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ABSTRACT This paper focuses on the combined radar and communications problem and conducts a
thorough analytical investigation on the effect of phase and frequency change on the communication and
sensing functionality. First, we consider the classical stepped frequency radar waveform and modulate
data using M-ary phase shift keying (MPSK). Two important analytical tools in radar waveform design,
namely the ambiguity function (AF) and the Fisher information matrix (FIM) are derived, based on
which, we make the important conclusion that MPSK modulation has a negligible effect on radar local
accuracy. Next, we extend the analysis to incorporate frequency permutations and propose a new signalling
scheme in which the mapping between incoming data and waveforms is performed based on an efficient
combinatorial transform called the Lehmer code. We also provide an efficient communications receiver
based on a modified Hungarian algorithm. From the communications perspective, we consider the optimal
maximum likelihood (ML) detector and derive the union bound and nearest neighbour approximation on
the block error probability. From the radar sensing perspective, we discuss the broader structure of the
waveform based on the AF derivation and quantify the radar local accuracy based on the FIM. Extensive
numerical examples are provided to illustrate the accuracy of our results.

INDEX TERMS Joint communications and radar, maximum likelihood, ambiguity function, Fisher
information matrix.

I. INTRODUCTION

THE INTEGRATION of radar sensing and communica-
tion is a promising design paradigm in which sensing

and communication functionalities share the same hardware
and spectrum resources. Traditionally, communications and
radar sensing were designed separately to focus on domain
specific challenges. However, as communication systems
start to use the millimeter-wave (mmWave) frequency band
which is traditionally used in radar, there has been an increas-
ing amount of research interest in the integration of the two
functionalities [1], [2], [3], [4], [5], [6], [7], [8]. Such joint
systems can contribute to reducing the system cost and power
consumption, as well as alleviating concerns for spectrum
congestion [9].

A key aspect of the co-existence of these two functions
in an integrated system is the design of a joint waveform
that is capable of transmitting information and performing
radar sensing simultaneously. This convergence could be
achieved based on different approaches as discussed in [4],
[5], [6], [7], [10], [11], [12]. For example, some research
focuses on embedding information into traditional radar
waveforms for joint application. In [13], the traditional lin-
ear frequency modulated (LFM) waveform is considered for
data transmission. However, the communication symbol rate
corresponds to the chirp rate only, which is much lower than
the symbol rate that can be achieved by a communication
system with the same bandwidth. In [14], a phase-attached
radar-communications (PARC) framework is extended to
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a frequency modulated continuous-wave (FMCW) imple-
mentation as a means to realise both functions. Stretch
processing is employed such that large bandwidth radar oper-
ation and fine range resolution can be achieved. In [15],
information sequences are implemented using continuous
phase modulation (CPM) and phase-attached to a polyphase-
coded frequency-modulated (PCFM) fixed radar waveform.
The adjustable parameters provide control of the range
side-lobe modulation (RSM) by trading off bit error rate
(BER) and/or data throughput. Using frequency-hopping
(FH) multiple-input multiple-output (MIMO) radar for dual-
function radar-communication (DFRC) has increased the
symbol rate to multiples of pulse repetition frequency by
modulating information into fast time subpulses [16], [17],
[18], [19]. In [18], a unique FH-MIMO waveform based
DFRC scheme is proposed in order to address issues
including channel estimation and synchronisation in multi-
path channels. In [17], the presented FH-MIMO radar
based DFRC frameworks combine various existing signalling
strategies including phase shift keying (PSK), FH code selec-
tion and FH code permutations, in order to further boost the
communication data rates. However, the FH code selection
and permutation based methods only consider the orthogo-
nality between waveforms transmitted by different antennas.
A degradation in the radar performance can occur if there
is a repetition of frequencies in the time domain subpulses
of the waveform transmitted by a single antenna.
Research is also underway on the opposite design pat-

