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ABSTRACT Symbol Level Precoding (SLP) has attracted significant research interest due to its ability
to exploit interference for energy-efficient transmission. This paper proposes an unsupervised deep-neural
network (DNN) based SLP framework. Instead of naively training a DNN architecture for SLP without
considering the specifics of the optimization objective of the SLP domain, our proposal unfolds a power
minimization SLP formulation based on the interior point method (IPM) proximal ‘log’ barrier function.
Furthermore, we extend our proposal to a robust precoding design under channel state information (CSI)
uncertainty. The results show that our proposed learning framework provides near-optimal performance
while reducing the computational cost from O(n7.5) to O(n3) for the symmetrical system case where n =
number of transmit antennas = number of users. This significant complexity reduction is also reflected in
a proportional decrease in the proposed approach’s execution time compared to the SLP optimization-based
solution.

INDEX TERMS Symbol level precoding, constructive interference, downlink beamforming, power
minimization, deep neural networks.

I. INTRODUCTION

INTERFERENCE has been known to yield a decrease in
the throughput and communication reliability of a down-

link multi-user multiple-inputs single-output (MU-MISO)
wireless system. Traditionally, interference is regarded as the
limiting factor against the ever-increasing needs for trans-
mission rates and quality of service (QoS) in fifth-generation
(5G) wireless communication systems and beyond [1], [2],
[3]. However, recent studies on interference exploitation
have transformed the traditional paradigm in which known
inferences are effectively managed [1], [2], [3], [4], [5].
Consequently, transmit beamforming techniques for the
downlink channels for power minimization problems under
specific QoS become imperative for high-throughput systems
under interference.
The idea of exploiting interference was first introduced by

Masouros and Alsusa [6], where instantaneous interference
was classified into constructive and destructive. Initial

suboptimal approaches to exploit constructive interference
(CI) were first introduced by Masouros et al. [7], [8]. The
first form of optimization-based CI precoding was introduced
in the context of vector perturbation precoding through a
quadratic optimization approach [9]. A convex optimization-
based CI scheme termed symbol-level-precoding technique
was proposed first with strict phase constraints on the
received constellation point [10], and with a robust relaxed-
angle formulation [2]. We refer to recent work [9], [10],
[11], [12], [13] for more details on the optimization-based
CI precoding techniques.
As a result of the performance gains over conventional

block-level-precoding (BLP) schemes, the idea of CI has
been applied in many domains, such as vector perturba-
tion [14], wireless information and power transfer [15],
mutual coupling exploitation [16], multiuser MISO downlink
channel [17], directional modulation [18], relay and cognitive
radio [1], [19]. Despite the superior performance offered by
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CI-based precoding methods, their increased computational
complexity can hinder their practical application when per-
formed on a symbol-by-symbol basis. To address this, Li and
Masouros [20] proposed an iterative closed-form precoding
design with optimal performance for CI exploitation in the
MISO downlink by driving the optimal precoder’s math-
ematical Lagrangian expression and Karush–Kuhn–Tucker
conditions for optimization with both strict and relaxed phase
rotations.
Lately, there has been growing interests in using deep neu-

ral networks (DNN) for wireless physical layer design [21],
[22], [23]. More relevant to this work are the machine
learning for classical beamforming optimization schemes
for MU-MISO downlink transmission [22], [24], [25], [26],
[27], [28]. The benefit of using DNNs is that the computa-
tional burden of the learning algorithm can be controlled via
online training, and a variety of loss functions can be used
for each optimization objective. One of the earliest attempts
at using DNNs models for beamforming design was the work
of Alkhateeb et al. [22], where a learning-based coordinated
beamforming technique was proposed for link reliability
and frequent poor hand-off between base stations (BSs)
in millimetre-wave (mmWave) communications. Kerret and
Gesbert [26] introduced DNNs precoding scheme to address
the “Team Decision problems” for decentralized decision
making in multiple-input-multiple-output (MIMO) settings.
Huang et al. [24] proposed a fast beamforming design
based on unsupervised learning that yielded performance
close to that of the weighted minimum mean-squared error
(WMMSE) algorithm. A DNN-based precoding strategy
that utilized a heuristic solution structure of the down-
link beamforming was proposed by Huang et al. [27].
Furthermore, Xia et al. [28] developed deep convolutional
neural networks (CNNs) framework for downlink beamform-
ing optimization. The framework exploits expert knowledge
based on the known structure of optimal iterative solutions
for sum-rate maximization, power minimization, and Signal-
to-Interference-plus-Noise (SINR) balancing problems.
A typical approach for solving constrained optimization

with DNN for wireless physical layer design is via func-
tion approximation [28], where the authors assume perfect
CSI condition. It involves solving the problem, first using
iterative algorithms or convex optimization techniques and
finally approximating the optimal solution with a DNN archi-
tecture [24], [25], [27], [28], [29]. Accordingly, the major
drawback of these proposals is that the efficacy of supervised
learning is bounded by the assumptions and accuracy of the
optimal solutions obtained from the structural optimization
algorithm.
Recently, learning-based methods have been extended to

beamforming designs via CI [29], [30], [31], [32], [33].
In [29], a CI-NN model-driven precoding design with a cus-
tomized loss function based on the CI optimization problem
that needed no accurate CI solutions as training labels was
developed. Nonetheless, the loss function layer design added
unnecessary complexity to the learning framework. A deep

auto-encoder for a robust SLP scheme and symbol detection
with low computational complexity was proposed in [30].
However, the complex structure of the symbol detection
decision rule at the receiver made its practical implemen-
tation challenging. An unsupervised learning approach for
SLP that maximized the minimum QoS of every user in an
MU-MISO using a straightforward decision rule was intro-
duced in [32]. While the learning architecture used simple
decision conventions to formulate the training loss function
based on the simple convex power constraints, its applica-
bility to other SLP problems, such as power minimization
and maximum secrecy problems involving much more com-
plex constraints, was not investigated. Contrary to [32],
where the SINR balancing problem was solved, we focus
on the power minimization problem in this correspondence.
Correspondingly, [31] presented a deep unfolding method
that used NN with a full-precision floating point representa-
tion based on the power minimization problem under perfect
CSI and strict phase angle rotation. On the contrary, [33]
applied weight quantization to the same problem under an
imperfect SCI condition and relaxed phase angle rotation.
Moreover, the approach to deep unfolding for constrained

problems depends on the constraints’ nature. Again, the
traditional deep unfolding approach may not apply to a
problem with several simultaneous, non-differentiable con-
straints, especially those in wireless communications. While
the deep unfolding that uses a proximal operator with a
‘log’ barrier has been applied in image processing for image
reconstruction [34], to the best of our knowledge, its applica-
bility is rare in wireless communications. Inspired by these
findings, in this work, we propose a more robust unsuper-
vised learning approach that unrolls SLP power minimization
problems involving non-smooth SINR constraints into a deep
learning framework via interior point method (IPM) proximal
log-barrier formulation.
This work focuses on an unsupervised learning-

based approach for precoding design by exploiting
known interference in MU-MISO systems for the power
minimization problem under SINR constraints. The learn-
ing framework is designed by unfolding an IPM iterative
algorithm via ‘log’ barrier function. The proposed learning-
based precoding scheme does not require generating the
training dataset from conventional optimization solutions,
thereby saving considerable computational effort and time.
Our contributions are summarized below:

• We introduce an unsupervised DNN-based power
minimization SLP scheme for MU-MISO downlink
transmission. The proposed framework is designed by
unfolding an IPM algorithm via a ‘log’ barrier func-
tion that exploits the convexity associated with the
SLP inequality constraints. The learning framework uti-
lizes the domain knowledge to derive the Lagrange
function of the original SLP optimization as a loss
function. This is used to train the network in an unsu-
pervised mode to learn a set of Lagrangian multipliers
that directly minimize the objective function to satisfy
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the constraints. A regularization parameter is added
to the Lagrange function to aid the training conver-
gence, and we provide detailed formulations leading
to the unfolded unsupervised learning architecture for
constrained optimization problems.

