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ABSTRACT The cloud-based solutions are becoming inefficient due to considerably large time delays,
high power consumption, and security and privacy concerns caused by billions of connected wireless
devices and typically zillions of bytes of data they produce at the network edge. A blend of edge computing
and Artificial Intelligence (AI) techniques could optimally shift the resourceful computation servers closer
to the network edge, which provides the support for advanced AI applications (e.g., video/audio surveillance
and personal recommendation system) by enabling intelligent decision making on computing at the point of
data generation as and when it is needed, and distributed Machine Learning (ML) with its potential to avoid
the transmission of the large dataset and possible compromise of privacy that may exist in cloud-based
centralized learning. Besides, the deployment of AI techniques to redesign end-to-end communication is
attracting attention to improve communication performance. Therefore, the interaction of AI and wireless
communications generates a new concept, named native AI wireless networks. In this paper, we conduct
a comprehensive overview of recent advances in distributed intelligence in wireless networks under the
umbrella of native AI wireless networks, with a focus on the design of distributed learning architectures
for heterogeneous networks, on AI-enabled edge computing, on the communication-efficient technologies
to support distributed learning, and on the AI-empowered end-to-end communications. We highlight the
advantages of hybrid distributed learning architectures compared to state-of-the-art distributed learning
techniques. We summarize the challenges of existing research contributions in distributed intelligence in
wireless networks and identify potential future opportunities.

INDEX TERMS Distributed intelligence, distributed machine learning, edge computing, end-to-end
communications, federated learning, split learning.

I. INTRODUCTION
A. NATIVE-AI WIRELESS NETWORKS

IN THE upcoming wireless networks, apart from devel-
oping new spectrum technologies and the support of

simultaneous communications and sensing as well as extreme
connectivity requirements and other use cases, it is expected
that machine learning (ML) and artificial intelligence (AI)
will play a defining role in the development of end-to-end
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networks across the design, deployment, and operational
phases [1]. Recently, AI techniques have been successfully
deployed in the subjects, including computer vision, natural
language processing (NLP), and smart decision-making. In
wireless communications, the introduction of AI techniques
makes researchers rethink and revisit classical approaches
that were developed and implemented based on the scientific
breakthroughs by Shannon and Wiener, so as to discover new
theories and achieve advanced technological breakthroughs
for the upcoming 6G wireless networks. Due to its easy
implementation in terms of model training and inference, AI
techniques are widely used to provide advanced intelligent
applications at the network edge, which then brings new
challenges for improving network performance. The rein-
forcement learning (RL) techniques, as an important branch
of the AI algorithm family, provide a new paradigm for solv-
ing resource allocation and network management problems
without the need of finding analytic solutions and formulat-
ing dynamic programming, which can obtain solutions for
each step dynamically in real-time. Moreover, the imple-
mentation of AI techniques makes it possible to combine
source and channel coding as well as communication of data
with the intended use by an application, and embrace the
hardware constraints and undesired effects of the commu-
nications channel rather than fighting them. Therefore, with
the advancement in wireless networks and their software-
defined capabilities, AI will become native and ubiquitous
in wireless networks as the role of problem solver and service
requester [2]. The definition of native AI wireless networks
provides a new vision of traditional wireless networks by
deeply integrating AI techniques into every aspect of the
wireless networks, such as communications technologies,
information technologies, and data technologies. It involves
the intersection of AI techniques and wireless networks
from the aforementioned three aspects. Native AI wireless
networks redefine the device-pipe-cloud, bring the support
for distributed AI services, and truly enables pervasive intel-
ligence over every point in the communication system. In this
article, we summarize the current research towards achiev-
ing the native AI wireless networks from the following
three aspects [2], [3], AI-based network optimization and
management, AI-empowered wireless communication and
AI-enabled distributed data processing.

B. AI-ENABLED DISTRIBUTED DATA PROCESSING
Currently, there are hundreds of billions of wireless devices
(e.g., 13.8 billions Internet of Things (IoT) devices [4],
6.37 billions smartphones [5] and 5 millions drones [6] etc.)
around the world, and the number is expected to increase
faster in the next decade. The massive devices are equipped
with increasingly advanced sensors, computing, and commu-
nication capabilities, and they are geographically distributed
in the different smart-x environments, e.g., smart homes,
smart cities, and smart agriculture, with the capability to
undertake various crowd-sensing tasks [7], to extract fea-
tures from a large amount of data and make decisions

FIGURE 1. The illustration of distributed intelligence in wireless networks.

using Machine Learning (ML) algorithms, especially Deep
Learning (DL) (e.g., Convolutional Neural Network (CNN)
and deep neural network (DNN)). In the upcoming 6G com-
munications, each network element will natively integrate
communication, computing, and sensing capabilities, facili-
tating the evolution from centralized intelligence in the cloud
to ubiquitous intelligence on deep edges. As shown in Fig. 1,
6G will employ a deep-edge architecture to enable massive
machine learning in a distributed and collaborative manner.
This three-layer architecture integrates the cloud platform
(e.g., cloud servers), the edge devices (e.g., WiFi router,
Base Stations (BSs), IoT gateway or micro-datacenter),
local devices (e.g., smartphones, IoT devices, and vehicles),
and advanced wireless communications, which can support
AI-enabled applications at the edge of wireless networks [8].
The use of the edge layer pushes the computational resources
geographically closer to the local devices compared to the
cloud platform, and thus the physical proximity between the
computational servers and information-generation sources
promises the advantages of edge computing, including low
latency, high energy efficiency, proper privacy protection,
and reduced bandwidth consumption.
From Fig. 1, to support AI services at the edge, the ML

models can be learned by either centralized or distributed
ML model training. For conventional centralized learning,
the massive data generated at the local layer can be directly
transmitted to the edge layer or cloud layer for learning ML
models. Recently, an emerging distributed ML architecture
built on deep-edge intelligence has been shown to have the
potential to meet the large-scale intelligence requirements of
future society and manufacturing. This means the ML mod-
els can be learned through the collaboration of distributed
devices and a centralized parameter server. From Fig. 1, the
model aggregation can be performed at the edge layer by
deploying the parameter server at BS, WiFi router, or IoT
gateway. Also, a hierarchical distributed learning architec-
ture can be applied by performing model aggregation at the
cloud layer for complex ML model training and inference.
For simplicity, we will consider the BS as the parameter
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server located at the edge layer to illustrate the architec-
ture of edge computing and distributed learning in wireless
networks.
The conventional centralized learning approach of offload-

ing raw data to the edge incurs a huge cost (e.g., large time
delay, energy consumption, and wide bandwidth) due to the
transmission of a large datasets, and reveals privacy and
security concerns. To address these challenges, distributed
learning was proposed to let users keep their private data
locally and share only model parameters or smashed data
instead of raw data to a central server [9]. Federated Learning
(FL) as a popular distributed learning technique was first
proposed to provide communication-efficient distributed ML
model training, in which the users perform local model train-
ing on their own private datasets, and then share their local
model updates instead of raw data to a central server where
a model parameter aggregation is performed to update the
global model [10]. Considering the diversity of users with
different computational capabilities and resources (e.g., the
size of local datasets, different data distributions, and wire-
less channel qualities), FL is not always efficient since it
requires that all the users are capable of computing gradients
but this may not be possible for some users. Moreover, the
users have to offload the local updates of the full ML model
and this causes large communication overhead for users when
the ML model is complex. Fortunately, users with weak
computational capability can choose centralized learning by
migrating the training task to the server or a distributed
learning approach that only runs a partial ML model locally
with the rest running at the server, and it is known as Split
Learning (SL). To this end, a hybrid learning architecture
could be more energy-efficient for heterogeneous wireless
networks to benefit from different learning approaches, such
as Hybrid Centralized and Federated Learning (HCFL) [11],
and Hybrid Split and Federated Learning (HSFL) [12], [13].
Moreover, in distributed learning, the contributions of dif-
ferent users to the global model update are different, and
thus scheduling the users with more contributions, i.e., large
local model updates and good channel qualities, for partic-
ipating in model training is important. Since participation
consumes users’ energy and could possibly reveal their pri-
vacy, not all users are actively willing to contribute to global
model training without sufficient compensation. The incen-
tive mechanism was studied to encourage users to join the
model training by introducing rewards and payment for them
based on Shapley value, Stackelberg game, auction, and con-
tract theory [14]. On the other hand, due to the diversity of
users, each user may not complete their local computation at
the same time. Those users completing local model updates
slower than others are called stragglers. When performing
model aggregation, the stragglers will cause an adverse effect
to the convergence of the global model [15]. Therefore,
asynchronous distributed learning was introduced to address
the harmful effects of the stragglers by adopting dynamic
learning rates and using a regularized loss function [16].

C. AI-BASED NETWORK OPTIMIZATION AND
MANAGEMENT
Recently, a wide range of new applications, like mobile pay-
ment, mobile games, and eXtended Reality (XR) services
(including Virtual Reality (VR), Augmented Reality (AR),
and Mixed Reality (MR)), have been deployed in wireless
networks. This requires intelligent use of communications,
computing, control, and storage resources from the network
edge to the core, and across multiple radio technologies
and network platforms. Therefore, to meet diverse service
requirements, the existing technologies, such as Software
Defined Networks (SDN), Network Functions Virtualization
(NFV), and network slicing will need to be further improved
relying on AI-based methods. Last but not least, the volume
and variety of data generated in wireless networks are grow-
ing significantly. This requires data-driven algorithms, such
as ML algorithms, to extract insights from the massive data
and it opens up great opportunities for intelligent network
planning to achieve real-time additivity to dynamic network
environments. Therefore, AI will be an indispensable tool to
facilitate intelligent learning, reasoning, and decision making
in 6G wireless networks.
AI techniques are powerful for the quick analysis of

big data and extracting insights from the data, which has
achieved sustained success in many research areas, including
automatic control in robotics, image processing in computer
vision, speech recognition, and natural language processing.
In Fig. 1, the introduction of the edge layer provides dis-
tributed computing resources for the implementation of AI
techniques in analyzing the big data generated at the local
layer. Benefiting from distributed learning architecture, com-
plex AI models can be trained and inferred efficiently at the
network edge. The big data analytics accomplished by AI
techniques, including four different types, namely descrip-
tive analytics, diagnostic analytics, predictive analytics, and
prescriptive analytics, can support both AI services deployed
at the network edge and network performance improvement
in wireless networks.
Due to the increase in network scale, density, and het-

erogeneity, it is hard or even impossible to model such
a dynamic wireless system with traditional optimization
approaches. The conventional network optimization assumes
the objective function to be available in nice algebraic forms
and allows an optimizer to evaluate a solution by simple
calculation [2]. However, the mapping between a decision
and its effect on the physical system is cost prohibitive
to define and may not be analytically available. Recent
advances in AI technologies, such as statistical learning,
RL, and DL algorithms, can solve the formulated com-
plicated network optimization problems in future wireless
networks since they can find the asymptotically optimal solu-
tions iteratively using the Stochastic Gradient Descent (SGD)
methods. Specifically, the RL techniques including Deep RL
(DRL), Multi-Armed Bandit (MAB) theory, and multi-agent
RL algorithms can establish a feedback loop between the
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FIGURE 2. AI techniques provide intelligent solutions for wireless communications.

decision-maker and the physical system, so that the decision-
maker can iteratively refine its action based on the system’s
feedback to reach the optimality eventually. As shown in
Fig. 2, RL techniques have been broadly applied to address
several emerging issues in communication and networking,
including resource allocation, wireless caching, computation
offloading, and user scheduling, etc.

D. AI-EMPOWERED WIRELESS COMMUNICATIONS
As discussed above, to support AI services in wireless
networks, the data generated by the end users need to be
offloaded to the central server that uses centralized learn-
ing algorithms to unlock their potential, or kept locally by
relying on distributed learning and offloading local model
parameters. In both scenarios, the requirements on com-
munication channel quality are high since offloading raw
data needs large bandwidth and high data rate communica-
tion while offloading model parameters need ultra-reliable
and low latency communication links. The current 4G/5G is
restricted to support AI services with high requirements on
Key Performance Indicators (KPI), and thus ML techniques
have been studied in wireless communications to improve
those KPI metrics [17]. The potentials of ML techniques have
been widely studied in block-based communication systems
to support different locally optimized objectives, such as sig-
nal compression, modulation, channel coding, and so on. To
realize global optimization in communication systems, ML
for end-to-end systems has been proposed to further enhance
communication efficiency [18].
With the development of wireless communications that

involve emerging advanced technologies, the complicated
environment brings unprecedented challenges to communi-
cation system modeling. In conventional chain-shape block-
based communication systems, DL has been deployed in
different independent modules for multiple purposes with
significantly improved performance, such as interference
alignment [19], jamming resistance, modulation classifica-
tion [20], physical coding [21] and so on. However, existing
approaches with separate blocks can not holistically cap-
ture the comprehensive aspects of the real-world system.

FIGURE 3. AI-empowered end-to-end communications.

Therefore, the potential of AI-empowered end-to-end com-
munication systems to support future networks has been
discussed [2]. As shown in Fig. 3, the envisioned intelligent
end-to-end system can realize self-optimization communica-
tion with the help of advanced sensing, data collection, and
AI technologies.

E. MOTIVATION AND CONTRIBUTIONS
The aforementioned research works have laid the basic
foundation for understanding the development of applying
AI techniques in wireless communications. There are some
existing surveys and tutorials that have tried to address this
interdisciplinary problem of AI and wireless communica-
tions from the aspects of edge intelligence [31], [32], and
distributed ML in wireless communications [9], [22], [23],
[24], [25], [26], [27], [28], [29], [30], but their focus is
different from our work. Particularly, The authors in [31]
focused on an overview of the deep learning applications
at the network edge. In [32], the authors mainly identi-
fied edge intelligence from edge caching, edge training,
edge inference, and edge offloading. In [9], [22], [23], [24],
the authors mainly reviewed the fundamental concepts and
techniques of distributed ML, with a focus on FL algo-
rithms. In [25], the authors presented several applications
using FL algorithms in mobile edge networks and further
introduced the implementation challenges of FL algorithms.
Similar works have been discussed in [26], [27], the authors
illustrated the basic principles behind implementing FL in
supporting efficient and intelligent wireless communications.
Apart from FL, the authors in [28], [29], [30] explored a
broad aspect of distributed ML in wireless communications.
Specifically, the latest applications of distributed ML in wire-
less networks and the practical challenges of which, as well
as privacy and security concerns were reviewed in [28].
In [29], the authors presented the communication-efficient
techniques and DML frameworks based on a few selected use
cases. Furthermore, the use of communication techniques for
the efficient deployment of distributed learning algorithms in
wireless networks have been provided in [30], in which an
overview of several emerging distributed learning paradigms,
including FL, distributed inference, and federated distillation
was presented.
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TABLE 1. Comparison between related existing survey.