tern, i.e., using traditional communication waveforms for
radar sensing. The use of orthogonal frequency division
multiplexing (OFDM) waveforms for the joint system was
considered in [20], [21], [22]. In [21], a wideband OFDM
based waveform is presented and the high range resolution
processing is derived. Furthermore, the impact of Doppler
modulation on the processing is inspected to give recommen-
dations of the OFDM parameters. In [22], the design of a
power minimisation-based robust OFDM radar waveform is
considered. However, due to the large number of subcarriers
in the OFDM waveform it introduces high peak-to-average
power ratio (PAPR). This makes the approach challenging
for typical radar operation since it requires power ampli-
fiers with a large linear range. Taking a different approach,
in [23], the IEEE 802.11ad-based waveform which is tra-
ditionally used for wireless local area networks (WLANs)
is proposed for long-range radar (LRR) applications in the
60 GHz unlicensed band. The preamble of this waveform,
which consists of Golay complementary sequences with good
correlation properties, is exploited to make it suitable for
radar applications. In [24], a virtual waveform design based
on IEEE 802.11ad is proposed for an adaptive mmWave joint
communications and radar (JCR) system. The system trans-
mits a few non-uniformly placed preambles to enhance the
velocity estimation accuracy, at the cost of a small reduction
in the communication data rate. In [25], a self-interference-
resistant IEEE 802.11ad based JCR framework is developed.
The Golay sequences and a novel pilot signal design are

leveraged to combat self-interference in different sensing
scenarios. Though IEEE 802.11ad-based JCR has data rate
competitive to pure communications systems, the radar sens-
ing ability is limited due to the limitation on the length of
the preambles.
Existing methods show that one main challenge of embed-

ding information into conventional radar waveforms is the
limited data rate due to the lack of randomness. Boosting
the rate is possible, but it requires the randomisation of
parameters that affect the radar estimation accuracy and this
can cause degradation in radar performance. Taking a differ-
ent approach to the aforementioned papers, here, we focus
on embedding data into the conventional stepped frequency
radar waveform by randomising the parameters that have
little effect on radar performance, which can potentially
increase the data rate with an insignificant impact on the
radar performance. We consider the hybrid use of frequency
permutations and PSK, and conduct a rigorous theoretical
analysis on the effect of phase and frequency modulation
on the radar sensing functionality, which, to the best of our
knowledge, is an open research problem.
Stepped frequency waveforms are commonly used in radar

applications. A stepped frequency waveform has multiple
subpulses, each with a constant frequency tone, but the
frequencies of different subpulses are equally separated by
a constant step �f Hz. Examples of stepped frequency
radar waveforms include the linear stepped frequency wave-
form [26] and Costas coded waveform [27]. Phase coding
is one of the early methods for pulse compression in radar
applications [27]. Chirp like polyphase codes, such as Frank
codes [28], have properties of low autocorrelation side-lobe
levels and good Doppler tolerance. In [29], modified ver-
sions of Frank codes, namely P1 and P2 codes, are proposed.
Compared to Frank codes, P1 and P2 codes are more tol-
erant of receiver band-limiting prior to pulse compression.
All of these waveforms, however, maintain a strict sequence
of phase values carefully designed to achieve the best radar
performance, which are not suitable for joint operation due
to the lack of randomness.
In this paper, we change the phase and frequency of

