
Received 28 February 2023; revised 12 April 2023; accepted 1 May 2023. Date of publication 9 May 2023; date of current version 17 May 2023.

Digital Object Identifier 10.1109/OJCOMS.2023.3274394

The Cost of Training Machine Learning Models
Over Distributed Data Sources

ELIA GUERRA 1 (Student Member, IEEE), FRANCESC WILHELMI2 (Member, IEEE),
MARCO MIOZZO 1, AND PAOLO DINI 1

1Sustainable Artificial Intelligence (SAI), Centre Tecnològic de Telecomunicacions de Catalunya (CTTC/CERCA), 08860 Castelldefels, Spain

2Radio Systems Research, Nokia Bell-Labs, 70469 Stuttgart, Germany

CORRESPONDING AUTHOR: E. GUERRA (e-mail: eguerra@cttc.cat)

This work was supported in part by the Spanish Project PID2020-113832RB-C22(ORIGIN)/MCIN/AEI/10.13039/50110001103; in part by the
European Union Horizon 2020 Research and Innovation Programme under Grant 953775 (GREENEDGE); and in part by

CHIST-ERA-20-SICT-004 (SONATA) under Grant PCI2021-122043-2A/AEI/10.13039/501100011033.

ABSTRACT Federated learning is one of the most appealing alternatives to the standard centralized
learning paradigm, allowing a heterogeneous set of devices to train a machine learning model without
sharing their raw data. However, it requires a central server to coordinate the learning process, thus intro-
ducing potential scalability and security issues. In the literature, server-less federated learning approaches
like gossip federated learning and blockchain-enabled federated learning have been proposed to mitigate
these issues. In this work, we propose a complete overview of these three techniques, proposing a com-
parison according to an integral set of performance indicators, including model accuracy, time complexity,
communication overhead, convergence time, and energy consumption. An extensive simulation campaign
permits to draw a quantitative analysis considering both feedforward and convolutional neural network
models. Results show that gossip federated learning and standard federated solution are able to reach
a similar level of accuracy, and their energy consumption is influenced by the machine learning model
adopted, the software library, and the hardware used. Differently, blockchain-enabled federated learning
represents a viable solution for implementing decentralized learning with a higher level of security, at the
cost of an extra energy usage and data sharing. Finally, we identify open issues on the two decentralized
federated learning implementations and provide insights on potential extensions and possible research
directions on this new research field.

INDEX TERMS Blockchain, decentralized learning, edge computing, energy efficiency, federated learning,
machine learning.

I. INTRODUCTION

MACHINE learning (ML) models, and in partic-
ular deep neural networks, require a substantial

amount of data and computational power that might not
be available on a single machine. As a consequence, ML
operations are normally run at cloud servers (or data cen-
ters), where batteries of powerful processing units enable
short training and inference computation times. However,
training ML models in a data center requires moving
data from the information sources (e.g., edge devices)
to the central system. This approach runs into several
issues:

• Communication overhead: Nowadays, the huge perva-
siveness of mobile services, devices, and network infras-
tructures makes data sources mainly distributed. As
testified recently by the Ericsson Mobility Report [1],
mobile network data traffic grew exponentially over
the last 10 years, with a remarkable increase of 42%
between Q3 2020 and Q3 2021. Mobile data traffic is
projected to grow by over 4 times to reach 288 EB per
month by 2027 [1]. Moving such a big amount of data
from distributed sources to a central location for ML
operations may create network congestion and service
outage.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2023 1111

HTTPS://ORCID.ORG/0000-0002-5044-3243
HTTPS://ORCID.ORG/0000-0003-3872-5907
HTTPS://ORCID.ORG/0000-0001-6756-0289

GUERRA et al.: COST OF TRAINING ML MODELS OVER DISTRIBUTED DATA SOURCES

• Latency: In several real-life scenarios, transmitting data
requires a stable and reliable connection to minimize
latency and ensure updated models, which cannot be
always guaranteed. For example, minimizing commu-
nication latency in connected vehicles is essential to
guarantee road safety [2].

• Energy consumption: Running ML models in cloud data
centers consumes a significant amount of energy and
cannot be considered sustainable from an environmental
perspective. As reported in [3], from 2012 to 2018,
the computations required for training a deep learning
(DL) model have been doubling every 3.4 months, with
an estimated increase of 300000x. Estimates show that
training a state-of-the-art natural language processing
model produces more CO2 than an average car in one
year lifetime [4].

• Privacy: With the growing awareness of data privacy
and security, it is often undesirable, or even unfeasible,
to collect and centralize users’ data [5]. For instance, a
single hospital may not be able to train a high-quality
model for a specific task on its own (due to the lack
of data), but it cannot share raw data due to various
policies or regulations on privacy [6]. Another example
could be the case of a mobile user that would like
to employ a good next-word predictor model without
sharing his/her private historical text data.

A. EDGE AI AND FEDERATED LEARNING
To address the challenges stemming from cloud-based cen-
tralized ML, edge computing pushes cloud services to the
network edge and enables distributed ML operations, i.e.,
the so-called edge intelligence [7]. In particular, AI on
Edge [8] is the paradigm of running AI models with a
device-edge-cloud synergy. It allows to relax the massive
communication requirements and privacy of cloud-based ML
operations [9]. Moreover, distributing ML computation over
the edge has been demonstrated to save up to the 25% of
the energy consumption [10]. In fact, data may be directly
processed at the edge with smaller and more energy efficient
devices (no need of cooling systems) and the energy cost
related to communication is limited due to unnecessary data
transmission.
Among the several training paradigms enabled by edge

intelligence, federated learning (FL) has emerged as a pop-
ular solution by providing low communication overhead,
enhanced user privacy, and security to distributed learn-
ing [11]. With FL, the ML model is trained cooperatively by
edge devices without sharing local data, but only exchanging
model parameters. Some prominent applications for FL can
be found in [12], [13]. The usual implementation envisages
an iterative procedure whereby a central server collects local
updates from the clients (e.g., edge devices) and returns an
aggregated global model. In the rest of the paper, we refer
to centralized FL (CFL) to the traditional server-dependent
FL scenario. In this setting, the server has to wait for all the
clients before returning a new global update. Therefore, high

network latency, unreliable links, or straggled clients may
slow down the training process and even worsen the model
accuracy [14]. In addition, the central server represents a
single point of failure, i.e., if it becomes unreachable due
to network problems or an attack, the training process can-
not continue. Furthermore, it may also become a bottleneck
when the number of clients is very large [15].
Decentralized and server-less solutions for federated learn-

ing have been introduced in the literature, mainly to
overcome the single point of failure and the security prob-
lems [16], [17]. In [18] a decentralized FL mechanism was
proposed by enabling one-hop communication among FL
clients. Similarly, gossip FL (GFL) extends device-to-device
(D2D) communications to compensate for the lack of an
orchestrating central server [19], [20]. It guarantees a low
communication overhead thanks to the reduced number of
messages [21].
Beyond, we find more sophisticated proposals, like

blockchain-enabled federated learning (BFL), which adopts
blockchain to share FL information among devices, thus
removing the figure of the orchestrating central server. In this
way, blockchain removes the single point of failure for the
sake of openness and decentralization and provides enhanced
security via tampered-proof properties [22].

B. CONTRIBUTIONS
Despite in the literature it is possible to find papers com-
paring classical centralized learning in data center with
CFL [23], [24], a comparison among the different feder-
ated learning approaches (centralized versus decentralized)
is still missing. In this work, we aim to fill this gap and, thus,
we focus on two of the most popular and widely adopted
approaches for decentralizing FL: GFL and BFL. In partic-
ular, we provide a comprehensive analysis of both methods
and compare them to traditional FL, i.e., CFL. Note that we
combine standard performance indicators for ML models,
i.e., accuracy, with indicators that quantify the efficiency
of these algorithms, i.e., time complexity, communication
overhead, convergence time, and energy consumption. With
our comparison under fair conditions, we would like to pro-
vide the research community with a complete overview of
the three approaches, so that the best model can be chosen
according to the specific use cases.
The contributions of this paper may be summarized as

follows:

• We overview the traditional FL setting and delve into
two approaches for decentralizing it. They are selected
since are two of the most popular in the literature and
are kind of diverging into two completely different solu-
tions, which are based on gossip communication and
blockchain technology, respectively.

• We provide a thorough analysis to derive the running
time complexity, the communication overhead and the
convergence time of each overviewed mechanism for
FL, including CFL, BFL, and GFL.

1112 VOLUME 4, 2023

• We provide an energy model to measure the energy
consumption of each solution, based on the associated
communication and computation overheads.

• We assess the performance of each method (CFL, GFL,
and BFL) through extensive simulations on widely used
TensorFlow libraries [25].

• We delve into the open aspects of decentralized FL, pro-
viding insights on potential extensions, considerations,
and software implementations for GFL and BFL.

The remainder of the paper is structured as follows:
Section II reviews the related work. Section III describes the
three studied algorithms (CFL, BFL, and GFL). Section IV
analyzes their time complexity, the communication cost,
introduces the communication model and the convergence
time. Section V provides the energy model used in this paper.
Then, Section VI compares the three mechanisms through
simulation results. In Section VII, we propose solutions to
address common BFL and GFL weaknesses. Section VIII
provides some open issues of GFL and BFL and future
research directions. Finally, Section IX concludes the paper
with final remarks.