• We extend the formulation to design a robust learning-
based precoder where the uncertainty in channel
estimation is considered.

• We derive analytic expressions for the computational
complexity of various SLP designs and the proposed
unsupervised learning precoding schemes. Our analysis
demonstrates that the proposed deep unfolding (DU)
framework offers a theoretical, computational complex-
ity reduction from O(n7.5) to O(n3) for the symmetrical
system case where n = number of transmit antennas =
number of users. This is reflected in a commensurate
decrease in the execution time as compared to the SLP
optimization-based method.

The remainder of the paper is organized as follows: The
system model and the methods for traditional precoding and
SLP optimization-based for downlink MU-MISO system are
presented in Section II. The proposed unsupervised DU-
based precoding designs under perfect channel conditions for
power minimization are introduced in Section III, and exten-
sion to a robust precoding design under uncertainty channel
condition is described in Section IV. Section V presents a
detailed analytic computational complexity evaluation of the
proposed precoding schemes. Simulations and results are
presented in Section VI. Finally, Section VII summarizes
and concludes the paper.
Notations: We use bold uppercase symbols for matrices,

bold lowercase symbols for vectors and lowercase symbols
for scalars. The l2-norm and l1-norm are denoted by ‖·‖2
and ‖·‖1, respectively. The | · | represents the absolute value
and θ i is the i-th trainable parameter associated with DNN
layers. The Hermitian of the vector and the transpose of
the real matrix are represented by xH and XT , respectively.
Operators Re(·) and Im(·) represent real and imaginary parts
of a complex vector, respectively. Finally, notations L(·)
and H(·) are reserved for the loss and parameter update
functions, respectively.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION
A. CONVENTIONAL BLOCK LEVEL PRECODING FOR
POWER MINIMIZATION
Consider a single-cell downlink channel with Nt transmit
antennas at the BS transmitting to K single-antenna users.
Assume a quasi-static flat-fading channel between the BS
and the users, denoted by hi ∈ C

Nt×1. The received signal
at user i is given by

yi = hHi

K∑

k=1

wksk + vi

= hHi

K∑

k=1

wke
j(ϕk−ϕi)si + vi (1)

where
∑K

k=1 wksk = ∑K
k=1 wkej(ϕk−ϕi)si is the transmit sig-

nal and si = sejϕi is assumed to be a referenced phase-shift
keying (PSK) modulated symbol with constant amplitude s.
Also, hi, wi, si, vi and ϕi represent the channel vector,
precoding vector, data symbol, received noise and phase rota-
tion for the i-th user. Conventionally, the power minimization
problem seeks to minimize the average transmit power
by treating all interference as detrimental subject to QoS
constraints as defined below [35]

min{wi}

K∑

i=1

‖wi‖2
2

s.t.
|hHi wi|2∑

k=1,k �=i |hHi wk|2 + v0
≥ �i, ∀i. (2)

where �i is the SINR threshold of the i-th user. It has been
proven that problem (2) is suboptimal from an instantaneous
point of view, as it does not take into account the fact that
interference can constructively enhance the received signal
power [8].

B. POWER MINIMIZATION VIA SYMBOL-LEVEL
PRECODING
With the aim of utilizing the instantaneous interference in a
multi-user downlink channel scenario, the interference can
be categorized into constructive and destructive based on
the known standards described [36]. Based on this, CI is
defined as the interference that nudges the received symbols
off the modulated-symbol constellation’s decision thresh-
olds [2]. In this situation, the instantaneous interference can
contribute constructively to detecting the desired signal. With
the knowledge of both the data symbols and the CSI at the
BS, SINR constraints in (2) can be modified to include CI
for generic multilevel or M-arry phase shift keying (M-PSK)
modulated signals. The maximum phase shift in the CI region
is given by φ = ± π

M
, where M is the modulation order.

Fig. 1 shows the generic geometrical representation of the
CI, where the phase-rotated received signal is expressed as
ỹi � hHi

∑K
k=1 wkej(ϕk−ϕi). From this expression, the real and

imaginary parts are respectively given by: ωRe = Re(ỹi) and
ωIm = Im(ỹi). In Fig. 1, we show an indicative example cor-
responding to the constellation point 1 + j in the quadrature
phase shift keying (QPSK) constellation, where the green
shaded area represents the constructive region of the con-
stellation. It is also worth noting that for the instantaneous
interference to be harnessed constructively, the received sig-
nal must be within the green area depending on the minimum
distance (τ ) from the decision boundaries. This enables the
interfering signals to align constructively with the symbol of
interest to improve the received signal’s strength. Therefore,
with the aid of geometry, the following vectors can be
expressed as

�AC =
[
ωRe − �OA

]
, �BC = j · ωIm, (3)

�OA is the detection threshold (τ ) and is obtained from the

relation: �OA =
√

�iv2
0. For a point B to be located within
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FIGURE 1. Generic geometrical optimization regions for interference exploitation for
Precoding design in M-PSK [2].

the constructive region, the following condition must hold

tanϕi = �BC
�AC ≤ tanφ ⇒ |j · xIm|∣∣∣

[
xRe − �OA

]∣∣∣
≤ tanφ, (4)

which finally gives

ωIm ≤ (ωRe − τ)tanφ. (5)

The CI for each user will be guaranteed by adopting (5) as
the SINR constraint.
Therefore, for an M-PSK, the power minimization

problem in (2) can be reformulated based on the construc-
tive/destructive interference classification criteria [37] and
transformed into its equivalent CI-based SLP optimization
form below [2]

min{wi}

∥∥∥∥∥

K∑

k=1

wke
j(ϕk−ϕ1)

∥∥∥∥∥

2

2

s.t.

∣∣∣∣∣Im
(
hHi

K∑

k=1

wke
j(ϕk−ϕi)

)∣∣∣∣∣

≤
(
Re

(
hHi

K∑

k=1

wke
j(ϕk−ϕi)

)
− √

�iv0

)
tanφ, ∀i. (6)

where ωIm = Im(hHi
∑K

k=1 wkej(ϕk−ϕi)) and ωRe =
Re(hHi

∑K
k=1 wkej(ϕk−ϕi)). It can be observed that (6) is

data-dependent; therefore, the optimisation is done on a
symbol-by-symbol basis.
It is important to note that problem (6) is a stan-

dard second-order cone program (SOCP), and thus can
be optimally solved using numerical software optimization
packages, such as CVX and CVXPY. Similarly, problem (2)
is optimal from a stochastic perspective; hence the same
optimization software can be used to solve it. It is essential
to note that problem (2) is suboptimal from an instanta-
neous stance because the precoder disregards the fact that,

instantaneously, interference can add constructively to the
received signal power.