the conventional stepped frequency radar waveform to form
a new waveform that is suitable for both data transmis-
sion and radar sensing. First, we focus on the phase
change by incorporating PSK modulation to the classical
stepped frequency radar waveform. Next, we extend this
by combining the frequency permutation based modulation
introduced in [30], [31] with the phase modulation to for-
mulate a new modulation scheme. The joint use of both
phase and frequency, solely for communication purposes, has
recently been analysed in [32]. They proposed a novel M-ary
frequency-phase keying modulation, in which the frequency
and phase are operated in a discrete, slot-by-slot manner.
In our proposed modulation method, the frequency is also
changed in a discrete manner but based on the selected
permutation, while the phase is changed based on PSK
modulation. This allows us to use phase and frequency
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independently to modulate data and as a result transmit more
data between nodes. Furthermore, it has been shown in [31]
that the frequency permutation based joint waveform has
good ambiguity function (AF) performance on average. As
will be discussed in this paper, incorporating phase modula-
tion on top of the frequency permutation has limited impact
on the AF, which makes the increase in data rate almost free
of charge in terms of radar performance. We provide a rig-
orous theoretical analysis of the proposed waveform, both in
terms of communication performance and radar performance,
and make comparisons with other proposed approaches such
as [31], which only consider frequency modulation. The main
contributions of this paper are as follows:
• First, we analyse the effect of phase modulation on
the radar performance of the linear stepped frequency
waveform. More specifically, we derive the AF and
discuss its broader structure and side-lobe levels. We
also derive approximate expressions for the Cramer-
Rao lower bounds (CRLBs) on the delay and Doppler
estimation errors based on the Fisher information matrix
(FIM), and provide a detailed evaluation of the local
accuracy. Based on the analytic tools, we analyse the
impact of incorporating phase modulation into the tra-
ditional linear stepped frequency waveform on radar
estimation accuracy.

• Next, we combine phase modulation and permutation of
the frequency tones to propose a novel integrated radar
and communication waveform. We present a new sig-
nalling scheme which allows more data to be transmitted
and provide an efficient implementation for the map-
ping between the incoming data and the corresponding
waveform based on a combinatorial transform called the
Lehmer code. We derive the AF and propose a novel
way of analysing the overall AF performance by approx-
imating the average AF of random frequency and phase
modulated waveforms using a Rician distribution. We
also derive the FIM and approximations to the CRLBs,
based on which the cost of embedding data using phase
modulation into frequency permutation based wave-
forms is analysed. We make a thorough performance
comparison to the work in [31] which, in contrast to
the work here, only uses frequency permutations for the
data modulation.

• From a communications perspective, we consider max-
imum likelihood (ML) detection and analyse the error
probability of the receiver in different wireless com-
munication models. As we proposed a novel modu-
lation scheme, the derivation of its error probability
performance is new and challenging. For additive white
Gaussian noise (AWGN) channels and correlated Rician
fading channels, we derive the union bound as well
as the nearest neighbour approximation to the block
error probability. In addition, we derive a new upper
bound on the block error probability under the cor-
related Rayleigh fading model. To deal with the high
complexity of an exhaustive search in ML detection,

FIGURE 1. The JCR system model.

we provide an efficient implementation of the optimal
ML receiver based on a modified Hungarian algorithm.

Extensive numerical examples are provided to illustrate the
accuracy of our results.

II. PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a JCR system model, as illustrated in Fig. 1,
where the transmitter sends a common waveform to both
the radar target and the communications receiver. The signal
reflected from the radar target is received and processed by
the radar receiver, which is co-located with the transmitter,
to estimate the range and relative velocity of the target. The
signal received at the communications receiver is processed
to detect the transmitted information.
First, let us focus on the classical stepped frequency radar

waveform with linearly increasing frequency tones. The com-
plex envelope of such a stepped frequency radar waveform
with L subpulses of length T can be given by

s(t) =
√
E

LT

L−1∑
l=0

sp(t − lT) exp (j2π fl(t − lT)), (1)

where the energy of the waveform E = ∫ LT0 |s(t)|2dt and
sp(t) is a simple rectangular pulse

sp(t) =
{

1, 0 ≤ t ≤ T
0, otherwise.

We also assume that the frequency tones are in ascending
order and the difference between two successive frequency
tones is �f = n/T , where n is a positive integer. As such, the
frequencies are orthogonal to each other and the frequency
tone of the l-th subpulse can be expressed as

fl = f0 + n(l− 1)/T. (2)

In the current paper, we investigate novel methods of
modulating the phase and frequency without causing signif-
icant changes to radar sensing functionality. We keep the
amplitude fixed because constant amplitude is extremely
important for the efficient use of the power amplifiers in
radar operation [26].

