
Received 23 February 2023; accepted 28 April 2023. Date of publication 9 May 2023; date of current version 19 May 2023.

Digital Object Identifier 10.1109/OJCOMS.2023.3273310

Inter-Cell Network Slicing With Transfer Learning
Empowered Multi-Agent Deep

Reinforcement Learning
TIANLUN HU1,2 (Graduate Student Member, IEEE), QI LIAO1 (Member, IEEE),

QIANG LIU3 (Member, IEEE), AND GEORG CARLE2

1Network Automation Department, NSSR Lab, Nokia Bell Labs, 70435 Stuttgart, Germany

2Department of Computer Engineering, Technical University of Munich, 80333 Munich, Germany

3School of Computing, University of Nebraska–Lincoln, Lincoln, NE 68588, USA

CORRESPONDING AUTHOR: T. HU (e-mail: tianlun.hu@nokia.com)

This work was supported by the German Federal Ministry of Education and Research (BMBF) Project KICK under Grant 16KIS1102K.
Partial contents of this paper appear in International Conference on Communications (ICC) 2022 [1] [DOI: 10.1109/MCOM.2021.9530474].

ABSTRACT Network slicing enables operators to cost-efficiently support diverse applications on a com-
mon physical infrastructure. The ever-increasing densification of network deployment leads to complex
and non-trivial inter-cell interference, which requires more than inaccurate analytic models to dynam-
ically optimize resource management for network slices. In this paper, we develop a DRIP algorithm
with multiple deep reinforcement learning (DRL) agents to cooperatively optimize resource partition
in individual cells to fulfill the requirements of each slice, based on two alternative reward functions
with max-min fairness and logarithmic utility. Nevertheless, existing DRL approaches usually tie the pre-
trained model parameters to specific network environments with poor transferability, which raises practical
deployment concerns in large-scale mobile networks. Hence, we design a novel transfer learning-aided
DIRP (TL-DIRP) algorithm to ease the transfer of DRIP agents across different network environments
in terms of sample efficiency, model reproducibility, and algorithm scalability. The TL-DIRP algorithm
first centrally trains a generalized model and then transfers the “generalist” to each local agent (a.k.a.,
the “specialist”) with distributed finetuning and execution. TL-DIRP consists of two steps: 1) central-
ized training of a generalized distributed model, and 2) transferring the “generalist” to each local agent
with distributed finetuning and execution. We comprehensively investigate different types of transferable
knowledge: model transfer, instance transfer, and combined model and instance transfer. We evaluate the
proposed algorithms in a system-level network simulator with 12 cells. The numerical results show that
not only DIRP outperforms existing baseline approaches in terms of faster convergence and higher reward,
but more importantly, TL-DIRP significantly improves the service performance, with reduced exploration
cost, accelerated convergence rate, and enhanced model reproducibility. As compared to a traffic-aware
baseline, TL-DIRP provides about 15% less violation ratio of the quality of service (QoS) for the worst
slice service and 8.8% less violation on the average service QoS.

INDEX TERMS Transfer learning, deep reinforcement learning, multi-agent coordination, network slicing,
resource allocation.

I. INTRODUCTION

EMERGING technologies, e.g., autonomous driving,
augmented and mixed reality, lead to increasingly

volatile network dynamics in terms of traffic, mobility,

and demand. To cost-efficiently accommodate heterogeneous
services with diverse performance requirements, commu-
nications service providers (CSPs) offer virtual end-to-end
networks (a.k.a., slices) on common shared network physical
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FIGURE 1. Dynamic multi-cell slicing resource allocation.

infrastructures, e.g., base stations and network switches.
Network slicing enables performance and functional iso-
lation, which guarantees that the slice performance is not
affected by the operations in other slices, and assures the
manageability for their slice tenants, respectively. To achieve
dynamic network slicing under varying slice traffic, effi-
cient resource management of virtual network resource is
necessitated. For instance, a variety of slice-aware schedul-
ing algorithms [2], [3] are proposed in radio access network
(RAN) to dynamically allocate radio resource (e.g., phys-
ical resource blocks (PRBs)) of individual base stations,
e.g., eNBs and gNBs, to different slices according to network
conditions and service demands.
With the increasing spread of base station deployment in

5G and beyond, network slicing is becoming more complex.
As a result, the lack of interference coordination in existing
individualized approaches can degrade the slice performance
in multi-cell scenarios [1]. Many works proposed model-
based resource allocation and scheduling algorithms with
inter-cell coordination, which rely on the approximated
mathematical models towards the fast-changing interference
and various optimization methods, e.g., linear program-
ming [4], [5] and convex optimization [6], [7]. These
algorithms are proposed to be implemented in RAN, and,
to model the network capacity, they usually assume perfect
channel state information (CSI) shared among all cells. In
practical systems, however, such algorithms are extremely
difficult to implement, because of two reasons at least:
first, RAN scheduler makes decisions at a short time scale,
e.g., every 10 ms, while such time constraint is very chal-
lenging for the model-based algorithms due to the high
communication overhead (caused by CSI exchange) and the
high computational cost (the “snapshot” approaches can-
not well adapt to network dynamics and need to solve
the problem for every time slot); second, these analyti-
cal solutions tend to fail in the real networks, because
the approximated models cannot fully and accurately rep-
resent the complex network dynamics. Thus, in practical
systems, as shown in Fig. 1, inter-cell inter-slice resource
partitioning is introduced into network operations, admin-
istration, and maintenance (OAM) [8], which collects a
limited set of key performance indicators (KPIs) from all
cells at medium time scale (e.g., minutes or even a quarter

hour), performs inter-slice resource partitioning, and provides
per-slice resource budgets to all cells. Then, each RAN
receives the resource budgets computed by OAM periodically
and uses them as resource constraints to guide the slice-aware
scheduling and PRB allocation algorithms within RAN. In
this paper, we focus on the inter-cell inter-slice resource par-
titioning problem in network OAM. Note that in OAM we
tackle a problem different from the conventional coordinated
interference mitigation problem at the media access control
(MAC) layer in RAN, because we obtain only a limited set of
cell-based KPIs, while the short-term physical layer measure-
ments such as CSI are not available. Moreover, the mapping
from the multi-cell network optimization parameters to these
higher-layer KPIs is usually non-linear and non-convex, and
the optimization goal is often multi-objective. Thus, OAM
usually benefits from the model-free machine learning and
deep learning approaches that can be implemented in a
distributed, cloud-native manner.
Recent advances in model-free approaches, especially

deep reinforcement learning (DRL) [9], [10], have shown
promising potential in automatically learning to manage
radio access networks without the need for prior models.
In general, the resource management problem is formu-
lated as a Markov Decision Process (MDP), which is
then addressed by training and deriving a deep neural
network parameterized policy. A variety of DRL algo-
rithms, e.g., deep Q-network (DQN), Deep Deterministic
Policy Gradient (DDPG), and proximal policy optimization
(PPO) are exploited to achieve better policies in terms of
performance, robustness, and convergence. In particular, the
problems with constraints, e.g., performance requirements,
are resolved by leveraging different methods, e.g., interior-
point policy optimization [10] and Lagrangian primal-dual
methods [11]. The inter-cell coordination problem is stud-
ied with distributed multi-agent deep reinforcement learning
(MADRL) approaches, which create multiple DRL agents
and train their policies in different schemes. The centralized
scheme aims to train a common policy for all agents, where
agents are distributedly executed with the shared model as
the training completes. For example, Li et al. [12] proposed
a centralized scheme for slicing resource management with a
DRL-based algorithm, but it fails to address the model com-
plexity of agents when the network scale grows. In contrast,
the distributed scheme [13], [14], [15] independently trains
agents with individualized policy, which shows promising
performance improvement in terms of convergence speed
and communication overhead. Zhao et al. [14] investi-
gated the dynamic resource allocation problem in network
slicing with distributed DRL, which lacks inter-agent coor-
dination and thus suffers uncoordinated interference in
multi-cell slicing management. Several efforts [16] have been
made to address the issue of non-stationary environments
from the perspective of individual agents, e.g., augment-
ing the state space of individual agents. However, these
aforementioned approaches raise concerns about sample
efficiency, lengthy exploration, and convergence speed,
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which hinder their practical implementations in large-scale
networks.
The emerging transfer learning (TL) techniques [17] have