III. LEARNING-BASED POWER MINIMIZATION FOR SLP
This section presents the formulation of a learning-based
CI power minimization problem for SLP. Throughout this
section, we assume a perfect CSI known at the BS.
Motivated by the recent adoption of an IPM for image

restoration [38], we propose an unsupervised learning frame-
work that unfolds a constrained optimization problem into a
sequence of learning layers/iterations for a multi-user MISO
beamforming.We first convert (6) into a standard IPM for-
mulation containing a slack variable, where necessary. The
measure of the fidelity of the solution to (6) is determined by
learning a set of penalty parameters in the form of Lagrange
multipliers associated with the constraints. From (6), we
define the following

ĥi = hiej(ϕ1−ϕi) (7)

w =
K∑

k=1

wke
j(ϕk−ϕ1). (8)

Accordingly, to ease the analysis, we partition the complex
rotations into the real and imaginary parts as follows

ĥi = ĥRi + jĥIi (9a)

w = wR + jwI (9b)

where ĥRi = Re(ĥi), ĥIi = Im(ĥi), wR = Re(w) and wI =
Im(w). The product of complex rotations of (9a) and (9b)
can be written as

ĥiw =
(
ĥRi + jĥIi

)
(wR + jwI). (10)

The real and imaginary parts of (10) can be written in vector
forms as follows

Re
(
ĥiw

)
=

[
ĥRi ĥIi

][ wR

−wI

]
(11a)

Im
(
ĥiw

)
=

[
ĥRi ĥIi

][wI

wR

]
(11b)

Let � = [ĥRi ĥIi]T , w1 = [wR −wI]T and w2 = [wI wR]T

Re
(
ĥTi w

)
= �T

i w1 and Im
(
ĥTi w

)
= �T

i �w1 (12)

where

w2 = �w1 and � =
[
ONt −INt
INt ONt

]
; ∈ R

2Nt×2Nt . (13)

Note that INt is the identity matrix and ONt the matrix of
zeros, respectively. Using the above definitions, problem (6)
can be recast into its multicast formulation [2]

min{w1}
‖w1‖2

2

s.t.
∣∣∣�T

i �w1

∣∣∣ ≤
(
�T
i w1 − √

�iv0

)
tanφ, ∀i (14)
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A. INTERIOR POINT METHOD
Consider a general form of a nonlinear constrained
optimization of the form [39]

min
x∈RN

f (x)

s.t. g(x) ≥ 0

C(x) = 0 (15)

The rationale of adopting IPM is to substitute the initial con-
strained optimization problem by a chain of unconstrained
sub-problems of the form

min
x∈RN

f (x) + λC(x) + μB(x). (16)

where B(·) � −∑
ln (·) is the logarithmic barrier func-

tion associated with inequality constraint with unbounded
derivative at the boundary of the feasible domain, C(·)
is a function associated with equality constraint, μ and λ

are the Lagrangian multipliers for inequality and equality
constraints, respectively. For K users, we define a vector
μ � [μ1, . . . , μK].
Following the above line of argument, the unconstrained

sequence of (14) per user can be written as

min
w1∈R2Nt×1

f (w1) + μB(w1), (17)

It can be observed that the constraint in (14) cannot be
efficiently handled because it is non-differentiable at some
points (w1 → 0). Intuitively, the difficulty of solving (14)
stems from the constraint not being differentiable at 0; other-
wise, we could follow the gradient of (17). In a situation like
this, the proximal operators (alternatively called “proximity
operators”) come to the rescue [34], [40]. Instead of directly
minimizing the objective in (17), we can search its equiv-
alent proximal operator function. The proximal operator is
frequently used in proximal gradient methods in optimization
algorithms associated with non-differentiable optimization
problems [41]. In order to minimize the objective and address
the non-smooth term while ensuring the feasibility of the
iterates, the concept of a logarithmic barrier is combined
with the proximity operator, which allows us to incorpo-
rate the proximal gradient approach into unrolled learning
framework. For every inequality constraint, γ ∈ {0, +∞} and
w1 ∈ R

2Nt×1, we define the proximity function as in [39]
with respect to (17), which we shall later use to compute
the projected gradient descent as

proxγμB(w1) = argmin
w1∈R2Nt×1

1

2
‖w0 − w1‖

2

2
+ γμB(w1), (18)

where γ is the step-size for computing the gradients and w0
is the initial value of the precoding vector. To convert (11a)
into its equivalent barrier function problem, we integrate the
inequality constraint into the objective by translating it into

a barrier term as follows [42]

min
w1

f (w1) − μ

p∑

i=1

ln (gi(w1))

s.t. C(w1) = 0 (19)

where g(w1) = (�T
i w1 − √

�iv0)tanφ − |�T
i �w1| and p is

the number of inequality constraints.
Going back to our initial SPL optimization to apply this

framework, first we rewrite the constraint of (14) as

a ≤ �T
i �w1 ≤ b, (20)

where

a = −
(
�T
i �w1 − √

�iv0

)
tanφ, (21a)

b =
(
�T
i �w1 − √

�iv0

)
tanφ. (21b)

Therefore, the original problem (14) becomes

min{w1}
‖w1‖2

2

s.t. a ≤ �T
i �w1 ≤ b, ∀i. (22)

It is apparent that the constraint of (22) is contained within
a hyperslab [43].

1) HYPERSLAB CONSTRAINTS

Given the constraint in (22), the precoding vector w1 is
contained within a set of hyperslab C and also bounded by
{a, b}. Therefore, C is defined as follows

C =
{
w1 ∈ R

2Nt×1
}
|a≤�T�w1≤b. (23)

For all γ > 0 and μ > 0, a proximity barrier function related
to (23) is given by

B(w1) =
{− ln

(
b− ŵ1

) − ln
(
a+ ŵ1

)
, if a ≤ ŵ1 ≤ b

+∞, otherwise
(24)

where for convenience, we let ŵ1 = �T
i �w1.

B. PROXIMITY OPERATOR FOR THE SLP FORMULATION
To unfold (22) into learning framework using IPM, we use
its equivalent proximity ‘log’ barrier function (24) and the
proximal operator of γμB(w1) for every w1 defined as


(w1, γ , μ) = proxγμB(w1) = w1 + X(w1, γ , μ) − �̂iw1

‖�̂i‖2
2

�̂i (25)

where �̂i = �T
i � and X is a typical solution of the following

cubic equation of the form

x3 −
(
b+ a+ �̂w1

)
x2

+
(
ba+ �̂w1(b+ a) − 2γμ

∥∥∥�̂

∥∥∥
2

2

)
x

+
(

−ba�̂w1 + γμ(b+ a)
∥∥∥�̂

∥∥∥
2

2

)
= 0. (26)
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It is important to note that the solution to (26) is obtained
using the analytic solution of the cubic equation. To build
the structure of the learning framework, we need to obtain
the Jacobian of 
(w1, γ , μ) with respect to w1 and the its
derivatives with respect to γ and μ as follows

J
 |(w1) = I2Nt + 1
∥∥∥�̂i

∥∥∥
2

2

×
(

(b− X(w1, γ , μ))(a− X(w1, γ , μ))

ϒ(w1, γ , μ)
− 1

)
�̂i�̂

T
i

(27)

�
 |(μ) = −γ (b+ a− 2X(w1, γ , μ))

ϒ(w1, γ , μ)
�̂i (28)

�
 |(γ ) = −μ(b+ a− 2X(w1, γ , μ))

ϒ(w1, γ , μ)
�̂i, (29)

where I2Nt ∈ R
2Nt×2Nt . For hyperslab constraints, ϒ(· ) is

the derivative of (26) with respect to x. Finally, using similar
abstraction as in Section III-A, the SLP formulation can be
expressed as a succession of sub-problems with respect to
the inequality constraint

min
w1∈R2Nt×1

‖w1‖2
2 + λw1 + μB(w1). (30)

It is important to note that the original problem (14) does
not have an equality constraint. However, the term λw1 intro-
duced in (30) is to provide additional stability to the network.
Using the proximity operator of the barrier, the update rule
for every iteration is given by

w[r+1]
1 = proxγ [r]μ[r]B

(
w[r]

1 − γ [r]�
(
D
(
w[r]

1 , λ[r]
)))

(31)

where

D
(
w[r]

1 , λ[r]
)

= ‖w1‖2
2 + λw1, (32)

and �(D(w[r]
1 , λ[r])) = ∂D(w[r]

1 ,λ[r])

∂w[r]
1

.