B. RADAR PERFORMANCE MEASURES
In this paper, we focus on AF and FIM, the two key analytical
tools used in radar waveform design. For completeness, we
have provided the definitions of these tools as follows.
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The AF of a waveform describes the output of a
matched filter when the signal input to the radar receiver
is delayed and Doppler shifted by certain amounts. Based
on [26, eq. (4.30)], the complex AF of the waveform s(t)
in (1) can be expressed as

Â(τ, ω) =
∫ ∞
−∞

s(t)s∗(t − τ)e−jωtdt, (3)

where τ is the time delay to the expected matched filter
peak output, and ω is the Doppler mismatch between the
Doppler shift of the received signal and that for which the
filter is designed. Then the AF is defined as the magnitude
of the complex AF and is given by

A(τ, ω) =
∣∣∣Â(τ, ω)

∣∣∣. (4)

The AF provides a measure of the degree of similarity
between the transmitted waveform and its time and frequency
shifted version [33]. The local accuracy can be analysed
based on the shape of the AF around the origin, while the
ambiguity can be studied by the AF side-lobe levels.
The FIM for the delay and Doppler shift estimations pro-

vide a more detailed evaluation of the local accuracy of the
waveform [33]. Consider the complex envelope of the radar
received signal reflected by a single target, which can be
written as

rr(t) = b̃s(t − τ)ejωt + n(t), (5)

where τ and ω are the target delay and Doppler shift to
be estimated, b̃ is a complex Gaussian random variable with
zero mean and unit variance and n(t) represents the baseband
complex additive white Gaussian noise process with zero
mean and power spectrum density N0 [33, eq. (10.5)]. The
Rayleigh fading variable, b̃, models the reflection from a
target with multiple reflecting surfaces. The FIM for τ and
ω is defined as

J =
[
J11 J12
J21 J22

]
, (6)

where subscript 1 denotes τ and subscript 2 denotes ω.
Using [33, eq. (10.63)-(10.65)], the elements of J can be
written as

J11 = C
[
ω2 − ω̄2

]
, (7)

J12 = J21 = C[ωτ − ω̄τ̄ ], (8)

J22 = C
[
τ 2 − τ̄ 2

]
, (9)

where C = 2
N0(1+N0)

, ω2, ωτ and τ 2 are given in
[33, eq. (10.67)-(10.69)], respectively. Note that ω̄ and τ̄ can
be calculated by replacing ω2 with ω in [33, eq. (10.67)] and
replacing u2 by u in [33, eq. (10.69)], respectively. Based
on the FIM elements we can derive the CRLBs on the delay
and Doppler estimation errors.
The two performance measures, i.e., the AF and the FIM

discussed above, focus on parameter estimation problems.
Another important function of radar is the detection of the
existence of the target. Nevertheless, this problem is less of

interest for our proposed waveform. To be more specific,
since we do not consider amplitude modulation, the energy
contained in all possible waveforms is the same. Therefore,
the communication modulation has an insignificant impact
on the detection probability, especially when the commonly
used energy detector is considered.

C. RADAR SENSING OPERATION
As illustrated in Fig. 1, from the radar application perspec-
tive we adopt a conventional mono-static radar system. More
specifically, the transmitter and the radar receiver are co-
located such that the radar receiver knows the transmitted
waveform. Therefore, the radar operation is exactly the same
as a traditional radar system, with the only difference being
the randomisation of the transmitted waveform. The trans-
mitter sends a waveform based on random data bits and it
is reflected back by the target. The radar receiver correlates
the received signal with the transmitted waveform to find the
range and Doppler of the target. It is important to note that
even though the transmitted waveform is generated based on
random data bits, it does not interrupt the radar operation
since the radar receiver knows the selected waveform.
Next, we give a brief introduction to the delay-Doppler

estimator at the radar receiver. Given the radar channel model
in (5), the continuous-time maximum likelihood (ML) delay-
Doppler estimator is discussed in [33, Ch. 10.1]. Generally
speaking, it makes the delay and Doppler estimations by
maximising the outputs of the matched filters matched to
waveforms with different Doppler shifts, which can be
expressed as

