
Received 19 March 2023; revised 1 May 2023; accepted 5 May 2023. Date of publication 15 May 2023; date of current version 24 May 2023.

Digital Object Identifier 10.1109/OJCOMS.2023.3274706

Implicit Transmission of Coded Information
RANA A. HASSAN AND JOHN P. FONSEKA

Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA

CORRESPONDING AUTHOR: R. A. HASSAN (e-mail: rana.hassan@utdallas.edu)

ABSTRACT A novel implicit transmission with bit flipping (ITBF) technique is introduced to transmit
a coded stream implicitly while transmitting a coded stream explicitly over a channel. ITBF flips a set of
chosen parity bits of the explicitly transmitted stream according to an implicit stream. Numerical results
obtained using the low density parity check (LDPC) code employed in the 5G standard show that ITBF
can transmit an implicit stream up to 13.19% of the rate of transmission of the explicit stream without
significantly sacrificing performance, or increasing the decoding complexity or the decoding delay. The
ITBF is combined with collection of punctured code decoding (CPCD) to form implicit transmission with
collection decoding (ITCD) schemes that can further increase the rate of transmission on the implicit
stream without increasing the decoding delay, however, with a slight increase in the decoding complexity.
It is demonstrated with the LDPC code in the WiFi standard that ITCD can transmit an implicit stream
at up to 25% of the rate of transmission of the explicit stream.

INDEX TERMS LDPC codes, implicit transmission, rate enhancement.

I. INTRODUCTION

ALMOST all current communication systems employ
some form of error control coding to improve the relia-

bility of transmission. LDPC codes, turbo codes, polar codes,
etc. are commonly used in current systems [1], [2], [3], [4].
The studies so far have focused primarily on searching for
good coding techniques and searching for good high-rate
codes within those coding techniques [2], [5]. Studies have
also focused on improving the decoding of coded signals
to achieve good performance with low decoding complexity
and decoding delay [6], [7].
Instead of the traditional methods of searching for good

codes, it is highly desirable to be able to transmit coded
bits implicitly, without transmitting them physically over a
channel, while transmitting a coded stream explicitly over
that channel. It would be highly beneficial if such schemes
can be developed without increasing the decoding complexity
or the decoding delay while maintaining a significant data
rate on the implicitly transmitted stream. If such implicit
transmission methods can be developed, they can preferably
be used with known powerful codes that have been derived
using traditional methods.
In this study, we present such a scheme, referred to as

implicit transmission with bit flipping (ITBF), to transmit
a second coded stream (referred to here as the secondary

stream or the implicit stream) implicitly without physically
transmitting it over a channel during the transmission of a
first coded stream (referred to here as the primary stream
or the explicit stream) over that channel. In this study, we
present a simple way to transmit a secondary stream implic-
itly without significantly sacrificing the performance of the
primary stream or increasing the decoding delay.
In [8], [9], implicit transmission has been proposed to

transmit a turbo-coded implicit stream while transmitting
a turbo-coded stream explicitly. To the best of our knowl-
edge, [8] is the first publication that presents a technique
to transmit a coded stream implicitly while transmitting a
coded stream explicitly. The other known techniques that use
implicit transmission, such as spatial modulation (SM) [10]
and index modulation (IM) [11], [12]. SM adds a new spa-
tial domain using additional antennas to transmit additional
information implicitly, while IM adds indices to the trans-
mitted symbols to transmit additional information bits. Even
though schemes presented in [8], [9] can transmit a stream
implicitly, the decoding of the two streams need to be done
jointly by running iterations between the explicit stream
and the implicit stream. As a result, the receiver proposed
in [8] increases the decoding complexity and the decod-
ing delay significantly. Specifically, the schemes presented
in [8], [9] demand an increase in the decoding complexity

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

1170 VOLUME 4, 2023

HTTPS://ORCID.ORG/0000-0003-0342-5154
HTTPS://ORCID.ORG/0000-0002-0224-2391

and the decoding delay by a factor of at least 6 to 10
due to the transmission of the implicit stream. Further, the
schemes presented in [8], [9] are: (a) dependent on the
coding technique; it generates attractive schemes with turbo-
coded systems but fails with codes such as LDPC codes,
(b) requires use of codes that are similar in coding power
on the explicit and implicit streams due to the exchange of
information between them during decoding.
In this study, we describe a general ITBFmethod to transmit

a secondary coded stream implicitly during the transmission
of a primary coded stream explicitly. Throughout this paper,
the primary stream is also referred to as the explicit stream
while the secondary stream is also referred to as the implicit
stream. In contrast to the schemes in [8], [9], the proposed
ITBF method here treats the explicit and the implicit streams
independently. Therefore, ITBF does not require iterations that
involve both the explicit and implicit streams as in [8], [9],
and as a result, does not increase the decoding delay or
significantly increase the decoding complexity. In particular,
our contributions in this work are as follows.

• We introduce ITBF method that transmits an explicit
coded stream over a channel by performing close to
the performance that can be achieved by transmitting
that explicit coded sequence without any flips.