Although the aforementioned research contributions
present either edge intelligence or distributed ML in wire-
less networks, the analysis of different ML techniques for
edge computing, the implementation of distributed learning
architectures in wireless networks, and the use of DL tech-
niques for improving end-to-end communication have not
been covered. Besides, a clear illustration of the develop-
ment of AI algorithms in wireless communications from
different aspects is missing. Motivated by the aforemen-
tioned inspirations, we develop this survey paper with the
goal of comprehensively investigating the major issues,
challenges, and opportunities of distributed intelligence in
wireless networks that falls under the umbrella of native AI
wireless networks, with a focus on intelligent data process-
ing, network management optimization, and communication
performance improvement. Table 1 illustrates the compar-
isons of this survey with the existing relevant surveys and
tutorials.
To highlight the significance of our contributions, this

survey starts with the introduction of native AI wireless
networks, which provides the readers with clear concepts
of the interaction of ML techniques and wireless commu-
nications from AI-assisted wireless networks and wireless
communication supporting AI services at the network edge.
We continue to present AI-enabled distributed data process-
ing with a focus on two aspects, the implementation of
distributed learning architectures in wireless networks, and
ML techniques assisted edge computing, especially using RL
techniques for computation offloading at the network edge.
Next, communication-efficient technologies for distributed
learning are introduced. We then address the use of DL
techniques to improve wireless communication performance.
Finally, we identify the existing challenges and poten-
tial opportunities for achieving distributed intelligence in

wireless networks. The main contributions of this survey are
stated as follows:
1) We present a comprehensive survey on recent advances

and state-of-art in deploying distributed intelligence in
wireless networks. The basic concepts of edge comput-
ing and distributed learning techniques are introduced
and key advantages are summarized. Moreover, the
research challenges and potential opportunities are also
discussed.

2) We review the state-of-art hybrid learning architectures
and asynchronous distributed learning for heterogeneous
networks. We also demonstrate that the HSFL frame-
work achieves better learning performance in wireless
networks with diverse users. Moreover, we investigate
the motivation of wireless users for joining in global
model updates by reviewing the design of incentive
mechanism schemes.

3) We investigate different ML techniques for optimiz-
ing computation offloading and resource management
in edge computing networks. RL techniques, includ-
ing DRL, multi-agent RL, federated RL (FRL), and
other learning techniques, such as DL and imita-
tion learning, are reviewed. Furthermore, we sum-
marize the application scenarios and complexity of
those ML techniques and traditional optimization
methods. The challenges of exploiting the existing
ML techniques for complicated edge computing have
been identified and the potential solutions are also
underlined.

4) We identify the challenges of traditional communication
technologies, followed by the review of the state-of-art
communication-efficient technologies, user scheduling
and resource management, over-the-air computation,
and gradient compression.
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FIGURE 4. The structure of this survey.

5) We identify the potentials of DL in wireless com-
munications with a review of investigating DL tech-
niques to optimize the traditional communication blocks
and redesign end-to-end communication structures.
Moreover, DL for current advanced communication
technologies is also reviewed.

6) We provide future opportunities and challenges to
improve network efficiency, cope with diverse users,
and prevent privacy leakage and security concerns for
distributed intelligence in wireless networks.

F. ORGANIZATION
The rest of this paper is organized as follows. Section II pro-
vides the fundamentals of edge computing, ML algorithms,
and distributed learning techniques. Section III discusses
different AI techniques that enabled edge computing. In
Section IV, distributed learning in wireless networks is

discussed. Followed by the communication-efficient tech-
nologies for distributed learning are illustrated in Section V.
Section VI reviews investigating DL techniques to optimize
the traditional communication blocks and end-to-end com-
munications. The open issues and future opportunities are
discussed in Section VI. The structure of this survey paper
is depicted in Fig. 4.

II. THE FUNDAMENTALS OF DISTRIBUTED
INTELLIGENCE OVER WIRELESS NETWORKS
A. EDGE COMPUTING
Edge/fog computing was proposed to pave the way for the
evolution of new era applications and services, which follow
a wireless distributed computing framework and are promis-
ing to handle data processing for the explosive growth of
data generated from massive wireless devices (e.g., mobile
phones, sensors, drones, etc.). It is processing the massive
amount of data generated from geographically distributed
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users by pushing the computational resources from the cen-
tral to the network edge which is near the data source.
Recently, increasingly advanced applications, such as mobile
payment, smart healthcare, mobile games, and XR applica-
tions [33], put higher requirements on the resource capacity
of smart devices. Instead of replacing cloud computing that
was first put forward by Google [34], edge computing is
introduced as a complementary paradigm to address the
challenges of limited bandwidth, large latency, and high
energy consumption existing in cloud computing by let-
ting the computational resources be accessible ubiquitously
through deploying a large number of edge nodes in a dis-
tributed manner at the network edge. As shown in Fig. 1, an
edge layer is added to the conventional cloud-local wireless
networks, and more distributed computational resources are
deployed at the edge layer to provide edge computing.
The first edge computing concept cloudlet [35] was

proposed to bring the computational or storage resource
closer to the users. Cloudlet is a small-scale data center
or a cluster of computers designed to quickly provide cloud
computing services to mobile devices, such as smartphones,
tablets, and wearable devices, within close geographical
proximity. To support the big data processing for advanced
applications with billions of connected devices at the network
edge, a more general concept of edge computing, fog com-
puting with a focus on IoT applications, was introduced by
Cisco as it can offer: a) low latency and location awareness
due to proximity of the computational devices to the edge of
the network, b) wide-spread geographical distribution when
compared to cloud computing, c) interconnection of a large
number of end devices (e.g., wireless sensors), and d) sup-
port of streaming and real-time applications. However, the
aforementioned edge computing concepts are not integrated
into the architecture of the mobile network, which causes
the Quality of Service (QoS) and Quality of Experience
(QoE) for mobile users can be hardly guaranteed. Therefore,
MEC network was proposed to place computation capa-
bilities and service environments at the edge of cellular
networks [36]. By deploying edge servers at the cellular BSs,
mobile users can support advanced applications and services
flexibly and quickly. The European Telecommunications
Standards Institute (ETSI) Industry Specification Group
(ISG) further extends its name of MEC to Multi-access
Edge Computing (MEC) to embrace the challenges of more
wireless communication technologies, such as Wi-Fi [37].
With the distributed architecture, we can summarize the

importance and benefits of edge computing as follows [38].
• Providing real-time QoS: The IoT devices and wearable
devices are designed for delay-sensitive use cases, and
most of them demand high QoS requirements due to
the mobile and interactive environment. For instance,
the healthcare data generated by the body-worn sen-
sors need to be processed immediately in case of
an emergency [39]. As another example, the AR and
VR experiences rely on the graphics rendering on the
edge/cloud to augment latency-sensitive on-device head

tracking, controller tracking, hand tracking, and motion
tracking [40]. The legacy cloud servers cannot support
these applications because of the large delay of access-
ing them through the Wireless Area Network (WAN).
Edge computing could provide the solution by deploy-
ing the edge servers closer to the users, which reduces
the overall latency through high Local Area Network
(LAN) bandwidth and decreased number of hops.

• Decreasing energy consumption: The limited battery
capacity is still a challenge for mobile phones and espe-
cially for most IoT devices, and thus reducing energy
consumption is always an important goal in wireless
networks. Computation offloading has been demon-
strated to be an effective method to reduce the total
energy consumption by offloading the intensive com-
putational tasks to edge or cloud [41], [42]. It is also
stated that offloading tasks to the edge servers result in
lower energy consumption compared to offloading them
to the cloud platforms. Certainly, executing tasks locally
at the device causes the highest energy consumption.

• Reducing network congestion: The limited bandwidth of
the core network makes it vulnerable to network conges-
tion. In 2020, tens of millions of devices are generating
2.5 quintillion bytes of data per day, and this rate is
expected to increase [43]. The conventional approach
is to transmit the data through the core network to
the cloud servers for processing, which causes a heavy
burden on the core network. Edge computing prevents
this by keeping the traffic at the edge servers and also
optimizes the utilization of the limited bandwidth.

• Scalability: the number of mobile users is expected to
increase to 10.3 billions and the number of IoT devices
will reach 30.9 billions by 2025 [44], which creates a
significant scalability problem. The conventional cloud
cannot provide a scalable environment for the data and
applications due to highly possible network congestion
caused by the data transmission of tens of millions of
end devices. With edge computing, if one edge server
becomes congested and fails to satisfy the incoming
requests, the corresponding service can be transferred
to another edge server nearby and let the computing
service be handled there.

As mentioned above, edge computing has a similar work-
ing mechanism as cloud computing, but distributes the
computational resources closer to the local devices. Instead
of offloading intensive computational tasks to the remote
cloud, the end devices recur to the edge servers in the vicin-
ity for computational resources; generally, there are several
nearby edge servers that can be accessed by each end device.
However, the edge servers have limited power and compu-
tational resources compared to the cloud server which is
assumed to be super powerful, which makes the computa-
tion offloading problem more complicated due to the need
of considering edge server selection and resource manage-
ment [7]. In cloud computing, the key point of computation
offloading is to decide whether to offload or not, how much
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FIGURE 5. The structure of different DL algorithms, (a) DNN, (b) CNN.

and what should be offloaded. In edge computing, in addition
to those points, we need to address where and how to offload,
and how much resources should be allocated. Recently,
researchers have studied the joint computation offloading
and resource management problem with the goal of minimiz-
ing energy consumption and execution delay [45], [46]. They
formulated the joint problem as a combinatorial optimization
problem with non-linear constraints and proposed the
computation offloading algorithms based on convex
optimization [47], [48], Lyapunov optimization [49], [50]
and game theory [51], [52]. Moreover, the design of the com-
putation offloading scheme can be modeled as the process
of making decisions on offloading and resource alloca-
tion by interacting with the dynamic environment, which is
then investigated by exploiting the RL algorithms in many
research works [53], [54].

B. THE ML TECHNIQUES
1) THE DL ALGORITHMS

The basic data-driven deep learning-based algorithm adopts a
fully connected feed-forward neural network with multiple
hidden layers to extract the data representation [55]. This
multi-layer neural network can be established by super-
vised learning, unsupervised learning, and RL. Without the
knowledge of the mathematical model, deep learning can
learn from a large amount of labeled data and the hyper-
parameters can be tuned based on the domain knowledge for
superior insight extraction. Hence, deep learning has been
widely applied to the fields the mathematical description
cannot be easily obtained. There are mainly three differ-
ent kinds of deep learning architectures: DNN, CNN, and
Recurrent Neural Networks (RNN) [56]. We will briefly
introduce DNN and CNN below.

1) DNN: Generally, DNN is a deeper version of Artificial
Neural Networks (ANNs) with multiple layers (more than
three hidden layers). The structure of the DNN is shown
in Fig. 5 (a) [56]. In DNN, each layer consists of multiple
neurons, each of which has an output that is a non-linear
function, like the Sigmoid function or ReLU function. To
express the DNN propagation principle, we use il to represent
the input of the lth layer neurons. ol,ne represents the output

of the nthe neuron at lth layer. W(DNN)
l and b(DNN)l denote the

weight matrix and the bias vector of the lth layer. Hence,
each neuron’s output can be expressed as

ol,ne = fl,ne
(
b(DNN)l,ne

+W(DNN)T

l,ne
il
)
, (1)

with fl,ne as the activation function for the nthe neuron at the
lth layer, and (·)T denotes the transpose.
During the training phase of constructing DNN, the

parameter set θ l = (W(DNN)
l , b(DNN)l ) represents the weights

and biases of the DNN model at the lth layer, which
can be obtained through backpropagation gradient to
recursively minimize the loss function until convergence.
Conventionally, the gradient descent method is to find the
local minimum by taking steps proportional to the gradient
of the function, this can be represented by

θ (τ+1) = θ (τ ) − η∇Loss
(
θ (τ )

)
, (2)

where θ (τ ) represents the model parameter set at time slot τ ,
and Loss(θ) is the loss function with current parameter set,
η is the learning rate.
Different from gradient descent which calculates the gra-

dient by taking the whole dataset into account, SGD has
been proposed to handle much larger datasets in practical
scenarios by calculating the model updates based on the
mini-batch of data. This can be formulated as

Loss(θ) =
D∑
d=1

Lossd(θ),

θ (τ+1) = θ (τ ) − η∇Lossd
(
θ (τ )

)
(3)

where D is the number of mini-batches of the whole dataset.
It has been proved that SGD has a higher probability of
avoiding local minimum and data redundancy [57].

2) CNN: Compared to DNN, CNN puts additional convo-
lutional and pooling layers before feeding the data into the
neural network [58]. It has been widely utilized to deal
with computer vision and signal compression problems. In
Fig. 5 (b), the structure of CNN with a two-dimensional
(2-D) kernel is plotted. There are three main volumes: input
maps, feature maps, and pooled maps. The convolution
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TABLE 2. The differences between two DRL approaches.

FIGURE 6. The framework of the RL technique.

between a 2-D kernel wCNN
m,n,k and the kth map at (x, y) spatial

location is the sum of products of the weights of the kernel
and the elements of the map that are spatially coincident
with the kernel [59]. Specifically, m and n are variables that
indicate the kernel height and width, respectively. At point
A in Fig. 5 (b), the summation of the overall K depth of the
input volume at spatial coordinate (x, y) can be written as

convx,y =
∑
k

∑
m,n

w(CNN)v
m,n,k m,n,k, (4)

where vm,n,k is the value of the spatially corresponding ele-
ments on the input maps. Then a scalar bias b(CNN)x,y is added
at point B in Fig. 5 (b) as

zx,y = convx,y + b(CNN)x,y . (5)

Therefore, the feature map can be expressed as

ax,y = f
(
zx,y

)
, (6)

with f (·) as the activation function. Based on the aforemen-
tioned steps, the complete feature map can be generated.
Next, in the pooling layer, the neurons in the feature maps are
then grouped together for average pooling or maximum pool-
ing. During the training stage, the weights of the 2D kernel
and the bias of each feature map are learned by minimizing
the output error and then performing backpropagation.

2) RL TECHNIQUES

As illustrated in Fig. 6, the goal of RL techniques is to create
an intelligent agent in the environment that can learn effi-
cient policies to maximize the long-term rewards by taking
controllable actions, where the process of the agent tak-
ing actions and changing state through interacting with the
environment can be modeled as a Markov Decision Process

(MDP). The DRL approach is a combination of deep learn-
ing and RL techniques, but it focuses more on RL and aims
to solve decision-making problems. The role of deep learn-
ing is used to explore the powerful representation ability of
DNN to represent a large number of states and approximate
the action values to estimate the quality of the action in the
given states, so that the DRL is able to solve the explosion of
state-action space or continuous state-action space problems.
The typical application scenario of DRL is to solve various
scheduling problems, such as decision-making problems in
games, rate selection of video transmission, and resource
allocation in wireless communications. There are two main
DRL approaches introduced as follows, and the differences
between these two are summarized in Table 2.

1) Value-based DRL: As a representative of value-based
DRL, Deep Q-Network (DQN) was proposed to approx-
imate action values using DNN, which breaks the curse
of high-dimensional input data and successfully maps it to
actions [60]. However, the non-linear approximator, DNN,
makes DQN unstable due to the correlations that exist in
the sequence of observations. Hence, the experience replay
is used to remove the correlations by using a random sample
of prior actions instead of the most recent action to proceed.
Besides, the Double-DQN algorithm that can reduce the
observed overestimated action values was studied in [61],
and the Dueling-DQN proposed in [62] can learn which
states are (or are not) valuable without having to learn the
effect of each action at each state.

