′′ ∈ [1 : M]}, {w[j′′i]|j′′ ∈ [1 : j′], j′′ �= j},
and W−i,−j, variables x[i′], i′ �= i will be determined and
equivalent channel coefficients are known. Now, if we
assume that each network matrix Nk ∈ NQ occurs in Tak
time slots, by (64), we will have:

M∑

i′=1

ri′,j +
∑

j′ �=j
ri,j′ ≤ log(ρ) + log(ρ)

×
|NQ|∑

k=1

⎡

⎣ak
(
1 − [nk]i,j

)
⎛

⎝
∑

j′′ �=j
[nk]i,j′′

⎞

⎠

⎤

⎦+ o(log(ρ)).

(65)
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Other inequalities, which follow from the independence of
messages w[ji] can be derived as:

ri,j ≤ 1

T
I
(
w[ji]; y[j]

)
+ ε

≤ 1

T
I
(
w[ji]; y[j]

∣∣∣
{
w[j′i′]∣∣(i′, j′

) �= (i, j)
})

+ ε (66)

≤ 1

T
I
(
w[ji]; H̃[ji]x[i] + z[j]

∣∣∣
{
w[j′i′]∣∣(i′, j′

) �= (i, j)
})

+ ε

≤ 1

T
I
({
w[j′i′]|i′ ∈ [1 : M], j′ ∈ [1 : N]

}
; H̃[ji]x[i] + z[j]

)
+ ε

= 1

T
I
({

x[i′]∣∣i′ ∈ [1 : M]
}
; H̃[ji]x[i] + z[j]

)
+ ε

≤
∑

k:[nk]i,j=1

ak log(ρ) + o(log(ρ)), (67)

APPENDIX C
By Theorems 1 and 2, the following DoF matrix is
achievable, which results W + (M−W)(N−W)

M+N−2W−1 sum DoFs:
⎧
⎨

⎩

di,i = 1, i ∈ [1 : W]
di,j = 1

M+N−2W−1 , i ∈ [W + 1 : M], j ∈ [W + 1 : N]
di,j = 0, {i ∈ [1 : W], j �= i} or {i ∈ [W + 1 : M], j ∈ [1 : W]},

(68)

APPENDIX D
For the first term of (14), by Theorem 3, we have:

∑
i,j

⎛

⎝
M∑

i′=1

di′,j +
∑

j′ �=j
di,j′

⎞

⎠

= (M + N − 1)
∑

i,j

di,j

≤
∑

i,j

|NQ|∑

k=1

⎡

⎣ak
(
1 − [nk]i,j

)
⎛

⎝
∑

j′′ �=j
[nk]i,j′′

⎞

⎠

⎤

⎦

≤
|NQ|∑

k=1

ak
∑

i,j

⎡

⎣1 + (1 − [nk]i,j
)
⎛

⎝
∑

j′′ �=j
[nk]i,j′′

⎞

⎠

⎤

⎦

≤ max
∑

i,j

⎡

⎣1 + (1 − [nk]i,j
)
⎛

⎝
∑

j′′ �=j
[nk]i,j′′

⎞

⎠

⎤

⎦

≤
∑

i,j

[
1 + (N − 1)

(
1 − [nk]i,j

)]

≤ MN2 − (N − 1)(MN − Q) = MN + (N − 1)Q. (69)

The second term of (14) is obvious because the sum DoF
cannot be more than the sum DoF of the M × N MIMO
channel.

APPENDIX E
Let X be a discrete random variable with possible events
EQi , i ∈ [1 : 2|NQ|−1] and let XT be T i.i.d. realizations of X.
We denote π(EQi |XT) as the fraction of T , in which event
EQi occurs. By the law of large numbers, for each event EQi

and for each δ > 0, there exists a sequence ε(δ,T) such
that:

Pr
{∣∣∣π
(
EQi
∣∣∣XT

)
− Pr

{EQi
}∣∣∣ > δ

}
< ε(δ,T), (70)

where ∀δ > 0 → lim
T→∞ ε(δ,T) = 0. Note that inequali-

ties (65) and (67) obtained in the proof of Theorem 3 are
valid for both active and passive IRSs. The only difference
is that for passive IRSs the realizable network matrices in
inequalities (65) and (67) are constrained and depends on the
realization of channel coefficients. Hence, the region (21)
will be an outer bound for the DoF region because in
at most Pr{EQi} + δ time slots, event EQi occurs for each
i ∈ [1 : 2|NQ|−1] with a probability higher than 1 − ε for a
sufficiently large T (by (70)).