• We show that ITBF simultaneously allows the trans-
mission of an independent implicit coded bit stream
without transmitting any of its coded bits over the
channel while maintaining better performance on that
implicit stream than that on the explicit stream, and
maintaining a noticeable fraction of the transmission
rate of the explicit stream on that implicit stream.

• We demonstrate that ITBF schemes are further
improved by combining them with collection of punc-
tured code decoding (CPCD), presented in [13], [14]
and summarized later in Section V, to form a new
class of hybrid ITBF/CPCD schemes which are sim-
ply referred to as implicit transmission with collection
decoding (ITCD) schemes.

• We demonstrate that ITCD schemes maintain better
performance both on the explicit and implicit streams,
and maintain a higher data rate on the implicit stream
compared to ITBF schemes.

• Simulation results presented later in Section V justify
all contributions listed above related to both ITBF and
ITCD.

The rest of the paper is organized as follows. Section II
describes the proposed ITBF signaling method. Decoding of
explicit and implicit streams are discussed in Section III.
Section IV discusses the proposed hybrid ITBF/CPCD
(ITCD) method. Section V presents simulation results and
discusses the potential applications of the proposed schemes.
The paper is concluded in Section VI.

II. ITBF METHOD
In order to describe the ITBF technique, let us consider a
code that generates n coded bits corresponding to every k

FIGURE 1. General structure of an ITBF transmitter.

message bits, where k < n. Then it is possible to choose
l(< (n − k)) bits out of (n − k) parity bits that can be
removed from the coded sequence and yet correctly recover
the original message sequence of length k. These l bits can
preferably be chosen by using a good known punctured code
generated from code C. For example, let us consider a code
C with rate 1

3 , i.e., n = 3k. Then consider a rate 1
2 punctured

code generated from that rate 1
3 code C. Note that in the

construction of the rate 1
2 punctured code, n/6 coded bits of

C are identified and removed. Hence, these n/6 coded bits
can be selected as the l = n/6 coded bits of C. Of course,
depending on the selected punctured code, the set of l coded
bits and its length can change. Throughout this study, these
l bits are referred to as the chosen bits. Therefore, a set of
chosen bits of a code C can be pre-selected by preferably
considering a punctured code generated from the code C or
by using any other method.
Fig. 1 illustrates the structure of the transmitter for

the proposed ITBF scheme. In ITBF, an explicit message
sequence mEx and an implicit message sequence mIm are
separately encoded according to two codes CEx and CIm to
generate two coded streams vEx and vIm respectively. Without
loss of generality, in this discussion, we consider both CEx
and CIm to be the same code C, i.e., CEx = CIm = C.
However, as stated before, CEx and CIm can be two inde-
pendent codes. Then identify the l number of pre-selected
chosen bit positions of vEx. Then, according to l bits of the
coded implicit stream vIm, flip the chosen bits of explicit
coded stream vEx using a bit flipping unit (BFU) as illus-
trated in Fig. 1. Specifically, BFU flips each of these chosen
bits of vEx if the corresponding coded bit of the implicit
stream is a 1 (or a 0) and not flipped if the corresponding
coded implicit bit is a 0 (or a 1). Fig. 2 illustrates an exam-
ple of the flipping operation performed by the BFU when
l = 6. The resulting sequence v′Ex on the explicit stream is
then transmitted over the channel. Note that (a) the transmit-
ted sequence v′Ex and the coded sequence vEx have the same
length n, (b) none of the coded bits of vIm are transmitted
over the channel, however, the effect of the corresponding l

VOLUME 4, 2023 1171

HASSAN and FONSEKA: IMPLICIT TRANSMISSION OF CODED INFORMATION

FIGURE 2. Illustration of the actions taken by BFU when l = 6.

bits of vIm that determined the flipping of the l chosen bits
of vEx, is transferred by v′Ex, and (c) following (a) and (b),
the information of the explicit stream contained in vEx and
the information of the corresponding l coded bits of vIm are
carried by v′Ex. Therefore, upon transmitting �n/l� number
of blocks of v′Ex, information of all coded bits of one full
codeword of vIm will be available allowing the receiver to
decode a codeword of vIm. Note also that, due to the flip-
ping of the chosen bits, the transmitted sequence v′Ex may
very well not be a valid coded sequence of CEx. It is men-
tioned here that bit flipping is known in the literature as a
decoding method for LDPC codes similar to the min-sum
decoding algorithm; see bit-flipping decoding [15] and min-
sum decoding [16], [17]. However, bit flipping considered
here is completely different as it is used at the transmit-
ter to incorporate an implicit stream, whereas bit flipping
discussed in the literature [15] deals solely with decoding.