II. RELATED WORK
Distributing and decentralizing ML operations at the edge
has been embraced as an appealing solution for address-
ing the issues of centralization (connectivity, privacy, and
security) [26]. With FL, different devices collaborate to train
an ML model by sharing local updates obtained from local
and private data. The traditional FL algorithm (FedAvg),
referred to as CFL in this paper, is introduced in [27]. In [11],
the authors propose techniques to improve its communication
efficiency. Nevertheless, CFL still requires a central server
responsible for clients orchestration and model aggregation.
The star topology is a weak aspect of CFL, since the cen-
tral entity represents a single point of failure, it may limit
the number of devices that can participate in the training
process, augments the communication cost of the learning
process, and presents privacy concerns [15], [28].
An extension of CFL, is proposed in [29] where a hierar-

chical aggregation scheme is adopted, i.e., a subset of edge
devices aggregate the local updates shared by their neigh-
bors. Further optimization for wireless networks is taken
into account in [30], where wireless resource allocation and
client selection are jointly considered to minimize CFL loss.
To address these challenges, decentralized federated learn-

ing has been proposed in [18]. The authors present a fully
decentralized model, in which each device can communicate
only with its one-hop neighbors. They also provide a theoreti-
cal upper bound on the mean square error. Ormándi et al. [19]
introduce gossip FL, a generic approach for peer-to-peer
(P2P) learning on fully distributed data, i.e., every device
has only a single input sample to process at each round.
The same algorithm has been tested in [20] under real-world
conditions, i.e., devices have multiple input samples avail-
able (rather than only one point, as originally stated in [19]),

restricted communication topology, heterogeneous commu-
nication and computation capabilities. Removing the central
server brings new challenges and opportunities. On the one
hand, GFL addresses scalability properly and removes the
single point of failure problem of CFL. On the other hand,
the lack of coordination in GFL may lead to high temporal
variability and ML model inconsistencies (e.g., nodes may
have different versions of the model stored in their local
cache). The fact is that, in GFL, the participating nodes
interact with each other in a distributed manner. This, for
instance, hinders the consensus on the ML model at the
beginning of each FL round, which gains in difficulty as the
number of participants increases. Moreover, network topolo-
gies with sparsely connected clients may further degrade
GFL performance [20].
Another prominent solution to decentralize FL is

blockchain-enabled FL [31], [32], [33]. A blockchain system
allows clients to submit and retrieve model updates with-
out the central server. Additionally, the usage of blockchain
guarantees security, trust, privacy, and traceability, however,
it introduces delays due to the distributed ledger technol-
ogy. An analysis of end-to-end latency and the effects of
blockchain parameters on the training procedure of BFL is
proposed in [22].

In the literature, there exist some comparisons across FL
techniques. The authors of [34] compare GFL and CFL with
a logistic regression model in terms of convergence time,
proportion of the misclassified examples in the test set (0-1
error), and used communication resources. When nodes have
a random subset of the learning samples, GFL performance
is comparable with CFL; instead, CFL converges faster when
a node has only labels from one class. Another comparison is
proposed in [35], where the performance of FL algorithms
that require a central server, e.g., FedAvg and Federated
Stochastic Reduced Gradient are analyzed. Results show that
FedAvg achieves the highest accuracy among the FL algo-
rithms regardless of how data are partitioned. In addition,
the comparison between FedAvg and the standard centralized
algorithm shows that they are equivalent when independent
and identically distributed (IID) datasets are used.
In [21], the authors compare GFL with the standard cen-

tralized data center based architecture in terms of accuracy
and energy consumption for two radio access network use-
cases. To achieve this goal, they use the machine learning
emission calculator [36] and green algorithms [37]. In [23],
the authors compare centralized data center based learning
and CFL in terms of carbon footprint using different datasets.
The assessment is done by sampling the CPU and GPU
power consumption. In [24], the authors propose a frame-
work to evaluate the energy consumption and the carbon
footprint of distributed ML models with focus on industrial
Internet of Things applications. The paper identifies spe-
cific requirements on the communication network, dataset
and model size to guarantee the energy efficiency of CFL
over centralized learning approaches, i.e., bounds on the
local dataset or model size. Differently from our work, the

VOLUME 4, 2023 1113

GUERRA et al.: COST OF TRAINING ML MODELS OVER DISTRIBUTED DATA SOURCES

authors do not consider Blockchain-enabled FL and evaluate
the algorithm performance in scenarios with small number
of devices (i.e., 100). In addition, we empirically measure
the energy consumption of the devices based on the real
load of the computations realized during the training phase;
we provide a communication model to estimate overhead
and convergence time. Finally, here we introduce an analy-
sis on the computational complexity of the three federated
algorithms under study.
To sum up, in this paper, we endeavor to bridge the

existing gap in the literature by providing a thorough com-
parison including performance analysis and cost of the
different federated approaches listed above, i.e., CFL, BFL,
and GFL. Differently from the other works in the literature,
we combine standard metrics, i.e., accuracy, with indica-
tors of the efficiency of these algorithms, i.e., computational
complexity, communication overhead, convergence time and
energy consumption. Our final aim is to contribute to the
development of Green AI [38].

III. FEDERATED LEARNING IMPLEMENTATIONS
Let us consider a set of N clients (or devices) N =
{1, . . . ,N} with their datasets D1, . . . ,DN . Each local dataset
Di,∀i ∈ N , contains pairs (xi, yi), where xi is the feature
vector, and yi its true label. The goal of a federated setting
is to train a global model (e.g., a set of weights w), that
minimizes the weighted global loss function:

� =
N∑

i=1

|Di|
|D| �i(w, xi, yi), (1)

where �i represents the local loss experienced by client i and
|D| = ∑N

i=1 Di. In this scenario, devices do not share raw
local data with other devices. Instead, they exchange model
parameter updates, computed during several iterations by
training the global model on local data. In this paper, we
study three different implementations to solve the federated
problem stated above, namely: CFL, BFL, and GFL. The
investigated solutions are depicted in Fig. 1 and we will
introduce them in what follows. Though several variants are
available in the literature, the three algorithms described next
are baseline representations of the approaches studied and
well suitable for our purposes.

A. CENTRALIZED FEDERATED LEARNING (CFL)
At the beginning of a round t, a random subset of m devices
S t ⊆ N is selected, and the server sends the current global
model to the parties. Each client makes E epochs on the local
dataset with a mini-batch size of B, updates its local model
wt+1
k and sends it to the server. The server aggregates the

received local updates and generates the new global model
by computing the weighted average of the local updates, as
follows:

wt+1 =
∑

k∈S t

|Dk|
|D| w

t+1
k , (2)

FIGURE 1. Overview of the different FL scenarios.

where |D| = ∑
k∈S t |Dk|. The process is repeated until the

model reaches convergence, e.g., the loss function does not
improve significantly across subsequent epochs or a specific
number of training rounds have been executed. In this work,
we consider the FedAvg algorithm [27] as a merging method
to generate global model updates.
Algorithm 1 describes the CFL with FedAvg mechanism.

The procedure MAIN is executed by the server that coordi-
nates the whole training process. Each client executes the
procedure CLIENTUPDATE and applies the stochastic gra-
dient descent (SGD) algorithm on its local dataset with a
learning rate η.

B. BLOCKCHAIN-ENABLED FEDERATED LEARNING
(BFL)
BFL is based on distributed ledger technology, which collects
data in the form of transactions and organizes it into blocks.
Indeed, a blockchain is a sequence of blocks chained one
after another through advanced cryptographic techniques.
Each block contains the hash value of the previous one, lead-
ing to a tampered-proof sequence and providing properties
that are essential to building trust in decentralized settings,
such as transparency and immutability. In a blockchain, a
set of participant nodes (miners) apply certain mining proto-
cols and consensus mechanisms to append new blocks to the
blockchain and agree on the status of the same. This pro-
cedure allows devices to write concurrently on a distributed
database and guarantees that any malicious change on data
would not be accepted by the majority, so that data in a
blockchain is secured.
When a blockchain is applied to a federated setting, the

process is going as follows [22]:

1) Each device submits its local model updates in the
form of transactions to the blockchain peer-to-peer
(P2P) network of miners.

2) The transactions are shared and verified by miners.

1114 VOLUME 4, 2023

Algorithm 1 CFL
1: procedure MAIN

2: initialize w0
3: t← 0
4: while convergence is not reached do
5: S t ← random set of m clients
6: for each client k ∈ S t in parallel do
7: Download the global model wt

8: wt+1
k ← CLIENTUPDATE(k, wt)

9: Send wt+1
k to the server

10: end for
11: wt+1 ←∑

k∈S t
|Dk||D| w

t+1
k

12: t← t + 1
13: end while
14: end procedure
1: procedure CLIENTUPDATE(k,w) � Run on client k
2: B← split the local dataset into batches of size B
3: for E local epochs do
4: for batch b ∈ B do
5: w← w− η∇�(w, b)
6: end for
7: end for
8: return w
9: end procedure

3) Miners execute certain tasks to decide which node
updates the chain. One of the most popular mining
mechanisms, and studied in this paper, is Proof-of-
Work (PoW) [39], whereby miners spend their com-
putational power (denoted by λ) to solve computation-
intensive mathematical puzzles.

4) As a result of the concurrent mining operation, a new
block is created and propagated throughout the P2P
blockchain network every BI seconds (on average).
The block size SB is selected such that can include a
maximum of m transactions, each one representing a
local model submitted by a client.

5) Clients download the latest block from its associated
miner (as in [13], [31]), which would allow performing
on-device global model aggregation and local training.