been increasingly studied to address this challenge regarding
the algorithm scalability, model reproducibility, and sam-
ple efficiency in machine learning-based approaches [18],
[19], [20]. The basic idea of TL is to utilize prior knowl-
edge from pretrained models to benefit the learning pro-
cess in target models. Although there are extensive TL
works [21], [22], they are in the supervised learning domain,
e.g., computer vision, and cannot be directly applied in
reinforcement learning (RL) domain [23], [24]. A few
works [25], [26] studied TL in resource allocation in mobile
networks, e.g., spectrum sharing in vehicle-to-everything
(V2X) [27] and parameter optimization in network slicing.
However, TL-assisted MADRL in inter-cell network slicing
scenarios is still an open problem.
In this paper, we focus on the inter-cell resource parti-

tion problem in network slicing with distributed MADRL by
extending our previous work [1]. Our objective is to optimize
the service qualities over all slices and cells while satisfying
the constraints of the resource capacity. We first develop
a distributed inter-cell inter-slice resource partition (DIRP)
algorithm, which effectively solves the problem with an inter-
agent coordination mechanism, allowing information sharing
between cells. The optimization is based on two alternative
designs of objectives: 1) max-min fairness over all slices,
and 2) maximizing the average logarithmic utility over all
slices. The former guarantees that all slice-specific require-
ments for throughput and delay are fulfilled. The motivation
is to align with 3GPP specifications that the service pro-
vided by any network slice must comply with the service
level agreement (SLA) [28]. Note that max-min fairness,
known to provide the best fairness guarantees, is a special
case of the general class of the well-known α-fair utility
functions [29], [30]. The latter, as a classical concave util-
ity function, also belonging to the α-fair utility functions,
compromises the SLA fairness to improve resource effi-
ciency [31]. Then, we design a transfer learning-aided DIRP
(TL-DIRP) algorithm to furx‘ther improve the sample effi-
ciency, model reproducibility, and algorithm scalability. We
investigate the effectiveness of the transferable knowledge
in three schemes, i.e., pretrained model transfer, instance
transfer, and combined model and instance transfer. We fur-
ther observe several key insights from the simulation results
when integrating TL in MADRL under these schemes. The
contributions of this paper are summarized as follows:
• We formulate the dynamic inter-cell resource partition-
ing problem to meet the requirements of throughput
and latency for all slices, under the inter-slice resource
constraints. We study two alternative objectives: 1) max-
imizing the minimum service quality over all slices and
cells, and 2) maximizing the average of logarithmic
utilities over all slices.

• We design a multi-agent DRL algorithm to solve the
problem with inter-agent coordination. We show that

inter-agent load sharing improves the performance of
conventional distributed schemes while achieving a
lower model complexity and a faster convergence in
comparison with centralized single-agent schemes.

• We further design a novel TL-DIRP algorithm to
ease the transfer of DRIP agents across different
network environments and analyze its effectiveness in
three schemes, i.e., pretrained model transfer, instance
transfer and combined model and instance transfer.

• We implement the proposed solutions in a system-level
simulator and evaluate by comparing them with three
baselines, i.e., centralized DRL, distributed DRL, and a
traffic-aware heuristic approach. The results show that
DIRP outperforms all three baselines in terms of per-
slice service quality, and the proposed TL-DIRP further
improves the performance with much faster algorithm
convergence and lower exploration cost.

The rest of the paper is organized as follows. In Section III,
we define the system model and formulate the inter-cell
inter-slice resource partitioning problem. In Section IV, we
propose the DIRP algorithm to solve the problem with inter-
agent coordination. In Section V, we enhance the DIRP
algorithm with transfer learning and investigate different
types of transferable knowledge. The numerical results are
demonstrated in Section VI. Finally, we conclude this paper
in Section VII.

II. RELATED WORK
This work relates to network resource management, deep
reinforcement learning in mobile networks, and transfer
learning in networking.
Model-Based Resource Management: There are exten-

sive works that use model-based approaches to manage
the resource allocation of RAN slices in 5G and beyond
networks. Several works [6], [7] investigated the problem
of network slice resource allocation by assuming the
resource demands are known and static and leveraged
the methods of convex optimization to solve the problem
with different utility functions. The network slicing for
machine-type communications is studied in [5], where a
radio resource allocation method is proposed to dynam-
ically select channel bandwidth according to the QoS
requirements and traffic aggregation in machine-to-machine
(M2M) gateways. Addad et al. [4] analyzed the virtual
network function deployment in network slicing, formulated
a mixed-integer linear programming model, and proposed
a heuristic algorithm under different resource constraints.
Cavalcante et al. [32] formulated a max-min fairness
problem to handle load-coupled interference, then trans-
formed it into a fixed point problem and solved it with low
complexity iteration algorithm. Recently, an inter-cell coordi-
nated scheme for dense cellular network resource scheduling
was proposed [33], which tackled inter-cell interference and
provided inspiring results. However, the approximated math-
ematical models cannot fully represent the characteristics of
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complex networks. More importantly, applying these model-
based solutions in OAM is challenging due to the lack of
CSI measurements at fine time granularity.
Deep Reinforcement Learning in Mobile Networks:

Liu et al. [10] proposed a constrained DRL-based on
interior-point policy optimization (IPO) to solve the slic-
ing resource allocation problem in the single base station
scenario. Xu et al. [34], studied a DRL-based solution to
extract per-slice users’ behavior with traffic-aware explo-
ration and allocate sufficient RAN resource accordingly.
Liu et al. [11] proposed a DRL-based algorithm named
DeepSlicing by decomposing RAN slicing optimization into
a master problem and several slave problems, which are
addressed with a joint coordinator and associated DRL
agent for each slice respectively. However, these works
are designed to address the resource allocation problem
in single-cell scenarios. Several works [13], [14] studied
the multi-cell scenarios and proposed several DRL solu-
tions with discrete action space. Recent efforts [35], [36]
extended the discrete action space into continuous action
space, which showed improved performances in handling
complex scenarios. However, none of them addressed the
inter-cell dependencies and inter-slice resource constraints.
Transfer Learning in Networking: Xu et al. proposed an

aggregation TL method applied to MADRL for real-time
strategy games by transferring knowledge from small-scale
to large-scale multi-agent systems, which improves the con-
vergence speed of the algorithm [37]. Zafar et al. proposed
to enhance the double Q-learning with TL for solving the
decentralized spectrum sharing problem in the V2X com-
munication networks [27]. By transferring the Q-values of
the expert model to the learner model, the TL-assisted
method accelerates the convergence rate of the learner model.
Mai et al. [26] proposed to optimize the slice parameters,
e.g., transmission power and spreading factor, with DDPG
and TL. The TL was conducted by pretraining a model
on a centralized controller and then using it as the initial
model on local slice optimization tasks. Nagib et al. [25]
studied TL to accelerate the DRL algorithms for dynamic
RAN slicing resource allocation in single-cell scenarios, by
transferring the model pretrained from an expert base station
to a learner base station. Nevertheless, none of the above-
mentioned works studied TL in coordinated MADRL for
inter-cell slicing resource partition.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we first describe the MDP-based system
model in Section III-A. Then, we formulate the optimization
problem based on the MDP model in Section III-B. Table 1
summarizes the notations used in this work.