III. DECODING OF EXPLICIT AND IMPLICIT STREAMS
The proposed ITBF receiver constructed here is based on the
following observation: Even though the transmitted sequence
v′Ex may not be a valid codeword of CEx, any existing invalid-
ity is caused only within the l chosen bits due to the flipping
of the bits that occurred prior to transmission. Therefore,
if the received signal is initially decoded as a punctured
code by ignoring those l chosen bits, the explicit message
sequence mEx and the corresponding explicit coded sequence
vEx can be correctly decoded. Further, this decoding provides
information about the l chosen bits of vEx (without any flips)
while the received signal provides information of v′Ex (with
the flips).
Fig. 3 shows the general structure of the ITBF decoder

proposed here based on the above observation to recover both
the explicit and the implicit streams. Below we explain the
steps involved in ITBF decoding. Throughout this discussion,
we focus primarily on the l chosen bits. In order to assist
that discussion, we denote the following quantities of the l
chosen bits:
(a) received signal values by y1, y2, . . . , yl,
(b) coded sequence values of vEx (prior to flipping) by

vEx1 , vEx2 , . . . , vExl , and
(c) transmitted sequence v′Ex (after flipping) by v′Ex1

,

v′Ex2
, . . . , v′Exl .

A. DECODING PROCEDURE
The decoding procedure is described using the following
four steps.

1) Initial Decoding: Initially, decode C as a punctured code
by removing the l chosen bits from the received signal.
If iterative decoding is used (such as in the decoding
of a LDPC code), run initially a set of iterations of the
punctured code. The number of initial iterations used
for the punctured code can be pre-selected or adoptively
varied depending on the signal to noise ratio or as the
iterations progress. Note that the initial decoding also
provide likelihood values of the l chosen bits, which
are denoted here by LvEx(i) , i = 1, 2, . . . , l, and they
represent the likelihood values of the encoded sequence
vEx prior to flipping at the transmitter.

2) Detecting Flips: In order to decide whether or not each
of the l chosen bits is flipped, hard decode each of
the l chosen bits of vEx, which are denoted by bi,
i = 1, 2, . . . , l, using the likelihood values of those
bits found in step 1. Additionally, for each of the l
chosen bits, hard decode the corresponding received
signal value yi, i = 1, 2, . . . , l, to determine the hard
decoded received signal value, yih, i = 1, 2, . . . , l that
correspond to the flipped sequence v′Ex. Then, using bi
and yih values, determine fi as

fi =
{

0 bi = yih
1 bi �= yih

(1)

to indicate whether the ith bit was likely to have been
flipped or not prior to transmission. Specifically, if fi =
0, the ith chosen bit is not likely to have been flipped
while if fi = 1, it is likely that the ith bit has been
flipped. Note that fi values, which use the hard decoded
received signal, are corrupted by channel noise similar
to a received signal.

3a) Since fi, i = 1, 2, . . . , l, found in step 2, indicates
whether or not the ith chosen bit has been flipped,
it can then be used to modify the received sequence to
correspond to vEx by reversing the effect of the flips
for the decoding of the explicit stream. Specifically, the
received signal yi can be corrected for the l chosen bits
in the decoding of the explicit stream as (1 − 2fi)yi,
i = 1, 2, . . . , l.

3b) In case of iterative decoding, upon reversing the effects
of the flips, continue decoding of C as a full code (not
as a punctured code) by also including the corrected
received signal values of the chosen bits.

4) Recall that the flipping of the l chosen bits were decided
at the transmitter according to the implicit coded stream.
Further, observe that if the ith implicit bit, Imi, had actu-
ally been transmitted over the channel with the same
noise experienced by yi, it would have been received as
(1 − 2Imi)|yi|.1 Hence, an artificially created received

1. It is assumed here that a positive signal value is used for Imi = 0 and
a negative signal value is used for Imi = 1.

1172 VOLUME 4, 2023

signal value can be obtained for each implicit coded bit
Imi, i = 1, 2, . . . , l as (1 − 2fi)|yi|. Note that depend-
ing on the value of fi (0 or 1), the artificially created
channel value is positive or negative suggesting that the
ith coded implicit bit has not been flipped or flipped
respectively. Even though fi values are available after
the initial decoding, a more reliable set of fi vales in (1)
can be calculated by using the LvEx(i) values at the end
of the decoding of the explicit stream in step 3b. These
re-calculated fi values can be used to calculate the
artificially created received signal values for the cor-
responding l coded implicit bits. Since fi decisions are
noisy, the artificially created received signal values of
the Imi, i = 1, 2, . . . , l, are also noisy similar to chan-
nel information extracted from a noisy received signal.
Therefore, in order to maintain good performance on the
implicit stream, it is necessary to employ an error con-
trol code on the implicit stream similar to the explicit
stream.

The first three steps describe the decoding of a single
codeword of the explicit stream. It is noticed that if the
initial decoding step 1 and the calculation of fis in step 2 are
reliable then step 3a would provide a reliable explicit stream
that would perform almost as reliably as if no bits were
flipped prior to transmission. It is also seen that when every
codeword of the explicit stream (n coded bits) is transmitted
over the channel, an artificially created channel information
of l coded bits of the implicit stream can be extracted without
transmitting any of those l bits over the channel.