2) Policy Gradient-based DRL: Policy gradient is a
policy-based RL algorithm, which relies upon optimiz-
ing parametrized policies with respect to the long-term
cumulative reward by gradient ascent. Policy gradient algo-
rithms typically proceed by sampling the stochastic policy
and adjusting the policy parameters in the direction of
greater cumulative reward. Instead, the Deterministic Policy
Gradient (DPG) algorithm was considered in [63], and
it is demonstrated that it has a significant performance
advantage over stochastic policy gradients. By combining
DQN and DPG, the Deep Deterministic Policy Gradient
(DDPG) algorithm was proposed by using the DNN to
parameterize the policy that is then optimized by the policy
gradient method [64]. Besides, there are a few other state-
of-art policy-based DRL algorithms, such as Asynchronous
Advantage Actor-Critic (A3C) that enables parallel actor-
learners to train the neural network [65], Trust Region Policy
Optimization (TRPO) that is effective for optimizing large
non-linear policies like neural networks [66], and Proximate
Policy Optimization (PPO) that improves TRPO with simpler
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FIGURE 7. The framework of multi-agent RL framework.

implementation [67]. Specially, all of them rely on an Actor-
Critic (AC) framework, in which both the Critic and Actor
functions are parameterized with DNN, known as critic
network and actor-network. The critic network is used to
estimate the value function of the state-action pair, while
the actor-network is in charge of policy updating in the
direction suggested by the critic network.

3) MULTI-AGENT RL TECHNIQUES

In the aforementioned RL algorithms, an RL agent is mod-
eled to perform sequential decision-making by interacting
with the environment, which is always formulated as an MDP
problem. However, most of the successful RL applications,
e.g., the games of Go and Poker, robotics, and autonomous
driving, involve the participation of more than one single
agent, which naturally falls into the realm of multi-agent
RL [68]. The research on multi-agent RL can be traced back
to the 1990s [69], [70], and most recently it re-emerge due
to the advances in single-agent RL techniques. Specifically,
multi-agent RL can address the sequential decision-making
problem of multiple agents that operate in a common
environment, each of which aims to optimize its own long-
term return by interacting with the environment and other
agents [68].
Markov game, also known as a stochastic game, is a

general extension of MDP in the multi-agent scenarios to
include multiple adaptive agents with an interacting or com-
peting goal, and the framework of the Markov game has long
been used to develop multi-agent RL algorithms originated
from [70]. Different from the RL algorithm the environment
changes its state only based on the action of one agent, both
the evolution of the system and the reward received by each
agent depend on the joint action of all agents in the multi-
agent RL algorithm as shown in Fig. 7. The multi-agent RL
algorithms are categorized into three groups according to the
types of multi-agent tasks that they address.

• Cooperative setting - a fully cooperative setting is
the case that all the agents collaborate to optimize a
common long-term return.

• Competitive setting- in a fully competitive setting, the
return of agents usually sums up to zero, which is
typically modeled as a zero-sum Markov game.

• Mixed setting- a mixed setting is usually modeled as a
general-sum game, where no restriction is imposed on
the goal and the relationship among the agents.

C. THE STATE-OF-ART DISTRIBUTED LEARNING
TECHNIQUES
The traditional centralized ML algorithms typically
gather the distributed raw data generated at different
devices/organizations to a single central server/cluster with
shared data storage as shown in Fig. 8 (a). The central-
ized approach faces the challenges of large computational
power and long training time, and most importantly, serious
data privacy and security concerns. When the training data
becomes huge, e.g., a terabyte of data, or is inherently dis-
tributed to be stored and processed on individual machines,
the model training process can be carried out by exploiting
distributed resources (e.g., computational resources, power,
and data) over the end devices, which is distributed ML.
Distributed ML has been investigated since 2000 on

deploying the structure of distributed computing to speed
up the training process so as to reduce the training time.
Multiple parallelization techniques have been introduced into
distributed ML, such as MapReduce and Hadoop framework
relying on distributed file system [71], Apache Spark saving
expensive reads from the disk [72] and Parameter Server with
relaxing the stringent requirement of synchronization [73],
which could address the large-scale data challenges. More
details about the popular architectures of the conventional
distributed ML can be found in [74]. In wireless networks,
due to the naturally distributed characteristics of the data gen-
erated over the wireless devices, a new concept of distributed
ML, simply called distributed learning in this article, appears
to train a global ML model by keeping the dataset locally
at user devices, which exploits the distributed computational
resources of the wireless devices, saves the communication
cost, and protects the users’ privacy. The architecture of dis-
tributed learning is shown in Fig. 8 (b). In the following,
we will introduce two state-of-the-art distributed learning
algorithms, FL and SL algorithms.

1) THE FL TECHNIQUES

FL is a special type of distributed learning, where multiple
users collaboratively train a global model while keeping the
raw data distributed to local users without being moved to
a single server or data center. The architecture of FL is
shown in Fig. 9. FL is flexible and reliable to train ML
models in a heterogeneous system. This is because of its
unique characteristics: a) it does not require direct raw data
transmission from the distributed users, b) it exploits the dis-
tributed computational resources from multiple regions and
organizations, c) it generally takes advantage of encryption
or other defense techniques to ensure the data privacy and
security.
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FIGURE 8. The architecture of (a) centralized learning and (b) distributed learning.

FIGURE 9. The learning procedure of FL technique.

FL was first proposed in [10] to handle the machine
learning model training with decentralized data from mobile
devices, which was demonstrated to be robust for unbalanced
and non-Independent and Identically Distributed (non-IID)
data distributions. As a distributed learning scheme, FL
brings the learning task to the edge level instead of per-
forming model training at a central entity, which enlightens
a series of studies on FL over different areas. For instance,
FL has been successfully applied to Google’s predictive key-
boards [75]. In FL, the communication overhead of FL
is proportional to the number of model parameters and
it is significantly reduced especially when the users hold
local datasets that are much larger than the model size,
which also avoids the transmission of large raw datasets.
However, FL struggles with supporting distributed model
training for DNNs with large and complex model parameters
over capacity-limited wireless channels.

2) THE SL TECHNIQUES

SL, also known as split neural network (SplitNN), was
proposed to address the problem of training a DNN model
over multiple data entities. In SL, a DNN is split into multiple

sub-networks (e.g., each sub-network includes a few NN lay-
ers) by the cut layer, each of which is trained on a different
entity [76] as shown in Fig. 10 (a). Similar to FL, SL also
provides a solution to train a DNN model while keeping the
raw data locally at the distributed users, whereas the users
only train a sub-network of the DNN model instead of the
full model, and the other sub-network is trained by a more
powerful parameter server. The architecture of SL is shown
in Fig. 10 (b).
Take the sequential SL as an example, all the users col-

laborate with the parameter server to train a full ML model
sequentially. The parameter server distributes a lower sub-
network to the users and itself holds the upper sub-network,
and then the training of the full model is carried forward
on the user’s local dataset by transferring the output of the
cut layer to the parameter server. Next, the parameter server
calculates the loss values and the gradients, then updates its
upper sub-network, and sends the gradients of the cut layer
back to the user for updating its lower sub-network. At last,
the user returns the updated sub-network to the server, and
then the training process of the next user will start. In this
case, only the outputs of the cut layer are shared between
users and the parameter server, no raw data is shared so
that user privacy and security are protected. SL was first
proposed to be applied in medical applications [77], [78],
where a model is trained with the sensitive health data from
different hospitals.
The communication cost of SL mainly depends on two

parts: the model size of the first few NN layers prior to the
split and the size of the activations that is up to the size
of the dataset owned by the user. Therefore, SL requires
much lower communication bandwidth when training over
the dataset distributed over a large number of users but
is relatively larger in settings with a smaller number of
users [79].

D. DISCUSSION AND OUTLOOK
Given the increasing research contribution to the inter-
discipline of AI techniques and wireless communication at
the network edge, its advantages are becoming obvious,
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FIGURE 10. The learning mechanisms of SL techniques.

especially in decision-making, network management, and
AI services support. ML techniques have become a pow-
erful tool for data analytics and intelligent decision-making,
which is able to extract insights from data and hence
provide intelligent network solutions and advanced appli-
cations at the network edge. This is particularly essential
in large-scale wireless networks supporting a large number
of distributed BSs and users. At the time of writing the
native-AI-enabled wireless networks is still in their infancy.
Investigating the proper ML technique for the specific appli-
cation scenario is challenging. Hence, further research is
required to identify the cooperation of different ML tech-
niques in next-generation wireless networks. Moreover, an
important issue that needs to be addressed is to improve dis-
tributed learning performance, i.e., less convergence latency
and higher energy efficiency, under a dynamic environment.
Specifically, the design of new distributed learning archi-
tectures based on FL and SL needs more attention when
considering the heterogeneity of wireless networks.

III. DISTRIBUTED LEARNING IN WIRELESS NETWORKS
To support a wide range of emerging AI services in wireless
networks, the conventional approach is to collect all the raw
data from the users and then train the ML models in a cen-
tralized fashion as shown in Fig. 1. However, the centralized
learning approach is restricted by limited bandwidth, energy
consumption, privacy, and security concerns. Therefore, dis-
tributed learning, including FL and SL algorithms, has been
proposed to allow the parameter server and wireless users
to collaboratively train the ML models by only exchanging
model parameters instead of raw data as shown in Fig. 1.
Benefiting from the distributed learning architecture, a broad
range of advanced AI applications can be deployed at the
network edge.

A. HYBRID DISTRIBUTED LEARNING ARCHITECTURES
FOR HETEROGENEOUS WIRELESS NETWORKS
As a representative of distributed learning, FL has been
studied a lot recently in wireless networks to improve com-
munication efficiency for training ML models in a distributed
manner, which is deployed at the network edge to exploit

the computational capabilities of the end users. The FL
architecture requires that all the users are capable of gradi-
ent computation, which is hard to be satisfied considering
the diversity of the users in terms of computational capaci-
ties. Besides, the local dataset, energy, and communication
resources are also diverse among the users. It is demonstrated
that SL is more communication-efficient than FL in the sce-
narios of large model size and small local dataset [80], and
the communication overhead of which depends on the user’s
local dataset size. To this end, a new distributed learning
architecture relying on a hybrid learning technique could be
a better solution, which uses the idea to benefit from different
learning algorithms according to the users’ unique character-
istics. For instance, an HFCL framework was proposed to let
the users incapable of sufficient computational power deploy
CL while the rest use FL [11]. In [81], a Split Federated
Learning (SFL) was proposed to combine the parallel model
training mechanism of FL and the network splitting struc-
ture of SL, which is beneficial for a resource-constrained
environment where full model training and deployment are
not feasible at the local users. In our recent work, we further
propose an HSFL architecture in which the users with small
data size and weak computational capability are allowed to
choose SL while the others use FL [12]. In the following,
two hybrid distributed learning architectures are introduced.

1) HFCL ALGORITHM

FL algorithms bring the learning tasks to the edge level,
wherein the users are required to be computationally power-
ful since they have to train the full ML model. However, this
requirement may not always be satisfied due to the diverse
computational capabilities of the users. In [11], [82], the
authors proposed an HFCL framework to train ML models
efficiently exploiting the computational capabilities of the
users, which is achieved by only letting the users that have
enough computational resources employ FL while the other
users resort to CL by transmitting their local raw dataset to
the BS. The learning mechanism of the HFCL framework is
illustrated in Fig. 11.
In HFCL, the users are grouped into active and passive

user sets depending on their computational capabilities to
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FIGURE 11. The learning mechanism of HFCL framework.

either perform CL or FL, respectively. In this case, the pas-
sive users transmit their local datasets to the parameter server
which then uses them to train the ML model. On the other
hand, the active users upload the gradient information cal-
culated locally based on their private datasets. Next, the
parameter server performs model aggregation with the com-
puted gradients from users and the parameter server itself
and then sends the updated model parameters back to the
active users. The HFCL faces the challenge that the active
users need to wait for the passive users to complete their data
transmission at the beginning of the model training, followed
by the model aggregation at the parameter server before they
can update their local model parameters. To address this
problem, the authors proposed a sequential dataset trans-
mission approach where the local datasets of the passive
users are divided into smaller blocks so that both active and
passive users can perform gradients and data transmission
during the same communication round.

2) HSFL ALGORITHM

In [80], the authors demonstrated that the FL is more
communication-efficient and computation-efficient when the
users have large local datasets and the model size is small,
otherwise, SL is more efficient [80]. Moreover, the user-side
computational cost in SL is significantly reduced compared
to FL because of the network splitting structure. The disad-
vantages of FL are that each user needs to train a full ML
model but some resource-constrained users cannot afford
that and that both the server and users have full access to
the local and global models which causes privacy concerns
from the model’s privacy perspective. On the other side, the
disadvantages of SL are that only one user engages with the
server at one time while the others stay idle, causing a signif-
icant increase in the training period. To address these issues
in FL and SL, SFL was proposed to exploit the advantages
of FL and SL [81]. The architecture of SFL is presented in
Fig. 12.
In Fig. 12, the full ML model is divided into two parts

by the cut layer, one is the user-side model residing at the
users and the other one is the BS-side model residing at
the BS. All the users carry out forward propagation through

FIGURE 12. The learning mechanism of the SFL algorithm.

the user-side model with their local datasets in parallel and
pass the activations of the cut layer to the BS. The BS then
conducts forward propagation and backpropagation on the
BS-side model with the received activations from each user
separately in parallel. Then, it computes the gradients of the
cut layer and sends them back to the respective users for cal-
culating the gradients of user-side models. Afterward, the BS
updates its BS-side model using FedAvg, and the user-side
model updates are sent to a fed server for model aggrega-
tion using FedAvg. With the parallel training architecture, the
SFL shortens the training time in SL and achieves similar
performance to SL in terms of test accuracy and communi-
cation efficiency. By using the network splitting structure,
it has better communication efficiency than FL when the
users have small local datasets, and it has better model
privacy than FL because the users/BS cannot access the BS-
side/user-side model except for some smashed data of the cut
layer.
However, the SFL algorithm still experiences high com-

munication overhead as in SL when the users have large local
datasets since the training dataset could be highly imbalanced
and distributed over the users. Fortunately, this issue can be
compensated by letting some users use FL which is more
communication efficient than SL in this scenario. Based on
the works in [80], [81], we propose an HSFL framework
that also aims to seek the advantages of FL and SL, and it
can eliminate the drawbacks of SFL [12]. The HSFL adopts
the same parallel model training mechanism as FL and the
same network splitting structure as SL, but it has a different
architecture from SFL. The illustration of the architecture for
HSFL is shown in Fig. 13. In HSFL, the users are allowed
to choose either FL or SL method according to their own
unique characteristics, such as the users with small datasets
and powerful computational capabilities would prefer FL in
which the users run a full ML model locally, and the users
with large dataset and weak computational capabilities would
resort to SL wherein the users only run a part of the full
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TABLE 3. Comparisons of different distributed learning architectures.

FIGURE 13. The learning mechanism of the HSFL framework.

ML model locally while the server runs the remaining part
of the ML model.
During the training process, the BS initializes the archi-

tectures and weights of the global full ML model and also
divides a copy of it into two sub-models as the global user-
side model and the global BS-side model. The users choosing
the SL method receives the global user-side model, while
the users choosing FL receives the global full model, and
then they respectively compute their local gradients with
their local datasets in parallel. Specifically, the users choos-
ing SL follows the same rule as SL to train the full ML
model by engaging with the BS. Afterward, the users com-
pute their local gradients and send them to the BS which then
performs model aggregation with the received local model
updates and the updates of its own BS-side model. Later,
it sends the updated global full model back to the users
choosing FL and the updated global user-side model to the
users choosing SL, respectively. The challenge of HSFL is

how to decide which learning method, i.e., SL or FL, for
each user. We further design a metric to measure the char-
acteristics of each user, called the diversity index, which is
defined as the weighted sum of four parameters, including
computational capability, dataset size, dataset diversity, and
user diversity. Considering the scenario of deploying HSFL
in wireless networks, we formulate the learning method
selection and user selection problem as a Multiple-Choice
Knapsack Problem (MCKP) and propose an energy-efficient
user scheduling algorithm [19] to select a subset of users
in each communication round and schedule each user with
either the SL or FL method.
As discussed above, state-of-the-art distributed learning

architectures have their unique characteristics and can be
efficiently used in specific application scenarios. In Table 3,
we summarize the comparisons of different distributed learn-
ing architectures. Moreover, the convergence performance
of implementing different distributed learning architectures
in wireless networks with the best channel user scheduling
scheme under non-IID data is shown in Fig. 14.