A. SYSTEM MODEL
We consider a network system consisting of a set of cells
K := {1, 2, . . . ,K} and a set of slices N := {1, 2, . . . ,N}.
Each slice n ∈ N has predefined throughput and delay
requirements, denoted by φ∗n and d∗n , respectively. The

TABLE 1. Table of notations.

network system runs on discrete time slots t ∈ N0. OAM
adapts the inter-slice resource partitioning for all cells period-
ically to meet their performance requirements, as illustrated
in Fig. 1.
To capture the temporal and inter-cell dependencies, we

model the multi-cell resource partition as an MDP defined
by M := {S,A,P(·), r(·), γ }, where P : S×A×S → [0, 1]
denotes the transition probability distribution over state space
S and action space A. r : S×A→ R is the reward function,
which evaluates the per-slice QoS for all cells and γ ∈ [0, 1]
denotes the discount factor for cumulative reward calculation.
Assuming that at each time step t, the network observes the

global state s(t) := [s1(t), . . . , sK(t)] ∈ S , where sk(t) is the
local state observed from cell k. The action at slot t denoted
by a(t) := [a1(t), . . . , aK(t)] ∈ A, includes the RAN slice
resource budget, where the local action ak(t) ∈ Ak indicates
the partitioning ratio ak,n(t) ∈ [0, 1] to each slice for n ∈ N
aligning with intra-cell resource constraints. Thus, the local
action space Ak and the global action space A yield

Ak :=
{
ak

∣∣∣∣ak,n ∈ [0, 1],∀n ∈ N ;
N∑
n=1

ak,n = 1

}
. (1)

A := {
a
∣∣ak ∈ Ak,∀k ∈ K

}
. (2)

The goal is to maximize the satisfaction level of QoS
in terms of throughput and delay requirements (φ∗n , d∗n) for
every slice n ∈ N in each cell k ∈ K. Thus, we design two
alternative reward functions for the two alternative objective
designs: max-min fairness and maximizing the average log-
arithmic utilities. The former provides the best fairness that
guarantees overall slice requirements by giving the maxi-
mum protection to the most critical and resource-demanding
slice. While the latter, although taking fairness into account,
still tries to achieve a good fairness-efficiency tradeoff.
The global reward function r(t), based on the two

alternative objectives, respectively, is defined as follows:
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1) Max-Min Fairness: we define r(t) as the minimum
per-slice QoS satisfaction level based on the observed
average throughput φk,n(t) and average delay dk,n(t)
at time step t for each slice n in cell k, as

r(t) := min
k∈K,n∈N

min

{
φk,n(t)

φ∗n
,

d∗n
dk,n(t)

, 1

}
. (3)

The reward formulation drops below 1 when the actual
average throughput or delay of any slices fails to ful-
fill the requirements. Note that the reward is upper
bounded by 1 even if all slices achieve better per-
formances than the requirements, to achieve more
efficient resource utilization. The second item in (3)
is inversely proportional to the actual delay, namely,
if the delay is longer than required, this term is lower
than 1.

2) Maximizing the Average Logarithmic Utilities: we
define r(t) as the average logarithmic utilities over
the service satisfaction levels of all slices, given by

r(t) := 1

K · N
·

∑
k∈K,n∈N

log

(
min

{
φk,n(t)

φ∗n
,

d∗n
dk,n(t)

}
+ 1

)

(4)

where the service satisfaction level per slice per cell
min{φk,n(t)

φ∗n
,

d∗n
dk,n(t)
} ≥ 0 is defined as the minimum

between the throughput and delay satisfaction levels.
Thus, if either throughput or delay does not meet the
requirement, this term is below 1. By adding an offset
1 within the log function with base 2, the per-slice
logarithmic utility function is always non-negative.
Note that unlike (3), the reward in (4) is not upper
bounded by 1, because the service satisfaction level is
not upper bounded. However, if all slices’ requirements
are exactly met, then we have r(t) = 1.

B. PROBLEM FORMULATION
The problem is to find the optimal policy π : S → A,
which decides the inter-cell inter-slice resource partitioning
a ∈ A based on the observation of network state s ∈ S ,
to maximize the expectation of the cumulative discounted
reward defined in Eq. (3) or Eq. (4) of a trajectory for a
finite time horizon T . The problem is given by:
Problem 1:

max
π

Eπ

[
T∑
t=0

γ tr
(
s(t), a(t)

)]
, s.t. a ∈ A, (5)

where A is defined by Eq. (1) and Eq. (2), r is given by
Eq. (3) or Eq. (4).

The challenges of solving the aforementioned problem are
two-fold. First, the global reward functions depend on high-
dimensional state and action spaces, and involve complex
inter-cell dependencies, which are difficult to be accurately

obtained in practical network systems. For example, increas-
ing resource partition in one slice n and cell k improves its
own service performance, however, it decreases the avail-
able resource allocated to other slices in the same cell and
may aggravate the interference received in neighboring cells.
Besides, because we aim at solving the inter-cell inter-slice
resource partitioning problem in OAM, only a limited set of
KPIs (e.g., averaged cell throughput and delay) at a medium
time scale (e.g., every 15 minutes) is available. It is extremely
difficult to derive closed-form expressions for the multi-cell
network with the extracted data at the higher layers (above
MAC layer) of the network system. Second, the dynamic of
network systems, e.g., additional cell deployments, changes
the properties of the problem, e.g., leading to expanded state
and action space. This requires the solution of this problem to
be efficient and scalable in terms of fast convergence speed,
high sample efficiency, and low computational efforts.

IV. DISTRIBUTED INTER-CELL RESOURCE PARTITION
In this section, we propose the distributed inter-cell inter-
slice resource partition (DIRP) algorithm based on the
MADRL approach with an inter-agent coordination scheme.
Then, we briefly introduce the actor-critic method to solve
the DRL problem. Next, we propose the method to tackle
the intra-cell resource constraint with modified DRL network
architecture.

A. PROPOSED DIRP ALGORITHM
In this part, we propose the DIRP algorithm with inter-agent
coordination, which allows each agent to learn an individu-
alized policy and make its own decision on the local action,
based on local observations and neighboring information.
In contrast to conventional centralized DRL [12], which
collects global observation from all slices and cells of the
network system, the DIRP algorithm may not achieve the
global performance as good as the centralized one due to
the limited observation on the entire network. However, it
may converge much faster and be more sample efficient by
using a less complex model based on lower dimensional
state and action spaces, and the coordination mechanism
could improve the performance of distributed agents with
additional side information about the environment.
To capture local network observations, each agent k

observes its local state sk. In particular, we include the
following measurements and performance metrics:

• Average per-slice user throughput {φk,n : n ∈ N };
• Per-slice load {lk,n : n ∈ N };
• Per-slice number of active users {uk,n : n ∈ N };
• Per-slice throughput requirement {φ∗k,n : n ∈ N };
• Per-slice delay requirement {d∗k,n : n ∈ N }.
In conventional distributed DRL approach, each agent k

in the k-th cell computes a local reward rk, and makes deci-
sion on the local action ak ∈ Ak ⊂ [0, 1]N . The local reward
for max-min fairness or maximizing average logarithmic
utilities, based on the local observations, is given by
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1) Max-Min Fairness:

rk(t) := min
n∈N

min

{
φk,n(t)