B. DECODING STRATEGY
If C is a small code, it can be decoded in a maximum
likelihood (ML) sense in the initial decoding of C in step 1
and the decoding of C as a full code in step 3. However, this
doubles the decoding complexity and the decoding delay of
the explicit stream.
For a large code, such as an LDPC code and most other

codes used in practice, ML decoding is not possible and
instead iterative decoding is commonly used. In such situa-
tions, the initial decoding in step 1 and the full decoding in
step 3b can be done in an efficient manner without increas-
ing the overall decoding delay or the decoding complexity.
Throughput this study, the decoding delay is measured in
terms of the total number of iterations while the decod-
ing complexity is measured by the number of times the SPA
algorithm is called during decoding thereby disregarding any
delay or complexity added by the calculation of fis and the
correction of the flipped bits of the explicit stream. Focusing
on the iterative decoding of C, a pre-selected N1 number of
iterations in step 1 and a pre-selected N2 number of iterations
in step 3b can be used. The values of N1 and N2 can be cho-
sen to maintain the total number of iterations N = (N1 +N2)

close to the number of iterations commonly used without
ITBF thereby maintaining about the same decoding delay
and the decoding complexity.

IV. HYBRID ITBF/CPCD (ITCD) SCHEMES
Collection of punctured code decoding (CPCD) has
been recently introduced to improve the decoding of a
code [13], [14]. It has been shown that CPCD can sig-
nificantly improve the performance of quasi-cyclic LDPC
(QC-LDPC) codes [13], [14]. In this section, we explain
how ITBF can be combined with CPCD to generate
ITCD schemes that can transmit a higher data rate on the
implicit stream than using ITBF alone while also improving
performance on both explicit and implicit streams.

A. REVIEW OF CPCD [13]
In CPCD, a code C (which is considered as the mother
code) is viewed as a collection of a pre-selected number of
D punctured codes, Ci, i = 1, 2, . . . ,D, generated from that
mother code C [13]. Considering C in systematic form, all
n coded bits are viewed as a collection of the message bits
and the set of its parity bits p. In CPCD, each punctured
code Ci is constructed from all message bits and a portion of
the parity bits pi, i = 1, 2, . . . ,D. In CPCD, pis are formed
by dividing all parity bits p into non-overlapping segments
so that ∪pi = p. During decoding, each Ci is separately
decoded by using the received signal corresponding to its
own coded bits (message portion and its corresponding parity
portion pi) and also using the extrinsic information of all
bits of Ci provided by the remaining punctured codes, Cj,
j = 1, 2, . . . ,D, i �= j.

B. ITCD SCHEMES
It is seen from Sections II and III that ITBF uses a punc-
tured code in the initial decoding (step 1). Therefore, the
initial decoding in ITBF inherently consists of the following
two punctured codes of C: (a) the punctured code used in
the initial decoding (say C1), and (b) the code formed by
the message bits and the chosen bits that are not used in the
initial decoding (say C2). However, C2 becomes available
after performing decoding steps 1, 2 and 3a. Upon determin-
ing C2, the decoding in ITBF was continued by considering
C as a full code. Instead, decoding can be continued as in
CPCD by considering C1 and C2 as two punctured codes.
An ITBF scheme that switches to CPCD decoding after step
3a is considered as a hybrid ITBF/CPCD scheme or sim-
ply as an ITCD scheme. The block diagram of an ITCD
decoder will be very similar to the ITBF decoder shown in
Fig. 3 with the following two changes: (a) the “Decode CEx
as a punctured code” block changed to “Decode C1”, and
(b) “Decode CEx as a full code” block changed to “Employ
parallel CPCD with C1 and C2 as punctured codes”.
However, the CPCD technique considered in ITCD

has differences between the CPCD technique discussed
in [13], [14]. In order to elaborate on the differences, let us
first recall that all CPCD schemes considered in the numeri-
cal results in [13], [14] have used the same number of parity
bits in all of their punctured codes and they all started to
decode from the very first CPCD iteration. However, in ITBF,
C2 becomes available for decoding only after N1 iterations to

VOLUME 4, 2023 1173

HASSAN and FONSEKA: IMPLICIT TRANSMISSION OF CODED INFORMATION

FIGURE 3. General structure of the ITBF decoder.

complete steps 1 through 3a, and further, the number of par-
ity bits of C2 is generally smaller than that of C1. Therefore,
in order to employ CPCD in ITBF, we first introduce three
separate special types of CPCD as follows:

(a) Unbalanced CPCD (U-CPCD) that employs different
numbers of parity bits in different punctured codes.

(b) Staggered CPCD (S-CPCD) that starts decoding dif-
ferent punctured codes at different numbers of CPCD
iterations.

(c) Unbalanced-staggered CPCD (US-CPCD) is a hybrid of
U-CPCD and S-CPCD that employs different numbers
of parity bits and starts decoding different punctured
codes at different numbers of CPCD iterations.