An important consequence of the blockchain decentral-
ized consensus is forking. A fork occurs when two or more
miners generate a valid block simultaneously (i.e., before the
winning block succeeds to be propagated). The existence of
forks can be seen as a waste of resources, as it may lead to
extra computation and delay overhead [40].
In this work, we consider the version of BFL reported

in Algorithm 2 [22], which entails the participation of
multi-access edge computing (MEC) servers and edge
devices. Each client downloads the updates wt1 . . .wtm ∈ bt
contained in the latest block, computes the new global wt,
and trains it on its local dataset with the CLIENTUPDATE

procedure described in Section III-A. The parameters of the
new updated model wt+1

k are then submitted with the method

Algorithm 2 BFL
1: procedure MAIN

2: t← 0
3: initialize w0
4: while convergence is not reached do
5: S t ← random set of m clients
6: for each client k ∈ S t in parallel do
7: Download the latest block, bt

8: wt ←∑
j∈bt
|Dj|
|D| w

t
j

9: wt+1
k ← CLIENTUPDATE(k, wt)

10: SUBMITLOCALUPDATE(Str)
11: end for
12: bt+1 ←MINEBLOCK(λ)

13: PROPAGATEBLOCK(bt+1)

14: if bt+1 is not valid then
15: Go to line 12
16: end if
17: t← t + 1
18: end while
19: end procedure

SUBMITLOCALUPDATE, where Str is the transaction size.
Once all the local updates are uploaded to the blockchain,
a new block bt+1 is mined with MINEBLOCK, where the
block generation rate, λ = 1

BI , is derived from the total
computational power of blockchain nodes. Finally, the new
block is shared across all the blockchain nodes with the
procedure PROPAGATEBLOCK, which depends on the size
of block bt+1 (fixed to SB). The process is repeated until
convergence.

C. GOSSIP FEDERATED LEARNING (GFL)
GFL is an asynchronous protocol that trains a global
model over decentralized data using a gossip communication
algorithm [19], [20].
We consider the general design proposed in [20] and [21].

Overall, the participating clients start from a common ini-
tialization. The global model is then trained sequentially on
local data and following a given path (e.g., a random walk)
of visiting clients. Algorithm 3 describes the GFL procedure
and it works as follows:

1) The N clients agree on the ML model to use and store
it in their local cache, i.e., lastModeli, ∀i ∈ N .

2) At each round t, m clients are randomly selected and
ordered in a sequence S t = [k1, . . . , km].

3) The ML model visits sequentially the clients in St. Let
wtki−1

be the model received by ki ∈ S t.
4) As reported in Fig. 2, first the procedure MERGE com-

bines wtki−1
and lastModelki , i.e., the model from the

previous round in which the client has been selected.
Then, the procedure CLIENTUPDATE described in
Section III-A used to train the merged model on the
local dataset.

VOLUME 4, 2023 1115

GUERRA et al.: COST OF TRAINING ML MODELS OVER DISTRIBUTED DATA SOURCES

Algorithm 3 GFL
1: procedure MAIN

2: initialize lastModelk for each client k
3: t← 0
4: while convergence is not reached do
5: S t ← random set of m clients
6: [k1, ..., km]← GETSEQUENCE(S t)
7: for i = 1, ...,m do
8: wtki−1

� Model trained by the previous node
in the sequence

9: wtki ← MERGE(wtki−1
, lastModelki)

10: wtki ← CLIENTUPDATE(ki,wtki)
11: lastModelki ← wtki−1
12: Send model to the next client
13: end for
14: t← t + 1
15: end while
16: end procedure
17:

18: procedure MERGE(w,w′)
19: w← w+w′

2
20: return w
21: end procedure
22: procedure GETSEQUENCE(St)

23: [k1, . . . , km]
i.i.d.∼ U(St)

24: return [k1, . . . , km]
25: end procedure

FIGURE 2. Overview of the operations executed by a node in the GFL algorithm.

5) The local cache of ki is updated with the model
wtki−1

, i.e., lastModelki and the model trained on the
local dataset wtki is shared with the next node in the
sequence S t.

6) If ki is the last client of the sequence the model
wtki is sent to the first node of the next FL round,
i.e., k1 ∈ St+1.

A round is completed when the model has visited all the
clients in the sequence. The algorithm stops when conver-
gence is reached (after a given number of rounds). As an
example, we consider a scenario with N clients. After the
local cache initialization, m clients are randomly selected

and ordered in a sequence S0 = [k1, . . . , km]. The first client
k1 ∈ S0 trains the model stored in its local cache, with the
procedure CLIENTUPDATE on the local dataset and shares
the model w0

k1
with the following node in the sequence, i.e.,

k2 ∈ S0. When k2 receives w0
k1
, first applies the MERGE pro-

cedure to combine it with the model stored in lastModelk2

and then trains it on its local dataset with the procedure
CLIENTUPDATE. After the local training, the model w0

k2

is shared with the next node in the sequence, and w0
k1

is
stored in the local cache lastModelk2 . The same process is
repeated at each visited client till the end of the sequence.
The last client km ∈ S0, after the execution of the proce-
dures MERGE and CLIENTUPDATE, sends w0

km
to the first

node of the sequence for the next round S1. These operations
are executed iteratively till convergence is reached, e.g., a
predefined number of rounds are executed.

IV. COMPUTATIONAL AND COMMUNICATION COSTS
In this section, we introduce the mathematical statements
for the calculation of the time complexity of the three
federated algorithms discussed in Section III. We also elab-
orate on the data overhead due to the communication of
the different model updates during the several rounds of
the process for each implementation. Finally, we derive the
equations for the calculation of the time to reach the con-
vergence of the three analyzed federated approaches. The
results proposed hereafter are derived using the following
assumptions:

1) Scalar operations (sums and products) cost O(1).
2) The time complexity of the matrix multiplication is

linear with the matrix size, i.e., A ∈ R
i×j and B ∈ R

j×k,
the cost of the product is O(i · j · k).

3) For a single input pair (xi, yi), the time complexity
required to compute ∇� is linear with the number of
model’s weights, O(|w|).

4) During the mining process, with the PoW, a miner
computes the nonce of a block using brute force until
finding a hash value lower or equal to a certain thresh-
old [41], referred to as the mining difficulty. Assume
that the hash value has b bits, and that its solution
should be smaller than 2b−l bits (being l a value deter-
mined by the mining difficulty), if the miner samples
the nonce values at random, the probability of a valid
value is 2−l. Henceforth, 2l sampling operations are
required for mining a block. The time complexity is
O(2l).

5) The set of nodes that have a local copy of the
blockchain is NB = {1, . . . ,NB}, without loss of
generality, is assumed to be N ∩NB = ∅.

6) We assume that convergence of the FL training
procedure is reached after R rounds.

Theorem 1: The time complexity of CFL is:

O(RmE|Dmax||w|), (3)

1116 VOLUME 4, 2023

TABLE 1. Computational complexity and communication overhead for CFL, BFL and GFL.

where Dmax = maxk∈N |Dk|. The communication overhead
is given by

2Rm|w| (4)

Proof: See Appendix A-A.
Theorem 2: The time complexity of BFL is:

O
(
R
(
|w|m2 + E|Dmax||w|m+ 2l + m|w|NB

))
, (5)

where NB is the number of nodes that have a local copy of
the blockchain and l is related to the PoW difficulty (see
Assumption 4). Its communication overhead is

R
(
|w|m2 + |w|m+ m|w|NB

)
(6)

Proof: See Appendix A-B.
Theorem 3: The time complexity of GFL is

O(RmE|Dmax||w|) (7)

and its communication overhead is

Rm|w| (8)

Proof: See Appendix A-C.
The three algorithms have a time complexity that depends

on the dataset size |Dmax|. Additionally, the time complexity
of BFL (5) is also a function of the blockchain parameters
NB and l. In particular, the dominant term in (5) is R2l.
Hence, the time complexity of BFL is exponential in the
PoW difficulty l, while for CFL and GFL is polynomial
in RmE|Dmax||w|. Table 1 summarizes the different results
obtained for time complexity and communication overhead.
Lastly, we conclude our analysis by computing the total

execution time of each algorithm until convergence (con-
vergence time) as a function of the delay introduced by the
communication rounds and the computational operations. To
do that, we characterize the links whereby the different types
of nodes exchange information (e.g., local model updates,
blocks), keeping the topology introduced in Fig. 1 in mind.
We classify two different types of connections: cloud (solid
arrows) and edge (dotted and dashed arrows). Cloud con-
nections (assumed to be wired) are used by miners in the
blockchain; instead, edge connections (assumed to be wire-
less) are used by edge nodes to upload/download models.
Given its popularity and easiness of deployment, we adopt
IEEE 802.11ax links for edge connections [42]. Since edge
devices are often energy-constrained, we consider different
values of transmission power for the edge connections. The
central server and blockchain node use a transmission power
of PcTX, instead, edge devices use PeTX, with PeTX ≤ PcTX.

The wired connection has a capacity CP2P. Additionally, we
identify three main types of computational operations during
the federated learning processes: local model training, model
parameters exchange, and blockchain data sharing. Based on
this, we can compute the convergence time of CFL, BFL,
and GFL as follows:

TCFL = Ttrain + TeTx + TcTx, (9)

TBFL = TBC + Ttrain + TeTx + TcTx, (10)

TGFL = Ttrain + TeTx, (11)

where Ttrain is the total amount of time spent for train-
ing the ML model locally, Tc/eTx is the total transmission
time of the central server/blockchain nodes (c) or the edge
devices (e), and computed according to the model detailed in
Appendix B. TBC is the total delay introduced by blockchain
and described in steps 2-4 of the process in Section III-B.