φ∗n
,

d∗n
dk,n(t)

, 1

}
, (6)

2) Maximizing Average Logarithmic Utilities:

rk(t) := 1

N

·
∑
n∈N

log

(
min

{
φk,n(t)

φ∗n
,

d∗n
dk,n(t)

}
+ 1

)
. (7)

Note that rk not only depends on the local state-action
pair but also on the states and actions of other agents.
The global reward yields r(t) = mink∈K rk(a(t), s(t)) with
local reward (6) or r(t) = 1

K

∑
k∈K rk(a(t), s(t)) with local

reward (7). We can approximate rk(s, a) based on the local
observations (sk, ak), denoted by r̃k(sk(t), ak(t)). However,
the estimation can be inaccurate because it neglects the inter-
cell dependencies and estimates local reward independently.
Thus, to capture the inter-agent dependencies, in DIRP

algorithm we let the agents communicate and exchange addi-
tional information with neighboring cells. Let each agent k
send a message mk to a set of its neighboring agents, denoted
by Kk. Then, each agent k holds the following information:
local state and action pair (sk, ak) and received messages
mk := [mi : i ∈ Kk]. One option is to directly use all received
messages mk along with (sk, ak) to estimate rk(s, a) with
r̃k(sk,mk, ak). However, if the dimension of the exchanged
message is high, this increases the complexity of the local
model.
An alternative is to extract the useful information ck ∈

R
Z(c)

from the received messages mk ∈ R
Z(m)

with
g : R

Z(m) → R
Z(c)

: mk �→ ck, such that Z(c) 	 Z(m),
where Z(m) and Z(c) stand for the corresponding dimen-
sions. We can then use r̃k(sk, ck, ak) to approximate rk, by
capturing the hidden information in the global state, while
remaining the low model complexity. Pioneer works such
as [38] proposed to learn the extraction of the communi-
cation messages by jointly optimizing the communication
action with the reinforcement learning model. However, the
joint training of multiple interacting models usually leads to
extended convergence time and even diverged training. To
provide a robust and efficient practical solution, we leverage
domain knowledge to extract the information. Knowing that
the inter-agent dependencies are mainly caused by the load-
coupling inter-cell interference, we propose to let each agent
k communicate with its neighboring agents the slice-specific
load information lk,n, ∀n ∈ N . Then, based on the exchanged
load information, we compute the average per-slice neigh-
boring load as the extracted information ck(t). Namely, we
define a deterministic function

gk : R
N|Kk| → R

N :
[
li,n : n ∈ N , i ∈ Kk

] �→ ck(t)

with ck(t) :=
[

1
|Kk|

∑
i∈Kk

li,n(t) : n ∈ N
]
. (8)

In this way, the DIRP algorithm solves Problem 1 with
approximated local reward while considering the inter-cell

dependencies by including neighboring information. Thus,
the DIRP algorithm approximates rk(s, a) with r̃k(sk, ck, ak),
decomposes Problem 1 with K independent subproblems, and
finds the following local policies πk : Sk × R

N → Ak for
each DIRP agent k ∈ K:

π∗k = argmax
πk;ak∈Ak

Eπk

[
T∑
t=0

γ tk r̃k
(
sk(t), ck(t), ak(t)

)]
. (9)

B. THE TRAINING OF AGENTS
In this part, we follow the actor-critic method [39] to train the
agents, which has proven effective when dealing with high
dimensional and continuous state space. Such method solves
the optimization problem by using critic function Q(st, at|θ)

(in this subsection, we denote s(t) and a(t) by st and at
respectively for brevity) to approximate the value function,
i.e., Q(st, at|θ) ≈ Qπ (st, at), and actor π(st|φ) to update the
policy π at every DRL step in the direction suggested by
critic. For brevity, we denote the network with parameters
in the form Qθ and πφ for critic and actor respectively.
In this work, we use Twin Delayed Deep Deterministic

policy gradient (TD3) algorithm [40] as an off-policy DRL
algorithm built on top of the actor-critic method. As an exten-
sion of DDPG [41], TD3 overcomes the DDPGs problem of
overestimating Q-values by introducing a double critic struc-
ture for both current networks Qθ1 ,Qθ2 and target networks
Qθ ′1 ,Qθ ′2 . The minimum of the two Q-values is used to repre-
sent the approximated Q-value of the next state. Besides, the
updates of the policy network are less frequent than the value
network, which allows the value network to reduce errors
before it is used to update the policy network. Moreover,
TD3 uses target policy smoothing, i.e., adding noise to the
target action, to make it harder for the policy to exploit
Q-function errors by smoothing out Q along with changes
in action. The target actions are computed based on the next
state collected in the sample, given by

a′(st+1) = clip
(
π ′φ′(st+1)+ clip(ε,−c, c), aL, aH

)
(10)

where the added noise ε ∼ N (0, σ ) is clipped to keep the
target close to the original action, and aL, aH are the lower
and upper bounds of the action, respectively.
The target update in TD3 is given by:

yt = rt + γ min
i=1,2

Qθ ′i
(
st+1, a′(st+1)

)
. (11)

The critic parameters θi, i ∈ {1, 2} are updated with
temporal difference (TD) learning, given by:

L(θi) = E

[(
yt − Qθi(st, at)

)2
]
. (12)

The actor is updated by policy gradient based on the
expected cumulative reward J with respect to the actor
parameter θπ with:

∇φJ ≈ E
[∇φQθ1(s, a)|s=st,a=πφ(st)

]
= E

[∇aQθ1(s, a)|s=st,a=πφ(st)∇φπφ(st)
]
. (13)
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FIGURE 2. Actor’s output layer with decoupled softmax activation.

The parameters of the target networks are updated with
the soft update to ensure that the TD-error remains small:

θ ′i ← τθi + (1− τ)θ ′i , i = 1, 2;
φ′ ← τφ + (1− τ)φ′. (14)

C. DEALING WITH RESOURCE CONSTRAINTS
To address the inter-slice resource constraints in Eq. (1),
we propose a method by reconstructing the network archi-
tecture of DRL model with an additional regularization
layer.
In this method, we embed a decoupled regularization layer

into the output layer of the actor network, such that this layer
becomes part of the end-to-end back propagation training of
the neural network. Since the softmax function realizes for
each ak the following projection

σ : RN →
{
ak ∈ R

N
∣∣∣ak,n ≥ 0,

N∑
n=1

ak,n = 1

}
,

the decoupled softmax layer well addresses the intra-cell
inter-slice resource constraints

∑N
n=1 ak,n = 1, ∀k ∈ K as

shown in Fig. 2.
In summary, we provide the TD3-based DIRP algorithm

with inter-agent coordination in Algorithm 1.

V. TRANSFER LEARNING-AIDED DIRP ALGORITHM
As discussed in Section IV-A, the DIRP algorithm achieves a
good trade-off between reducing model complexity and cap-
turing the inter-cell dependencies. However, each agent needs
to learn the local policy from scratch and still faces the well-
known challenge of the exploration-exploitation dilemma.
The environment dynamics and state transitions are usually
unknown at the early stage of training, and the agent cannot
exploit its knowledge until the state-action space is exhaus-
tively explored. Moreover, because the local model is trained
on a specific data domain, the learned model is sensitive to
domain shift (a change in the data distribution between an
algorithm’s training dataset, and the dataset that it encoun-
ters when deployed). This means, even a slight change in
the environment may result in deteriorated performance, and
the agent may face a long period of retraining time.