In ITBF, the CPCD employed is the US-CPCD type of
CPCD. Therefore, ITBF schemes switch to US-CPCD after
completing steps 1 through 3a in the decoding of the first
punctured code C1. All ITCD schemes presented in this
study employ parallel CPCD. Further, in contrast to the par-
allel CPCD presented in [13] that can reduce the decoding
delay and maintain the same decoding complexity, paral-
lel CPCD that maintains the same delay as normal SPA
decoding is used here to achieve improved performance.
Therefore, ITCD schemes presented here maintain about the
same decoding delay but slightly increase the decoding com-
plexity due to the decoding of both C1 and C2 simultaneously
during the CPCD portion of decoding. If the number of iter-
ations in the initial decoding is 8 with a total of 24 iterations,
the increase in the decoding complexity will be about 67%,
however, without an increase in the decoding delay. In gen-
eral, if an ITCD scheme employs CPCD with D number of
parallel punctured codes with N1 number of initial decoding
iterations followed by N2 number of CPCD iterations, the
decoding complexity would be increased, compared to SPA
decoding, by a factor of (N1 + DN2)/(N1 + N2), however,
without any increase in decoding delay.

V. SIMULATION RESULTS AND DISCUSSION
A. BIT ERROR RATE (BER) SIMULATIONS
In this section, we present numerical results to demonstrate
the following:

FIGURE 4. The parity check matrix H for 5G NR LDPC codes.

(a) ITBF can transmit a separate implicit coded stream
without sacrificing any significant performance on both
the explicit and implicit streams.

(b) ITCD can transmit a higher data rate on the
implicit stream while maintaining the same or better
performance on both the explicit and implicit streams
compared to traditional decoding of the explicit stream
without any implicit stream.

Further, the numerical results demonstrate that additional
implicit stream can be transmitted without any increase in the
decoding complexity and decoding delay in ITBF schemes. It
is also demonstrated that the ITCD schemes, compared with
ITBF schemes, can transmit an implicit stream at a higher
data rate while also performing better on both explicit and
implicit streams without increasing decoding delay, however,
with a slight increase in the decoding complexity.
In order to demonstrate (a), we consider the LDPC code

employed in the 5G NR standard. In the LDPC code
employed in 5G NR, it is easier to identify the chosen
bits needed in ITBF due to its structure. Specifically, the
parity check matrix H of the LDPC code in 5G NR has a
sub-block structure, shown in Fig. 4, where, each sub-block
is a z × z matrix that is either an all-zero matrix or an
identity matrix, and the value of z is chosen depending on
the application. The segment A corresponds to the message
bits. Segment B corresponds to the first set of parity bits;
its first column has weight 3, while its other columns have
a dual diagonal structure. Both segments A and B together
represent the highest code rate that can be realized in 5G
NR LDPC code. Segment C is an all-zero matrix. Segment
D is called an extension region and its main purpose is to
support Incremental Redundancy Hybrid Automatic Repeat
Request (IR-HARQ). Segment E is an identity matrix. In 5G
NR, two separate versions of the LDPC code with the same
structure shown in Fig. 4 are employed; base graph 1 that
employs a 46 by 68 matrix and base graph 2 that employs
a 42 by 52 matrix in terms of sub-blocks [18]. In 5G NR,
the rate adjustment is done by shortening the H matrix by
simply removing sub-blocks along columns from the identity
portion E (starting from the right most column). Therefore,
puncturing in 5G NR can be easily done by puncturing the

1174 VOLUME 4, 2023

FIGURE 5. BER variations of the explicit and the implicit streams of the ITBF
schemes constructed from the rate 0.2083 code that transmits 13.19% rate on the
implicit stream compared to the transmission rate of the explicit stream.

FIGURE 6. BER variations of the explicit and the implicit streams of the ITBF
schemes constructed from the rate 1

4 code that transmit 5.3% rate on the implicit
stream compared to the transmission rate of the explicit stream.

desired number of sub-blocks (which determine the chosen
bits in ITBF) from the end of the codeword.
Figs. 5 and 6 show the BER variations of the explicit

and the implicit streams of two separately constructed ITBF
schemes starting from the 5G LDPC code that uses the base
graph 2 and employs 16-QAM for transmission. The ITBF
scheme in Fig. 5 uses z = 256 and punctures out two sub
blocks from the right of H to result in a 5G code C with
rate 0.2083. Further, the ITBF scheme considered in Fig. 5
that employs the above H matrix uses 1

6 fraction of its parity
bits of the code as chosen bits thereby maintaining a 13.19%
transmission rate on the implicit stream compared with the
transmission rate of the explicit stream. Similarly, the ITBF
scheme in Fig. 6 also uses z = 256 and punctures out twelve
sub blocks from H to result in a code C with rate 1

4 . The
ITBF scheme considered in Fig. 6 employs that H matrix
and uses 1

14 fraction of parity bits of the code as chosen bits
thereby maintaining a 5.3% transmission rate on the implicit
stream compared with the transmission rate of the explicit
stream. The ITBF schemes in Figs. 5 and 6 use 8 initial
iterations and 24 total iterations in their BER variations. The

FIGURE 7. Comparison of B-CPCD, U-CPCD, S-CPCD and US-CPCD schemes
constructed from the rate 1

2 code with 16-QAM transmission.