APPENDIX F
The proof of this theorem is similar to the proof of
Theorem 6. Let X be a discrete random variable with possible
events FQi , i ∈ [1 : 2|NQ|−1] and let XT be T i.i.d. realiza-
tions of X. By the law of large numbers, for each event FQi
and for each δ > 0, there exists a sequence ε(δ,T) such
that:

Pr
{∣∣∣π
(
FQi

∣∣∣XT
)

− Pr
{FQi

}∣∣∣ > δ
}

< ε(δ,T), (71)

where limT→∞ε(δ,T) = 0,∀δ > 0. We also have the
following lemma.
Lemma 1: In time slots, where FQi occurs, the DoF

region (27) can be achieved.
Proof: Proof of this lemma is the same as proof of

Theorems 1 and 2, except that we must use pseudo inverse
instead of regular inverse in Eqs. (41), but this will not
change the arguments made in the proof.

By Lemma 1 and inequality (71), for sufficiently large T
and with probability higher than 1−ε, each event FQi occurs
in at least T(Pr{FQi} − δ) time slots. Therefore, region (28)
can be achieved with probability higher than 1 − ε′. This
completes the proof.

APPENDIX G
The first term of upper bound given in (32) is obvious, thus,
we prove the second term. From Theorem 6, we have:

∑

i,j

⎛

⎝
M∑

i′=1

di′,j(T) +
∑

j′ �=j
di,j′(T)

⎞

⎠

= (M + N − 1)
∑

i,j

di,j(T)

≤
∑

i,j

2|NQ|−1∑

l=1

(
Pr
{EQl

}+ δ
)

×

⎛

⎜⎜⎝1 +

∣∣∣ÑQl

∣∣∣∑

k=1

a[l]
k

(
1 −

[
n[l]
k

]

i,j

)⎛

⎝
∑

j′′ �=j

[
n[l]
k

]

i,j′′

⎞

⎠

⎞

⎟⎟⎠
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≤
2|NQ|−1∑

l=1

(
Pr
{EQl

}+ δ
)

×
∑

i,j

⎛

⎜⎜⎝1 +

∣∣∣ÑQl

∣∣∣∑

k=1

a[l]
k

(
1 −

[
n[l]
k

]

i,j

)
(N − 1)

⎞

⎟⎟⎠

≤
2|NQ|−1∑

l=1

(
Pr
{EQl

}+ δ
)
(
MN + (N − 1) max

N[l]
k ∈ÑQl

|MN[l]
k

|
)

.

APPENDIX H
All steps of the proof of are the same as [7, Appendix H],
except [7, Lemma 5], which can be modified as the following
lemma.
Lemma 2: Assume network matrix N∗

i such that N∗
i ∈

NQ,N∗
i /∈ ÑQi , i �= 1. We rewrite (24) for N∗

i in matrix
form HN∗

i
τN∗

i
= hN∗

i
. If we assume Q > MN and define

L = HN∗
i
HH

N∗
i
, then we obtain:

Pr

⎧
⎨

⎩
1

Q
|ln,n −

Q∑

u=1

E

{
|H[uin]

TI (t)H[jnu]
IR (t)|2

}
| > δ

⎫
⎬

⎭ < ε1(Q),

Pr

{
1

Q

∣∣ln,m
∣∣ > δ

}
< ε2(Q), n �= m,

where limQ→∞ ε1(Q) = limQ→∞ ε2(Q) = 0, and
[H[1in]

TI (t)H[jn1]
IR (t) · · · H[Qin]

TI (t)H[jnQ]
IR (t) ] is the n-th row of

HN∗
i
. The order of convergence of ε1(Q) and ε2(Q) is at

least O( 1√
Q

).
Proof: By Markov inequality, we have:

Pr

⎧
⎨

⎩
1

Q

∣∣∣∣∣∣
ln,n −

Q∑

u=1

E

{∣∣∣H[uin]
TI (t)H[jnu]

IR (t)
∣∣∣
2
}∣∣∣∣∣∣

> δ

⎫
⎬

⎭

= Pr

⎧
⎪⎨

⎪⎩
1

Q2

⎛

⎝ln,n −
Q∑

u=1

E

{∣∣∣H[uin]
TI (t)H[jnu]