Algorithm 1 The DIRP Algorithm
1: Initialize parameters for critics Q

θk1
, Q

θk2
and actor πφk , with

random parameters θk1 , θk2 , φk, ∀k ∈ K
2: Initialize target networks θ ′k1 ← θk1 , θ ′k2 ← θk2 , φ′k ← φk

3: Initialize empty replay buffer Bk
4: Initialize ε ∈ [0, 1] and decay d ∈ [0, 1] for ε-greedy

exploration
5: Define time periods H(Expl),H(Train),H(Eval) for exploration,

training, and evaluation phases, respectively
6: Repeat
7: for local agent k ∈ K do
8: Observe local state sk(t) and information ck(t)
9: Select and execute action:

10: if t ∈ H(Expl) then
11: ak(t)← random choice
12: else if t ∈ H(Train) then
13: ak(t)←

{
πk(sk(t), ck(t))+ ε, ifU[0, 1] > ε

random choice, otherwise
14: where U[0, 1] is the generated random value
15: following uniform distribution in [0, 1].
16: ε ← dε
17: else if t ∈ H(Eval) then
18: ak(t) = πk(sk(t), ck(t))
19: end if
20: Observe next state sk(t + 1), received information
21: ck(t + 1), and compute rk(t)
22: Store instance in Bk:
23:

((
sk(t), ck(t)

)
, a(t),

(
sk(t + 1), ck(t + 1)

)
, rk(t)

)
24: if time to update networks then
25: Sample mini-batch of B instances from Bk
26: Compute target actions and targets using (10) and
27: (11) respectively
28: Update critic and actor based on (12) and (13)
29: if t mod policy_delay then
30: Update target networks using (14)
31: end if
32: end if
33: end for

To overcome the above-addressed challenges, we raise
a hypothesis that some common hidden pattern may exist
in the critic and actor networks across different agents, and
propose to enhance the developed coordinated MADRL algo-
rithm with TL. We expect the TL to improve the model
reproducibility and speed up the learning convergence by
performing the following two major steps as demonstrated
in Fig. 3:
1) Centralized Training of a “Generalist”: A centralized

controller collects the samples from all local agents
((sk(t), ck(t)), ak(t), (sk(t+1), ck(t+1)), rk(t)), ∀k ∈ K
for a time period t = 0, . . . ,T(G) and trains a general-
ized model by interacting with the environment based
on the same model in training for all agents.

2) Distributed Transfer Learning and Finetuning to the
“Specialists”: After time slot T(G), we transfer
the learned knowledge in the “generalist” to each
local agent (i.e., the “specialists”), and finetune the
customized model locally. The details of different
types of transferable knowledge are provided later in
Section V-B.
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FIGURE 3. Generalist-to-Specialist transfer learning scheme.

A. TRANSFER LEARNING PROBLEM FORMULATION
Before introducing the TL problem in the context of
MADRL, let us first introduce a general definition of transfer
learning.
A domain D := {X ,P(X)} consists of a feature space X

and its probability distribution P(X),X ∈ X . A task T :=
{Y, f (·)} consists of a label space Y and a predictive function
f (·), where f (·) can be written as P(Y|X),Y ∈ Y and X ∈ X .
Formally, the general definition of the TL is given below.
Definition 1 (Transfer Learning [17]): Given a source

domain DS and a source learning task TS, a target domain
DT and a target learning task TT , TL aims to improve
the learning of the target predictive function fT(·) in DT

using the knowledge in DS and TS, where DS �= DT ,
or TS �= TT .
In the context of DRL, a domain D := {S,P(s)} consists

of the state space S and its probability distribution P(s), s ∈
S , while the task T := {A, π(·)} consists of the action space
A and a policy function π(·). In general, the policy π is a
mapping from states to a probability distribution over actions.
With the actor-critic method introduced in Section IV-B, the
policy directly maps the state space to optimized action,
thus, we have π : S → A.
In the scope of our proposed generalist-to-specialist

TL-DIRP algorithm, we introduce the following definitions
of the source domain, source task, target domain, and target
task.

• Source Domain: DS := D(G) consists of the joint
state and communicated message space S(G) × R

N

and its probability distribution P(s(G), c(G)), where
s(G) ∈ S(G) := ∪k∈KSk and c(G) ∈ R

N . The state
s(G) and message c(G) are collected by the centralized
controller from all local agents.

• Source Task: TS := T (G) consists of the general action
space A(G) and the policy function π(G) : S(G)×RN →
A(G). The general policy π(G) is trained on the instances
collected by all agents.

• Target Domain: DT := D(S)
k , k ∈ K consists of the joint

local state and communication message space Sk ×R
N

and its probability distribution P(sk, ck), where sk ∈ Sk
and ck ∈ R

N .

• Target Task: TT := T (S)
k , k ∈ K consists of the local

action space Ak and local policy πk : Sk ×R
N → Ak.

The problem of TL from a source DRL agent as a
“generalist” to a set of target DRL agents, i.e., the local
“specialists”, is formulated in Problem 2.
Problem 2: Given source domain D(G) := {S(G) ×

R
N,P(s(G), c(G))} and pretrained source task T (G) :=
{A(G), π(G)(·)}, transfer learning aims to learn an optimal
local policy for the target domain D(S)

k := {Sk ×
R
N,P(sk, ck)}, ∀k ∈ K by leveraging the knowledge

extracted from (D(G), T (G)), as well as the knowledge
exploited in the target domain D(S)

k . The problem is given by

max
πk|π(0)

k =�(π(G))
Eπk

[
T∑
t=0

γ tk r̃k
(
sk(t), ck(t), ak(t)

)]

s.t. (sk, ck, ak) ∈ �
(
D(G),D(S)

k ,A(G),Ak

)
. (15)

where �(π(G)) is the policy transfer strategy which maps
the pretrained source policy π(G) to an initial local policy
π

(0)
k , while �(D(G),D(S)

k ,A(G),Ak) is the instance transfer
strategy which extracts the instances from the source domain
and combines them with the experienced instances from the
target domain.

B. TRANSFER LEARNING APPROACHES
The problem defined in Eq. (15) offers various options for
transferable knowledge:

• Pretrained Model Transfer: The policy transfer strategy
�(·) simply maps the pretrained source policy to itself,
i.e., the local agent uses the pretrained general policy
π(G) as the initial policy π

(0)
k and finetunes it by fur-

ther interacting with the environment with locally made
decisions.

• Feature Extraction: �(·) keeps partial knowledge of
π(G). In DRL, the policy π(G)(s(G), c(G)|φ(G)) is char-
acterized by the pretrained parameters (weights) of the
neural networks. Feature extraction freezes partial of
the layers (usually the lower layers) of the pretrained
neural networks while leaving the rest of them to be
randomly initialized.

• Instance Transfer: Except for the instances from the
target domain, the agent also trains its policy using
the extracted instances from the source domain. The
instance transfer strategy �(·) decides which instances
are chosen from the source domain to be combined with
the instances from the target domain in the local replay
buffer.

The above-mentioned knowledge from the source domain
and task can be transferred separately or in a combined
manner. In this paper, we focus on studying the following
three TL schemes:

• Pretrained Model Transfer Only: Each local agent k
uses the pretrained general policy π(G) to initialize
the local policy π

(0)
k . With the actor-critic method
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described in Section IV-B, we simply load the pretrained
parameters of the actor and critic networks from the
generalist to the local agents. However, when the differ-
ence between the source and target domain is large, the
local agent still needs extensive exploration to finetune
the general policy to a customized local policy.