BER variations of the ITBF schemes are compared with the
full code and the punctured code (used in the initial decod-
ing) with the same number of 24 iterations. It is seen from
Figs. 5 and 6 that the explicit stream of the ITBF schemes
can perform better than the BER variation of the punctured
in isolation (demonstrating that the proposed identification
of the flipped positions and the correction of the received
signal values are indeed helping the decoder), and further,
the BER variation of the explicit stream gets closer to the
SPA decoding of the full-code. It is also seen that the BER
variation of the implicit stream is better than that of the
explicit stream and close to that of the BER variation of the
full code. Thus, the proposed ITBF technique can transmit
a secondary coded stream implicitly without noticeably sac-
rificing performance while maintaining the same decoding
delay and the decoding complexity which are measured in
terms of the total number of iterations.
Since ITCD employs CPCD, and it is known that QC-LDPC

codes perform well with CPCD [13], [14], we consider the
QC-LDPC code with the length 1944 employed in the WiFi
standard [19] in all numerical results related to ITCD. Since
ITCD employs US-CPCD, we first compare the BER variation
of the known CPCD technique in [13], that employs balanced
distribution of parity bits among punctured codes and called
here as the balancedCPCD (B-CPCD),with those ofU-CPCD,
S-CPCD and US-CPCD with two punctured codes (D = 2).
All U-CPCD schemes considered here employ 75% of parity
bits in the first punctured code C1 and the remaining 25% of
parity bits in the second punctured code C2. In all S-CPCD
schemes the first punctured code C1 runs 8 iterations before
CPCD decoding begins with a total of 24 iterations. Fig. 7
shows the BER variation of B-CPCD, U-CPCD, S-CPCD, and
US-CPCD in the decoding of rate 1

2 (972, 1944) LDPC code
in WiFi when the symbols are transmitted using 16-QAM.
Fig. 8 shows similar results when the code rate is 2

3 and 16-
QAM is used for transmission. It is seen from Figs. 7 and 8
that US-CPCD schemes can actually perform better than all
other CPCD counterparts.

VOLUME 4, 2023 1175

HASSAN and FONSEKA: IMPLICIT TRANSMISSION OF CODED INFORMATION

FIGURE 8. Comparison of B-CPCD, U-CPCD, S-CPCD and US-CPCD schemes
constructed from the rate 2

3 code with 16-QAM transmission.

FIGURE 9. BER variations of the explicit and the implicit streams of the ITCD
schemes constructed from the rate 1

2 code that transmits 12.5% and 25% rate on the
implicit stream compared with the transmission rate of the explicit stream.

All ITCD schemes considered here employ 8 initial itera-
tions followed by US-CPCD with 2 punctured codes (D = 2)

with 4 CPCD iterations and run 4 sub-iterations in each punc-
tured code in every CPCD iteration. Therefore, all ITCD
schemes considered here have the same decoding delay
compared with regular SPA decoding with 24 iterations but
increases the decoding complexity by about 67% due to the
use of 2 punctured codes during the US-CPCD portion of
the decoding. Fig. 9 shows the BER variations of the explicit
and the implicit streams separately of two ITCD schemes
generated from the rate 1

2 LDPC code employed in WiFi
when 16-QAM is used for transmission. Specifically, the
two ITCD schemes maintain 12.5% and 25% transmission
rate on the implicit stream compared with the transmission
rate of the explicit stream. The ITCD scheme that transmits
12.5% rate on the implicit stream employs US-CPCD with
75%, 25% split of parity bits between the two punctured
codes C1 and C2. Similarly, the ITCD scheme that transmits
25% rate on the implicit stream employs US-CPCD with
50%, 50% split of parity bits between C1 and C2 (essen-
tially making it similar to S-CPCD). Fig. 10 shows similar
BER variations of two ITCD schemes generated from the

FIGURE 10. BER variations of the explicit and the implicit streams of the ITCD
schemes constructed from the rate 2

3 code that transmits 8.3% and 16.6% rate on the
implicit stream compared with the transmission rate of the explicit stream.

rate 2
3 code employed in the WiFi standard with 16-QAM

transmission. Since the number of parity bits are smaller in
the rate 2

3 code, ITCD schemes presented in Fig. 10 respec-
tively transmit a lower rate, specifically 8.3% and 16.6%, on
the implicit stream compared with the rate on the explicit
streams. It is seen that Fig. 5 and Fig. 6 verify the claim
made in Section I about the contribution that ITBF can make.
Similarly, Fig. 9 and Fig. 10 verify the claim that was made
in Section I about the contribution that ITCD can make.