V. ENERGY FOOTPRINT
In this section, we define the models used to characterize
the energy consumption that results from the FL operations.
Driven by (9), (10) and (11), the total amount of energy
consumed in each scenario is:

ECFL = Etrain + EeTx + EcTx, (12)

EBFL = EBC + Etrain + EeTx + EcTx, (13)

EGFL = Etrain + EeTx, (14)

where Etrain is the energy consumed by all the nodes during
the local training, and Ec/eTx is the energy required to transmit
the model via IEEE 802.11ax wireless links during the whole
algorithm execution, from either a central server/blockchain
node (c) or an edge device (e). Etrain is calculated as:

Etrain =
R−1∑

r=0

∑

i∈Sr

PrCPUi�
r
i , (15)

where PrCPUi is the average power consumed by the CPU
and DRAM during a round r, and �r

i is the duration of the
operation for the i - th client. The model proposed in (15)
is general enough to capture the characteristics of the three
algorithm implementations. Moreover, it opens the possibil-
ity of using energy measurement libraries, which represent a
good trade-off between the complexity of using real sensors
and the high abstraction level of mathematical models.
As described in Section IV, we may have two types of

communication links: cloud and edge. Considering that cloud
links are wired, we assume that their energy consumption is

VOLUME 4, 2023 1117

GUERRA et al.: COST OF TRAINING ML MODELS OVER DISTRIBUTED DATA SOURCES

FIGURE 3. Distribution of samples across the four first clients for both EMNIST and
EMNISTp federated datasets.

negligible. Instead, we compute the energy consumption of
the edge connections according to the following equation:

Ec/eTx = Tc/eTx P
c/e
Tx , (16)

where Tc/eTx and Pc/eTx are the transmission time and power of a
central server/miner (c) or an edge device (e). The additional
term EBC for BFL is associated to mining operations of the
PoW. We measure that consumed energy based on the model
proposed in [43] and according to the following equation:

EBC = Ph
1

λ
Nchain, (17)

where Ph is the total hashing power of the network, λ is the
block generation rate, and Nchain is the number of blocks on
the main chain.

VI. PERFORMANCE EVALUATION
In this section, we first describe the experimental settings
adopted to compare the three federated approaches and then,
we present numerical results.

A. SIMULATION SETUP
We use the Extended MNIST (EMNIST) dataset available
on Tensorflow Federated (TFF) library [44]. The input fea-
tures are black and white images that represent handwritten
digits in {0, 1, . . . , 9}, coded in a matrix of 28 × 28 pix-
els. Considering only digits, it contains 341 873 training
examples and 40 832 test samples, both divided across 3 383
clients. The training and the test sets share the same clients
list so that each client has at least one sample. Each local
dataset groups all the samples of the same writer and does
not change over time. In the EMNIST dataset, all clients
have a rich number of samples for all the classes, thus data
distribution across them can be considered as IID. To eval-
uate the targeted federated mechanisms in more challenging
settings, we create a new version of the EMNIST dataset,
called EMNISTp, by randomly restricting each client dataset
to 3 classes only. EMNISTp contains 102 418 training sam-
ples. Fig. 3 shows the available samples of the first 4 clients,
for both versions of the dataset.
To correctly classify these samples we choose two mod-

els proposed in [27]. The first one is a feed-forward neural
network (FFNN) with an input layer of 784 neurons, two

hidden layers of 200 neurons activated with the rectified lin-
ear unit (ReLU) function, and an output layer of 10 neurons
with Softmax activation function. The number of trainable
parameters for the FFNN (|w′|) is 199 210. Assuming that
each parameter requires 4 bytes, i.e., size of a float32 vari-
able, the total amount of space required (Sw′) is 796.84 KB.
The second one is a convolutional neural network (CNN)
with the following structure:
1) A 5×5 convolutional layer with 32 channels and ReLU

activation function.
2) A 2× 2 max pooling layer.
3) A 5×5 convolutional layer with 64 channels and ReLU

activation function.
4) A 2× 2 max pooling layer.
5) A fully connected layer with 512 units and ReLu

activation.
6) An output layer with 10 neurons and Softmax activa-

tion function.
In total, the number of trainable parameters for the CNN
(|w′′|) is 582 026 and the size in memory (Sw′′) is 2.33 MB.
We opted for a FFNN to reproduce a realistic scenario where
edge devices might not have enough computational power to
train more sophisticated deep learning mechanisms, like NNs
based on convolutional architectures. Despite its simplicity,
the selected FFNN model accurately classifies the digits of
the EMNIST dataset, as shown next. Then, we use also a
CNN to evaluate the multiple algorithms’ performance using
a more complex model (details in Section VI-C).
The three FL algorithms are implemented with Tensorflow

(TF) [25], Tensorflow Federated (TFF) [45] and Keras [46]
libraries. We have extended the Bitcoin model provided
by BlockSim [47] to simulate the blockchain behavior.
BlockSim is an event-based simulator that characterizes the
operations carried out to store data in a blockchain, from
the submission of transactions to mining blocks and reaching
consensus in a decentralized manner. Accordingly, BlockSim
allows simulating the delays added by the blockchain in
a BFL application, i.e., the TBC parameter defined in
Section IV.
We create a validation set by choosing a subset of 200

clients from the test set. Following the TFF documenta-
tion [48], the training accuracy is computed at the beginning
of each round; instead the validation accuracy is calculated
at the end. For this reason, may happen that the validation
accuracy is higher than the training one. At the end of each
simulation, we evaluate the performance on the test set.
As for Etrain and Ttrain, we have used Carbontracker [49], a

Python library that periodically samples the hardware energy
consumption and measures the execution time. Moreover,
PcTx is set to 20 dBm and PeTx = 9 dBm. Table 2 reports
all the other parameters used in our simulations. We note
here that we have used the same FL parameters for a fair
comparison, being the number of rounds R of CFL and GFL
equivalent to the main chain length (Nchain) in BFL. In this
way, we guarantee that the number of global rounds of each
learning algorithm is the same. We run the experiments with

1118 VOLUME 4, 2023

TABLE 2. Simulation parameters.

the following hardware configurations: Intel i5-6600 with
8GB of RAM (HW1) and two Intel Xeon 6230 with 188GB
of RAM (HW2).

B. RESULT ANALYSIS
Table 3 reports the accuracy of each algorithm implementa-
tion with the FFNN model on the two considered datasets
executed on HW1. CFL and BFL achieve the best accuracy
(both close to 0.9), instead, GFL presents lower values. This
result validates the claim that, under similar setups as in our
simulations (i.e., each block contains m local updates orga-
nized in transactions), the central parameter server of CFL
can be replaced by a blockchain network, properly dimen-
sioned, without compromising the learning accuracy. On the
other hand, GFL achieves a validation accuracy around 0.5
after 200 rounds. We justify this behavior by noticing that,
before the CLIENTUPDATE procedure, the model received
from the previous node in the sequence is merged with that
in the previous round. For the earliest training rounds, there

is a high probability that the merging procedure works with
a fresh model that has never been trained, hence disrupting
the knowledge from the previous clients. We analyze this
phenomenon more in depth in Section VII-A.
Table 3 also details the convergence time of each algo-

rithm, the percentage of energy consumed in the computa-
tions (as a percentage of the total energy consumed), the total
amount of energy needed, and the communication overhead
(i.e., data to be shared during the rounds of the algorithms).
Computational energy is, generally speaking, the energy
spent for performing computations needed for the specific
algorithm implementation. For CFL and GFL, it takes into
account the energy spent in the local training at the clients,
Etrain. Instead, in BFL, within computational energy, we con-
sider both local training at clients and the energy spent for
the mining process in the blockchain network, i.e., Etrain and
EBC respectively.
The fastest and the most energy-efficient algorithm is

GFL: it is able to save the 18% of training time, the 18% of
energy, and the 51% of data to be shared with respect to the
CFL solution. However, GFL main drawback resides in the
poor accuracy achieved, as stated above. BFL is the slow-
est and the most energy-hungry federated implementation,
mainly due to the overhead introduced by the blockchain
network to secure data in a decentralized way. Additionally, it
is to be noted that computation is the most energy-consuming
task for CFL, BFL, and GFL. For BFL, the mining process
drains 1125 Wh, i.e., 98% of the total energy. We highlight
here that our comparison may be unfair in this respect, since
both CFL and GFL are not including any security mecha-
nism. However, we believe that it is worth including BFL
in our analysis on distributed versus centralized federated
learning since our results show that the secure and decentral-
ized method introduced by the blockchain network, despite
increasing algorithm costs, does not jeopardize its accuracy
compared to its centralized counterpart CFL. Finally, GFL is
the implementation that requires the lowest communication
overhead. More precisely, in this case, we need to include
an extra cost to share the global model across the nodes at
the end of the last round (not considered in the table), which
is approximately 0.16 GB (the cost of one extra round).

C. MODEL AND IMPLEMENTATION DEPENDENCIES
Table 4 and Table 5 report the performance of the CNN
model on EMNIST (EMNISTp) datasets executed on two
different platforms HW1 and HW2, respectively. Similar
to the previous FFNN case, BFL is the slowest and the
most energy demanding algorithm. Instead in this case, GFL
reaches higher validation accuracy on EMNIST, i.e., 0.8, but
is still not able to get the performance of the other two algo-
rithms. Moreover, using CNN, GFL is the fastest algorithm
and saves up to 16% of the execution time, with respect to
CFL on HW1. Hence, model selection plays a key role for
the algorithm performance and may facilitate the training
process, as in the case of GFL. Finally, it is confirmed that
the communication overhead of GFL is the lowest.