(
τ̂ , ω̂
) = argmax(τ̄ ,ω̄)

{∣∣∣∣
∫ ∞
−∞

rr(t)s
∗(t − τ̄ )e−jω̄tdt

∣∣∣∣
2
}

, (10)

where τ̂ and ω̂ are estimations of the delay and Doppler
shift, respectively. In practice, a discrete-time approximation
of (10) is usually considered.
In this paper, we focus on analysing the impact of the

proposed modulation method on radar sensing performance.
Therefore, estimator-independent analytical tools such as the
AF and the FIM are considered as the radar performance
measures in this paper. The performance of the estimator
in (10) is not the main focus of the paper, and thus will not
be included.

III. PHASE MODULATED STEPPED FREQUENCY
WAVEFORM
In this section, we introduce phase modulation to embed data
into the waveform in (1). Using M PSK to independently
modulate the phase in each subpulse, we get a new waveform
which can be expressed as

s(t) =
√
E

LT

L−1∑
l=0

sp(t − lT) exp (j(2π fl(t − lT)+ θl)), (11)
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where θl ∈ {0, 2π/M, . . . , 2π(M − 1)/M} denotes the
phase modulated into the l-th subpulse of the waveform.
While adding M PSK allows us to send data, it impacts the
radar sensing functionality. Thus, we proceed to analyse the
AF and the FIM to discuss the effect of phase change on
the radar performance.

A. AMBIGUITY FUNCTION
In order to derive the AF, we normalise the signal energy
to one and re-express the waveform in (11) as

s(t) =
√

1

LT

L−1∑
l=0

sp(t − lT) exp (j(ωl(t − lT)+ θl)), (12)

where ωl = 2π fl is the frequency in radians per second.
Substituting (12) into (3) we can write the complex AF

of s(t) as

Â(τ, ω) = 1

LT

L−1∑
l=0

L−1∑
n=0

∫ ∞
−∞

sp(s− lT)s∗p(s− nT − τ)

× e(j(ωs+ωl(t−lT)−ωn(s−τ−nT)+θl−θn))ds. (13)

Writing the complex AF of sp(t) as Âp(τ, ω) and rearrang-
ing (13) we obtain

Â(τ, ω) = 1

LT

L−1∑
l=0

L−1∑
n=0

Âp(τ + (n− l)T, ω − (ωn − ωl))

× ej(ωlT+ωn(τ+(n−l)T)+(θl−θn)), (14)

where Âp(τ, ω) can be written as

Âp(τ, ω) =

⎧⎪⎨
⎪⎩

ejω(τ+T)−1
jω , − T < τ < 0

ejωT−ejωτ

jω , 0 ≤ τ < T
0, otherwise.

(15)

Next, by taking the magnitude of (14), we can write the AF
of the waveform in (12) as

A(τ, ω) =
∣∣∣∣∣

1

LT

L−1∑
l=0

L−1∑
n=0

Âp(τ + (n− l)T, ω − (ωn − ωl))

× ej(ωlT+ωn(τ+(n−l)T)+(θl−θn))

∣∣∣∣∣. (16)

The zero-Doppler cut of the AF describes the matched fil-
ter output when there is only time delay and no Doppler
mismatch. By letting ω = 0 in (16) we can obtain the
zero-Doppler cut as

A(τ, 0) =
∣∣∣∣∣

1

LT

L−1∑
l=0

L−1∑
n=0

Âp(τ + (n− l)T, ωl − ωn)

× ej(ωn(τ−(n−l)T)+(θl−θn))

∣∣∣∣∣. (17)

Similarly, the zero-delay cut of the AF describes the matched
filter output when there is no time delay, which can be found
by letting τ = 0 in (16) to derive

A(0, ω) =
∣∣∣∣∣

1

LT

L−1∑
l=0

L−1∑
n=0

Âp((n− l)T, ω − (ωn − ωl))

× ej(ωlT+ωn(n−l)T+(θl−θn))

∣∣∣∣∣. (18)

Due to the fact that Âp(τ, ω) in (15) is non-zero only when
−T < τ < T , it is obvious that Âp((n− l)T, ω− (ωn − ωl))

is non-zero only when n = l. Therefore, the zero-delay cut
in (18) can be simplified as

A(0, ω) =
∣∣∣∣∣

1

LT

L−1∑
l=0

Âp(0, ω)ejωlT
∣∣∣∣∣, (19)

which indicates that the zero-delay cut does not change with
the phase modulation.