IR (t)
∣∣∣
2
}⎞

⎠
2

> δ2

⎫
⎪⎬

⎪⎭

≤
E

⎧
⎨

⎩

(
ln,n −

Q∑
u=1

E

{∣∣∣H[uin]
TI (t)H[jnu]

IR (t)
∣∣∣
2
})2

⎫
⎬

⎭

Q2δ2
(72)

To bound this expression, by [34, Th. 3], we have:

[
H[uin]
TI (t)

H[u′in]
TI (t)

]
=

⎡

⎢⎢⎣

√
μ

[in]
TI

(
1+[R]u,u′

)

2

√
μ

[in]
TI

(
1−[R]u,u′

)

2√
μ

[in]
TI

(
1+[R]u,u′

)

2 −
√

μ
[in]
TI

(
1−[R]u,u′

)

2

⎤

⎥⎥⎦

×
[

η
[uin]
r (t) + η

[uin]
i (t)

√−1

η
[u′in]
r (t) + η

[u′in]
i (t)

√−1

]
, (73)

[
H[jnu]
IR (t)

H[jnu′]
IR (t)

]
=

⎡

⎢⎢⎣

√
μ

[jn]
IR

(
1+[R]u,u′

)

2

√
μ

[jn]
IR

(
1−[R]u,u′

)

2√
μ

[jn]
IR

(
1+[R]u,u′

)

2 −
√

μ
[jn]
IR

(
1−[R]u,u′

)

2

⎤

⎥⎥⎦

×
[

ξ
[jnu]
r (t) + ξ

[jnu]
i (t)

√−1

ξ
[jnu′]
r (t) + ξ

[jnu′]
i (t)

√−1

]
, (74)

where η
[uin]
r (t), η[uin]

i (t), η[u′in]
r (t), η[u′in]

i (t), ξ [jnu]
r (t), ξ [jnu]

i (t),

ξ
[jnu′]
r (t), and ξ

[jnu′]
i (t) are real-valued independent zero-mean

Gaussian random variables with variance equal to 1
2 and R

is given by (4). Using (73) and (74), we have:

E

{∣∣∣H[uin]
TI (t)H[jnu]

IR (t)
∣∣∣
2
}

= E

{∣∣∣H[u′in]
TI (t)H[jnu′]

IR (t)
∣∣∣
2
}

= μ
[in]
TI μ

[jn]
IR ,

thus, for u �= u′, we obtain

E

{(∣∣∣H[uin]
TI (t)H[jnu]

IR (t)
∣∣∣
2 − E

{∣∣∣H[uin]
TI (t)H[jnu]

IR (t)
∣∣∣
2
})

×
(∣∣∣H[u′in]

TI (t)H[jnu′]
IR (t)

∣∣∣
2 − E

{∣∣∣H[u′in]
TI (t)H[jnu′]

IR (t)
∣∣∣
2
})}

= E

{∣∣∣H[uin]
TI (t)H[jnu]

IR (t)
∣∣∣
2∣∣∣H[u′in]

TI (t)H[jnu′]
IR (t)

∣∣∣
2
}

−
(
μ

[in]
TI μ

[jn]
IR

)2

=
(
μ

[in]
TI μ

[jn]
IR

)2(
2
(
[R]u,u′

)2 + ([R]u,u′
)4)

. (75)

Using (72), (75) can be bounded as follows:

E

{(
ln,n −∑Q

u=1 E

{∣∣∣H[uin]
TI (t)H[jnu]

IR (t)
∣∣∣
2
})2

}

Q2δ2
= 1

Q2δ2

× E

⎧
⎨

⎩

Q∑

u′=1

Q∑

u=1

(∣∣∣H[uin]
TI (t)H[jnu]

IR (t)
∣∣∣
2 − E

{∣∣∣H[uin]
TI (t)H[jnu]

IR (t)
∣∣∣
2
})

×
(∣∣∣H[u′ in]

TI (t)H[jnu′]
IR (t)

∣∣∣
2 − E

{∣∣∣H[u′ in]
TI (t)H[jnu′]