• Instance Transfer Only: Each local agent offloads a
set of selected instances in the source domain from
the centralized controller to the local replay buffer.
Then, the local agent trains a policy from scratch with
the replay buffer containing mixed offline instances
from the source domain and the experienced online
instances in the target domain. In this paper, we select
the instances collected from the exact same local agent.
Future work includes the similarity analysis between
agents and instance selection from similar agents, which
falls into the subject of domain adaptation [42].

• Combined Model and Instance Transfer: To fully exploit
the transferable knowledge, we combine the pretrained
model transfer and instance transfer. Firstly, each local
agent retrieves π(G) from the centralized controller and
uses it to initialize the local policy π

(0)
k . Then, we

further investigate two options for local finetuning:
– Online Finetuning With Mixed Replay Buffer: The

local agent further online finetunes the policy with
the replay buffer containing both the offloaded
instances from the source domain and the locally
experienced instances from the target domain.

– Offline Finetuning With Offloaded Instances &
Online Finetuning With Experienced Instances: The
local agent first offline finetunes π(G) with the
offloaded instances. Then, the offline finetuned
model is used to initialize π

(0)
k and further fine-

tuned online with the locally experienced instances
in the target domain.

Note that our experiments focus on the pretrained model
transfer and instance transfer, while do not include the feature
extraction. This is because, feature exaction usually performs
well when the target domain is highly similar to the source
domain. However, in general, the similarity between the gen-
eralist’s domain and the specialist’s domain is not sufficiently
high. Thus, the feature exaction method may better suit the
scenario of inter-agent TL, while it may not be appropriate
for generalist-to-specialist knowledge transfer.
We illustrate the TL-DIRP algorithm with a combined

model and instance transfer in Algorithm 2.

VI. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed
methods for inter-cell slicing resource partitioning introduced
in Sections IV and V with a system-level simulator [43],
which mimics real-life network scenarios with customized
network slicing traffic, user mobility, and network topology.
To implement our proposed DRL solution, we build in the

simulator a network with 4 sites (12 cells) covering an urban
area of Helsinki city, as demonstrated in Fig. 4, consisting

Algorithm 2 Transfer Learning-Aided DIRP Algorithm
1: I. Generalist training in centralized controller
2: Initialize generalist’s critics Q

θ
(G)
1

, Q
θ

(G)
2

and actor πφ(G) with

random parameters θ
(G)
1 , θ

(G)
2 , φ(G)

3: Initialize target networks θ
′(G)
1 ← θ

(G)
1 , θ

′(G)
2 ← θ

(G)
2 ,

φ′(G) ← φ(G)

4: Initialize empty replay buffer B(G)

5: Define time periods H(G),H(S) for generalist training and
specialist finetuning respectively

6: for t ∈ H(G) do
7: Collect observations of local states sk(t) and
8: received information ck(t), ∀k ∈ K
9: Use general policy π(G) to select and execute action

10: ak(t),∀k ∈ K
11: Observe the next local states sk(t + 1) and information
12: ck(t + 1), compute local rewards rk(t), ∀k ∈ K
13: Store K instances in replay buffer B(G)

14: Train and update the general critics Q
θ

(G)
i

, i = 1, 2,

15: actor π(G), and target critics Q
θ
′(G)
i

, i = 1, 2 and actor

16: π
φ
′(G) using the TD3 algorithm in Section IV-B

17: end for
18: II. Specialist finetuning in local agents
19: Initialize parameters for critics Q

θk1
, Q

θk2
and actor πφk with

θk1 ← θ
(G)
1 , θk2 ← θ

(G)
2 , φk ← φ(G), ∀k ∈ K

20: Initialize target networks θ ′k1 ← θk1 , θ ′k2 ← θk2 , φ′k ← φk

21: Offload selected instances from B(G) to Bk
22: for t ∈ H(S) do
23: for Local agent k ∈ K do
24: Finetune local policy with Algorithm 1 (except for
25: the initialization steps)
26: end for
27: end for

FIGURE 4. Network environment setup with 12 cells.

of 4 three-sector macro sites. All cells are deployed using
LTE radio technology with 2.6 GHz. We use the realistic
radio propagation model Winner+ [44].
The network is built up with N = 4 network slices, with

per-slice throughput requirements of φ∗1 = 4 MBit/s, φ∗2 =
1 MBit/s, φ∗3 = 3 MBit/s, and φ∗4 = 0.5 MBit/s and per-slice
delay requirements of d∗1 = 1 ms, d∗2 = 1.5 ms, d∗3 = 2 ms,
and d∗4 = 1 ms respectively. All cells in the network have a
fixed bandwidth of 20 MHz.

We define four groups of user equipments (UEs) associ-
ated with each defined slice respectively, i.e., 16 groups of
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FIGURE 5. The first two days of a three-week traffic mask.

UEs in total, all with the maximum group size of 10. UEs
are moving uniformly randomly within the defined moving
sphere of each group. The positions and moving radius of
UEs groups are defined heterogeneously to ensure that each
site can serve UE from all slices. To imitate the time-varying
traffic pattern, we also apply a time-dependent traffic mask
τn(t) ∈ [0, 1] for each slice n ∈ N to scale the total num-
ber of UEs in the scenario. In Fig. 5, we demonstrate the
changes of the first 2 days of a three-week traffic mask.
The UE traffic volume is updated every timestamp, which
corresponds to 15 minutes in real time, also known as the
typical KPI reporting time in OAM. In the experiments, the
entire traffic mask is extended and periodically repeated after
every 2016 timestamps corresponding to the three-week time
period (96 timestamps per day).

A. SCHEMES AND BASELINES TO COMPARE
For performance evaluation, we compare the proposed DIRP
and TL-DIRP algorithms with the following three baselines:
• BL-Cen: centralized DRL approach solving Eq. (5)
referring to [12]. We assume that a single agent has
full observation of the global state s ∈ S , computes
the global reward and makes the decision of the slicing
resource partitioning for all agents a ∈ A.

• BL-Dist: distributed DRL approach without inter-agent
coordination referring to [14].

• BL-Heur: a traffic-aware heuristic approach that
assumes perfect knowledge about per-slice traffic
demand, and dynamically adapts to the current per-
slice traffic amount. It is implemented by dividing the
resource in each cell k ∈ K to each slice proportionally
to the amount of traffic demand per slice.

The DRL-based schemes to evaluate and compare are
summarized in Table 2.

Similarly, to evaluate the TL-DIRP algorithm and compare
between different types of knowledge to transfer, we imple-
ment the proposed TL method in Section V, i.e., centralized
training of a generalist and then distributed finetuning to
specialist. We compare different transferable knowledge:
instances, pretrained model, and combined instances and
pretrained model. In addition, to ensure a safer exploration

and better performance during online training, we perform
the offline finetuning using the transferred instance before
the online training in each local agent.

• Gen: centralized training of a general policy in the
centralized controller based on the collected samples
from all local agents, as described in Algorithm 2.

• Spec: distributed finetuning of the specialists with full
knowledge transfer. Each local agent initializes its critic
and actor networks with the generalist’s model param-
eters. It also initializes the local replay buffer with the
offloaded selected instances from the generalist’s buffer.

• Spec-Instance: distributed finetuning of the specialists
with instance transfer only. The model parameters in
each local agent are randomly initialized.

• Spec-Model: distributed finetuning of the specialists
with model transfer only. Each local agent initializes
its critic and actor networks by loading the generalist’s
model parameters, while the local buffer is initialized
as an empty queue.

• TL-DIRP: In addition to Spec (full knowledge transfer),
we apply the offline finetuning based on the transferred
instances before the online training.

Note that for “generalist-to-specialist” TL schemes with
complete knowledge we apply both max-min fairness
and logarithmic utilities as local reward rk for k ∈ K
respectively, as:

• TL-DIRP-Maxmin: TL-DIRP approach with max-min
fairness reward bases on Eq. (6).