B. FISHER INFORMATION MATRIX AND CRAMER-RAO
LOWER BOUNDS
Based on the definition of the FIM in (6) we proceed to
derive the elements J11, J12, J21 and J22 as follows

J11 ≈ 2CB

LT

(
L−

L−2∑
l=0

cos(ω0T + θl − θl+1)

)
, (20)

J12 = J21 ≈ −CT
2

2

L−1∑
l=0

ωl(2l+ 1), (21)

J22 = CL2T2

12
, (22)

where B is the finite bandwidth occupied by the rectangular
pulse shaping function sp(t). The detailed derivation of J11,
J22 and J12 is not included in the present paper due to
page limitations, but the approach follows similar steps as in
[34, Appendix C, D and E]. Note that the finite bandwidth
B is introduced since ω2 and ω̄2 do not converge when sp(t)
is a perfect rectangular pulse. The approximation in (20) is
derived by neglecting small high order terms in the integrals
which vanish when BT →∞ [34].
The FIM is useful to bound the variance of the individual

errors. More specifically, when unbiased estimators are used,
the variances of delay and Doppler shift estimation errors
are lower bounded by the diagonal elements in J−1 [33].
Denoting the CRLBs of the delay estimation and Doppler
shift estimation errors as CRLBτ and CRLBω, respectively,
their approximate expressions are given in (23) and (24) shown
at the bottom of the next page. Note that (23) and (24) can
be further simplified based on [33, eq. (10.94), (10.95)] to
produce

CRLBτ ≈ C−1LT

2B
(
L−∑L−2

l=0 cos(ω0T + θl − θl+1)
) , (25)

CRLBω ≈ 12C−1

L2T2
. (26)

VOLUME 4, 2023 971



HAN et al.: COMBINED RADAR AND COMMUNICATIONS WITH PHASE-MODULATED FREQUENCY PERMUTATIONS

FIGURE 2. The (a) three-dimensional surface plot and (b) contour plot of the AF of a linear stepped frequency and PSK based waveform for L = 8 and M = 4. The first
frequency f0 = 0 Hz and the step �f = 1/T Hz. The phase sequence is [3π/4, 3π/4, 3π/4, π/2, 3π/4, π/2, π/4, π/2].

While the simplified expressions in (25) and (26) provide
looser bounds compared to (23) and (24), they clearly show
the effect of parameters on the estimation errors. The delay
estimation error lower bound in (25) is inversely proportional
to the product of the finite bandwidth B and the effective
bandwidth 1/T of a single subpulse. The Doppler shift esti-
mation error lower bound in (26) is inversely proportional to
the square of the time duration of the whole waveform LT .
To observe the effect of embedding data on local accuracy,
we first derive the CRLBs for stepped frequency waveforms
without phase modulation by setting θm = 0 in (25) and (26),
which results in

CRLBτ ≈ C−1LT

2B(L− (L− 1) cos(ω0T))
, (27)

CRLBω ≈ 12C−1

L2T2
. (28)

Comparing the CRLBs in (27) and (28) with those
in (25) and (26), it can be found that the phase modula-
tion has exactly no effect on the simplified CRLBω while it
has some influence on CRLBτ . Nevertheless, the maximum
value (when all cos (·) terms equal 1) and minimum value
(when all cos (·) terms equal −1) of the simplified CRLBτ

are kept unchanged when phase modulation is introduced.
The above discussions are further analysed using numerical
examples in Section III-C below.