IR (t)
∣∣∣
2
})⎫⎬

⎭

≤
3Q

√
Q
(

1 + 2
(

1 +
(

1 − 1√
Q

)))(
μ

[in]
TI μ

[jn]
IR

)2

Q2δ2

× max

⎧
⎪⎨

⎪⎩
1

(
2π
λ
min{dH, dV }

)2
,

1
(

2π
λ
min{dH, dV }

)4

⎫
⎪⎬

⎪⎭
= ε1(Q), (76)

which follows from the fact
∑u

i=1
1
i2

≤ 1 + (1 − 1
u ). Then,

we can see that ε1(Q) goes to zero with an order of at least
O( 1√

Q
). Next, we analyze the following probability:

Pr

{
1

Q
|ln,m| > δ

}

= Pr

{
1

Q2
|ln,m|2 > δ2

}
≤ E

{|ln,m|2}
Q2δ2

=
E

{
|
Q∑
u=1

H[uin]
TI (t)H[jnu]

IR (t)
(
H[uim]
TI (t)H[jmu]

IR (t)
)∗|

2}

Q2δ2
. (77)
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In the above inequality, three cases may occur: 1) in =
im, jn �= jm, 2) in �= im, jn = jm, and 3) in �= im, jn �= jm.
Cases 1 and 2 are the same, thus, we study cases 1 and 3.
Using (73) and (74), we have:
Case 1:

E
{
H[uin]
TI (t)H[jnu]

IR (t)H[u′im]
TI (t)H[jmu′]

IR (t)

×
(
H[uim]
TI (t)H[jmu]

IR (t)H[u′in]
TI (t)H[jnu′]

IR (t)
)∗}

=
(
μ

[in]
TI

)2(
1 + ([R]u,u′

)2)
μ

[jn]
IR μ

[jm]
IR

(
[R]u,u′

)2 (78)

Case 3:

E
{
H[uin]
TI (t)H[jnu]

IR (t)H[u′im]
TI (t)H[jmu′]

IR (t)

×
(
H[uim]
TI (t)H[jmu]

IR (t)H[u′in]
TI (t)H[jnu′]

IR (t)
)∗}

= μ
[in]
TI μ

[im]
TI μ

[jn]
IR μ

[jm]
IR

(
[R]u,u′

)4
. (79)

By (78) and (79), (77) can be bounded as follows:

E

{∣∣∣
∑Q

u=1 H
[uin]
TI (t)H[jnu]

IR (t)
(
H[uim]
TI (t)H[jmu]

IR (t)
)∗∣∣∣

2
}

Q2δ2

= 1

Q2δ2
× E

⎧
⎨

⎩

Q∑

u′=1

Q∑

u=1

H[uin]
TI (t)H[jnu]

IR (t)H[u′im]
TI (t)H[jmu′]

IR (t)

×
(
H[uim]
TI (t)H[jmu]

IR (t)H[u′in]
TI (t)H[jnu′]

IR (t)
)∗
⎫
⎬

⎭

≤
2Q

√
Q
(

1 + 2
(

1 +
(

1 − 1√
Q

)))(
μ

[in]
TI μ

[im]
TI μ

[jn]
IR μ

[jm]
IR

)

Q2δ2

× max

⎧
⎪⎨

⎪⎩
1

(
2π
λ
min{dH, dV }

)2
,

1
(

2π
λ
min{dH, dV }

)4

⎫
⎪⎬

⎪⎭
= ε2(Q).

(80)

Similarly this inequality follows from the fact
∑u

i=1
1
i2

≤
1 + (1 − 1

u ). Therefore, ε2(Q) goes to zero with an order of
at least O( 1√

Q
).

This lemma reveals that the n-th diagonal element ln,n
tends to Q(E{|H[uin]

TI (t)H[jnu]
IR (t)|2} ± δ), and the absolute

value of the other non-diagonal elements of the n-th
row ln,n′ , n′ �= n are less than Qδ, with a probabil-
ity, which tends to 1. Therefore, By Gershgorin Circle
Theorem [36, Th. 7.2.1], we have:

λi

(
HN∗

i
HH

N∗
i

)
∈

⋃

n

{
x ∈ C :

∣∣∣∣x− Q

(
E

{∣∣∣H[uin]
TI (t)H[jnu]

IR (t)
∣∣∣
2
}

± δ

)∣∣∣∣ ≤
∣∣∣MN∗

i

∣∣∣Qδ

}
,

where λi(HN∗
i
HH

N∗
i
) is the i-th eigenvalue of HN∗

i
HH

N∗
i
. This

shows that if we choose a sufficiently small δ, then, HN∗
i
HH

N∗
i

will be invertible and (36) will be proved.
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