B. ASYNCHRONOUS DISTRIBUTED LEARNING FOR
HETEROGENEOUS WIRELESS NETWORKS
Due to the heterogeneity of the users with different computa-
tional capacities and energy resources, the local computation
of each user does not complete at the same time. Moreover,
the wireless network is always heterogeneous in terms of
each user accessing diverse spectrum resources and suffer-
ing dynamic wireless channels for the transmission of model
parameters. In most studies of distributed learning, the model
aggregation at the parameter server is assumed to be syn-
chronous. However, in this case, the server has to wait for
the stragglers, i.e., the slow users, before performing model
aggregation. Thus, research on asynchronous optimization
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FIGURE 14. The learning accuracy performance of different distributed learning
architectures.

methods has gained significant attention to solve the straggler
problems in distributed learning.

1) THE ISSUES OF CLASSICAL FL IN WIRELESS
NETWORKS

Recently, FL has received significant achievements to train
a global model on datasets partitioned across a num-
ber of users, which exploits a large amount of training
data from diverse users and provides privacy preserva-
tion for them. However, when applying the classical FL
to resource-constrained users, a few issues are emerged as
follows:

• Heterogeneity: The heterogeneity of users in terms of
different computation capacities, datasets, and wireless
channel conditions causes different completion times of
local gradient computation, so the aggregation server
has to wait for the slow users.

• Unreliability: The selected users may go offline unex-
pectedly due to their unreliability, which also causes the
aggregation server to wait for the local gradients from
the unreliable users.

• Low round efficiency: Due to the heterogeneity of user
diversity (different computational abilities and channel
conditions of users) and data diversity (training dataset
size and distribution over users), the users who fin-
ish local gradient updates early have to wait for those
straggler users in each training round.

• Low resource utilization: Due to limited spectrum
resources and inefficient user scheduling algorithms,
some competent users may be rarely selected.

• Security and privacy concerns: There are several attacks
that can compromise the security of classic FL, includ-
ing poisoning and backdoor attacks. The privacy con-
cern comes from the possible data leakage during the
training process.

To overcome the above-identified challenges, asyn-
chronous training has been widely studied in traditional

distributed SGD, known as asynchronous stochastic gradient
descent, for stragglers and heterogeneous latency [83]. The
authors in [83] first developed an asynchronous stochas-
tic gradient descent procedure, Downpour SGD, to train
large-scale ML models distributively. Downpour SGD builds
multiple replicas of a single DistBelief model and divides the
training data into a number of subsets and then runs a copy of
the model on each of these subsets. It leverages the concept
of a centralized sharded parameter server, through which
the models can exchange their updates. This approach is
asynchronous in the aspects that the model replicas run inde-
pendently of each other and the parameter server shards also
run independently of one another. Compared to synchronous
SGD where one user failure will delay the entire training pro-
cess, Downpour SGD is more robust to user failures since the
other model replicas continue the training processing even
if one user in a model replica fails. Asynchronous FL was
first studied in [84] by taking advantage of asynchronous
training and combining it with federated optimization. In
asynchronous FL, the BS server can perform model aggrega-
tion once it receives any local model updates from the users
without the need of waiting for the lagging users shown in
Fig. 15. Due to the asynchrony of completing local model
updates by the users, the local model updates uploaded in
the same round may contain different fresh information and
possess varying degrees of staleness because the local mod-
els are trained by using the global model versions received
from different time periods. Moreover, the diversity of chan-
nel conditions causes the transmission of local model updates
from different users asynchronous. Therefore, it is essential
to design an effective and efficient asynchronous FL algo-
rithm in wireless networks that could deal with the staleness
in the system appropriately with restricted communication
resources.

2) ASYNCHRONOUS FL IN WIRELESS NETWORKS

The contradiction between the limited wireless resources
and the explosive growth of the number of users is gradu-
ally intensifying nowadays, making it unrealistic to deploy
a strictly synchronous FL system composed of a massive
number of users with great heterogeneity over the wire-
less networks [85]. On one hand, a massive number of
users trying to upload model parameters simultaneously will
bring high communication overhead and cause congestion in
the network. On the other hand, the BS can only perform
model aggregation until all the local model updates from
all the users are received, but some users with poor com-
munication conditions and weak computational capabilities
can greatly lag the training process, leading to extremely
low training efficiency. Thus, an asynchronous FL could be
much more scalable and applicable in wireless networks. In
this case, the local model updates trained from the same
global model can be transmitted in different time slots,
which can greatly reduce the instantaneous communication
load. Additionally, the BS can perform global model updates
whenever it receives local model updates without having to

VOLUME 4, 2023 1015



LIU et al.: DISTRIBUTED INTELLIGENCE IN WIRELESS NETWORKS

FIGURE 15. The training procedures of synchronous vs. asynchronous FL.

TABLE 4. The architectures of asynchronous FL.

wait for the updates from all the users, which significantly
improves the overall training efficiency.

3) HIERARCHICAL ARCHITECTURE OF
ASYNCHRONOUS FL

In [84], a FedAsync algorithm which combines a function of
staleness with asynchronous update protocol was developed.
However, the users have to transmit a large amount of data
to the server, which may cause the server to crash. Moreover,
the stale local updates from the stragglers can decrease the
accuracy of the global model to a certain extent. To this
end, researchers have developed two schemes to address
these challenges, semi-asynchronous FL and cluster FL [87].
In Table 4, we summarize the characteristics of different
asynchronous FL architectures.
The semi-asynchronous FL combines the classic FL and

asynchronous FL, in which the aggregation server caches
some local updates that arrive early and aggregates them
after a specific period of time, which then can alleviate the
effects of the straggler users. A data expansion method was
used to alleviate the straggler phenomenon in [88], in which a

semi-asynchronous communication method was proposed to
speed up convergence for FL. In [86], a new energy-efficient
semi-synchronous FL was proposed, which aggregates the
local updates at a specific time interval determined by the
slowest user.
Cluster FL is an effective approach to increase the train-

ing efficiency with reduce the transmission data from local
users by grouping together users with similar performance,
functionalities, or datasets [87]. To reduce the network con-
gestion caused by a massive number of users simultaneously
uploading local model updates in edge computing networks,
the authors in [89] proposed a cluster-based FL mechanism.
This mechanism divides users into different clusters, where
users in one cluster transmit their local model updates to
the cluster head for synchronous model aggregation while
all cluster heads communicate with the edge server for
global aggregation in an asynchronous way. A cluster-based
asynchronous FL framework adopting an appropriate time-
weighted inter-cluster aggregation strategy was proposed
in [90], which eliminated the straggler effect and improved
learning efficiency.
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4) USER SCHEDULING AND RESOURCE ALLOCATION
FOR ASYNCHRONOUS FL

Recent studies have put considerable attention on device
scheduling and resource allocation for asynchronous
FL [15], [74], [91]. In [15], the transmission scheduling
scheme considering time-varying channels over multiple
rounds, and stochastic data arrivals of the edge devices
with asynchronous FL was first studied. The authors
developed an asynchronous learning-aware transmission
scheduling (ALS) algorithm for the scenario with the
perfect statistical information about the system uncer-
tainties and further proposed a Bayesian ALS algorithm
to learn the system uncertainties without requiring any
prior information or requiring only partially observable
information. Furthermore, three device scheduling schemes,
namely random, significance-based, and frequency-based
scheduling, were investigated for the heterogeneous wire-
less networks by adopting the asynchronous FL framework
with periodic aggregation [74]. An RL-based device selec-
tion, UAVs placement, and resource management algorithm
were developed for deploying the asynchronous FL frame-
work in multi-UAV-enabled networks [91], in which it
also demonstrated that the proposed asynchronous online
FL is particularly useful for streaming data with heteroge-
neous devices having different computing capabilities and
communication conditions [54].

5) SECURITY AND PRIVACY IN ASYNCHRONOUS FL
FRAMEWORK

To ensure the security required by FL, a blockchain network
is introduced into the FL framework to replace the classic
central server to aggregate the global model, which avoids
real-world issues such as interruption by abnormal local user
training failure, dedicated attacks, etc. Researchers studied
blockchain-enabled asynchronous FL framework by exploit-
ing the decentralized property of blockchain network and
the fast convergence performance of asynchronous FL strat-
egy [92], this framework improved training efficiency and
prevented poisoning attacks. In [93], the authors studied the
blockchain-enabled asynchronous FL framework to mitigate
the threats of poisoning attacks against IoT anomaly detec-
tion models and then devised a novel Generative Adversarial
Network (GAN)-driven differentially private algorithm by
injecting controllable noise into local model parameters.

C. INCENTIVE MECHANISMS OF USERS FOR
PARTICIPATING FL PROCESS
Generally, to implement distributed learning architectures,
all the users are assumed to voluntarily participate in global
model aggregation without requiring any returns. However,
in practice, the participants may be reluctant to participate in
this federation process without receiving compensation since
training ML models is resource-consuming [94]. In [95], the
incentive mechanism in FL was first studied by providing an
incentive-compatible scoring system for building a payment

FIGURE 16. The architecture of incentive mechanism.

system. Fig. 16 shows the architecture of the incentive mech-
anism in FL, in which the users might be mobile devices,
edge nodes, and IoT devices in cross-device FL or giant
companies in cross-silo FL. They provide various types of
resources instead of only data, all of which are key factors
to the training performance. After global model aggregation,
the server will pay each user according to their individual
contributions to the FL process. In [14], [94], the authors
did comprehensive surveys of incentive mechanisms for FL
in recent research works. They identified the challenges of
incentive mechanism design for FL and then summarized a
taxonomy of existing incentive mechanisms for FL in terms
of main techniques, such as Stackelberg game [96], [97], auc-
tion [98], contract theory [99], [100], Shapley value [101],
RL [102], and blockchain [103]. The Stackelberg game, auc-
tion, and contract theory are mainly employed to perform
user selection and payment allocation for incentivizing users
to participate in FL process, while the Shapley value is used
for a fair assessment of FL user contribution. Both RL and
blockchain are introduced to improve the performance and
robustness of the incentive schemes.

1) THE RELUCTANCE OF USERS

First, the FL process consumes resources including computa-
tional power, bandwidth, and private data, from participants,
some of which might be constrained in scenarios like mobile
networks and MEC systems. Moreover, privacy and security
concerns are raised because the FL server can infer the
important information of the training data [14]. In [104], the
authors showed that many participants gain no benefit from
FL because the federated model is less accurate on their
data than the models they can train locally on their own,
which removes their main incentive to join the FL process.
To this end, without proper incentives, the users tend to opt
out of the participation, may contribute either uninformative
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or outdated information, or even contribute malicious model
information.

2) INCENTIVE MECHANISM FOR FL IN
HETEROGENEOUS NETWORKS

When deploying FL in wireless edge networks, the users,
like mobile phones, IoT devices and drones, are always het-
erogeneous with different computational capacities, training
data size, power, and communication resources, and this het-
erogeneity might degrade the performance of FL. Hence, the
incentive mechanism design for FL in wireless edge networks
should encourage more high-quality users to participate in
the FL process so as to eventually improve the convergence
performance of FL. In [99], reputation is applied as the
metric to select reliable users for participating in FL and is
calculated in a decentralized manner through the consortium
blockchain; the incentive mechanism using contract theory
was proposed to stimulate high-reputation workers with high-
quality data to join in model training. Besides, the proposed
the scheme should not introduce much computational cost
and communication overhead since these resources are con-
strained at some users. In [97], a Stackelberg game-based
incentive mechanism was proposed to select a set of IoT
devices willing to join the model training process while
minimizing the overall training costs, i.e., computational and
communication costs. Taking into account the non-IID data
and the wireless channel constraints, an auction mechanism
was designed to realize the trading between the FL server and
the users for pricing and task allocation [98]. In addition, a
multi-dimensional contract-matching-based incentive mech-
anism was designed to address the incentive mismatches
and information asymmetry between the UAVs and the FL
server [100]. Due to the special challenges of unshared deci-
sions and difficulties of contribution evaluation for FL in
IoT applications, the DRL algorithm was exploited to learn
system states from historical training records and adjust the
strategies of the parameter server and edge nodes according
to the environmental changes [102].

D. DISCUSSION AND OUTLOOK
Table 3 summarizes all the above-mentioned distributed
learning architectures. We can observe that each distributed
learning technique has a unique advantage in terms of com-
munication efficiency and computation efficiency, while the
HSFL technique can achieve a trade-off between them.
However, scheduling each user with the proper learning
method efficiently is still in its fancy.
Asynchronous distributed learning is an effective approach

to address the straggler issue that appeared in classical dis-
tributed learning techniques due to the diverse computational
capacities of the users. However, the study of asynchronous
distributed learning still requires more attention from both
academia and industrial partners since its more suitable for
practical use, particularly special attention is needed when
deploying in wireless networks due to unreliable wireless
communication links. Moreover, it is also necessary to design

an asynchronous learning scheme for the hybrid distributed
learning architectures since the users with different learn-
ing methods complete their local learning at a different
pace. The potential solution is to group the users complet-
ing at a similar pace into one cluster, and then perform
inner-cluster synchronous aggregation and inter-cluster asyn-
chronous aggregation. In this case, the clustering algorithm,
especially the clustering index, needs careful design.
Another important issue to be addressed is the design of

incentive mechanisms for the users to join in model aggre-
gation. The users want to get involved in model aggregation
only if they can receive either economical compensation
or local model improvement. Hence, an effective reward
mechanism needs to be designed to motivate more high-
quality users to participate in model aggregation. Particularly,
the metrics that can measure the quality of the users are
required, such as reputation [99], training costs [97], and
dataset quality.