• TL-DIRP-Log: TL-DIRP approach with on logarithmic
utility reward based on Eq. (7).

B. HYPERPARAMETERS USED FOR LEARNING
As for DRL training, we use multi-layer perception (MLP)
architecture for actor-critic networks of TD3 algorithm. In
BL-Cen scheme, the models of the actor and critic networks
are both built up with 3 hidden layers, with the number
of neurons (384, 192, 64) and (324, 144, 64), respectively.
While for BL-Dist and DIRP schemes, both actor-critic
networks only have 2 hidden layers, with the number of
neurons (48, 24) and (64, 24), respectively. In all schemes,
the learning rate of actor and critic are 0.0005 and 0.001
respectively with Adam optimizer and training batch size of
32. We choose a small DRL discount factor γ = 0.1, since
the current action has a strong impact on the instantaneous
reward while a weaker impact on the future reward. For the
distributed DRL approaches, we only apply 100 steps for
exploration, while for the centralized approaches we apply
500 steps of exploration, since the centralized agent has much
higher dimensions of state and action. After the exploration
phase, we apply 5000 steps for training, and the final 500
steps for evaluation of all approaches.
In TL training, we apply the same DRL settings. For TL

training setup, we set 100 steps for exploration, 5000 steps
for learning, and 500 steps for evaluation in Gen and Spec-
Model schemes, while in other TL execution schemes, we
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TABLE 2. Comparison of dimensions of DRL models used in simulation.

FIGURE 6. Comparison of reward among schemes.

skip the exploration phase. The result of each process is
derived from the average of 3 times of experiments.
In this work, we apply an orientated exploration strategy

that chooses the new action under the recommendation of the
traffic-aware heuristic policy, namely, the heuristic baseline
BL-Heur. The reason is that we observe that BL-Heur pro-
vides sub-optimal performance without any training process.
At the beginning of the exploration phase, the probability
of using traffic-aware exploration is 0.5, and that of random
exploration is also 0.5. Then, during the exploration, the
probability of traffic-aware exploration gradually increases,
and that of random exploration decreases.

C. PERFORMANCE COMPARISON
1) COMPARISON OF THE DISTRIBUTED MADRL
SCHEMES

In this comparison, we apply the reward design for max-
min fairness to all approaches, i.e., global reward based on
Eq. (3) for BL-Cen and local reward based on Eq. (4) for
BL-Dist and DIRP. While for comparison between the dif-
ferent reward functions, we implement DIRP algorithm with
both types of local reward rk based on Eq. (6) and Eq. (7).

Fig. 6 demonstrates the comparison of max-min fairness
reward Eq. (3) during the training process among the base-
line schemes BL-Cen, BL-Dist, BL-Heur, and the proposed
DIRP and TL-DIRP algorithms.
As shown in Fig. 6, TL-DIRP provides the best

performance among all approaches in terms of faster con-
vergence, higher start point, and higher robustness after
convergence.
While in comparison to baselines, DIRP algorithm

achieves significantly better global reward than BL-Heur
after convergence. Note that BL-Heur is already a
well-performed baseline because it assumes perfect traffic
awareness and offers all resources to the UEs. On the other

FIGURE 7. Adaptive action to traffic mask after training.

hand, BL-Cen fails to achieve performance as good as DIRP
within the same training time. As Table 2 indicates, the
dimensions of the state and action spaces of BL-Cen are
much higher than the distributed approaches, making the
training process more difficult for large-scale networks. Not
only converges BL-Cen slower, but it also often experiences
poor performance at the early stage of training. The training
curves are turbulent, corresponding to the time-varying traf-
fic demand in Fig. 5, while DIRP is more robust compared
to BL-Heur and BL-Cen.
In comparison between the two distributed schemes,

according to Fig. 6, DIRP outperforms BL-Dist scheme
within the same training time period in terms of both con-
verged global reward and convergence rate, which verifies
the advantage of inter-agent coordination.
Fig. 7 shows the predicted action, i.e., per-slice resource

partitioning as the ratio, and the actual traffic amount of
DIRP in cell k = 5 after convergence. it verifies that the DRL
approach well adapts its predicted actions to the dynamic
network traffic demand with respect to different slice-specific
QoS requirements.
Although DIRP shows better performance than baselines,

it still faces two major challenges: slow convergence and
oscillation. In Fig. 6, we show that TL-DIRP overcomes
these challenges by transferring prelearned knowledge. In
particular, TL-DIRP achieves a much higher reward from
the beginning of the learning process and quickly converges
after a few hundred timestamps, while DIRP converges much
slower because each local agent needs to learn from scratch.
TL-DIRP outperforms DIRP in terms of both convergence
rate and converged performance within the same time period.
Fig. 6 shows the evolving algorithms’ performance during

the training and testing process, while in the following, let
us take a deeper look into the distributions of the converged
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FIGURE 8. Comparing throughput QoS between TL-DIRP and BL-Heur.

FIGURE 9. Comparing delay QoS between TL-DIRP and BL-Heur.

service quality in terms of throughput and delay satisfaction
level for each slice. Fig. 8 and Fig. 9 illustrate the empir-
ical complementary cumulative distribution function (CDF)
(or called survival function) which equals 1− FX(x), where
FX(x) denotes the CDF of per-slice throughput and delay
satisfaction level between TL-DIRP and BL-Heur schemes,
respectively.
Fig. 8 shows that TL-DIRP achieves 14% higher the

worst-case throughput QoS among all slices than the traffic-
aware baseline BL-Heur. It also guarantees that all the slices
achieve a throughput satisfaction level above 90%, while BL-
Heur serves Slice 3 with only 75% throughput satisfaction
level.
Similar observation can be made for the delay satisfaction

level in Fig. 9. TL-DIRP provides over 90% of the delay
satisfaction level for all slices, while BL-Heur serves Slice
1 and 3 with only 77% and 83% respectively. In terms of
the average delay satisfaction level over all slices, TL-DIRP
achieves over 96% while BL-Heur only 88%. We observe
that TL-DIRP attempts to fulfill more critical requirements
by compromising resources from the less demanding slices
while remaining sufficient satisfaction levels in others.

2) COMPARISON BETWEEN REWARD FUNCTION WITH
TWO UTILITIES

Fig. 10 and Fig. 11 compare the two designs of the reward
function, corresponding to max-min fairness Eq. (6) and

FIGURE 10. Comparing throughput QoS between utilities.

FIGURE 11. Comparing delay QoS between utilities.

maximizing average logarithmic utilities Eq. (7), respec-
tively. They demonstrate the empirical complementary CDF
of QoS in terms of throughput and delay satisfaction level for
TL-DIRP with both reward functions. The results show that
max-min fairness gives the maximum protection to the slice
with the weakest performance, such that the minimum per-
slice satisfaction level over all slices achieves 90% for both
throughput and delay, while maximizing average logarithmic
utilities provides slightly lower satisfaction levels, about 89%
for both throughput and delay, but higher maximum per-slice
throughput satisfaction levels. This is because the logarith-
mic utility tends to distribute the resource more efficiently
than max-min fairness, i.e., allocating more resources to the
slice that can improve the averaged performance over all
slices.
From an engineering perspective, max-min fairness

is preferred for scenarios that require sufficiently good
performance for all slices, especially those highly demand-
ing ones. While the logarithmic utility is more suitable for
cases that desire higher resource efficiency.