C. DEEP SLP NETWORK (SLP-DNET)
To build the proposed learning-based SLP architecture, we
combine an IPM with a proximal forward-backward proce-
dure [44] and transform it into an NN structure represented
by the proximity barrier term (see Fig. 2). The learning
architecture strictly follows the formulation (31). We show a
striking similarity between our proposal and the feed-forward
NN architecture. Intuitively, we form cascade layers of NN
from (31) as follows

w[r+1]
1 = proxγ [r]μ[r]B

[(
I2Nt − 2γ [r])w[r]

1 + γ [r]λ[r]1T
]
.

(33)

where 1 ∈ R
1×2Nt is a vector of ones. By letting Wr = I2Nt−

2γ [r], br = γ [r]λ[r]1T and �r = proxγ [r]μ[r]B, the r-layer
network L[r−1] . . .L[0] will correspond to the following

�0(W0 + b0), . . . , �r(Wr + br) (34)

Algorithm 1 Proximity Barrier Operator of a Nonrobust
SLP-DNet
Input: hRi, hIi, �i and n0 (noise)
Output: w1, γ , μ and λ

Initialisation:
1: Randomly initialise μ[0] > 0, λ[0] > 0, γ [0] > 0 ∀ i =

1, · · · , K and w0 ∈ R
2Nt×1 using (41)

2: Find the solution to (26) using Cardano formula.
3: For every solution in step 2, compute its corresponding

Barrier function using (24).
4: Compute the Proximity Operator of the Barrier at w0

using (18), where 
(w1, γ , μ) = proxγμB(w1).
5: Compute the derivatives of the Proximity Operator

w.r.t w1, μ and γ using (27), (28) and (29).
6: for r = 0 to L do
7: Update the training variables as follows:

(a) μ[r+1] = μ[r] − η
∂
(w[r]

1 , γ [r], μ[r])

∂μ[r]

(b) γ [r+1] = γ [r] − η
∂
(w[r]

1 , γ [r], μ[r])

∂γ [r]

(c) λ[r+1] = λ[r] − η
∂D(w[r]

1 , λ[r])

∂λ[r] using (32)

where η is the learning rate.
Feed-forward-Backward Proximal IPM

8: w[r+1]
1 = proxγ [r]μ[r]B

(
w[r]

1 − γ [r]�D(w[r]
1 , λ[r])

)
or

using (33).
9: end for

10: return w∗
1 (Optimal precoding tensor).

11: To obtain the original optimal complex precoding vector
w∗, we use the relation w∗

1 = [w∗
R − w∗

I ] to separate it
into real and imaginary parts.

whereWr and br are described as weight and bias parameters
respectively. The nonlinear activation functions are defined
by �r.

In the SLP-DNet design, the Lagrange multiplier asso-
ciated with the equality constraint is wired across the
network to provide additional flexibility. It is important
to note that the architectures are the same for both non-
robust and robust power minimization problems described
in Sections III and IV but differ in proximity barrier func-
tions (PBFs). Therefore, to simplify our exposition, we build
the structure of the learning framework based on (31) and the
feed-forward-backward proximal IPM (see Algorithm 1). As
shown in Fig. 2, SLP-DNet has two main units; the parame-
ter update module (PUM) and the auxiliary processing block
(APB). The PUM has three core components associated with
Lagrangian multipliers (equality and inequality constraints)
and the training step-size, which are updated according to
the following

H(w1, μ, γ , λ) = proxγ [r]μ[r]B

(
w[r]

1 − γ [r]�D
(
w[r]

1 , λ[r]
))

.

(35)

Furthermore, the component that forms the barrier term is
constructed with one convolutional layer, an average pooling
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FIGURE 2. Complete SLP-DNet Architecture, showing the parameter update module, the auxiliary processing block.

layer, a fully connected layer, and a Softplus layer to curb
the output to a positive real value to satisfy the inequality
constraint. The APB unit is connected to the last r-th block
of the PUM in the form of a deep CNN to convert the out-
put of the last parameter update block into a target transmit
precoding vector. The APB architecture comprises 3 convo-
lution layers and 2 activation layers. In addition, a Batch
Normalization layer is added between each convolutional
layer and the activation layer to stabilize the mismatch in
the distribution of the inputs caused by the internal covariant
shift [45].

D. PARAMETER UPDATE MODULE
The unfolded learning architecture comprises three main
parameters forming each learning block, where μ, λ and
γ are learned as shown in Fig. 2. We first initialize these
parameters randomly such that μ > 0, λ > 0 and γ > 0.
The gradient of the proximal barrier function operator is
calculated with respect to each parameter during training,
and its value is updated iteratively in each block simultane-
ously using stochastic gradient descent (SGD) based on the
following update rules

μ[r+1] = μ[r] − η
∂


(
w[r]

1 , γ [r], μ[r]
)

∂μ[r] , (36)

γ [r+1] = γ [r] − η
∂


(
w[r]

1 , γ [r], μ[r]
)

∂γ [r] , (37)

λ[r+1] = λ[r] − η
∂D

(
w[r]

1 , λ[r]
)

∂λ[r] . (38)

Where η is the learning rate,
 proximal operator, and it is
defined in the Appendix.

For every r block (r-th layer), there are three core com-
ponents; L[r]

μ , L[r]
γ and L

[r]
λ associated with the learnable

parameters (μ, γ and λ), respectively. These components
form a learning block for computing the barrier parameter
(μ) associated with the inequality constraint, the step-size
(γ ) and the equality constraint (λ), if exists. To ensure
that the constraints remain positive, a Softplus-sign func-
tion, Softplus(z) = ln (1 + exp(z)) is used. The nonrobust
SLP-DNet formulation and its training steps are summarized
in Algorithm 1. The training variables are updated iteratively
in each unfolding layer simultaneously using stochastic gra-
dient descent (SGD). For every training step, a corresponding
value of the precoding vector is updated based on (33). The
output precoding vector from the last PUM is then fed into
the APB to obtain the final optimal precoding vector. The
same algorithm is also adopted for a robust SLP-DNet but
with a different PBF based on a robust power minimization
problem. Finally, the output from the APB is the precoding
vector in the real domain. The relation: w1 = [wR −wI]T is
used to convert it to its equivalent complex domain for every
SINR value of the i-th user.