IV. AI-ENABLED EDGE COMPUTING
Edge computing has been proposed as a promising solu-
tion to handle data processing of a large volume of
security-critical and time-sensitive data. With the distributed
deployment of edge devices, edge computing can shift com-
putational and caching capabilities from distant and central-
ized clouds to the network edge. This enables AI-based data
analytics to be performed in a distributed manner, and thus
support ubiquitous AI services. However, the edge devices
are typically resource-constrained and have heterogeneous
computation capabilities, thereby causing critical challenges
in resource management and wireless caching [105], [106].
In addition, with the increasingly powerful chips integrated
at the local devices, they are able to handle some simple
computational tasks. Thus, deciding which task should be
offloaded to the edge, how much power is used to trans-
mit the data, and when and where (i.e., in multiple edge
devices) the task is offloaded, is necessary and full of
challenges. Recently, many researchers [45], [46] have put
much attention to this problem from the aspect of optimiz-
ing computation offloading scheme and resource allocation,
with the proposed algorithms based on convex optimization,
Lyapunov optimization, game theory, and ML techniques.
Computation offloading plays an important role in edge

computing, and it provides a paradigm of appropriately allo-
cating computation resources between different layers (e.g.,
wireless networks normally consist of three-layer architec-
ture that includes local, edge, and cloud layers) [7]. Efficient
edge computing relies on the edge device or the end devices
making optimal decisions on computation offloading and
resource allocation. Conventional centralized computation
offloading methods require complete and accurate network
information so that the edge device can make optimal deci-
sions on which users offload their data while others execute
data processing locally, and achieve optimal resource alloca-
tion based on the obtained prior network information [49].
The joint computation offloading and resource allocation
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TABLE 5. Comparisons of ML techniques and traditional method-based offloading algorithms.

problems are often modeled as combinatorial optimization
problems with non-linear constraints that are difficult to
optimize efficiently using traditional optimization methods.
Therefore, in [107], [108], the authors leveraged the RL
techniques to extract valuable knowledge from the envi-
ronment and then to make adaptive decisions, and hence
they offered distributed computation offloading policy and
optimal resource allocation for the end users without the
need for a priori knowledge of network statistics.
The above studies focus on centralized intelligent

approaches for computation offloading, which model the
sophisticated global optimization the problem as a single-
agent RL problem that requires a central agent to collect
the global state information of the environment to make
global decisions for the entire system. This becomes chal-
lenging when the number of users increases. Moreover,
in edge computing-enabled wireless networks, the compu-
tation offloading problem involves the interaction among
multiple decentralized users, wherein each user is considered
an intelligent agent and can make its decisions individ-
ually based on its local observation of the environment.
Since the single-agent RL only learns a decision-making
rule for one user without considering the influences of the
existence of other users on its behaviors, the multi-agent
RL is investigated to solve the decision-making problems
with more than one agent coexisting in a shared environ-
ment [109], [110]. Next, we present an overview of using
RL techniques to optimize computation offloading schemes
and resource allocation solutions from single-agent RL to
multi-agent RL algorithm for computation offloading, and
also the approach of introducing FL into RL technique
as FRL is discussed to address the multi-user computa-
tion offloading problem. Moreover, other machine learning
techniques, such as DL technique and imitation learning,
have also been investigated to learn computation offloading
strategies [111], [112]. The comparisons of different machine
learning techniques and traditional mathematical algorithms
for computation offloading are summarized in Table 5.

A. DRL FOR COMPUTATION OFFLOADING
To address the problem of optimal computation offloading
and efficient resource allocation, the conventional method
formulates this joint problem as either a convex optimization
or mixed-integer problem, but this finite-time optimization
has the drawback that the computation offloading parame-
ters are considered to be irrelevant under different system
states. In this case, the long-term performance over dynamic
system states changing is not maintained [46], [117]. MDP is
an effective mathematical tool to model the impact of users’
actions in a dynamic environment, and it allows for seek-
ing the optimal action for achieving a particular long-term
goal. To this end, the optimization of computation offload-
ing policy under a dynamic environment can be modeled by
MDP. When modeling the computation offloading problem
as an MDP problem, a state transition probability matrix that
describes the system dynamics needs to be constructed to
obtain the optimal offloading policy. However, the system
dynamics are hard to measure or model in most real-world
scenarios, and thus obtaining the state transition probability
matrix is intractable, especially when the state and action
spaces are large [118].

RL techniques have been used as promising solutions to
tackle this challenge based on the trial-and-error rule, where
the RL agent, i.e., the user, can adjust its policy to achieve the
best long-term goal according to the future reward feedback
from the environment without prior knowledge of system
models. In [108], [119], the authors investigated the dynamic
computation offloading process and developed RL algo-
rithms to learn the optimal offloading mechanism with the
goal of minimizing latency and choosing the energy-efficient
edge server. Besides, the DRL algorithm has been proven to
be more effective for enabling RL to handle large state spaces
by leveraging the powerful DNNs to approximate state-action
values, which is envisioned to solve complex sequential
decision-making problems. Therefore, DRL is particularly
suitable for solving computation offloading problems in a
dynamic environment. First, DRL can target the optimization
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of long-term offloading performance, which outperforms the
one-shot and greedy application of the approaches stud-
ied in static environments. Second, the optimal offloading
policies can be obtained without any prior information on
the system dynamics (e.g., wireless channel or task arrival
characteristics) by using the DRL techniques. Third, thanks
to the powerful representation capability of the DNN, the
optimal offloading policy can be adequately approximated
even in complicated problems with vast state and/or action
spaces [118].
Recently, many researchers have investigated the DRL

techniques to learn the optimal offloading mechanisms and
at the same time optimize resource allocation [53], [54].
In [54], the authors first proposed a DQN-based algorithm
to learn the optimal computation offloading policy, in which
the high dimensional state spaces were handled. In [120],
a DRL algorithm was implemented to learn optimal deci-
sions on resource allocation for vehicular edge computing
networks, where the DQN is improved by applying dropout
regularization and double DQN. Besides, the joint compu-
tation offloading and resource allocation problem has also
been formulated and solved with DRL algorithms in recent
studies [53], [121], [122]. The authors in [53] jointly opti-
mized the offloading decision and computational resource
allocation to minimize the sum cost of the MEC system.
In [121], a DRL framework was proposed to jointly optimize
the offloading decisions and resource allocation with the goal
of minimizing the weighted sum of users’ energy consump-
tion and task execution latency. In [122], a DRL-based online
offloading framework was proposed for a wireless-powered
MEC network to obtain optimal task offloading decisions and
wireless resource allocations under the time-varying wireless
channel conditions. The authors in [123] investigated the
optimal task offloading policy, computation, and communica-
tion resource allocation, by the proposed intelligent resource
allocation framework based on a multitask DRL algorithm.
Moreover, in [124], the authors proposed the DRL-based
algorithm for joint edge server selection, optimization of
offloading decision, and handover in a multi-access edge
wireless network. Specifically, in [125], the authors com-
bined the advantages of Lyapunov optimization and DRL
algorithms and proposed a novel online stable offloading
framework that achieves making joint action of binary com-
putation offloading and resource allocation in each short
time frame without the assumption of knowing the future
realizations of random channel conditions and data arrivals.
In [126], the Meta-RL (MRL) algorithm was proposed to
address computation offloading problems, so new users can
learn their offloading policies fast based on their local data
and meta policies. Additionally, the MRL training in the
MEC system can leverage resources from both the MEC
server and the users.
However, the above research works rely on centralized

decision-making at the server, which limits the scalabil-
ity of most RL-based algorithms due to the huge decision
space and the overwhelming information collection from

the MEC system. Moreover, implementing DRL into com-
putation offloading optimization problems needs numerous
interactions with training environments to obtain experi-
ences with large quantities and high diversity, which causes
huge costs due to the trial-and-error process (also known as
exploration costs). Thus, the huge training cost lies in train-
ing a high-performance DRL agent for the MEC system,
which is often unaffordable for a single MEC environment.
To address this challenge, the authors in [127] proposed
a distributed and collective DRL-based algorithm to adap-
tively learn the offloading and channel allocation decisions.
Based on exploring the domain of distributed DRL train-
ing [128], the proposed algorithm assimilates experiences
and knowledge from multiple MEC environments to obtain
a collective DRL agent with high performance by adopting
the experience-sharing scheme between the master agent and
distributed agents, and thus the cost of the trial-and-error
process is spread over the distributed system.
The aforementioned centralized offloading algorithm is

restricted by the increasing scale of the network and is the
inability to observe the local environments, and it also causes
huge costs for the edge server. The distributed offloading
is explored from the following two cases: a) a distributed
DRL algorithm that enables each user to make its offload-
ing decision without knowing the task models and offloading
decisions of other users, which still relies on the broadcast
information from the edge server in each time slot [129],
b) a distributed DRL training is proposed to train collec-
tive DRL agents by assimilating experiences from multiple
MEC environment [127], which not only exploits the dis-
tributed computational resources of multiple MEC servers
but also obtains more diverse training data. However, both
of the distributed offloading approaches does not discuss
the scenario where multiple users make offloading decisions
together while sharing the computational and communica-
tion resources. This is more practical in the real world since
when one user is making their own offloading decisions,
other users are also making their decisions and thus affect the
decision-making of the user. Therefore, distributed offload-
ing considering the competitive behaviors among the users
needs to be studied.

B. MULTI-AGENT RL FOR COMPUTATION OFFLOADING
When there are multiple users making decisions simultane-
ously in an edge computing system, each user’s decisions
are affected by the other users’ decisions, so the degree of
cooperation plays a vital role in the design of computation
offloading policies. In this multi-agent system, each user is
regarded as an agent that can only observe its local envi-
ronment information. At each time point of observation, the
edge computing system is in a system state, each agent takes
an action according to the computation offloading policy of
all the users in a vector form, and then the system responds
to their actions by moving to a new system state according
to the probability distribution and sending the rewards to
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each agent. This multi-agent edge computing system mod-
els more practical computation offloading scenarios where
more than one agent makes decisions together to achieve
goals, which may be cooperative or in conflict with each
other. Compared to the single-agent computation offloading
problem that falls under a category of single-agent RL and
can be solved by the popular RL algorithms, like Q-learning
and DQN, this multi-agent computation offloading problem
falls under the category of multi-agent RL [130].
Due to the simultaneous learning of multiple agents, it is

challenging to solve the formulated multi-agent RL compu-
tation offloading framework. Recently, researchers have put
much more attention to investigating this problem by propos-
ing algorithms to solve it in a centralized or decentralized
manner. In the centralized approach, a central trainer collects
the reward information from the individual agents and dis-
patches the actions to them. In [131], the BSs are considered
as the agents to execute RL independently for obtaining the
Q-values, and then the Q-values are shared with new BSs
as cooperative learning. With a similar information-sharing
mechanism, a distributively executed dynamic power allo-
cation scheme was developed by using deep Q-learning,
which is suitable for large-scale networks [114]. This is
based on a distributed framework with a centralized train-
ing assumption, in which the BS trains a single DQN using
the transitions collected from all agents, while each agent
has the same copy of the DQN parameters for decentralized
execution. However, this approach becomes impractical as
the number of agents increases. Therefore, a decentralized
framework where each agent independently learns its own
strategy to maximize individual return was proposed, which
is able to deal with large-scale networks. In [113], an inde-
pendent learner-based multi-agent Q-learning was proposed
by considering the other users as part of the environment,
in which each user is modeled as an RL agent observing
its local environment information to independently learns
a task offloading strategy that minimizes its energy con-
sumption and task execution latency. While the Independent
Q-learning (IQL) algorithm [69] avoids the scalability prob-
lems of centralized algorithm and works well in practice
as shown by empirical evidence, it faces the challenges
of a non-stationary environment from the point of view of
each agent as it contains other agents who are also learning
themselves.
Therefore, the distributed multi-agent RL schemes with

collaborations among users were investigated to address this
challenge. A distributed multi-agent DRL scheme with a
collaborative exploration of the environment was proposed
to solve the joint problem of computation offloading and
resource allocation [132]. The agents independently learn
their individual strategies based on their local observations
and refine their learned strategies through a learning process
driven by the specially designed reward function. In [133],
the proposed decentralized multi-agent RL algorithm solves
the computation offloading problem with the agents sharing

their estimate of the value function with each other at the
critic step. Unfortunately, the information sharing among
users causes high communication overhead and is even infea-
sible due to the large-scale deployment of a beyond 5G
network. To address those challenges, a distributed ML-agent
RL framework without information sharing among users in
the MEC system was studied in [117], [134]. In [117], each
user independently learns its computation offloading policy
by forming and updating conjectures on the behaviors of
other users using the historical information retrieved from
the BS. In [134], each Cloud Center (CC) is considered as an
agent, where each CC determines the task offloading strategy
independently by learning explicit models of other CCs as
stationary distributions over their actions. Additionally, RNN
architecture was studied to improve the offloading strategy
when the multi-agent RL algorithm is applied [135], [136]. A
Long Short-Term Memory (LSTM) network was introduced
in the multi-agent DDPG network to accurately estimate the
current state information of the MEC system in [135]. The
LSTM technique combined with the DQN could overcome
the partial observability and the curse of high dimensionality
in local network state space faced by each vehicle user pair
for packet scheduling and resource management in vehicular
networks [136]. In [137], the authors formulated the dynamic
decentralized computation offloading game as a multi-agent
Partially Observable Markov Decision Process (POMDP),
and then they designed an algorithm that can achieve the
optimal offloading strategy by combining policy gradient
DRL-based approach with DNC. DNC is a special recurrent
neural network and is capable of learning and remember-
ing the past hidden states of inputs. Moreover, the authors
in [130] considered the practical challenges of deploying the
previously mentioned deep multi-agent RL algorithms and
studied applying them to solve task offloading with reward
uncertainty.

C. FRL FOR COMPUTATION OFFLOADING
FRL was first studied in [138], which built a MultiLayer
Perceptron (MLP) as the shared value network to compute
a global Q-network output with its own Q-network output
and the encrypted output of Q-networks from other agents.
RL has the problem of learning efficiency caused by low
sample efficiency. Even though distributed RL can address
this problem by sharing information (i.e., raw data, param-
eters, or gradients) to the central server for model training,
there is a possibility of agent information leakage. In a
multi-agent system, each user can only observe partial envi-
ronment information which is not enough for the agent to
make decisions. Furthermore, many RL algorithms require
pre-training in simulated environments as a prerequisite for
application deployment, but the simulated environments can-
not accurately reflect the environments of the real world. To
this end, FL with the ability of aggregating information can
integrate the information from different users and can bridge
the simulation-reality gap, and also it can provide privacy

VOLUME 4, 2023 1021



LIU et al.: DISTRIBUTED INTELLIGENCE IN WIRELESS NETWORKS

protection. Then, the idea of combining FL with RL, known
as FRL, is generated to address the challenges that exist in
RL. In FRL, the three dimensions of sample, feature, and
label in FL can be replaced by environment, state, and action,
respectively [139].

As discussed in the previous sections, RL has been
widely exploited to solve computation offloading problems,
but the optimal solutions are obtained only with many
assumptions of the environment. In the complex compu-
tation offloading environment, each user only knows their
own information about waiting for tasks and resources and
can receive notifications from the BS. Also, each user’s deci-
sions on offloading and resource allocation are affected by
the others in the same edge system making decisions at
the same time. The collected RL training data from one
edge system may be not enough to reflect the complex
offloading environment, and thus more diverse data from
multiple edge systems are required to be integrated for
obtaining complete environment information. Moreover, it is
still challenging to implement the trained RL by the proposed
algorithms in the aforementioned research work for solving
practical computation offloading problems due to the time-
varying wireless channels, limited resources, and randomly
generated computational tasks. As a result, FL has been
introduced in RL-based computation offloading algorithms
to address the above challenges with its ability of information
aggregation.
In [140], the authors first applied the FL framework to

train the DRL agents for intelligent joint resource manage-
ment of communication and computation in MEC systems.
With FL, the DRL agents are efficiently trained in a dis-
tributed fashion, and they can handle unbalanced and non-IID
data and cope with privacy issues. In [141], the FL was used
to conduct the training process of DRL agents for optimizing
decision-making about computation offloading and energy
allocation in IoT edge computing networks. Moreover,
in [132], [142], the FL framework was introduced to train the
multi-agent RL algorithm. A distributed multi-Agent DDPG
(MADDPG)-based joint hierarchical offloading and resource
allocation algorithm was proposed to exploit the FL to train
multi-agent deep RL model in Cybertwin networks, which
solves the sensitive information leakage issue and relieves
the computational pressure at the edge. In [132], each Small
Base Station (SBS) adopts an independent learning algorithm
while treating the agents as part of the environment in the
formulated multi-agent DRL framework, and then the SBSs
exchange their model parameters with each other. Finally,
each SBS agent performs model aggregation of FL based
on the collected model parameters from the other agents.
In [143], an effective radio resource management based
on federated Q-learning was proposed to optimize resource
allocation for computation offloading in 6G-Vehicle-to-
everything (V2X) communications, where the locally trained
Q-tables are shared to the vehicle edge center pool for global
aggregation.