VOLUME 4, 2023 1119

GUERRA et al.: COST OF TRAINING ML MODELS OVER DISTRIBUTED DATA SOURCES

TABLE 3. FFNN simulation results on EMNIST (EMNISTp) datasets.

TABLE 4. CNN simulation results on HW1 and EMNIST (EMNISTp) datasets.

TABLE 5. CNN simulation results on HW2 and EMNIST (EMNISTp) datasets.

TABLE 6. Mapping between services and federated learning implementations.

However, we report here some inconsistencies in per-
forming energy measurements. In fact on HW1, differently
from the FFNN case, CFL is the most energy efficient on
EMNIST and saves 14% of energy with respect to GFL. On
EMNISTp, instead, the situation is different since GFL saves
15% of the energy. Moreover, when using HW2 (Table 5),
CFL results to be the most energy efficient for both EMNIST
and EMNISTp. Such inconsistencies are mainly due to the
fact that the average computational power consumption in
CFL implementation is higher than GFL (around 103W
and 93W on EMNIST, respectively); however GFL requires
longer training time (Ttrain). Instead in the FFNN model
implementation, the average computational power consump-
tion is higher for GFL (around 19W for CFL and 13W for
GFL), but GFL requires lower training time. The reason lays
mainly in the software implementations.1 In fact, CFL and
BFL are based on TFF, which executes the training pro-
cess for all the participating clients in parallel. Differently,
GFL is based on the standard TF libraries and the train-
ing process is executed sequentially one client after the
other.
In view of the above, we state here that hardware and

software implementation play a key role in the energy assess-
ment. Therefore, it is essential that future research directions
will focus on: i) joint optimization of federated algorithms
and their software implementations, ii) definition of standard
libraries for the three categories of algorithms studied in this
paper, and iii) design of effective and open test platforms
for experiment comparison.

1. https://github.com/eliaguerra/Federated_comparison_cttc

D. MAPPING BETWEEN FL IMPLEMENTATION AND
SERVICES
In state of the results achieved by our analysis, we map the
most suitable FL implementation given a specific application
scenario. Among the several services listed in [12], [13],
in Table 6 we focus on some emerging examples such
as Healthcare and Mobile Traffic Prediction for cross-
silo scenarios and Urban Traffic Forecasting, Connected
Vehicles, Next-word Prediction for cross-device settings. In
the Healthcare scenario, accurate predictions that guarantee
the confidentiality of users’ data are required [50]. For these
reasons, we suggest the usage of BFL. In the context of
mobile networks, multiple base stations may be interested
in training an ML model for mobile traffic prediction without
sharing raw data and save network resources. In this case,
accuracy and latency are the most important KPIs [51]. Our
suggestion here is to use CFL. Nevertheless, we may also
find BFL as an appealing solution when multiple operators
cooperate on the mobile traffic forecasting task. In urban
traffic forecasting, a network of sensors is in charge of cre-
ating a model to predict vehicular traffic flow. Considering
the problem description and the limited amount of energy
available at each sensor, the two most important KPIs are
latency and energy [52], the suggested approach is a GFL
(or GFL-NM) algorithm. For connected vehicles, latency and
accuracy are the two most important KPIs [2]. Considering
that the connection with a central server may be unavailable,
we suggest the usage of GFL (or GFL-NM) to take advan-
tage of nearby vehicles to share model updates. In next
word prediction for mobile keyboards, minimizing energy
is of paramount importance to guarantee a flawless user

1120 VOLUME 4, 2023

TABLE 7. FFNN simulation results of GFL on EMNIST (EMNISTp) datasets with higher number of rounds and local computations.

experience so the most important KPI is energy [53], the
suggested approach is CFL.

VII. PROPOSED IMPROVEMENTS
A. GFL ACCURACY
As described in Section VI-B, GFL does not achieve the
same accuracy level as CFL and BFL. We identify two
possible reasons for this:

1) The number of rounds is not sufficient for it to con-
verge: the number of visited nodes might not be
sufficient to achieve an acceptable accuracy.

2) The merge step negatively impacts the overall
performance of the learning algorithm: the model
received in the previous round and stored in the local
cache slows down the learning process.

To verify the first hypothesis, we execute GFL algorithm,
with the FFNN model on HW1, changing the number of
rounds (R = {200, 400, 800}) and varying the number of
local computations (E = {5, 10}). Table 7 shows the results
obtained. Considering the EMNIST dataset, the best results
are achieved with R = 800 and E = {5, 10}, i.e., a higher
test accuracy of 0.66, but still lower than CFL and BFL.
Moreover, the model is overfitting with R = 800 rounds;
hence, when increasing the number of rounds, a regulariza-
tion method would be needed. On the EMNISTp dataset, the
accuracy is even lower for each combination of the hyperpa-
rameters tested. Increasing the number of rounds, R, and the
local epochs, E, increases GFL validation accuracy to 0.94
but it quadruplicates the convergence time and requires 5
times more the energy of the baseline configuration (R = 200
and E = 5) on the EMNIST dataset. To verify the second
hypothesis, we run GFL algorithm without the merge step
(GFL-NM). The pseudocode of this algorithm is the same in
Algorithm 3 except for having replaced the old Line 9 with
the new command wtki ← wtki−1

. Thus, in GFL-NM, given
a sequence of clients St the model is trained incrementally
on the client datasets. GFL-NM achieves a training accuracy
of ∼ 1.0 (0.94), a validation accuracy of 0.94 (0.78) and
a test accuracy of 0.93 (0.78) on the EMNIST (EMNISTp)
dataset (see Fig. 4(b)), higher than both CFL and BFL. These
results suggest that the MERGE step compromises the train-
ing performance. In fact, at the beginning of the learning
process, there is a high probability that a model visits a
node that has never been visited before and with lastModel
storing initialization values. In this case, the received model
is merged with a model that has never been trained before, as

FIGURE 4. Training and validation accuracy on EMNIST and EMNISTp.

shown in Algorithm 3, which negatively impacts the result-
ing merged weights. Figure 4 shows the comparison between
the learning curves of GFL and GFL-NM.
In conclusion, we proved that both 1) and 2) influence the

achieved accuracy. Moreover, GFL-NM solves the accuracy
problem of standard GFL and achieves the best performance
from the point of view of all the metrics.

B. DELAY ANALYSIS OF BFL
Blockchain technology, while enabling a reliable and secure
FL operation, entails very high overheads in terms of
time and energy for the sake of keeping decentralization.
The performance of a blockchain, typically measured in
transactions per second (TPS), together with the granted
degree of security, strongly depends on the nature of the
blockchain (e.g., degree of visibility, type of consensus,
mining protocol), its configurable parameters (e.g., block
interval, difficulty), and the size of the P2P network main-
taining it. Furthermore, as discussed in Section VIII-D, the
necessary energy to maintain a blockchain is correlated to
its performance in TPS and security, thus leading to the
well-known performance, security, and energy trilemma.
To showcase the effect of using different types of

blockchain networks, Fig. 5 shows the total delay incurred
by the blockchain to the FL operation to generate up
to 200 blocks under different blockchain configurations.
Notice that, in the proposed setting, each block is equivalent
to an FL round. In particular, we vary the total num-
ber of miners (Nm = {1, 10, 100}) and the block interval
(BI = {5, 15, 600} s), which affect the time required to
achieve consensus.
First, a higher number of miners leads to a higher fork

probability, provided that more nodes need to agree on the
same status of the ledger. Note that with Nm = 1 the fork
probability, i.e., pf (Nm), is 0 since there is only one miner.
By contrast, a higher block interval allows mitigating the

VOLUME 4, 2023 1121

GUERRA et al.: COST OF TRAINING ML MODELS OVER DISTRIBUTED DATA SOURCES

FIGURE 5. Blockchain delay as a function of the number of miners (Nm) and the
block interval (BI). The fork probability associated with each Nm is shown in red.

effect of forks, since the probability that two miners mine a
block simultaneously is lower [54].
As shown in Fig. 5, the blockchain delay increases with

the block interval (BI), which indicates the average time for
mining a block. Notice that, in a PoW-based blockchain,
the block interval is fixed by tuning the mining difficulty
according to the total computational power of miners. As for
the impact of Nm on the delay, its effects on the delay are
more noticeable for low BI values. In particular, a higher
fork probability is observed as Nm increases, thus incurring
additional delays to the FL application operating on top of
the blockchain.

VIII. OPEN ISSUES AND FUTURE RESEARCH
DIRECTIONS
A. GFL
In our opinion, and encouraged by our results, the investi-
gation of new methods for merging the model updates from
the distributed sources to achieve faster and higher accu-
racy is an interesting and open research line. To the best
of our knowledge, there are still very few works that go in
this direction in the literature. In [21], the authors imple-
ment an incremental version of GFL with a single round
on the edge devices using the entire local dataset (hence,
without requiring any merge step). Similarly, [55] proposes
an iterative continual learning algorithm, where a model is
trained incrementally on the local datasets without applying
any merge operation.