1) DUALITY AND LOSS FUNCTION OF THE SLP
FORMULATION

In order to ease the formulation of the dual-problem of the
original problem (14), the left-hand-side of the inequality
constraint is split into its equivalent positive and negative
parts as follows

min{w1}
‖w1‖2

2

s.t. �T
i �w1 ≤

(
�T
i �w1 − √

�iv0

)
tanφ, ∀i

− �T
i �w1 ≤

(
�T
i �w1 − √

�iv0

)
tanφ, ∀i. (39)
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The Lagrangian of (39) is defined as

Lrl(w1, μ1, μ2) = ‖w1‖2
2

+ μ1

(
�T
i �w1 − �T

i w1tanφ + √
�iv0

)

− μ2

(
�T
i �w1 + �T

i w1tanφ − √
�iv0

)
, (40)

where μ1 and μ2 are the Lagrangian multipliers associated
with the constraints and are related to the proximity bar-
rier. The subscript ‘rl’ stands for relaxed phase rotation. It
can be easily proven that the lower bound (LB) of (40)
is Lrl(w1, μ1, μ2) ≥ μ1�i(� − tanφ) − μ2�i(� + tanφ).
From (40), the optimal precoder is obtained by differentiat-
ing Lrl(· ) w.r.t w1 and equating to zero. By doing so, the
optimal precoder can be found as

w1 =
(
μ1

T + μ2
T
)·�itanφ − (

μ1
T − μ2

T
)·�T�itanφ

2
.

(41)

In the sequel, we show that (41) is used to generate the
training input (precoding vector) by randomly initializing
the Lagrangian multipliers (μ1 and μ2) and then train the
network to learn their values that minimize the loss func-
tion (Lagrangian function). The loss function is modified
by adding l2-norm regularization over the weights to cali-
brate the learning coefficients in order to adjust the learning
process. It should be noted that the regularization here is
not aimed at addressing the problem of overfitting as in the
case of supervised learning. However, regularization in an
unsupervised learning is used to normalize and moderate
weights attached to a neuron to help stabilize the learn-
ing algorithm [46]. The loss function (40) over N training
samples is thus expressed as

Lrl(w1, μ1, μ2) = 1

N

N∑

i=1

‖w1‖2
2

+ 1

N

N∑

i=1

(
μ1

(
�T
i �w1 − �T

i w1tanφ + √
�iv0

))

− 1

N

N∑

i=1

(
μ2

(
�T
i �w1 + �T

i w1tanφ − √
�iv0

))

+ ϑ

NL

N∑

i=1

L∑

i=1

‖θ i‖2
2, (42)

where θ i are the trainable parameters of the i-th layers asso-
ciated with the weights and biases, and ϑ > 0 is the penalty
parameter that controls the bias and variance of the trainable
coefficients, N, L is the number of training samples (batch
size or the number of channel realization) and the number
of layers, respectively.

E. LEARNING-BASED SLP FOR STRICT ANGLE
ROTATION
In the previous subsection, we presented SLP-DNet based
on relaxed angle formulation. In this subsection, we provide

a formulation for strict phase angle rotation where all the
interfering signals align exactly to the phase the signal of
interest (i.e., φ = 0 in Fig. 1), the optimization problem
is [2]

min{w1}
‖w1‖2

2

s.t. �T
i �w1 = 0, ∀i

�T
i w1 ≥ √

�iv0, ∀i. (43)

We observe that the inequality constraint in (43) is affine.
Based on this, the proximal barrier function for the strict
phase rotation is

Bst(w1) =
{− ln

(
�T
i w1 − √

�iv0
)
, if �T

i w1 ≥ √
�iv0

+∞, otherwise.
(44)

The subscript ‘st’ represents strict phase rotation. Therefore,
for every precoding vector w1 ∈ R

2Nt×1, the proximity
operator of μγBst at w1 is given by


st(w1, μ, γ ) = w1

+ �i
Tw1 − √

�iv0 −
√(

�T
i w1 − √

�iv0
)2 + 4γμ

∥∥�T
i

∥∥2
2

2‖�i‖2
2

�i.

(45)

Similar to the steps in Section III-B, the learning-based
framework for SLP strict phase rotation is designed by find-
ing the Jacobian matrix of 
(w1, μ, γ ) with respect to w1,
and the derivatives of 
(w1, μ, γ ) with respect to γ and μ

can be easily obtained from (45). The loss function over N
training batches is given by

Lst(w1, λ, μ) = 1

N

N∑

i=1

(
‖w1‖2

2 + λ�T
i �v1

)

+ 1

N

N∑

i=1

(
μ
(√

�iv0 − �T
i w1

))
+ ϑ

NL

N∑

i=1

L∑

i=1

‖θ i‖2
2, (46)

where μ and λ are the Lagrangian multipliers for inequality
and equality constraints, respectively. Finally, minimiz-
ing (46) with respect to w1 (differentiating Lst(· ) w.r.t w1),
gives the optimal precoder as

w1 = μT ·�i − λT ·��i

2
. (47)

IV. LEARNING-BASED ROBUST POWER MINIMIZATION
SLP WITH CHANNEL UNCERTAINTY
A. CHANNEL UNCERTAINTY AND CHANNEL ERROR
MODEL
So far, we have derived the unsupervised learning scheme in
which the uncertainty in estimating the channel coefficients
is not considered. The exact CSI is often unobtainable in
practice. To model the user’s actual channel in the uncertainty
region, we consider an ellipsoid ξ such that

ĥi = h̄i + ēi, ∀k, (48)
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where h̄i is the known CSI estimates at the BS, and ēi
denotes the channel error within the uncertainty region of
the ellipsoid (i.e., ĥi ∈ ξ). The model of the uncertainty
ellipsoid with the center h̄i is expressed as

ξ =
{
h̄i + ēi

∣∣‖ēi≤1‖
}

. (49)

As shown in [2], the channel error is given by
{ēi : ‖ēi‖2

2 ≤ ς2
i }. It is important to note that the BS is

assumed to have the knowledge about the channel error,
excluding its corresponding error bound ς2

i . For details and
formulation of the conventional robust BLP, we refer the
reader to [47].

B. ROBUST OPTIMIZATION-BASED SLP FORMULATION
The multi-cast constructive interference formulation of the
power minimization problem for the worst-case CSI error is
given by [47]

min{w} ‖w‖2
2

s.t.
∣∣∣Im

(
ĥTi w

)∣∣∣ −
(
Re

(
ĥTi w

)
− √

�iv0

)
tanφ ≤ 0,

∀‖ēi‖2 ≤ ς2
i , ∀i. (50)

The intractability of the constraint in (50) can be effectively
handled using convex optimization methods. Therefore, to
guarantee that the robust constraint in (50) is satisfied, it is
modified as follows [2]

max
‖ēi‖2≤ς2

i

(∣∣∣Im
(
ĥTw

)∣∣∣−
(
Re

(
ĥTw

)
− √

�v0

)
tanφ

)
≤ 0. (51)

It is worth noting that the subscripts in (51) are ignored
in order to simplify the problem formulation. By defining
the equivalent real-valued channel and channel error vec-
tors, the real and imaginary parts in the constraint can be
decomposed into two separate constraints as explained in
Section III (see (11a) and (11b)). Thus the robust formula-
tion of the constraint is equivalent to two separate real-valued
constraints as follows

�Tw1 − �Tw2tanφ + ς‖w1 − w2tanφ‖2 + √
�v0tanφ ≤ 0,

(52)

−�Tw1 − �Tw2tanφ + ς‖w1 + w2tanφ‖2 + √
�v0tanφ ≤ 0,

(53)

where � = [
h̄R h̄I

]T
, e �= [

ēR ēI
]T and ĥ = h̄R + jh̄I +

ēR + jēI . Finally, the robust CI formulation for the power
minimization problem becomes

min{w1,w2}
‖w1‖2

2

s.t. Constraints (52) and (53), ∀i
where w1 = �w2. (54)

C. PROPOSED UNSUPERVISED LEARNING-BASED
ROBUST SLP
As an extension of the previous formulations in Section III-B,
the focus here is to derive a PBF for the robust learning-
based precoding scheme. Substituting for w1 in (54), we
have

(
�T� − �T tanφ

)
w2 + ς‖(� − tanφ)w2‖2

+ √
�v0tanφ ≤ 0, (55)

−
(
�T� + �T tanφ

)
w2 + ς‖(� + tanφ)w2‖2

+ √
�v0tanφ ≤ 0. (56)

Apparently, the constraints (55) and (56) are bounded by the
l2-norm. Therefore, problem (54) is rewritten as

min{w2}
‖w2‖2

2

s.t. Constraints (55) and (56), ∀i. (57)

The resulting barrier function of the corresponding con-
straints of (57) is the sum of the individual barrier functions
associated with the two inequality constraints. We begin by
introducing the feasible set of solutions bounded by the
Euclidean ball.