D. OTHER LEARNING TECHNIQUES FOR COMPUTATION
OFFLOADING
1) DL FOR COMPUTATION OFFLOADING

Different from most works discussed in the previous sections,
DL has also been exploited to design a dynamic offloading
strategy. In [111], the computation offloading problem is
formulated as a multi-label classification problem. To obtain
the optimal offloading policy, an exhaustive strategy is used
to search for the optimal solution in an offline way, and
then the obtained solution can be used to train a DNN with
the composite state of the edge computing network as the
input, and the offloading decision as the output. Likewise,
the authors in [115] proposed a DL algorithm to avoid an
exhaustive decision-making process by training a DNN over
the dataset generated by their mathematical model. By this
means, once the DNN is trained, it can be used as a decision-
maker for offloading specific components. To solve a heavy
burden caused by a massive training dataset in multi-user
task offloading problem, a distributed DL-based computa-
tion offloading algorithm was proposed by training multiple
parallel DNNs with the channel gain as the input and the
output as the offloading decision [144].

2) IMITATION LEARNING FOR COMPUTATION
OFFLOADING

Another promising ML technique, imitation learning,
has also been investigated to design offloading sched-
ules [112], [116]. In [112], a novel deep imitation learning-
based offloading scheme has been proposed, the ML model
is first trained from learning demonstrations in an offline
manner based on behavioral cloning. Then, the near-optimal
online offloading decisions can be made at a very fast speed
with quick and easy deployment. In [116], a multi-agent imi-
tation learning-based computation offloading algorithm was
proposed, which allows multiple learning agents to imitate
the behaviors of corresponding experts for good scheduling
policies. They designed the expert policies by enabling the
experts to obtain full observation of system states and then
form the demonstrations including state-action pairs for the
learning agent to mimic.

E. DISCUSSION AND OUTLOOK
The aforementioned literature has investigated different ML
techniques to design optimal computation offloading strate-
gies with a focus on RL algorithms. Although multi-agent
RL and FRL frameworks have been proposed to address
multi-user computation offloading problems, obtaining the
optimal offloading strategies needs analyzing the collabo-
rations or competitions among users. The solution process
is always formulated as a Markov game by finding a Nash
Equilibrium (NE) to get the optimal strategy, but it is chal-
lenging to find the NE or even the NE does not exist for
some complicated problems. Furthermore, the above studies
provide good prospects for the application of FRL to edge
computing, but there are still many challenges to overcome,
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including the adaptive improvement of the algorithm, and
the training time of the model from scratch.
Imitation learning is another potential technique to design

offloading strategy, which can train an ML model from
expert demonstrations in an offline manner and learn a
near-optimal offloading policy to make fast online offload-
ing decisions. Compared to RL techniques, it enables easier
deployment for practical use. However, it is difficult to obtain
the expert dataset and the learning adaptability is bad.

V. COMMUNICATION-EFFICIENT TECHNOLOGIES FOR
DISTRIBUTED LEARNING
In practice, as the trained ML model can become outdated
with time, continually updating the model in a time-varying
environment is essential. Recently, distributed learning has
replaced conventional centralized learning as an effective
technique to provide ML model training in a distributed
manner by exploiting the computational resources from dis-
tributed wireless users. Instead of sharing raw data between
the users and the BS as in centralized learning, only model
parameters need to be exchanged in distributed learning.
When deploying distributed learning in wireless networks,
it relies on reliable and high-throughput wireless channels
to support the real-time transmission of model parameters.
In this way, ML can be treated as the data source trans-
mitted from end to end rather than as the enabler at the
end of the system. There are three main reasons that dis-
tributed learning has been broadly considered: end users have
been empowered with strong computational abilities [145],
a huge amount of data distributed at end users which can
provide valuable information, and the awareness of data
privacy [146]. However, the dynamics of the wireless com-
munication environment strongly affect the performance of
ML model training. These challenges drive the researchers
to focus on designing more efficient wireless communication
techniques for distributed learning.

A. THE CHALLENGES OF TRADITIONAL
COMMUNICATION TECHNOLOGIES
When deploying distributed learning in wireless networks,
the qualities of wireless channels determine the convergence
performance of ML model training and there are some criti-
cal bottleneck problems that need to be addressed when using
the current wireless communication techniques to support
distributed learning:

• Communication resource limitation: Since a huge num-
ber of wireless users need to communicate with the
central BS back and forth to exchange model param-
eters for the learning process in a distributed manner,
it is urgently necessary to design the optimal resource
management solution to tackle the limited communica-
tion bandwidth and transmission power [147]. Although
more frequency bands, such as mmWave, have been
widely introduced to support massive connectivity, vul-
nerable signal propagation still restrains the reliability of
communication due to different kinds of channel fading.

Therefore, optimizing the design of distributed learning
algorithms to reduce communication overhead is impor-
tant. Recent research studies address this optimization
problem by reducing either the communication rounds
or the transmitted gradients in each round [26].

• Communication conditions: Apart from limited com-
munication resources, the wireless channel conditions
directly affect whether the BS can receive or decode
the local model updates from the users. Specifically, the
dynamic fluctuation of the communication channel may
strongly distort the transmitted information and result in
reducing decoding accuracy at the receiver side [147].
Moreover, the reliability and robustness of the dynamic
communication channel are the guarantees of success-
ful information exchange to support distributed learning
framework. Hence, it is necessary to develop reli-
able communication techniques to achieve robust and
low-latency communications for the implementation of
distributed learning in wireless networks.

• Computational resource limitation: Generally, wireless
users are powered by capacity-limited batteries, and they
have diverse computational capabilities, such as IoT
devices equipped with small CPUs, drones, and mobile
phones lacking in GPUs. Distributed learning requires
the users to undertake some model training tasks, which
consume computational, energy, and memory/storage
resources of the users. Therefore, it is indispensable
to design simple and energy-efficient ML models to
simplify the computation process [147] or to improve
the distributed learning algorithm to efficiently exploit
the diverse computational resources of users.

• Dynamic network: In real-world scenarios, the end
devices can be both static and mobile. In such time-
varying wireless networks, communications can be
interrupted, connectivity can be blocked, and data
can be outdated. Therefore, distributed learning is
facing extreme challenges that are caused by envi-
ronmental dynamics. Hence, designing more stable
training schemes that consider asynchronous collabora-
tion, prediction, or other mechanisms that are suitable
to the dynamic networks is one of the emerging issues
to be solved [29].

• Privacy and security concerns: Although one of the
purposes to utilize distributed learning in wireless com-
munication is to preserve data privacy, the model
gradients information or outputs transmitted through
wireless communication links can still be disclosed and
reversely traced, which means the privacy is only par-
tially preserved. This kind of privacy concern is named
gradient leakage attacks [148] and membership infer-
ence [149]. Similarly, security concern comes out when
adversaries launch attacks on heterogeneous devices in
the network and cause distributed learning faults [26].

Therefore, the transmission of model parameters has
higher requirements on reliable and low-latency wireless
communication links since the convergence performance of
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the ML model is decided by the performance of wireless
communication. The traditional communication technolo-
gies, resource allocation, and data transmission methods
need to be improved by considering the convergence of
the ML model as the performance metrics. In the follow-
ing, we will investigate state-of-the-art techniques, including
over-the-Air Computation (AirComp), gradient compression,
and user scheduling and resource allocation, to improve
the performance of wireless communication for supporting
distributed learning.

B. USER SCHEDULING AND RESOURCE ALLOCATION
1) THE REASONS FOR USER SCHEDULING

The emerging paradigm of FL is to provide a decentralized
ML model training approach for a wireless edge network
with a large number of resource-constrained mobile devices
collecting the training data from their environment [10].
Recently, to obtain a high-performance model with a low-
latency training process, many research works [150], [151],
[152], [153], [154], [155], [156] have been conducted
to investigate user scheduling schemes by addressing the
following challenges:

• Dynamic channel condition: The dynamic wireless
environment cannot always guarantee good channel
qualities, the spectrum resources are limited;

• Heterogeneous computational resources: The available
computational resources of individual users vary over
time because of other possible task execution. The
heterogeneity of users with different computational
capabilities causes straggler effects;

• Heterogeneous data distribution: The statistical hetero-
geneity of different data distributions (i.e., IID, non-IID
and imbalanced data) over users leads to the drift of
local model updates, and it results in different local
updates that are of dissimilar significance to the model
convergence [157].

To address the above challenges, recent research works have
proposed different metrics to optimize user scheduling for
model aggregation.

2) THE METRICS OF USER SCHEDULING SCHEME

An intuitive design of the user scheduling scheme is to aggre-
gate as many local model updates as possible from users
since the whole dataset is distributed over the users. This
can be achieved by optimizing the following metrics.

1) Metric-The Number of Users: In [158], three user
scheduling policies, including random scheduling, round
robin, and proportional fair, were studied in terms of FL con-
vergence rate for wireless networks. The analyses revealed
that there exists a trade-off between the number of sched-
uled users and sub-channel bandwidth in the optimization
of FL convergence rate under a fixed amount of available
spectrum. In [159], [160], the authors have studied this user
selection problem with the goal of maximizing the number
of selected users for each round under constrained resources.

2) Metric-Channel Conditions: In FL, the convergence
performance of the ML model heavily relies on the trans-
mission of model parameters, so the channel conditions are
necessary to be considered for user scheduling. In [158],
the user scheduling scheme, proportional fair, in terms of
channel conditions is studied. The authors in [151] investi-
gated federated learning over wireless fading channels and
schedule one user for transmission based on the channel con-
ditions in the proposed user scheduling scheme. Moreover,
they generalize it as the best channel scheduling scheme by
selecting several users with the best channel gains [161].
3) Metric-The Importance of Local Model Updates: Due to
the non-IID and imbalanced data distribution over the users,
each user is of different significance to the global model
update. The authors in [162] proposed a reliable UE selection
scheme by considering the reliability of the dataset owned
by users. In [151], [152], [163], the authors studied a novel
user scheduling scheme by considering both the channel
conditions and the importance of the local model updates
calculated by the users for implementing FL at wireless edge.
In [152], the scheduling policy is derived in closed form to
achieve the optimal trade-off between channel quality and the
importance of local model updates when scheduling one user
in each round. The authors demonstrated that channel-based
scheduling shows the lowest testing accuracy performance
while the model update-based user scheduling has the best
performance for AirComp FL. A trade-off performance is
achieved by considering them together [163].
4) Metric-Age of Update: The aforementioned user schedul-
ing schemes are focused on either exploiting the limited
spectral resources or investigating the diversity of local
datasets to maximize the number of updates collectible by
the BS in each round of global communication but ignore
the staleness of these updates. In [155], a new metric,
Age-of-Update (AoU), was proposed to measure the stal-
eness of local model updates in each round, and then a user
scheduling algorithm that considered both the straggler effect
and the communication quality was developed to minimize
the AoU. This scheme aims to keep the collection of all the
local updates as fresh as possible while considering fairness
among all the users. The authors in [164] considered AoU
as the performance metric of user fairness to optimize the
user selection policy, transmission power, and CPU-cycle
frequency.

3) THE OPTIMIZATION OF USER SCHEDULING AND
RESOURCE ALLOCATION

Due to resource limitations in wireless networks, including
the limited communication resource and the scarce energy
resource for the users, the joint user scheduling and resource
allocation problem has been studied by a series of works.
A joint learning, user scheduling, and resource allocation
problem was formulated to optimize the uplink Resource
Block (RB) allocation and transmit power allocation so as to
decrease the packet error rates of each user and improve the
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FL performance in wireless networks [165]. An optimization
problem that jointly designs the power allocation and user
scheduling scheme for the UAV swarm network were for-
mulated to reduce the FL convergence round [166]. The
authors in [167] investigated the optimal user scheduling
policy and power allocation scheme with Non-Orthogonal
Multiple Access (NOMA)-based FL uplink communication
during the entire learning process, and thus the aggregation
latency was reduced. In [168], a joint bandwidth allocation
and user scheduling problem was formulated to optimize
the convergence rate of latency-constrained wireless FL.
The energy-efficient radio resource management strategy was
investigated for bandwidth allocation and user scheduling in
the Federated Edge Learning (FEEL) network, which can
effectively reduce the sum of energy consumption of devices
while providing a guarantee on learning speed [169]. The
developed optimal bandwidth allocation scheme suggests
allocating more bandwidth to devices with worse channel
conditions or weaker computational capabilities in individ-
ual learning rounds. To consider the long-term effect of FL,
the authors in [16] brought a long-term perspective to client
selection and resource allocation problems, they identified
the varying significance of learning rounds, and how this
would affect the resource allocation to optimize learning
performance for FL in wireless networks.

4) MAB-BASED OPTIMIZATION FOR USER SCHEDULING
AND RESOURCE ALLOCATION

The above studies investigate user scheduling scheme based
on the assumption of the availability of prior information
regarding the Channel State Information (CSI) and the
knowledge of the available computational resources of each
user. However, in practice, it is costly or even impossible
to obtain this dynamic environment information, espe-
cially for a large-scale network. Hence, a more practical
scenario without knowing the prior information needs to
be considered, and the MAB tool with the ability to
estimate the statistical information based on the trail-and-
error rule has been exploited to design online scheduling
schemes [170], [171], [172], [173]. The aim of the MAB
problem is to determine the arm so as to maximize the
total rewards obtained in sequential decisions. In [170],
a MAB algorithm was proposed to estimate which users
are expected to have the rich and available computational
power and high throughput when designing the user selec-
tion strategy. Moreover, the proposed MAB-based client
selection algorithm can perform exploration by selecting
the users that are selected less often, and exploitation by
selecting the users with rich resources, to achieve effi-
cient user scheduling. The authors in [171] discussed the
client selection problem in both ideal and non-ideal scenar-
ios (ideal scenario: always has available clients, IID, and
balanced dataset; non-ideal scenario: non-IID and imbal-
anced properties of local datasets, and dynamic availability
of clients) by formulating it as a MAB problem and fur-
ther proposing an Upper Confidence Bound (UCB)-based

algorithm to strike a balance between the exploration and
exploitation actions. Different from [170], [171] that reduce
the time consumed per round with a fixed number of
training rounds, the authors in [173] used the MAB tool
to reformulate the client scheduling problem, but aimed
to reduce the number of training rounds and the time
consumed per round simultaneously. In [172], the client
selection problem was investigated aiming to achieve faster
convergence by adopting the MAB algorithms to find
a balance between selecting users with larger local loss
(i.e., exploitation) and ensuring user diversity in selection
(i.e., exploration).