B. BFL
To optimize the performance of a blockchain, a widely
adopted approach consists of finding the best block gen-
eration rate [31], which is controlled by tuning the mining
difficulty. Other approaches consider optimizing the block
size [56], which better fits scenarios where the intensity of
transaction arrivals depends on the nature of the application
running on top of the blockchain (e.g., FL updates provided
by clients).
Regarding the communication cost of BFL, it can be

improved by leveraging the computational capacity of

blockchain miners to speed up the FL operation. In par-
ticular, instead of including individual local models in a
block, each block can bring a global model, aggregated by
the miner responsible for building the block. This approach
has been widely adopted in the literature (see, e.g., [57]), and
would lead to reduced time complexity and communication
cost (see Appendix A-B).
Finally, another important open aspect regarding

blockchain-enabled FL lies in the implications of decen-
tralization on the learning procedure. In this paper, we have
assumed that the blockchain is perfectly shared and accessed
by FL devices to carry out training, thus acting as a central
orchestrating server. However, the decentralized data shar-
ing in blockchain naturally leads to model inconsistencies,
provided that different FL devices can use the information
from different blocks to compute local model updates.

C. ROLE OF MEC IN DECENTRALIZED FL
Due to its low-latency and computation-acceleration capa-
bilities, the MEC paradigm is of particular relevance to
uplifting the performance of FL applications. The interplay
between FL and MEC has been largely studied from the
data offloading perspective, but when it comes to decentral-
ized FL approaches, MEC can play different roles. First, FL
devices in GFL can leverage MEC to perform model training
offloading by sharing their local datasets to a nearby MEC
server. As shown in [58], ML model training offloading
is an appealing solution for mitigating the straggler nodes
problem in FL. And this is particularly useful in settings
with computationally constrained devices such as in IoT.
Nevertheless, offloading a dataset to an edge server entails a
trade-off between the data transfer time and the local com-
putation savings. For that, it is critical to properly optimize
the amount of data to be offloaded with respect to the total
training delay. In addition, the MEC approach can be useful
for speeding up the training procedure thanks to a proper
client selection scheduling [59].
When it comes to BFL, MEC can be leveraged not only for

ML model training, but also to support the computation and
storage requirements of the blockchain, which are typically
unfeasible for small devices. In the literature, MEC servers
have been considered for performing either model training
or mining tasks (or both) [13]. In this work, and closer in
spirit to what was proposed in [32], we have assumed that
the blockchain operations are handled by MEC servers.

D. DISCUSSION ON SECURITY ASPECTS
The decentralization of FL through either GFL or BFL
is important for mitigating single-point-of-failure issues
and boosting scalability and democratization. As seen in
Section VI-B, GFL provides a high degree of decentral-
ization thanks to the P2P interactions between FL clients.
However, its performance is significantly lower than the cen-
tralized counterpart. As for BFL, it provides outstanding
accuracy values, but at a high cost in terms of energy con-
sumption and communication. The fact is that, to ensure

1122 VOLUME 4, 2023

security, robustness, and reliability, a blockchain typically
requires to perform computation-intensive validations and
exhaustive information replication. For instance, to ensure
transparency, the blockchain network needs to trace all the
events.
Unlike CFL and GFL, the BFL setting treasures secu-

rity properties by design, which makes it robust against
external threats. Thanks to blockchain’s tamper-proof and
traceability properties, attacks on the training operation such
as poisoning [60] or Sybil attacks [61] can be mitigated [62],
[63], [64]. Of course, in BFL, the cost of security in terms of
energy consumption and communication overheads strongly
depends on the FL application scenario and its require-
ments. In particular, different types of blockchains can better
suit different FL applications. Blockchain types are mainly
categorized as follows:

• Public blockchains: Are open and allow everyone to
contribute by submitting transactions and participat-
ing in the consensus through mining blocks. The most
prominent public blockchains are Bitcoin and Ethereum,
which use methods like PoW and PoS for securing the
data in such a type of open scenario.

• Private blockchains: The governance of private
blockchains is restricted, so only a designed author-
ity can update the blockchain with new transactions. An
example of a private blockchain is Corda, where trusted
nodes can quickly confirm the validity of transactions,
thus boosting efficiency.

• Consortium blockchains: The blockchain governance is
ruled by a limited set of trusted participants (instead
of a single organization). This setting suits well the
cooperative enterprise setting, where participants can be
trusted to a certain extent. The most popular consortium
blockchain platform is Hyperledger Fabric, whereby the
applied consensus method (RAFT) does not require
all the nodes in the blockchain to participate in the
validation of data, thus speeding up performance.

Depending on the blockchain setting, the required com-
putation energy and communication overheads may vary
for sustaining the desired level of security. Throughout this
paper, we have considered the most decentralized type of
blockchain, i.e., public blockchains, but the other settings
may be more appropriate for specific cases. The analysis of
the cost for other blockchain types is left as future work,
but we refer the interested reader to the survey in [65].

IX. CONCLUSION
Decentralized server-less federated learning is an appeal-
ing solution to overcome CFL limitations. However, finding
the best approach for each scenario is non trivial due to
the lack of comprehensive comparisons. In this work, we
have proposed a complete overview of these techniques and
evaluated them through several key performance indicators:
accuracy, computational complexity, communication over-
head, convergence time, and energy consumption. To do so,

we have proposed a comprehensive theoretical analysis and
the physical implementation of these algorithms.
An extensive simulation campaign underlines our analysis.

From numerical results, it emerges that GFL is the algo-
rithm that requires less communication overhead to reach
convergence. Then, CFL and GFL have similar behavior in
terms of energy consumption and accuracy, but slightly dif-
fer based on the DL model adopted and the hardware used.
BFL represents a viable solution for implementing decen-
tralized learning with a high accuracy and level of security
at the cost of an extra energy usage and data sharing.
Moreover, we have discussed some open issues and future

research directions for the two decentralized federated meth-
ods, like the poor accuracy achieved by GFL and the
blockchain overhead in BFL. Regarding GFL, we have
argued that the main drawback lies in the method used to
merge model updates across the algorithm steps. We have
demonstrated that with an incremental approach, the mod-
ified version of GFL is able to outperform CFL and BFL
in terms of accuracy. As for BFL, we have indicated that
possible optimizations go in the direction of finding the best
block generation rate and block size. Moreover, we have
reasoned on the possibility of reducing the time complexity
by including the global model in a block, which is aggre-
gated by the same miner building the block. In addition, we
have pointed out the importance of further studies on the
implication of model inconsistencies due to the fact that the
blockchain cannot be perfectly shared and accessed by (all)
the FL devices.
Finally, we have argued on the key role played by the

libraries used for the implementation and their influence
on the energy consumption on different hardware platforms.
We call for the definition of standard libraries and open test
platforms to be used for research purposes.

APPENDIX A
PROOFS
A. PROOF OF THEOREM 1
Let us consider the procedure CLIENTUPDATE, whose time
complexity is E(|Dmax||w| + 2 |Dmax|

B |w|). In fact, a single
client k performs the training phase on its local dataset Dk
along E local epochs and updates the model parameters.
The first operation has a time complexity of |Dk||w| and
the second 2 |Dk|B |w|. The update it is executed a number of
times equal to |Dk|B , and requires a product and a sum. Each
client performs E local epochs, so the total cost is:

∑

k∈St
E

(
|Dk||w| + 2

|Dk|
B
|w|

)
(18)

To obtain an upper bound that does not depend on k, we
can use |Dmax| as an upper bound of |Dk|:

∑

k∈St
E

(
|Dk||w| + 2

|Dk|
B
|w|

)

≤ mE
(
|Dmax||w| + 2

|Dmax|
B
|w|

)
. (19)

VOLUME 4, 2023 1123

GUERRA et al.: COST OF TRAINING ML MODELS OVER DISTRIBUTED DATA SOURCES

We can divide the MAIN procedure in Algorithm 1 into
two blocks. The first, up to Line 10, has a cost upper
bounded by

mE

(
|Dmax||w| + 2

|Dmax|
B
|w|

)
+ 2|w|m. (20)

In parallel every client downloads the global model, executes
CLIENTUPDATE, and sends the updated parameters back to
the server. The download and upload operations have a time
complexity proportional to |w|. Considering that the same
procedure is repeated by m clients, the upper bound in (20)
easily follows. The second block starts from Line 10, where
the server aggregates the local updates and computes the
new global model. The number of arithmetical operations
performed is:

2|w|m. (21)

Combining (20) and (21), and considering the number of
total rounds R required to reach convergence, the total cost
of CFL is given by:

R

[
mE

(
|Dmax||w| + 2

|Dk|
B
|w|

)
+ 4m|w|

]

= RmE|Dmax||w| + 2RmE
|Dk|
B
|w| + 4Rm|w|. (22)

The first addend in (22) is the dominant term for the
asymptotic time analysis, so this completes the proof to
obtain (3).

When it comes to the communications overhead of CFL,
the result easily follows considering that, for each round,
each clients downloads and uploads the model parameters.