1) BOUNDED EUCLIDEAN BALL CONSTRAINT

Suppose a problem whose set of feasible solutions is bounded
by the Euclidean ball [40]

C = {
z ∈ R

n
∣∣‖z − x‖2 ≤ β

}
, (58)

where β > 0 and x ∈ R
n. Let γ > 0 and μ > 0 be the

step-size and the Lagrange multiplier associated with the
inequality constraint, respectively. Then the barrier function
is expressed as [40]

B(z) =
{− ln (β − ‖z − x‖2), if ‖z − x‖2 < β,

+ ∞, otherwise
(59)

For simplicity, we let Q1 = (�−I2Nt tanφ) and Q2 = (�+
I2Nt tanφ). Based on (59), the barrier function corresponding
to the constraint (55) is written at the bottom of the page.
In the case of constraint (56), similar expression is also

written for B2(w2) using Q2. The resulting barrier function
is thus

Brobust(w2) = B1(w2) + B2(w2) (61)

Without loss of generality, the constraints (55) and (56) can
be further written as

�TQ1w2 + ς‖Q1w2‖2 + √
�v0tanφ ≤ 0, (62)

�TQ2w2 + ς‖Q2w2‖2 + √
�v0tanφ ≤ 0. (63)

B1(w2) =
{− ln

(−√
�v0tanφ − (

�TQ1w2 + ς‖Q1w2‖2
))

, if �TQ1w2 + ς‖Q1w2‖2 < −√
�v0tanφ

+ ∞ otherwise
(60)
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It can be seen that the upper bound of the two constraints (62)
and (63) is zero, Therefore, the effective proximity oper-
ator of (61) is obtained the by squaring (62) and (63)
and adding the results. Following similar steps presented in
Section III-B, we obtain the proximity operator of the barrier
for the robust SLP-DNet (see Appendix A for details).

2) LOSS FUNCTION OF THE ROBUST POWER
MINIMIZATION PROBLEM

The training loss function is the Lagrangian of (57), and can
be written as

min{w2}
‖w2‖2

2

s.t. �TQ1w2 + ς‖Q1w2‖2 + √
�v0tanφ ≤ 0, ∀i

�TQ2w2 + ς‖Q2w2‖2 + √
�v0tanφ ≤ 0, ∀i. (64)

Therefore, the loss function of (64) is the regularized
Lagrangian parameterized by θ i over the entire layers

Lrobust(w2, μ1, μ2) = 1

N

N∑

i=1

‖w2‖2
2

+ μ1

N

N∑

i=1

(
ς2‖Q1w2‖2

2 −
(√

�v0tanφ − �TQ1w2

)2
)

+ μ2

N

N∑

i=1

(
ς2‖Q2w2‖2

2 −
(√

�v0tanφ − �TQ2w2

)2
)

+ ϑ

NL

N∑

i=1

L∑

i=1

‖θ i‖2
2. (65)

The minimum of (65) with respect to w2 by equating its
derivative to zero

(
1 +

(
μ1‖Q1‖2

2 + μ2‖Q2‖2
2

)(
ς2 − �T�

))
w2

= −(μ1Q1 + μ2Q2)�
√

�v0tanφ. (66)

For convenience, we redefine the real matrices and vectors as[‖Q1‖2
2 ‖Q2‖2

2

] = q̄norm;
[
Q1 Q2

] = Q̄ and
[
μ1 μ2

] = μ̄.
With these new notations, (66) is simplified to
(
I2Nt + q̄normμ̄T

(
ς2 − �T�

))
w2 = −�Q̄μ̄T

√
�w0tanφ

(67)

From (67), the optimal transmit precoder is thus

w2 = −�Q̄μ̄TA−1
√

�v0tanφ, (68)

where A = (I2Nt + q̄normμ̄T(ς2 − �T�)). Note that the
Lagrange multipliers μ1 and μ2 are associated with the
barrier term and are randomly initialized from a uniform
distribution.

V. DATA GENERATION, TRAINING AND
COMPUTATIONAL COMPLEXITY
A. DATASET GENERATION
The channel coefficients are used to form a dataset and are
generated randomly from a normal distribution with zero

FIGURE 3. Dataset Generating Block.

mean and unit variance. The data input tensor is obtained
using (7). We summarize the entire dataset preprocessing
procedure in Fig. 3. It can be observed that the input dataset
is normalized by the transmit data symbol so that data entries
are within the nominal range, and this could potentially aid
the training.

B. SLP-DNET TRAINING AND TESTING
The training of DNNs generally involves three steps: forward
propagation, backward propagation, and parameter update.
Except where necessary, the training SINR is drawn from a
random uniform distribution to enable learning over a wide
range of SINR values. The PUM contains r blocks, which
form a learning layer. Therefore, each block contains three
core components and is trained block-wise for l number of
iterations.
Similarly, the APB is trained for k iterations. It is impor-

tant to note that the number of training iterations of the
parameter update module may not necessarily be equal to
that of the APB. We train the PUM for 15 iterations and
the APB for 10 iterations. To improve the training effi-
ciency, we modify the learning rate by a factor α ∈ R

+ for
every training step. All the training is done with a stochas-
tic gradient descent algorithm using an Adam optimizer.
Since the learning is done in an unsupervised fashion, the
loss function is the Lagrangian function’s statistical mean
over the entire training batch samples. During the inference,
a feed-forward pass is performed over the entire architec-
ture using the learned Lagrangian multipliers to calculate
the precoding vector using (41) and (68) for both SLP and
robust SLP formulations, respectively. Finally, at inference,
the trained model is run with different SINR values to obtain
the required optimal precoding matrix.