C. OVER-THE-AIR COMPUTATION
In FL, the global model aggregation procedure consists of
the transmission of local model updates from each user, fol-
lowed by the computation of their weighted average at a
central server. To realize efficient uplink model aggregation
in FL, an analog AirComp was proposed as a communi-
cation and computation co-design approach by exploiting
the additive nature of the wireless multiple access chan-
nels [161], [174]. With AirComp, the users transmit their
model updates via analog signaling, i.e., without convert-
ing to discrete coded symbols which need to be decoded at
the server side. Through joint user selection and beamform-
ing design at the central server [160], the scheduled users
then simultaneously transmit in the same communication link
such that their signals overlap at the server. Given the perfect
CSI at the users and accurate transmission timing, the signal
overlapped from the devices to the server over-the-air natu-
rally produces the arithmetic sum of the local model updates.
To deal with residual channel gain and synchronization in
AirComp, the authors in [175] referred to it as a misaligned
AirComp and devised a sum-product maximum likelihood
estimator to estimate the arithmetic sum of the transmitted
symbols; the beamforming techniques were employed at the
server to alleviate the destructive effects of the interference
and noise terms due to the lack of CSI at the users and
perfect CSI at the server [176], [177].
Towards developing more efficient AirComp schemes,

a broadband analog aggregation scheme (BAA) was
proposed to support the transmission of high-dimensional
updates and which dramatically reduces the communication
latency [178]. Additionally, the authors extended the BAA
to FEEL in which transmitters are limited to Quadrature
Amplitude Modulation (QAM) and designed a one-bit broad-
band digital aggregation scheme for the current digital
wireless system by featuring digital modulation of local
gradients [179]. Moreover, to address the channel noise
caused by analog AirComp, the authors in [180] developed
an AirComp FL algorithm by introducing pre-coding at
the users and scaling at the server. In [181], an online
energy-aware dynamic user scheduling policy was proposed
to deal with non-IID data in FEEL by introducing data
redundancy.
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TABLE 6. Communication-efficient technologies for distributed learning.

D. GRADIENT COMPRESSION
Synchronous SGD has been widely used for distributed
training to enhance the efficiency of large-scale distributed
learning [182]. Although the overall computation time can be
significantly reduced by adding more computational nodes
and performing data parallelization, the gradient updates
are still costly [183]. To efficiently scale up distributed
training, it is crucial to overcome the communication bar-
rier when deploying the bandwidth-consuming parallelizing
SGD. Therefore, reducing the communication data size to
save the transmission spectrum bandwidth in the wireless
network has been extensively studied.
One way to reduce the size of the transmitted gradients

is to quantize them to low-precision values [184], [185],
[186], [187]. In [184], 1-bit SGD with error feedback was
proposed for speech-scale DNNs. Quantized SGD (QSGD)
was proposed by considering the trade-off between com-
munication bandwidth and convergence time in [185]. To
be specific, the proposed QSGD scheme has an adjustable
number of bits sent per iteration with possibly higher vari-
ance. Similarly, the authors in [186] developed the ternary
gradients. Apart from quantizing gradients, in [187], the
authors also considered bit convolution kernels to accel-
erate both model training and inference. The other way
to save the gradients data size is named as gradient spar-
sification [188], [189], [190], [191]. The intuitive way is
to eliminate the small-amplitude gradients below a pre-
defined constant threshold and only send the remaining
gradients [188]. In [189], the authors proposed gradient drop-
ping by sparsifying the gradients, and then they combined the
layer normalization to keep the convergence speed. However,
the pre-defined threshold is difficult to select in practice. To
avoid inappropriate threshold selection, the authors in [190]
proposed a method that only chooses a fixed proportion
of positive and negative gradients, respectively. In [191],
a more advanced technique that can automatically tune
the compression rate based on local gradients activity was
studied.
To greatly reduce the communication bandwidth, Deep

Gradient Compression (DGC) was proposed in [192], which
not only employs gradient sparsification to reduce the band-
width but also employs some other techniques, such as
local gradient accumulation, momentum correction, local
gradient clipping, momentum factor masking, and warm-up

training, to guarantee the model convergence and improve
learning accuracy, Recently, a joint local compression and
global aggregation approach called Analog distributed SGD
(A-DSGD) was proposed to further address the bandwidth
limitation in wireless communications [161]. In A-DSGD,
the distributed local users first sparsify their gradients
based on a compression ratio and then project them to a
lower-dimensional space imposed by the available channel
bandwidth. These projections are sent directly over multiple
access channels without employing any digital coding. This
approach can significantly reduce the communication over-
head and save transmission resources as multiple distributed
devices can transmit compressed gradients to the center
server simultaneously through the same channel.

E. DISCUSSION AND OUTLOOK
When deploying distributed learning in wireless networks,
the transmission of model parameters is decided by the
quality of the wireless communication links. This raises
higher standards for classical communication technologies,
and thus some novel technologies are required to improve
them for providing better communication performance with
higher reliability and lower time latency. Table 6 summa-
rizes the state-of-art technologies, including user scheduling
and resource allocation, over-the-air computation, and gra-
dient compression, to assist the share of model parameters
in distributed learning with better communication efficiency.
User scheduling and resource allocation is a good approach
to deal with limited spectrum resources and diverse users
with the goal of optimizing the convergence performance of
distributed learning, but the complexity of the user schedul-
ing scheme itself may affect the convergence time and needs
to be minimized.
Apart from optimizing resource allocation and schedul-

ing schemes for efficient communications, AirComp is a
promising technique that backtracks analog communications
for direct model aggregation without digital converting.
Furthermore, reducing the size of local model updates at
the information source before the transmission is another
efficient technique that can not only save the spectrum band-
width but also reduce the transmission latency. However,
most of the aforementioned techniques are mainly stud-
ied separately, it is an inevitable trend to find an effective

1026 VOLUME 4, 2023



way to conceive the synergistic architecture among these
technologies.

VI. AI-EMPOWERED WIRELESS COMMUNICATIONS
In Sections III and IV, wireless networks with edge com-
puting are able to provide native AI services by leveraging
RL techniques to enable intelligent decision-making and
optimal network management and implementing distributed
learning architecture to exploit the distributed computa-
tional resources of the local and edge devices. Due to the
emerging AI applications deployed at the network edge,
the requirements of communication such as near-instant
millisecond latency, massive connectivity, and ubiquitous
coverage have become urgently desired [193]. To meet
these demands, promising technologies, such as millime-
ter Wave (mmWave) [194], massive MIMO [195], NOMA,
and Intelligent Reflection Surfaces (IRSs) [196] have been
proposed to improve communication performance. However,
it is still challenging to apply conventional communication
theories directly to complex application scenarios. The recent
advances in AI techniques have enabled training ML models
to predict the different modules in the block structure-
based communication systems (i.e., modulation scheme,
channel condition, transmitted signal, etc). Moreover,
AI-enabled end-to-end communication can improve com-
munication performance by assuring low communication
latency. In this section, we will discuss about the DL for
physical layer wireless communications techniques.

A. THE POTENTIALS OF DL FOR WIRELESS
COMMUNICATIONS
The differences between conventional wireless communi-
cations and DL-based wireless communications can be
summarized from different aspects, i.e., mathematical model,
design approach, assumptions, and so on. To be spe-
cific, in conventional wireless communications, the wireless
transmission relies on accurate (but often simplified) math-
ematical models, such as the Additive White Gaussian
Noise (AWGN) channel model, to design channel estima-
tion algorithms or channel feedback schemes. However, DL
usually does not rely on such mathematical models of its
tasks and is particularly beneficial in the absence of accu-
rate mathematical models. Additionally, traditional wireless
transmission designs each communication system module
separately using mathematical derivations, whereas DL typ-
ically trains the DNN’s entire set of parameters. Besides,
traditional wireless transmission often relies on idealized and
simplified assumptions in its mathematical model, while DL
may have an excessive number of parameters, and differ-
ent neural networks have to be trained for different tasks or
applications [197].
To meet the demands of the large data stream and high-

speed processing in emerging complex environments, there
are some challenges that need to be tackled in wireless com-
munications [198]: complex channel modeling, local optimal

in the block structure of the communication system, and
efficient computation.

1) DL SOLUTIONS IN WIRELESS COMMUNICATIONS

There are mainly three aspects potentials of DL that
motivate researchers to find intelligent solutions for the
aforementioned limitations:

• Model-driven DL channel modeling: Conventionally, the
communication system heavily relies on mathematical
models to characterize the dynamic wireless environ-
ment. However, in the real world, the environment
can be very difficult to be modeled. Especially, com-
plex scenarios with unknown or unpredictable effects
are not possible to be characterized or expressed by
using mathematical models. Hence, DL is introduced
to address this impossibility, which can act as a black
box to replace the conventional mathematical model.
Moreover, by combining it with domain knowledge,
model-driven DL can assist complex modeling [199].

• Replace the block structure: The traditional commu-
nication structure consists of multiple blocks, such
as encoding, decoding, modulation, demodulation, and
detection blocks, as shown in Fig. 17. Conventionally,
researchers focus on optimizing specific blocks for
different purposes and combining them to achieve
global optimal performance through the entire system.
However, this is not always guaranteed with such a sim-
ple combination of locally optimized blocks. Therefore,
DL has been exploited to obtain the global optimization
of the entire end-to-end communication system by
replacing the separated optimization of each block [18].

• Parallel efficient processing: With the emergence of
resource-constrained wireless devices, a large amount
of data exchange causes huge computational costs. It
is even more challenging for real-time data processing
in a complex environment with advanced technologies.
One of the convincing reasons to apply DL to deal with
such concern is that the trained DL methods can pass
through parallel distributed memory architectures, such
as the graphic processing units and specialized computa-
tion chips that can demonstrate fast and energy-efficient
computational ability [200].

2) PARTIAL AND COMPLETE ALGORITHM
REPLACEMENT

The implementation of DL in a physical layer can be
categorized into partial algorithm replacement and com-
plete algorithm replacement [201]. For partial algorithm
replacement, inspired by the idea that unfolds the inference
iterations as layers in a deep network [202], part of the
existing algorithm can be replaced by the neural network lay-
ers. For example, [203] considered the application of neural
network architecture for sparse linear inversion in compres-
sive sensing to assist in recovering the sparse signal from
the noisy measurements. Differently, for complete algorithm
replacement, the DL algorithms can be treated as black boxes
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FIGURE 17. The block diagram of conventional communications block and the end-to-end structure.

that can be trained and applied for multiple purposes in the
communication systems.

B. FROM BLOCK-BASED TO END-TO-END STRUCTURE
Conventionally, the communication systems are designed
based on separate signal processing blocks (i.e., source cod-
ing, channel coding, and so on) that can be constructed as
a chain structure with separate sub-optimal performance. In
recent years, with the DL algorithms evolving, the end-to-
end system that can utilize the advantages of DL for global
optimization has been further investigated. In this subsec-
tion, the evolution of the communication structure will be
discussed.

1) DL IN BLOCK-BASED COMMUNICATIONS STRUCTURE

As shown in Fig. 17, a typical wireless communication
system can be summarized as a chain diagram with multiple
independent blocks as the block-based structure. Each block
plays a vital role in executing an independent task, for exam-
ple, source coding, channel encoding, modulation, channel
estimation, demodulation, channel decoding, and source
decoding.

• Signal compression: In physical layer communications,
downlink CSI feedback is one of the determinants to
achieve performance gain at the BS. However, the
practical challenge is that a large number of antenna
elements leads to excessive transmission overhead.
Although the sparse spatial and temporal correlations
of the CSI have been studied to reduce the heavy feed-
back overhead, the sparse structure is not practically
guaranteed. In [204], the authors proposed a CsiNet as
an encoder to compress feedback and reconstruct the
CSI. Specifically, the compression task is done at the
user side by inputting the angular-delay domain chan-
nel matrix to a CNN layer. Then two feature maps

at the output are vectorized as real-valued compressed
information for feedback.

• Modulation classification: Automatic modulation recog-
nition has been studied for many decades. In [205], the
neural network architecture has been designed as the
modulation classifier after the feature extraction step to
distinguish signals from both digital and analog mod-
ulation schemes. To omit the feature extraction step,
the automatic learning CNN-based method is proposed
in [20] to learn the modulation schemes directly from
time-sequence raw data in the radio domain.

• Channel decoding: The fundamental purpose of channel
coding and channel decoding is to detect and cor-
rect errors in the noisy channels. In [206], the authors
proposed the special structure, DNN-based belief propa-
gation algorithm, which contains odd hidden layers that
transmit output from variable nodes to check nodes and
even layers transmit output from check nodes to vari-
able nodes. Through such a structure, the performance
of decoding high-density parity-check codes can be
improved. Alternatively, the authors in [207] proposed
a plain DNN structure-based decoder, named neural
network decoder, to achieve a competitive result and
high-level parallelization.

• Signal detection: With the increasingly complex
applications emerging in communication systems,
information detection becomes harder due to the com-
plex time-varying channel model. DL-based detectors
have been designed in [18], [208]. However, in [208],
the authors only considered the received signal and
channel matrix as inputs to reconstruct the transmit-
ted signal. In [18], the authors treated the channel as
a black box and designed a five-layer fully connected
DNN for Orthogonal Frequency-Division Multiplexing
(OFDM) signal detection.
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2) DL FOR END-TO-END COMMUNICATIONS

The structure of the end-to-end communication system can
be found in the lower part of Fig. 17. All of the individual
blocks at the transmitter (receiver) side are treated as a whole
which is called the transmitter (receiver) end. Particularly,
this structure can take the advantage of data-driven DL, as
both transmitter and receiver ends can learn to automatically
encode and decode source data. The DL model embedded at
both ends is optimized by minimizing the loss function which
consists of the difference between the true value and the esti-
mation value. Compared to independent block optimization
in block-based communications, end-to-end optimization can
guarantee a global solution [209]. In [210], the DL-based
auto-encoder end-to-end communication system in MIMO
channels for both closed-loop and open-loop systems was
proposed. Specifically, closed-loop and open-loop are dis-
tinguished by whether to consider a CSI feedback system.
However, these end-to-end model training mechanisms incur
a practical problem, and the back-propagation stage during
model training has to pass through the unknown wireless
channel. Hence, more practically, the authors in [211] sepa-
rately designed a DNN-based transmitter and a DNN-based
receiver. Explicitly, the transmitter that is robust to vari-
ous channel conditions learns to transform the input data.
Apart from this, the receiver consists of two respective DNN
modules used for channel information extraction and data
recovery.
For robust DL model training, the process can be done in

advance and can be trained by exploiting the near-infinite
computation and storage resources in the cloud server based
on different tasks or application purposes. For more timely
training, the training process can be done at the edge server
that is placed near the end device for more frequent model
updates. Similar to the cloud server, the edge server also
has more powerful computation and storage ability than end
devices. Apart from utilizing these computation and memory
capacities for DL algorithms training at the servers, it is
proved that the communication overhead can be greatly
reduced in DL-based end-to-end wireless communication
systems. In other words, the pilot-free paradigm can be
realized in this end-to-end system [211].

C. DL FOR WIRELESS COMMUNICATIONS
TECHNOLOGIES
In the past decade, with the explosive demands of wire-
less communications wireless technologies such as mmWave,
massive MIMO, NOMA, and IRS have been developed
to improve communication performance from spatial-
efficiency, spectral-efficiency, and energy-efficiency perspec-
tives. However, with the advanced technologies implemented
in the communication systems, it is even challenging to
acquire precise complex mathematical models to realize
robust communications. Therefore, DL is a reliable candidate
to support practical implementations of the aforementioned
advanced technologies. In this subsection, the works focused

on DL-based frameworks in advanced technology-assisted
wireless communications will be introduced.

1) DL FOR MMWAVE MASSIVE MIMO SYSTEM

MmWave band has been recognized as the spectrum that
can bring magnitude improvement of speed and capac-
ity for future wireless communications. To mitigate the
poor diffraction ability of mmWave, it is widely stud-
ied to implement massive MIMO in mmWave systems
and apply hybrid precoding techniques to achieve multi-
plex data streams, thus enhancing the system throughput.
Although compressive sensing-related algorithms have been
broadly deployed to reduce the computation complexity
caused by the massive number of antenna elements in the
mmWave massive MIMO systems for precoding design,
the inadequate leverage of the structural characteristics of
mmWave systems brings the urgent need of developing
more advanced methods. Therefore, a DL-based mmWave
massive MIMO framework for effective hybrid precoding
design has been proposed [212]. Specifically, the selection
of the optimized hybrid precoders is designed as the map-
ping relationship in the DNN. Similarly, [213] explored the
DNN-based beam training schemes to deal with the nonlin-
ear and nonmonotonic properties of channel power leakage
in mmWave.