B. PROOF OF THEOREM 2
In each algorithm’s round, every client in S t has to download
the latest block from the closest edge server (miner) to obtain
the current global model. These operations, as described
before, have a cost of |w|m and 2|w|m, respectively. Then,
after running the CLIENTUPDATE procedure in Algorithm 2,
clients submit the new model weights with a cost of |w|.
These steps are done by each node in S t (in total, m nodes),
so the total cost is:

m

(
2|w|m+ |w|m+ E|Dmax||w|

+ 2E
|Dmax|
B
|w| + |w|

)
. (23)

When all the local updates have been computed, it is
necessary to create a block, reach consensus throughout the
mining operation, and propagate the block across all the
blockchain nodes. The cost of these operations is given by:

2l + m|w|NB. (24)

If we combine together (23) and (24), we obtain the total
time complexity of the algorithm

R

(
3|w|m2 + E|Dmax||w|m

+ 2E
|Dmax|
B
|w|m+ |w|m+ 2l + m|w|NB

)
. (25)

The dominant addends are reported in (5).
The communication overhead of BFL can be easily derived

from the algorithm description.
In this analysis, we considered the less efficient implemen-

tation, whereby each client has to perform the computation of
the new global model given the updates in the latest block. To
improve this, we can move the instruction in Line 8 outside
the for loop and execute it before the MINEBLOCK proce-
dure. In this way, the new block has size |w|, since it contains
only the parameters of the new model. Following the same
analysis described before, the computational complexity is:

O
(
R
(
mE|Dmax||w| + 2l + NB|w|

))
. (26)

And the communication overhead is:

R(2|w|m+ NB|w|). (27)

C. PROOF OF THEOREM 3
Let ki be a client in the sequence [k1, . . . , km]. Following the
steps of Algorithm 3, three main operations are performed:
1) MERGE, 2) CLIENTUPDATE and 3) send of the model
parameters to the next client of the sequence. The first one
is the average of two model parameters, so its cost is 2|w|.
The cost of the second operation has already been computed
in (19) and the cost of parameter sharing is |w|. By summing
up these contributions we obtain:

m

[
E

(
|Dmax||w| + 2

|Dmax|
B
|w|

)
+ 3|w|

]
. (28)

This process is repeated for R rounds, so the time
complexity is:

Rm

[
E

(
|Dmax||w| + 2

|Dmax|
B
|w|

)
+ 3|w|

]
, (29)

where the first addend is the dominant one.
Given that each client shares its local model only with the

following node in the sequence, the communication overhead
is given by (8).

APPENDIX B
EDGE CONNECTION MODEL
To compute the total duration for transmitting model weights,
we assume IEEE 802.11ax channel access procedures [42],
which also include the overheads to carry out the distributed
coordination function (DCF) operation. In particular, the
duration of a packet transmission is defined as:

TTx = Rm(TRTS + TSIFS + TCTS + TDATA
+ TSIFS + TACK + TDIFS + Te), (30)

where TRTS is the duration of the ready-to-send (RTS) control
frame, TSIFS is the short interframe space (SIFS) duration,

1124 VOLUME 4, 2023

TCTS is the duration of the clear-to-send (CTS) control frame,
TDATA is the duration of the data payload, TACK is the dura-
tion of the acknowledgement (ACK) frame, Te is the duration
of an empty slot, R is the number of FL rounds, and m the
number of participating clients.
To compute the duration of each type of IEEE 802.11ax

control frame, i.e., RTS, CTS, and ACK, we compute them
as:

TRTS/CTS/ACK = TPHY +
⌈
LSF + LRTS/CTS/ACK

Ls

⌉
σleg, (31)

where TPHY is the duration of the PHY preamble, LSF is
the length of the service field (SF), LRTS/CTS/ACK is the
length of the control frame, Ls is the length of an orthogonal
frequency division multiplexing (OFDM) symbol, and σleg
is the duration of a legacy OFDM symbol.
As for the duration of the data payload, it is computed

as:

TDATA = THE-SU +
⌈
LSF + LMAC + LDATA

Ls

⌉
σ, (32)

where THE-SU is the duration of the high-efficiency (HE)
single-user field, LMAC is the length of the MAC header,
LDATA is the length of a single data packet (in our case, it
matches with the model size, Sw), and σ is the duration of an
OFDM symbol. The number of bits per OFDM symbol will
vary, so as the effective data rate, based on the employed
modulation and coding scheme (MCS), which depends on
the transmission power used.

REFERENCES
[1] Ericsson Mobility Report November 2021, Ericsson, Stockholm,

Sweden, 2021.
[2] J. Wang, J. Liu, and N. Kato, “Networking and communications in

autonomous driving: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 2, pp. 1243–1274, 2nd Quart., 2019.

[3] “AI and compute.” May 2018. [Online]. Available: https://openai.com/
blog/ai-and-compute/

[4] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy con-
siderations for deep learning in NLP,” in Proc. 57th Annu. Meeting
Assoc. Comput. Linguist., 2019, pp. 3645–3650.

[5] T. Zhang and S. Mao, “An introduction to the federated learning
standard,” Mobile Comput. Commun., vol. 25, no. 3, pp. 18–22, 2022.

[6] Q. Li et al., “A survey on federated learning systems: Vision, hype
and reality for data privacy and protection,” IEEE Trans. Knowl. Data
Eng., vol. 35, no. 4, pp. 3347–3366, Apr. 2023.

[7] M. Chen et al., “Distributed learning in wireless networks: Recent
progress and future challenges,” IEEE J. Sel. Areas Commun.,
vol. 39, no. 12, pp. 3579–3605, Dec. 2021.

[8] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge intelligence: The confluence of edge computing and artificial
intelligence,” IEEE Internet Things J., vol. 7, no. 8, pp. 7457–7469,
Aug. 2020.

[9] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[10] E. Ahvar, A.-C. Orgerie, and A. Lebre, “Estimating energy consump-
tion of cloud, fog and edge computing infrastructures,” IEEE Trans.
Sustain. Comput., vol. 7, no. 2, pp. 277–288, Apr.–Jun. 2022.

[11] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh,
and D. Bacon, “Federated learning: Strategies for improving commu-
nication efficiency,” 2016, arXiv:1610.05492.

[12] M. Aledhari, R. Razzak, R. M. Parizi, and F. Saeed, “Federated learn-
ing: A survey on enabling technologies, protocols, and applications,”
IEEE Access, vol. 8, pp. 140699–140725, 2020.

[13] D. C. Nguyen et al., “Federated learning meets blockchain in edge
computing: Opportunities and challenges,” IEEE Internet Things J.,
vol. 8, no. 16, pp. 12806–12825, Aug. 2021.

[14] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated
optimization,” 2019, arXiv:1903.03934.

[15] P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends� Mach. Learn., vol. 14, nos. 1–2, pp. 1–210, 2021.

[16] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha,
and G. Srivastava, “A survey on security and privacy of feder-
ated learning,” Future Gener. Comput. Syst., vol. 115, pp. 619–640,
Feb. 2021.

[17] L. Barbieri, S. Savazzi, M. Brambilla, and M. Nicoli, “Decentralized
federated learning for extended sensing in 6G connected vehicles,”
Veh. Commun., vol. 33, Jan. 2022, Art. no. 100396.

[18] A. Lalitha, S. Shekhar, T. Javidi, and F. Koushanfar, “Fully decentral-
ized federated learning,” in Proc. 3rd Workshop Bayesian Deep Learn.
(NeurIPS), 2018, pp. 1–9.

[19] R. Ormándi, I. Hegedüs, and M. Jelasity, “Gossip learning with linear
models on fully distributed data,” Concurrency Comput. Pract. Exp.,
vol. 25, no. 4, pp. 556–571, 2013.

[20] L. Giaretta and Š. Girdzijauskas, “Gossip learning: Off the beaten
path,” in Proc. IEEE Int. Conf. Big Data (Big Data), 2019,
pp. 1117–1124.

[21] M. Miozzo, Z. Ali, L. Giupponi, and P. Dini, “Distributed and multi-
task learning at the edge for energy efficient radio access networks,”
IEEE Access, vol. 9, pp. 12491–12505, 2021.

[22] F. Wilhelmi, L. Giupponi, and P. Dini, “Blockchain-enabled server-less
federated learning,” 2021, arXiv:2112.07938.

[23] X. Qiu, T. Parcollet, D. Beutel, T. Topal, A. Mathur, and N. Lane,
“Can federated learning save the planet?” in Proc. NeurIPS Tackling
Climate Change Mach. Learn., 2020, pp. 1–9.

[24] S. Savazzi, V. Rampa, S. Kianoush, and M. Bennis, “An energy and
carbon footprint analysis of distributed and federated learning,” 2022,
arXiv:2206.10380.

[25] M. Abadi et al. “TensorFlow: Large-scale machine learning on hetero-
geneous systems.” 2015. [Online]. Available: https://www.tensorflow.
org/

[26] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A survey on distributed machine learning,” ACM
Comput. Surveys, vol. 53, no. 2, pp. 1–33, 2020.

[27] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Proc. Artif. Intell. Stat., 2017, pp. 1273–1282.

[28] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process.
Mag., vol. 37, no. 3, pp. 50–60, May 2020.

[29] M. Chen, H. V. Poor, W. Saad, and S. Cui, “Wireless communications
for collaborative federated learning,” IEEE Commun. Mag., vol. 58,
no. 12, pp. 48–54, Dec. 2020.

[30] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
learning and communications framework for federated learning over
wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1,
pp. 269–283, Jan. 2021.

[31] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-
device federated learning,” IEEE Commun. Lett., vol. 24, no. 6,
pp. 1279–1283, Jun. 2019.

[32] U. Majeed and C. S. Hong, “FLchain: Federated learning via MEC-
enabled blockchain network,” in Proc. IEEE 20th Asia–Pac. Netw.
Oper. Manag. Symp. (APNOMS), 2019, pp. 1–4.

[33] X. Bao, C. Su, Y. Xiong, W. Huang, and Y. Hu, “FLChain: A
blockchain for auditable federated learning with trust and incentive,”
in Proc. 5th Int. Conf. Big Data Comput. Commun. (BIGCOM), 2019,
pp. 151–159.