C. NUMERICAL EXAMPLES
In this section, we provide numerical examples to sup-
port the radar performance analyses in Sections III-A and

Section III-B. Fig. 2 and Fig. 3 illustrate the AF while Fig. 4
illustrates the CRLBs on delay and Doppler shift estimation
errors.
Fig. 2 plots the AF and the corresponding contour plot

of the phase modulated stepped frequency waveform. The
number of frequency tones L = 8. In Fig. 2, we consider
quadrature phase shift keying (QPSK) modulation and set
M = 4. We have given the plot for one random sequence of
phases and this particular phase sequence will be used in all
the plots for the phase modulated waveform in the remainder
of this section. Whilst not shown here due to the page lim-
itation, we have provided a few additional plots in [35] for
comparison purposes. Compared to the AF of the classical
linear stepped frequency waveform given in [35, Fig. 2], the
broader structure of the AF is slightly changed due to the
phase modulation. To be more specific, when there is no
phase modulation, most of the volume under the AF is con-
centrated in a ridge located in the first and third quadrants.
When phase modulation is introduced, although there still
exists a ridge, the volume is slightly spread out. However,
the AF around the origin is almost unaffected by the phase
modulation.
To gain more insight into the AF and see the behaviour

around the origin more clearly, Fig. 3 provides one dimen-
sional cuts of the AFs in [35, Fig. 2] and Fig. 2. From
Fig. 3 (a) we observe that the zero-Doppler cut is changed
due to the phase modulation but the change of the high-
est side-lobe level as well as the curvature at the origin is
negligible, which indicates that phase modulation has little
impact on the delay estimation accuracy. From Fig. 3 (b) we

CRLBτ ≈ C−1L2T

2LB
(
L−∑L−2

l=0 cos (ωlT + θl − θl+1)
)
− 3T3

(∑L−1
l=0 (2l+ 1)ωl

)2
, (23)

CRLBω ≈
24C−1B

(
L−∑L−2

l=0 cos (ωlT + θl − θl+1)
)

2L2T2B
(
L−∑L−2

l=0 cos (ωlT + θl − θl+1)
)
− 3LT5

(∑L−1
l=0 (2l+ 1)ωl

)2
. (24)
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FIGURE 3. The (a) zero-Doppler cuts and (b) zero-delay cuts of the AFs in [35, Fig. 2] (blue solid line) and Fig. 2 (red dashed line). The AF cuts in [35, Fig. 2] are for a traditional
linear stepped frequency radar waveform, i.e., without phase modulation.

FIGURE 4. The (a) approximated CRLBs on delay estimation errors given in (25) and (27) and (b) approximated CRLBs on Doppler shift estimation errors given in (26) and (28)
for stepped frequency based waveforms with and without phase modulation.

observe that the zero-delay cuts of the two AFs are exactly
the same, which indicates that the phases of subpulses have
no impact on the zero-delay cut. Hence, there is very little
impact on the Doppler shift estimation accuracy. This also
agrees with the theoretical results in (19) as well as the
analysis in (26).
Next, we focus on quantitative performance measurements

of the delay and Doppler shift estimation accuracy, which can
be illustrated by the CRLBs. Fig. 4 (a) plots the normalised
CRLBs on delay estimation error in (25) and (27) versus
the received signal-to-noise ratio (SNR). Fig. 4 (b) plots
the normalised CRLBs on Doppler shift estimation error
in (26) and (28) versus the received SNR. We focus on the
waveform considered in Fig. 2 and compare the performance
against the waveform without phase modulation. As is
illustrated in Fig. 4 (a), the CRLB on delay estimation
error decreases by changing the phases of subpulses. The
approximated CRLB for the un-modulated stepped frequency
waveform in (27) is maximised since f0 = 0 Hz and
�f = 1/T Hz, thus any phase change will result in a lower
delay CRLB, as is shown by (25). Agreeing with (26), the

CRLB on Doppler estimation error remains unchanged with
phase modulation, as is illustrated in Fig. 4 (b).