2) DL FOR NOMA SCHEME

Apart from exploring under-utilized spectrum in the ultra-
high-frequency bands (i.e., mmWave), as the spectral effi-
cient technology that enables each user to operate in the same
frequency band at the same time through assigning different
power levels, NOMA has also drawn significant attention.
Conventional methods for sum data rate and reliability
optimization in NOMA systems require high computation
complexity to solve the nonlinear optimization power allo-
cation problems with known channel state information.
However, in practice, acquiring fast time-varying chan-
nel information is very challenging. Conventional methods
are not efficient and reliable enough to capture compli-
cated channel characteristics. To overcome such difficulty, a
DL-aided NOMA system has been proposed in [214]. To be
specific, an LSTM network has been established to detect the
channel information automatically through offline training
and online learning process.

3) DL FOR IRS-ASSISTED SYSTEM

With the flexible feature that can control and reflect the elec-
tromagnetic signal by changing the phase of the impinging
signals, IRSs have been recognized as a promising technique
to broadening the communication coverage for future wire-
less communication systems. Although the implementation
of the IRSs with almost-passive elements is inexpensive,
challenges have been raised at the receiver in estimating the
CSI and the signal phase angles. Reference [215] modeled
the IRS-assisted communication systems as the end-to-end
systems through the auto-encoder DL technique. Explicitly,
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TABLE 7. DL for wireless communications from block-based to end-to-end structure.

the cascaded channels, which are the channels reflected from
IRSs, have been designed as a DNN that can reduce the envi-
ronmental impairments effect. Moreover, [216] proposed an
LSTM-based algorithm to track the constantly changing CSI
in an IRS-assisted UAV communication networks.

D. DISCUSSION AND OUTLOOK
The conventional signal processing algorithms with tractable
information theory mathematical models have become unable
to model the imperfection and non-linearity of the com-
plex and time-varying wireless communication systems.
Therefore, the model-free characteristic of the DL algorithm
motivates researchers to deploy it in physical layer commu-
nications. Table 7 summarizes the aforementioned research
works that focus on implementing DL algorithms for dif-
ferent purposes in wireless communication systems from
block-based to end-to-end structures. When applying DL
algorithms in the block-based structure, it only can provide
a local sub-optimal in each individual block (i.e., source
encoder, modulation, and so on), while the global optimal
can be achieved when applying it in an end-to-end structure.
Therefore, with the development of more advanced com-

munication technologies such as MIMO, mmWave massive
MIMO, NOMA, and IRS, DL has been widely studied and
deployed in end-to-end communications. As the fundamental
support for model updates transmission in distributed learn-
ing, wireless communications are expected to evolve with
the combination of these advanced technologies for superior
performance. Additionally, with the time-series property of
the dynamic environment, LSTM which can extract the time
relationships has drawn increasing attention to be applied in
the physical layer. Besides, since the wireless environment
is typically fluctuating, it is necessary for DL-based wire-
less systems to repeatedly retrain from scratch in order to
maintain performance over time, which takes time and is
computationally expensive. Therefore, DL-based approaches
must be reliable and adaptable in some previously undis-
covered scenarios, and new learning algorithms need to be
developed (e.g., transfer learning). Most of the above studies

train the DL model through supervised learning (i.e., with
labeled data); however, it is not practical in the real world
to obtain the accurately labeled data in advance for model
training. Therefore, it is necessary to design the dynamic
loss function for unsupervised learning to maintain solid
performance for both DL model training and execution in
the physical layer of wireless communications.

VII. CHALLENGES AND FUTURE OPPORTUNITIES
It is envisioned that 6G wireless networks are urgently
needed to support applications beyond current mobile use
scenarios, such as virtual and augmented reality (VR/AR),
ubiquitous instant communications, and pervasive intelli-
gence, so that native AI architecture with its distributed
characteristics and the pervasive use of AI techniques could
provide potential support for those applications. To provide
native AI support, edge computing, and end-to-end architec-
ture were investigated to embrace intelligence at everywhere
in the network system [3], [217]. However, the existing
research only makes the fundamental step of native AI wire-
less networks. There are still many challenges that need
thoughtful exploration. In this section, we outline the chal-
lenges and future opportunities separately related to each
topic we discussed above.

A. DISTRIBUTED COMPUTATION OFFLOADING
Researchers are now moving the focus to design efficient
offloading schemes and resource allocation methods for
more practical multi-user computation offloading problems.
The multi-agent RL framework has drawn significant atten-
tion from academia to model the multi-user computation
offloading problem, and a few approaches, including inde-
pendent learning, information sharing, conjecture-based and
prediction-based algorithms, have been proposed to address
the formulated multi-agent computation offloading problem.
Specifically, the conjecture-based and prediction-based algo-
rithms addressed the non-stationary issue in independent
learning and large communication overhead in information-
sharing algorithms and became potential solutions to the
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multi-agent problem. However, the conjecture-based algo-
rithm needs the training data collected from online inter-
actions with the network elements, which slows down
the training process. The potential solution is to develop
off-policy learning algorithms that utilize the pre-collected
online interaction data for offline training. Another approach
is the prediction-based algorithm that exploits the LSTM to
predict the global state with the past side information, but
this approach relies on centralized offline training and that
is challenging when supporting large-scale networks.

B. CUSTOMIZED DISTRIBUTED LEARNING
Most existing works have studied distributed learning to
enable training the traditional ML models in a distributed
manner. However, due to the increasing user-centric applica-
tions and the heterogeneity of the local dataset and wireless
environment, it is necessary to ensure that the learned model
can capture users’ individual characteristics. Thus, designing
the customized distributed learning model is an inevitable
direction in wireless networks.

1) FROM ZERO-SHOT LEARNING TO META-LEARNING

Recently, multiple learning schemes, such as zero-shot,
one-shot, few-shot, and meta-learning, have been designed
based on personalized fewer sample datasets to train
the ML models and save the wireless communication
resources [218], [219], [220], [221]. In [218], the authors
proposed a learning framework called zero-shot learning
which firstly distinguished the features of the input without
any learning and then trained the ML model based on these
features. Similarly, the authors in [219] proposed one-shot
federated learning which firstly distills the client’s private
dataset and sends the synthetic data to the server to train the
global model. Moreover, the few-shot learning framework
refers to learning from a few labeled datasets [220]. As one
of the special categories of few-shot learning, meta-learning
attempts to reduce human intervention and let the system
learn by itself [221]. As the aforementioned learning frame-
works can be customized to certain applications and save
communication resources at the same time, it is worthy to
extend these learning schemes to the applications in the dis-
tributed wireless network that have limited communication
resources [222].

2) PERSONALIZED DISTRIBUTED LEARNING

The primary purpose of involving distributed users in dis-
tributed learning is that a global model can be trained by
benefiting from the collaborative training of these users and
their decentralized computational resources. However, the
heterogeneity of the users, including user heterogeneity (e.g.,
diverse storage hardware, computational capacities, network
conditions, battery power) [223], data heterogeneity (e.g.,
non-IID and imbalanced data distribution), and model hetero-
geneity (e.g., hetero-modal data), will affect the convergence
performance of the model training. For instance, when the
users have sufficient personalized data, joining the global

model training can hurt the model’s ability for personaliza-
tion. With non-IID data, the local model updates of each
user are of different significance to the global model train-
ing [224]. Moreover, distributed learning with hetero-modal
data is challenging, thus the multi-model fusion of RF and
image data is considered to train a global model for received
power prediction in mmWave networks [225]. Therefore,
personalized distributed learning taking into account the
diversity of users and the hetero-modal data is a practical
issue and full of challenges.

C. CONTRIBUTION-DEPENDENT INCENTIVE
MECHANISMS
Designing proper incentive mechanisms for active partici-
pants in distributed learning is an emerging research topic,
since clients that hold useful data sources may not want to
actively provide local updates without rewards. To design
an optimal incentive mechanism that can motivate clients
to participate in distributed learning, there are some key
characteristics, such as information unsharing and contri-
bution evaluation, that can be considered as the metrics
to develop incentive decisions for users [102]. However,
it becomes more challenging if taking the uncertainty
of the dynamic conditions into consideration (e.g., the
unpredictable decisions of the participants, unfixed train-
ing periods, time-varying data sources, diverse data quality
caused by the communication environment, and so on).

D. ASYNCHRONOUS DISTRIBUTED LEARNING
Most of the existing works focus on synchronous feder-
ated learning assuming synchronous model aggregation, but
it is not practical since the users do not always complete
local gradient calculation and model parameters transmis-
sion at the same time due to the heterogeneity of devices
and their individual datasets. Asynchronous federated learn-
ing has been studied intensively to address this challenge
using dynamic learning rates, weight aggregation, and a
regularized loss function for local users. However, fully asyn-
chronous federated learning with sequential updating can
face the problem of high communication costs caused by
frequent model updating and transmission of local updates.
A few approaches, such as cluster FL and periodic model
aggregation, have been proposed to tackle those concerns by
managing the update frequency of the local users. Thus, a
trade-off between convergence performance and communi-
cation costs needs to be carefully considered by designing
proper update strategies.
The existing strategies, such as user selection, weight

aggregation, and cluster FL, are effective to improve con-
vergence performance for asynchronous federated learning
with heterogeneous users. However, different performance
improvement strategies are suitable for different application
scenarios. For example, a semi-asynchronous FL with suit-
able weighted aggregation strategies could be an optimal
solution to the scenario when the disparity in computing
capabilities among heterogeneous devices is extremely high.
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Hence, several performance improvement strategies could be
developed together to improve the efficiency of asynchronous
federated learning, but this could result in a decline in effi-
ciency to a certain extent. In [16], the authors pointed out
a potential research direction on the comprehensive analysis
of the balance between multiple performance improvement
strategies and time consumption.
When considering asynchronous learning in the hybrid

distributed learning architectures discussed in Section IV,
asynchronous distributed learning needs to be redesigned to
adapt to the specific learning architecture to improve learning
performance. For instance, with the hybrid learning archi-
tecture, the clustering approach can be used to group the
users into different clusters according to the learning method
they choose, and then weighted aggregation could be used to
aggregate updates from different clusters in an asynchronous
way.

E. COMMUNICATION EFFICIENCY FOR DISTRIBUTED
LEARNING
In distributed learning, the communications between the
central server and the local users constantly exchange
information during the training stage, which consumes
a huge amount of communication resources. To improve
network efficiency, communication-efficient technologies,
including AirComp and gradient compression, have been
proposed but each of them still faces some challenges.
Moreover, assisted wireless technologies, such as IRS,
could also be a potential option to improve communication
performance for distributed learning.

1) GRADIENT COMPRESSION AND OVER-THE-AIR
COMPUTATION

Gradient compression and AirComp are two main tech-
nologies that have been exploited to save communi-
cation resources for deploying FL in wireless com-
munications. With gradient compression, although the
quantification [184], [185], [186], [187] and sparsifica-
tion [188], [189], [190], [191] were studied and could
achieve solid compression performance, some useful gradi-
ent information can still be lost. Hence, a specific gradient
compression method should be designed in certain learning
models for various wireless applications that can tolerate
some degree of information loss. In AirComp, analog-
based transmission is designed, which allows the weighted
aggregation to be obtained directly over the air without
aggregating individual parameters acquired from distributed
users. However, if a large number of users participating in
training, it is more challenging to realize reliable aggre-
gation using the wireless multiple access channel in the
complex systems [160]. Therefore, it is essential to design
effective approaches that can mitigate channel distortion
in the network and interference among users to provide a
robust and efficient transmission that can support AirComp.
Moreover, collectively considering appropriate gradient com-
pression and dependable over-the-air aggregation to stack the

FIGURE 18. The architecture of joint gradient compression and over-the-air
aggregation.

communication benefits can be another promising research
direction. As shown in Fig. 18, the architecture of joint
gradient compression and AirComp aggregation is presented.

2) IRS-ASSISTED DISTRIBUTED LEARNING

Due to the vulnerability of mmWave transmission, IRS is
an emerging low-cost technology that can reconfigure the
wireless propagation directions to improve both spectrum
and energy efficiencies in wireless networks. Particularly, the
phase shifts of the signal can be adjusted through a large
amount of passive reflecting elements to steer the signal in
specific directions. Hence, IRS can be leveraged to enhance
the received signal strength and this is beneficial to both
gradient transmission and AirComp [226], [227]. However,
jointly designing the aggregation beamformers at the BS and
the phase shifts at the IRS can be a very challenging task.

F. PRIVACY AND SECURITY
Although distributed learning is capable of preventing direct
raw data leakage from the local devices, private information
can still be extracted through intercepted gradient updates
that are exchanged between the distributed devices and the
central server. Moreover, during the gradient transmission,
attacks and data poisoning can also threaten the security of
the distributed system [228].

1) PRIVACY LEAKAGE PROTECTION

Distorting [229] and dummy [230] are two techniques that
can protect data privacy from the user side. In [229], the
authors proposed the randomized mechanism that consists
of random sub-sampling and distorting steps to approxi-
mate the average and hide the individual client’s contribu-
tions. However, the trade-off between privacy-preserving and
model convergence performance should be further studied.
In [230], the authors designed a method that transmits the
original information together with probabilistically dummy
packets. Since dummy parameters are sent as redundancy,
extra communication resources, such as bandwidth and trans-
mission energy, are required. The encryption-based technique
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to prevent data inspection at the central server side was
proposed [231]. However, additional overhead is needed for
encryption in this case. Therefore, for privacy protection,
it is essential to find the balance between privacy, model
performance, and communication efficiency, at both clients
and central server sides.

2) ANOMALY DETECTION

When training the distributed learning model, the model
parameters are transmitted through the wireless network.
However, abnormal data samples can greatly influence the
overall model training. Anomaly detection which can dis-
tinguish abnormal data can not only be used to detect
data poisoning and attacks from adversaries [232] but
also can monitor the abnormal operations in the wireless
network, such as traffic load, computation resources usage,
etc. Therefore, embedding anomaly detection into appro-
priate distributed learning techniques can provide extensive
contributions to both secure model updating and system
inspection.

VIII. CONCLUSION
In this article, the recent literature on distributed intel-
ligence in wireless networks has been surveyed with an
emphasis on the following aspects: the new concept of
native AI networks, distributed learning architectures for
heterogeneous networks, RL techniques assisted edge com-
puting, communication-efficient technologies for distributed
learning, as well as DL-enabled end-to-end communica-
tion structure and DL-assisted advanced communication
technologies. Specifically, we highlighted the comparisons
of different ML algorithms-enabled edge computing in
Section III and the advantages of different distributed learn-
ing architectures in Section IV. Investigating ML-assisted
communication technologies and structures are particularly
important since they can provide more reliable and ultra-low
latency communication performance. It is worth pointing out
that when designing efficient communication technologies,
the convergence-based metrics are proposed to investigate
user scheduling and resource allocation, and the special
technology with direct ML model aggregation, namely over-
the-air computation, is also presented in Section V. Finally,
the challenges of existing research works on distributed intel-
ligence in wireless networks have been identified, and also
the future opportunities were discussed.
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