[34] I. Hegedüs, G. Danner, and M. Jelasity, “Decentralized learning works:
An empirical comparison of Gossip learning and federated learning,”
J. Parallel Distrib. Comput., vol. 148, pp. 109–124, Feb. 2021.

[35] A. Nilsson, S. Smith, G. Ulm, E. Gustavsson, and M. Jirstrand, “A
performance evaluation of federated learning algorithms,” in Proc. 2nd
Workshop Distrib. Infrast. Deep Learn., 2018, pp. 1–8.

[36] A. Lacoste, A. Luccioni, V. Schmidt, and T. Dandres, “Quantifying
the carbon emissions of machine learning,” 2019, arXiv:1910.09700.

[37] L. Lannelongue, J. Grealey, and M. Inouye, “Green algorithms:
Quantifying the carbon footprint of computation,” Adv. Sci., vol. 8,
no. 12, 2021, Art. no. 2100707.

VOLUME 4, 2023 1125

GUERRA et al.: COST OF TRAINING ML MODELS OVER DISTRIBUTED DATA SOURCES

[38] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green AI,”
Commun. ACM, vol. 63, no. 12, pp. 54–63, 2020.

[39] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Decentralized Bus. Rev., vol. 25, no. 7, 2008, Art. no. 21260.

[40] F. Wilhelmi and L. Giupponi, “Discrete-time analysis of wireless
blockchain networks,” in Proc. IEEE 32nd Annu. Int. Symp. Pers.
Indoor Mobile Radio Commun. (PIMRC), 2021, pp. 1011–1017.

[41] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, consensus, and future trends,” in
Proc. IEEE Int. Congr. Big Data (BigData Congr.), 2017, pp. 557–564.

[42] B. Bellalta, “IEEE 802.11 AX: High-efficiency WLANs,” IEEE
Wireless Commun., vol. 23, no. 1, pp. 38–46, Feb. 2016.

[43] N. Lasla, L. Al-Sahan, M. Abdallah, and M. Younis, “Green-PoW:
An energy-efficient blockchain proof-of-work consensus algorithm,”
Comput. Netw., vol. 214, Sep. 2022, Art. no. 109118.

[44] “EMNIST—TensorFlow federated.” Accessed: Dec. 2022. [Online].
Available: https://www.tensorflow.org/federated/api_docs/python/tff/
simulation/datasets/emnist

[45] TensorFlow. “TensorFlow federated.” Accessed: Dec. 2022. [Online].
Available: https://www.tensorflow.org/federated

[46] “Keras: The python deep learning API.” Accessed: Dec. 2022.
[Online]. Available: https://keras.io/

[47] M. Alharby and A. van Moorsel, “BlockSim: An extensible simula-
tion tool for blockchain systems,” Front. Blockchain, vol. 3, p. 28,
Jun. 2020. [Online]. Available: https://www.frontiersin.org/article/10.
3389/fbloc.2020.00028

[48] TensorFlow. “Federated learning for image classification.” Accessed:
Dec. 2022. [Online]. Available: https://github.com/tensorflow/
federated/blob/v0.17.0/docs/tutorials/federated_learning_for_image_
classification.ipynb

[49] L. F. W. Anthony, B. Kanding, and R. Selvan, “Carbontracker:
Tracking and predicting the carbon footprint of training deep learning
models,” 2020, arXiv:2007.03051.

[50] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang,
“Federated learning for healthcare informatics,” J. Healthcare Inf. Res.,
vol. 5, pp. 1–19, Mar. 2021.

[51] A. Rago, G. Piro, G. Boggia, and P. Dini, “Multi-task learning
at the mobile edge: An effective way to combine traffic classifi-
cation and prediction,” IEEE Trans. Veh. Technol., vol. 69, no. 9,
pp. 10362–10374, Sep. 2020.

[52] C. Lanza, E. Angelats, M. Miozzo, and P. Dini, “Urban traffic fore-
casting using federated and continual learning,” in Proc. 6th Conf.
Cloud Internet Things (CIoT), 2023, pp. 1–8.

[53] A. Hard et al., “Federated learning for mobile keyboard prediction,”
2018, arXiv:1811.03604.

[54] Y. Shahsavari, K. Zhang, and C. Talhi, “A theoretical model for fork
analysis in the bitcoin network,” in Proc. IEEE Int. Conf. Blockchain
(Blockchain), 2019, pp. 237–244.

[55] Y. Huang et al., “Continual learning for peer-to-peer federated learn-
ing: A study on automated brain metastasis identification,” 2022,
arXiv:2204.13591.

[56] F. Wilhelmi, S. Barrachina-Muñoz, and P. Dini, “End-to-end latency
analysis and optimal block size of proof-of-work blockchain appli-
cations,” IEEE Commun. Lett., vol. 26, no. 10, pp. 2332–2335,
Oct. 2022.

[57] S. R. Pokhrel and J. Choi, “Federated learning with blockchain for
autonomous vehicles: Analysis and design challenges,” IEEE Trans.
Commun., vol. 68, no. 8, pp. 4734–4746, Aug. 2020.

[58] Z. Ji, L. Chen, N. Zhao, Y. Chen, G. Wei, and F. R. Yu, “Computation
offloading for edge-assisted federated learning,” IEEE Trans. Veh.
Technol., vol. 70, no. 9, pp. 9330–9344, Sep. 2021.

[59] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in Proc. IEEE Int.
Conf. Commun. (ICC), 2019, pp. 1–7.

[60] Y. Song, T. Liu, T. Wei, X. Wang, Z. Tao, and M. Chen,
“FDA3: Federated defense against adversarial attacks for cloud-
based IIoT applications,” IEEE Trans. Ind. Informat., vol. 17, no. 11,
pp. 7830–7838, Nov. 2021.

[61] C. Fung, C. J. Yoon, and I. Beschastnikh, “Mitigating sybils in
federated learning poisoning,” 2018, arXiv:1808.04866.

[62] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain
empowered asynchronous federated learning for secure data sharing
in Internet of Vehicles,” IEEE Trans. Veh. Technol., vol. 69, no. 4,
pp. 4298–4311, Apr. 2020.

[63] M. Shayan, C. Fung, C. J. M. Yoon, and I. Beschastnikh, “Biscotti:
A blockchain system for private and secure federated learning,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 7, pp. 1513–1525, Jul. 2020.

[64] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani,
“Reliable federated learning for mobile networks,” IEEE Wireless
Commun., vol. 27, no. 2, pp. 72–80, Apr. 2020.

[65] D. Li et al., “Blockchain for federated learning toward secure dis-
tributed machine learning systems: A systemic survey,” Soft Comput.,
vol. 26, no. 9, pp. 4423–4440, 2022.

ELIA GUERRA (Student Member, IEEE) received
the bachelor’s degree in information engineering
and the master’s degree in computer engineer-
ing from the University of Padova, Italy, in
2019 and 2021, respectively. He is currently
pursuing the Ph.D. degree with the Technical
University of Catalonia. He is currently work-
ing with CTTC for the GREENEDGE (MSCA
ETN) Project. During his studies, he developed a
passion for machine learning and algorithms. His
main research lines are distributed/decentralized

and sustainable machine learning algorithms.

FRANCESC WILHELMI (Member, IEEE) received
the B.Sc. degree in telematics engineering, the
M.Sc. degree in intelligent and interactive systems,
and the Ph.D. degree in information and com-
munication technologies from Universitat Pompeu
Fabra in 2015, 2016, and 2020, respectively. He
is currently working as a Researcher with Nokia
Bell-Labs.

MARCO MIOZZO received the M.Sc. degree
in telecommunication engineering from the
University of Ferrara, Italy, in 2005, and the
Ph.D. degree from the Technical University of
Catalonia (UPC) in 2018. In June 2008, he joined
the Centre Tecnologic de Telecomunicacions de
Catalunya (CTTC). In CTTC, he has been involved
in several EU funded projects. He participated in
several research and development projects, among
them SCAVENGE, 5G-Crosshaul, Flex5Gware,
and SANSA, working on environmental sus-

tainable mobile networks with energy harvesting capabilities through
learning techniques. He is currently collaborating with the EU funded
H2020 GREENEDGE (MSCA ETN) and SONATA (CHIST-ERA). His
main research interests are sustainable mobile networks, green wireless
networking, energy harvesting, multiagent systems, machine learning, green
AI, and explainable AI.

PAOLO DINI received the M.Sc. and Ph.D. degrees
from the Università di Roma La Sapienza in
2001 and 2005, respectively. He is currently a
Senior Researcher with the Centre Tecnologic de
Telecomunicacions de Catalunya. He has been
involved in more than 25 research projects. He
is currently the Coordinator of the CHIST-ERA
SONATA Project on sustainable computing and
communication at the edge and the Scientific
Coordinator of the EU H2020 MSCA Greenedge
European Training Network on edge intelligence

and sustainable computing. His research activity is documented in almost 90
peer-reviewed scientific journals and international conference papers. His
current research interests include sustainable networking and computing,
distributed optimization and optimal control, machine learning, multiagent
systems, and data analytics. He received two awards from the Cisco Silicon
Valley Foundation for his research on heterogeneous mobile networks in
2008 and 2011, respectively. He serves as a TPC in many international
conferences and workshops and a reviewer for several scientific journals of
the IEEE, Elsevier, ACM, Springer, and Wiley.

1126 VOLUME 4, 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