B. APPLICATIONS OF ITBF AND ITCD
ITBF and ITCD can be employed in any communication
system to improve the overall transmission rate by transmit-
ting a secondary coded stream implicitly. It is seen from the
BER variations in Section V-A that ITBF schemes can trans-
mit a secondary coded stream implicitly without noticeably
sacrificing performance while maintaining the same decod-
ing delay and the decoding complexity. ITCD achieves the
same goal as ITBF, but with a slight increase in decoding
complexity. However, ITCD can maintain a higher data rate
on the implicit stream while maintaining better or similar
performance on both the implicit and explicit streams.
Since both explicit and implicit streams of both ITBF

and ITCD schemes operate independently, different types of
codes, different code rates, and desired BER values can be
independently employed on the two streams. However, based
on the common approach of identifying the chosen bits using
a punctured code of the mother code, the proposed ITBF and
ITCD techniques are more suitable for codes that can gen-
erate powerful punctured codes. However, it is important to
note that codes employed in most applications, such as 5G
NR and WiFi, have a rate adjustment feature which is usu-
ally implemented by puncturing the lowest rate code that has
been chosen for the application. Therefore, codes employed
in most applications are known to have powerful punc-
tured codes. ITBF and ITCD techniques are highly attractive
for multimedia applications. In multimedia applications, the

1176 VOLUME 4, 2023

FIGURE 11. Encoding and decoding of two layer encrypted message.

explicit stream and the implicit stream can represent two dif-
ferent types of multimedia streams. For example, the explicit
stream could transmit a video signal while the implicit
stream transmits an audio signal thereby eliminating the
need for a separate channel for the transmission of the audio
signal.
Another important application of ITBF and ITCD is in

information security. Different types of encryption methods
are used in information security [20]. The transmission of
an independent implicit stream in ITBF and ITCD allows
a secure communication system to add an additional layer
of encryption through ITBF or ITCD. Fig. 11 illustrates
how an additional layer of security can be embedded while
transmitting an encrypted message. This can be achieved
by forming the implicit stream by choosing bits from the
original message stream according to a confidential implicit
bit selection (IBS) process as illustrated in Fig. 11. The
traditional form of encryption can be employed on the
explicit stream which is referred to here as the first layer
of encryption. The second layer of encryption is added
from the confidential IBS process. Note that, even if an
intruder somehow penetrates the first layer of encryption
and recovers the explicit information stream, the intruder is
still unable to recover the original message stream without
the knowledge of the IBS process. Therefore, the sec-
ond layer of encryption introduced by the IBS process in
the selection of the implicit message stream can signifi-
cantly enhance the security of an information transmission
system.

VI. CONCLUSION
A novel implicit transmission with bit flipping (ITBF) tech-
nique has been introduced to transmit a secondary coded
stream implicitly while transmitting a primary coded stream
explicitly over a channel. The ITBF technique can employ
any coding technique on the primary and secondary channels
independently. ITBF flips a set of chosen parity bits of the
explicit stream according to the implicit stream. Using an
initial decoding method that excludes the chosen bits, the
receiver (a) corrects whether or not each of the chosen bit

has been flipped, (b) corrects the portion of the chosen bits
of the explicit received stream (as if no bits were flipped
before transmission) to continue decoding of the explicit
stream, and (c) extracts artificial channel information for the
corresponding implicit bits. Numerical results presented for
the LDPC code employed in 5G NR demonstrate that the
implicit stream, that employs the same code employed on
the explicit stream, can transmit up to 13.19% of the rate
of the explicit stream on the implicit stream without signif-
icantly sacrificing performance, or increasing the decoding
complexity or the decoding delay.
The ITBF method has been further improved by com-

bining it with CPCD [13] to form ITCD schemes. ITCD
schemes move to CPCD upon correcting the flipped bits.
Specifically, CPCD decoding in ITCD considers the follow-
ing two punctured codes: (a) the message and the parity
bits excluding the chosen bits, and (b) the message and the
corrected chosen bits. Since CPCD performs better than tra-
ditional decoding, ITCD can transmit a higher data rate on
the implicit stream while maintaining better or the same
performance as traditional decoding without increasing the
decoding delay, however, with a slight increase in the decod-
ing complexity. Numerical results presented for the LDPC
code in the WiFi standard show that ITCD can transmit a
secondary stream implicitly with up to a 25% rate of the
explicit stream on the implicit stream without sacrificing
performance, or increasing the decoding delay but with a
slight increase in the decoding complexity.

REFERENCES
[1] W. E. Ryan et al., An Introduction to LDPC Codes, Univ. Arizona,

Tucson, AZ, USA, 2004.
[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit

error-correcting coding and decoding: Turbo-codes.1,” in Proc. IEEE
Int. Conf. Commun., vol. 2, 1993, pp. 1064–1070.

[3] S. J. Johnson, Iterative Error Correction: Turbo, Low-Density Parity-
Check and Repeat-Accumulate Codes. Cambridge, U.K.: Cambridge
Univ. Press, 2010.

[4] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf.
Theory, vol. 59, no. 10, pp. 6562–6582, Oct. 2013.