C. COMPUTATIONAL COMPLEXITY EVALUATION
The complexities are evaluated in terms of the number
of real arithmetic operations involved. For ease of anal-
ysis, we convert the SOCP (14) into a standard linear
programming (LP)

min{z} cTz

s.t. cTk z ≤ −tanφ
√

�iv0, ∀i (69)
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TABLE 1. Complexity analysis of proposed SLP-DNet and benchmark SLP. Schemes

where c = [
0 wT

1

]T ∈ R
(2Nt+1)×1, z = [

1 w1
]T ∈

R
(2Nt+1)×1, ck = [|�T

i �w1| �T
i tan φ]T ∈ R

(2Nt+1)×1 and
W = [w11, . . . ,w1K]; ∀i = 1, . . . ,K. The complexity per
iteration for solving convex optimization via IPM is domi-
nated by the formation (Cform) and factorization (Cfact) of the
matrix coefficients of m linear equations in m unknowns [48].
For generic IPMs, the complexity is expressed as [48]

Ctotal = Citer · (Cform + Cfact) (70)

where Citer is the iteration complexity required to attain an
optimal solution. For a given optimal target accuracy, ε > 0,
Citer is given by

Citer =

√√√√√
Nlc∑

j=1

dj + 2Nsc × ln

(
1

ε

)
(71)

where d is the dimension of the constraints, Nlc and Nsc are
the numbers of linear inequality matrix and second order
cone (SOC) constraints, respectively. The costs of formation
and factorization of the matrix are respectively given by [48]

Cform = m
Nlc∑

j=1

d3
j + m2

Nlc∑

j=1

d2
j

︸ ︷︷ ︸
due to Nlc

+m
Nsc∑

j=1

d2
j=1

︸ ︷︷ ︸
due to Nsc

; Cfact = m3.

(72)

Specifically, we observe that problem (69) has K constraints
with dimension 2Nt + 1. Therefore, using (71) and (72), the
total computational complexity is thus

Ctotal = √
2Nt + 1

[
m(2Nt + 1) + m(2Nt + 1)2 + m3

]
ln

(
1

ε

)
.

(73)

The complexity of BLP can be derived in a similar way and
is shown directly in Table 1. Conversely, the complexity of
the proposed SLP-DNet schemes is the sum of PUM and the
APB complexities. Moreover, the complexity of the PUM is
dominated by the costs of computing the ‘log-barrier’ and
the feed-forward pass of the shallow CNN (see Table 3) that
makes up the barrier term associated with the inequality con-
straint. Similarly, the complexity of the APB is also obtained
by computing the arithmetic operations involved during the
forward pass of the deep CNN (see Table 4). To derive the
analytical complexity of SLP-DNet, we assume a sliding
window is used to perform the dominant computation of the

convolution operation in the CNN and ignore the nonlinear
computational overhead due to activations. Therefore, the
total computational complexity is expressed as

CSLP−DNet = Clog-br

+ 2
Lconv∑

l=1

n[l−1]
h n[l−1]

w

[
C[l−1]
in f [l]2 + 1

]
C[l]
out

+
Lfc∑

j=1

(
2M[j−1]

in + 1
)
M[i]

out (74)

where nh, nw, f , Cin and Cout are the height, width of the
input tensor, kernel size, number of input and output chan-
nels, respectively. Similarly, Lconv, Lfc, Min and Mout are
the number of convolution and fully connected (FC) layers,
number of input and output neurons in the FC layer, respec-
tively. Clog-br denotes the complexity of the ‘log-barrier’
function. Table 1 shows the summary of the computational
complexities of our proposals and the benchmark precoding
schemes. As an illustration, we consider the case of a sym-
metrical system (Nt = K = n), and show that the proposed
approach has substantially reduced computational complex-
ity of O(n3), while the optimization-based SLP approach of
O(n6.5) and the conventional BLP is O(n7.5).

VI. SIMULATION, RESULTS AND DISCUSSION
A. SIMULATION SET-UP
We consider a single-cell MISO downlink in which the BS
is equipped with four antennas (Nt = 4) that serve K = 4
single users. We generate 50,000 training and 2000 test sam-
ples of Rayleigh fading channel coefficients drawn from the
same statistical distribution. The transmit data symbols are
modulated using QPSK and 8PSK modulation schemes. The
training SINR is randomly drawn from uniform distribution
�train ∼ U(�low, �high). Adam optimizer is used for stochas-
tic gradient descent algorithm with Lagrangian function as
a loss metric. A parametric rectified linear unit (PReLu)
activation function is used for both convolutional and fully
connected layers instead of the traditional ReLu function.
The reason for this is to address the problem of the dying
gradient. After every iteration, the learning rate is reduced by
a factor α = 0.65 to aid the learning algorithm in converg-
ing faster. The proposed learning model is implemented in
Pytorch 1.7.1 and Python 3.7.8 on a computer with the fol-
lowing specifications: Intel Core i7-6700 CPU Core, 32.0GB
of RAM. Table 2 summarizes the simulation parameters used
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FIGURE 4. Transmit Power vs SINR averaged over 2000 test samples vs number of
unfolding layers.

TABLE 2. Simulation settings.

TABLE 3. Proximity barrier function NN layout.

in the experiments. For clarity, the internal neural network
structures forming the barrier term component of the PUM
and the APB of the SLP-DNet architecture are outlined in
Tables 3 and 4.

Intuitively, to choose the appropriate number of unfolded
block layers, we ran the experiments with the different num-
bers of unfolded blocks (layers) and plotted the average
transmit power against the number of layers. Specifically,
in our case, we find that the transmit power decreases with
the number of layers until the power gains saturate beyond
a certain number of layers, as shown in Fig. 4.

TABLE 4. Auxiliary processing block (APB) NN structure.

FIGURE 5. Transmit Power vs SINR averaged over 2000 test samples for
conventional BLP, SLP optimization-based and nonrobust SLP-DNet schemes for
M-PSK modulation with Nt = 4, K = 4 under strict angle rotation.

B. PERFORMANCE EVALUATION OF NON-ROBUST
SLP-DNET
Firstly, we compare the average transmit power of the classi-
cal BLP (2), the SLP optimization-based problems (14), (43)
and the proposed SLP-DNet schemes based on (31) and
Algorithm 1 for both strict and relaxed angle rotations. The
performances of the proposed SLP-DNet and the benchmark
schemes (conventional BLP and SLP optimization-based) for
strict angle rotation are shown in Fig. 5. The blue line is the
classical BLP obtained by solving (2), and the black line is
the optimization-based SLP by solving (14) and (43), which
are multicast versions of (6) for strict angle and relaxed angle
cases, respectively (see Fig. 5 and Fig. 6). It can be observed
that the transmit power of the proposed SLP-DNet closely
matches the optimisation based SLP, both with significant
gains against BLP.
Similarly, we discern the same trend in Fig. 6 for the

relaxed angle scenario as observed in Fig. 5. Accordingly,
we find from Fig. 6 that the relaxed angle formulation offers
significant power savings over the strict angle formulation
and is therefore adopted in the subsequent experiments.
Furthermore, at 30dB, the performance of SLP-DNet is
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FIGURE 6. Transmit Power vs SINR averaged over 2000 test samples for
conventional BLP, SLP optimization-based and nonrobust SLP-DNet schemes for
M-PSK modulation with Nt = 4, K = 4 under relaxed angle rotation.

within 5% of the SLP optimization-based solution. Thus,
while the SLP optimization-based offers a slightly lower
transmit power at SINR above 30dB, the proposed learning-
based model’s performance is within 96% − 98% of the
optimization-based solution.

C. PERFORMANCE EVALUATION OF ROBUST SLP-DNET
Figs. 7 and 8 compare the performance of the proposed
robust SLP-DNet with the traditional robust block-level
precoder [47] and robust SLP precoder [2] for the 4 × 4
MISO system evaluated at ς2 = 10−4. For simplicity, we
use QPSK modulation scheme. Fig. 7 depicts how the aver-
age transmit power increases with the SINR thresholds, for
CSI error bounds ς2 = 10−4. The SLP optimization-based
precoding scheme is observed to show significant power
savings of more than 60% compared to the conventional
optimization solution. Similarly, the proposed unsupervised
learning-based precoder portrays a similar transmit power
reduction trend. They show considerable power savings of
40% − 58% against the conventional BLP.