3) COMPARISON OF THE TRANSFER LEARNING
METHODS

Fig. 12 illustrates the evolving rewards during the train-
ing and testing processes with different TL methods. Note
that this comparison is based on max-min fairness in all
TL methods. Here we aligned the training process with
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FIGURE 12. Comparing of reward among TL schemes.

TABLE 3. Performance comparison among different schemes.

the Spec scheme for comparison. The results are derived
from the average of 3 independent instances of experiments.
Spec with complete knowledge transfer leads to higher
reward and robustness compared to Spec-Instance and Spec-
Model schemes with partial knowledge at the early stage
of the training process, while in the latter two schemes,
TL also helps in terms of convergence rate, compared with
Gen. Furthermore, with offline finetuning Spec-Finetune pro-
vides better performance with faster convergence and higher
reward within the same training time. In most of the TL
schemes, we observe that each specialist agent improves
its performance with local finetuning from a higher starting
point, which helps avoid risky action choices during explo-
ration. With Spec-Instance, the agents behave the worst at the
beginning of the training but converge fast later. On the other
hand, Spec-Model also suffers from a weaker performance
at the beginning and takes a longer time to learn. Eventually,
Spec-Instance converges to a similar performance as Spec
while Spec-Model achieves a slightly worse performance.
Our guess is that there is still a substantial difference between
the source domain and the target domain. Without trans-
ferring sufficient instances in the source domain (instances
following similar distribution to the target domain), the ini-
tialized general policy cannot quickly adapt to the target
task. Moreover, introducing offline finetuning with the trans-
ferred instances to the TL scheme further improves the
performance by providing even faster convergence and more
robust training.
In Fig. 13, we plot the change of local reward in each cell

during the complete TL procedure from generalist training

FIGURE 13. Change of local reward during TL scheme.

FIGURE 14. Comparison of channel quality indicator (CQI) distribution between
cells.

to specialist finetuning as described in Algorithm 2. During
the time in H(G), the local rewards achieved by the general-
ist agent converge to a generally good reward over all cells.
Later, in the local finetuning period H(S), the Spec scheme
further finetunes the general agent locally and concludes
better performance in each cell. The averaged local reward
in H(S) also indicates better robustness under time-varying
traffic demand. We can also observe that the rewards from
two cells are always lower compared to others during H(G),
and achieve relatively poor performance after knowledge
transfer in H(S). Fig. 14 shows the comparison of chan-
nel quality indicator (CQI) distributions from all cells, it
is clear to see that in cell 2 and cell 6 which derive
poorer performance as shown in Fig. 13 correspondingly,
the CQI histograms are significantly different compared to
others. The difference in user distribution or radio prop-
agation can make the “generalist” ambiguous on learning
a general policy for all cells, and the derived policy is
better for handling the samples from others. Thus, during
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H(G), the rewards in these two cells are lower than others,
while in H(S), the performances in these two cells get better
with local finetuning yet still worse than the others.
Summarized comparisons of the average performance met-

rics among all schemes in the testing phase are listed in
Table 3. We can see that TL-DIRP as offline finetuned
Spec provides the best performance in terms of the desired
RL reward and minimum (worst-case) per-slice throughput
satisfaction level among the schemes, while Spec-Instance
provides a slightly better minimum per-slice delay satisfac-
tion level. Moreover, TL-DIRP encourages a more balanced
service quality between all slices in comparison to TL-DIRP-
Log. It is also worth noting that the inference time for a
pretrained distributed DRL model to make a local decision
is less than 4 milliseconds due to the small sizes of our
defined neural networks.

D. KEY TAKEAWAYS
In the following, we summarize the takeaways from our
numerical analysis:
• Distributed vs. Centralized: For conventional DRL
algorithms, the distributed scheme demonstrates good
learning capability for adapting to slice-aware traffic and
providing good service quality in the defined network
scenario with 12 cells, while the centralized scheme
fails to converge to a good reward within the same
training time because of its high model complexity
and high dimensional state and action spaces. In fact,
the larger the scale the network has, the higher the
gain the distributed schemes achieve when compared
with the centralized approach.

• Inter-Agent Coordination: The DIRP algorithm with
inter-agent coordination and letting the multiple agents
share load information provides better performance than
the distributed DRL in terms of converged reward
and convergence rate while maintaining lower model
complexity.

• The Advantages of Transfer Learning: Our proposed
TL-DIRP algorithm further improves the converged
reward of DIRP with about 11.5% higher start point,
87.5% faster convergence, and lower exploration cost. It
is worth noting that, the converged performance of the
TL-DIRP algorithm has higher robustness than DIRP
without TL. It also provides about 15% higher QoS sat-
isfaction level for the most critical slice and an 8.8%
higher average slice QoS fully satisfaction level than
the traffic-aware baseline.

• The Needs of “Generalist-to-Specialist” Transfer:
During the “generalist” training process of TL-DIRP,
the difference in CQI between cells make the learning
of general policy ambiguous, and the agents from dif-
ferent cell CQI derive poorer performance than others.
Later in “specialist” all agents grant higher reward and
robustness with local finetuning.

• Comparison Between Two Reward Functions: The
proposed TL-DIRP approach with reward based on

max-min fairness and logarithmic utility can both pro-
vide sufficiently good performance among all slice QoS.
However, max-min fairness reward achieves better QoS
for critical slice requirements by occupying resources
from the slices with less critical requirements, while
logarithmic utility provides higher resource efficiency.
From the engineering perspective, different reward
definitions can be chosen for variant use cases.

• How to Transfer: As for the transferable knowledge,
TL scheme with combined model and instance trans-
fer enhanced by offline finetuning provides the best
performance, in terms of both the starting point and
the convergence rate. As expected, when transferring
instances only, the local agents still need to train from
scratch and suffer from the low performance at the
beginning. When transferring the pretrained model,
the performance at the beginning is slightly better
but requires a longer time to converge. Our guess is
that there is substantial difference between the source
and target domains according to the CQI distribu-
tion of cells. Without transferring sufficient instances
from the source domain (instances following similar
distribution to the target domain), the initialized gen-
eral policy cannot adapt quickly to the target task.
Moreover, by introducing an offline finetuning with
the transferred instances, TL-DIRP provides a further
performance improvement to the TL scheme without
offline finetuning in terms of higher start point and
faster convergence.

VII. CONCLUSION
In this paper, we formulated the dynamic inter-cell resource
partitioning problem to meet the slice-aware service require-
ments by jointly optimizing the inter-cell inter-slice resource
partitioning. First, we proposed the DIRP algorithm to
solve the problem with inter-agent coordination. To fur-
ther improve the algorithm transferability, we designed the
TL-DIRP algorithm by introducing a generalist-to-specialist
TL framework with different types of transferable knowl-
edge. We evaluated the proposed solutions with a 12 cells
network scenario in a system-level simulator. The evaluation
results showed that the TL-DIRP algorithm provides better
slice-aware service performance than the existing baseline
approaches. Besides, using TL in MADRL improves the
training performances in different aspects, e.g., higher start
point, faster convergence speed, and higher asymptote. We
also investigated two reward definitions with max-min fair-
ness and logarithmic utility in TL-DIRP and found that
different rewards should be chosen for variant purposes in
practical use cases.
As an extension to the “generalist-to-specialist” TL

scheme, future works include inter-agent TL, which enables
knowledge transfer from a pretrained DRL agent to another,
e.g., transferring knowledge from a pretrained cell to a newly
deployed cell. However, as we observed in numerical experi-
ments, transferring knowledge between agents with different
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domains and tasks may deteriorate the performance at the
early training phase of TL, or, sometimes even cause negative
transfer. Thus, quantitative analysis needs to be developed to
detect similar DRL agents for efficient knowledge transfer.
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