[5] J. Wolf, “Efficient maximum likelihood decoding of linear block codes
using a trellis,” IEEE Trans. Inf. Theory, vol. 24, no. 1, pp. 76–80,
Jan. 1978.

[6] M. P. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity
iterative decoding of low-density parity check codes based on belief
propagation,” IEEE Trans. Commun., vol. 47, no. 5, pp. 673–680,
May 1999.

[7] H. Sankar and K. R. Narayanan, “Memory-efficient sum-product
decoding of LDPC codes,” IEEE Trans. Commun., vol. 52, no. 8,
pp. 1225–1230, Aug. 2004.

[8] E. Rezaei, J. P. Fonseka, and Y. Bo, “Throughput enhancing con-
catenated codes,” IET Commun., vol. 13, no. 9, pp. 1278–1286,
2019.

[9] E. Rezaei and J. P. Fonseka, “Throughput enhancing concatenated
codes with a second uncoded implicit stream,” Electron. Lett., vol. 56,
no. 1, pp. 32–35, 2020.

[10] M. Wen et al., “A survey on spatial modulation in emerg-
ing wireless systems: Research progresses and applications,”
IEEE J. Sel. Areas Commun., vol. 37, no. 9, pp. 1949–1972,
Sep. 2019.

[11] T. Mao, Q. Wang, Z. Wang, and S. Chen, “Novel index modulation
techniques: A survey,” IEEE Commun. Surveys Tuts., vol. 21, no. 1,
pp. 315–348, 1st Quart., 2019.

VOLUME 4, 2023 1177

HASSAN and FONSEKA: IMPLICIT TRANSMISSION OF CODED INFORMATION

[12] E. Basar, “Index modulation techniques for 5G wireless
networks,” IEEE Commun. Mag., vol. 54, no. 7, pp. 168–175,
Jul. 2016.

[13] R. A. Hassan and J. P. Fonseka, “Rate and performance enhance-
ment of LDPC codes using collection of punctured codes decoding
(CPCD),” Int. J. Sens. Wireless Commun. Control, vol. 11, no. 9,
pp. 910–920, 2021.

[14] R. A. Hassan and J. P. Fonseka, “Improving LDPC and turbo LDPC
codes using collection of punctured codes decoding (CPCD),” Phys.
Commun., vol. 53, Aug. 2022, Art. no. 101689.

[15] M. Jiang, C. Zhao, Z. Shi, and Y. Chen, “An improvement on the
modified weighted bit flipping decoding algorithm for LDPC codes,”
IEEE Commun. Lett., vol. 9, no. 9, pp. 814–816, Sep. 2005.

[16] J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On implementation
of min-sum algorithm and its modifications for decoding low-density
parity-check (LDPC) codes,” IEEE Trans. Commun., vol. 53, no. 4,
pp. 549–554, Apr. 2005.

[17] M. Xu, J. Wu, and M. Zhang, “A modified offset min-sum decoding
algorithm for LDPC codes,” in Proc. 3rd Int. Conf. Comput. Sci. Inf.
Technol., vol. 3, 2010, pp. 19–22.

[18] NR; Multiplexing and Channel Coding, 3GPP Standard TS 38.212,
2018.

[19] IEEE Standard for Information Technology—Local and Metropolitan
Area Networks—Specific Requirements—Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY)
Specifications Amendment 5: Enhancements for Higher Throughput,
IEEE Standard 802.11n-2009 (Amendment to IEEE Std 802.11-2007
as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE
Std 802.11y-2008, IEEE Std 802.11w-2009), 2009.

[20] G. Singh, “A study of encryption algorithms (RSA, DES, 3DES and
AES) for information security,” Int. J. Comput. Appl., vol. 67, no. 19,
pp. 33–38, 2013.

RANA A. HASSAN received the B.Sc. degree
in electrical engineering from Cairo University,
Egypt, in 2014, the M.Sc. degree in wireless
communications from Nile University, Egypt, in
2017, and the Ph.D. degree from the Electrical
Engineering Department, University of Texas at
Dallas, Dallas, TX, USA, in 2022. She was a
Research Assistant with the Wireless Intelligent
Network Center, Nile University from 2014 to
2017. Her research interests include wireless com-
munications, channel coding, implicit transmis-

sion, proactive networks, and relay networks.

JOHN P. FONSEKA was born in Negombo,
Sri Lanka. He received the B.S. degree from
the University of Moratuwa, Sri Lanka, the
M.S. degree from the Memorial University of
Newfoundland, Canada, and the Ph.D. degree
in electrical engineering from Arizona State
University, USA. He joined as an Assistant
Professor of Electrical Engineering with The
University of Texas at Dallas in 1988, and is
currently serving as a Professor of Electrical
Engineering. He currently conducts research in

the general area of modulation and coding. Specifically, he is interested
in searching for attractive combined modulation and coding techniques,
throughput and rate enhancement techniques, efficient decoding techniques,
and implicit transmission techniques. He is also interested in the applications
of machine learning in communications.ng, implicit transmission, proactive
networks, and relay networks.

1178 VOLUME 4, 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