Furthermore, we investigate the effect of the CSI error
bounds on the transmit power at 30 dB. Fig. 8 depicts the
transmit power variation with increasing CSI error bounds.
Moreover, a significant increase in transmit power can be
observed where the channel uncertainty lies within the region
of CSI error bounds of ς2 = 10−3. Interestingly, like the
SLP optimization-based algorithm, the proposed SLP-DNet
also shows a descent or moderate increase in transmit power
by exploiting the constructive interference.
Moreover, we perform additional simulations to demon-

strate how the proposed SLP learning architecture can scale
to more antennas and users for both nonrobust and robust
CSI scenarios to investigate the adaptability to different
multiantenna layouts. It should be noted that by scaling up
the number of users and the BS antennas, the math does

FIGURE 7. Transmit Power vs SINR averaged over 2000 test samples for robust
conventional, SLP optimization-based and SLP-DNet solutions with Nt = 4, K = 4 and
ς2 = 0.0002.

FIGURE 8. Transmit Power vs Error-bound for robust conventional BLP, SLP
optimization-based and SLP-DNet solutions with Nt = 4, K = 4.

not change whatever the parameters. Therefore, the learning
architecture will remain unchanged. It can be observed that in
Figs. 9(a) and 9(b), the results follow similar trends as those
obtained with a moderate number of users (4 × 4 systems).
We also note the performance gap between the proposed
learning SLP scheme and the conventional optimization-
based approach is rapidly closing beyond 5 dB SINR and
matching up with the optimization-based solution at higher
SINRs. As expected, scaling up the number of users and BS
antennas would naturally result in extra computational com-
plexity. Still, a significant reduction in the transmit power is
achieved compared to the 4 × 4 scenarios.

Figs. 10(a) and 10(b) depict the execution times for non-
robust and robust formulations. It can be seen that both
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FIGURE 9. Transmit Power vs SINR averaged over 2000 test samples for nonrobust
and robust conventional SLP optimization-based and SLP-DNet schemes for M-PSK
modulation with Nt = 16, K = 16 and Nt = 32, K = 32 under relaxed angle rotation.

SLP optimization-based algorithm and the proposed learn-
ing schemes are feasible for all sets of Nt BS antenna and K
mobile users. However, for conventional BLP, the solution
is only feasible for Nt ≥ K. Fig. 10(a) shows the aver-
age execution time of the proposed unsupervised learning
solutions per symbol averaged over 2000 test samples for
nonrobust formulations. The SLP-DNet is observed to be
significantly faster than the SLP optimization-based. For
example, the theoretical complexity is polynomial order-3
and polynomial order-6.5 or order-7.5 for SLP-DNet and
conventional methods, respectively. This is shown in the exe-
cution times, where there is a significantly steeper increase
in run-time as the number of users increases. The decrease
in computational cost is because the dominant operations
involved in SLP-DNet at the inference are simple matrix-
matrix or vector-matrix convolution. The same trend is also
observed in the case of a robust channel scenario, as shown

FIGURE 10. Comparison of average execution time per sample averaged over 200
test samples for conventional BLP, optimization-based and SLP-DNet solutions with
Nt = 4 and K users (2, . . . , 8).

in Fig. 10(b). Therefore, the results in Figs. 10(a) and 10(b)
demonstrate that the proposed unsupervised learning-based
precoding solutions offer a good trade-off between the
performance and computational complexity. Moreover, as per
the results obtained, SLP-DNet’s performance is within the
range of 89% − 99% of the optimal SLP optimization-based
precoding solution. Thus, our proposals demonstrate a favor-
able tradeoff between the performance and the computational
complexity involved.
Finally, to check whether the optimal precoding vec-

tor satisfies the constraint, we use the learned optimal
precoding vector obtained from the SLP-DNet and plot the
constraint against the average transmit power using the con-
straints in (14). To ensure the constraint is satisfied, the
residual constraints (difference between the right-hand and
left-hand sides of the constraint) in (14) must always be
negative according to the following expression |�T

i �w1| ≤
(�T

i w1 − √
�iv0)tanφ. Therefore, we can further write this

expression as |�T
i �w1|− (�T

i w1 −√
�iv0)tanφ ≤ 0, which

must be satisfied for every optimal precoding vector. As
an illustration, in Fig. 11, we plot constraints against the
average transmit power for a BS with 16 antennas serving
16 single antenna users (QPSK-16X16) scenario. It can be
observed that the constraints are bounded below the origin
on the vertical axis, thus satisfying the constraint require-
ment for each transmitted power. This means that the points
(optimal precoding vectors) are feasible with respect to these
constraints (constraints are within the optimization feasible
regions).

VII. CONCLUSION
This paper proposes an unsupervised learning-based
precoding framework for a multi-user downlink MISO
system. The proposed learning technique exploits the con-
structive interference for the power minimization problem so
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FIGURE 11. Average Transmit Power vs. Constraint for SLP-DNet solutions with
Nt = 16 and K = 16 users.

that for given QoS constraints, the transmit power available
for transmission is minimized. We use domain knowledge
to design unsupervised learning architectures by unfolding
the proximal interior point method barrier ‘log’ function.
The proposed learning scheme is then extended to robust
precoding designs with imperfect CSI bounded by CSI
errors. We demonstrate that our proposal is computation-
ally efficient and allows for feasible solutions to be obtained
for problems where traditional numerical optimization like
IPM and brute-force maximum likelihood solvers would not
converge or would be prohibitively costly.

APPENDIX
PROXIMITY OPERATOR BARRIER FOR ROBUST SLP
For every transmit precoding vector w2 ∈ R

2Nt×1, the
proximity operator of the barrier γμBrobust(w2) is given by


rb(w2, γ , μ) = 2�v0tan2φ − X(w2, γ , μ)2

2�v0tan2φ − X(w2, γ , μ)2 + 2γμ
w2

(75)

where X(w2, γ , μ) is the unique solution of the cubic
equation expressed as [38]

x3 −
((

ς2 − �T�
)
‖w2‖2 + 4�Tw2tanφ

√
�v0

)
x2

+
(

2�v0tan
2φ + 2γμ

)
x

+ 2�v0tan
2φ

((
ς2 − �T�

)
‖w2‖2 + 4�Tw2tanφ

√
�v0

)
= 0.

(76)

It can be observed that (76) is a cubic equation and can
be solved analytically. In the final analysis, following simi-
lar steps as in (25)-(29), the robust deep-unfolded model is
obtained by finding the Jacobean matrix of (75) with respect
to the optimization variable w2, and the derivatives with
respect to the step-size γ > 0 and the Lagrange multiplier
associated with the inequality constraint μ > 0. We use

similar concepts presented in Section III-B to formulate the
learning algorithm of the robust SLP as a series of sub-
problems with respect to the combined effect of the two
inequality constraints as follows

min
w2∈R2Nt×1

‖w2‖2
2 + λw2 + μBrobust(w2). (77)

Similar to a nonrobust SLP-DNet, the update rule for every
iteration is expressed as

w[r+1]
2 = proxγ [r]μ[r]Brobust

(
w[r]

2 − γ [r]�Drobust

(
w[r]

2 , λ[r]
))

(78)

where

Drobust

(
w[r]

2 , λ[r]
)

= ‖w2‖2
2 + λw2. (79)
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