IV. FREQUENCY PERMUTATIONS AND PHASE SHIFT
KEYING BASED WAVEFORMS
In this section, we introduce a novel frequency modulation
on top of the phase modulation introduced in Section III
to embed more data into the waveform in (1). In the linear
stepped frequency radar waveform in (11), the frequency
was linearly changed according to (2). Motivated by [31],
we proceed to change the order of frequency tones on
top of the phase modulation, such that the randomisation
in the frequency tones can be used to send more data.
Interestingly, we observe that random permutation of the
frequency tones results in a reasonably small AF side-lobe
level on average and has limited impact on the radar local
accuracy.

A. INCORPORATING FREQUENCY PERMUTATIONS
Consider the sequence of L frequency tones f0, f1, . . . , fL−1
illustrated by (2). If a single frequency tone is used only
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once in a particular waveform having L subpulses, we can
formulate L! of these waveforms. The frequencies of the i-th
waveform, {f i0, . . . , f iL−1}, follow the i-th permutation from
a total of L! permutation sequences where f il denotes the
frequency in the l-th slot of the i-th waveform. The i-th
waveform can be expressed as

si(t) =
√
E

LT

L−1∑
l=0

sp(t − lT) exp
(
j
(

2π f il (t − lT)
))

. (29)

To increase the achievable data rate, we introduce phase mod-
ulation which is performed independently of the frequency
modulation. Note that we change the phase in a discrete man-
ner from subpulse to subpulse, as discussed in Section III,
allowing us to independently change the phase and frequency
of each subpulse. If M-ary phase shift keying is used, we
can formulate L!×ML possible waveforms in total. The i-th
waveform can be expressed as

si(t) =
√
E

LT

L−1∑
l=0

sp(t − lT) exp
(
j
(

2π f il (t − lT)+ θ il

))
,

(30)

where θ il ∈ {0, 2π/M, . . . , 2π(M− 1)/M} denotes the phase
of the l-th subpulse of the i-th waveform and the frequencies
of the i-th waveform follow one of the L! permutations given
by

�1 = · · · = �ML = {f0, . . . , fL−2, fL−1}
�ML+1 = · · · = �2ML = {f0, . . . , fL−1, fL−2}

...

�(L!−1)×ML+1 = · · · = �L!×ML = {fL−1, . . . , f1, f0}. (31)

For simplicity, we define MT = L! × ML to be the total
number of possible waveforms.
While combining phase modulation with frequency per-

mutation increases the number of waveforms, not all degrees
of freedom (DoFs) are used in transmitting communications
symbols when using the proposed modulation scheme in (30)
because of the restriction on the frequency sequence. If
we relax the restriction on using permutations and allow
frequencies to repeat, we obtain L-ary frequency shift key-
ing (FSK) but not frequency permutations. Combining the
L-ary FSK with the M-ary PSK, the total number of wave-
forms is (LM)L, while our proposed scheme has L! × ML

waveforms, resulting in a loss in the maximum data rate
of log2(L

L/L!)/LT . However, we should note that using all
the DoFs can result in unstable radar performance. More
specifically, FSK based waveforms do not have determin-
istic control of the occupied bandwidth. In addition, the
structure of the AF depends significantly on the selection
of particular frequency sequences. In extreme cases, some
sequences can deliver poor performance both in terms of the
main-lobe width and peak side-lobe level.

B. GENERATION OF THE WAVEFORMS
As has been discussed, we can formulate MT possible wave-
forms under the novel modulation scheme in Section IV-A.
When L and M are large, a huge look-up table is required to
map the data to the waveform. However, we can avoid the
use of the look-up table by implementing the mapping using
the Lehmer code [36]. This was initially proposed in [31]
for the frequency permutation based waveforms but could be
easily adapted for the case with both frequency and phase
modulation. To be more specific, if the incoming data sym-
bol is represented as an index i where i ∈ {1, . . . ,MT}, the
integer (� i−1

ML 	+ 1) is mapped to a particular permutation of
L frequency tones using a factorial number system where �·	
denotes the operation of rounding the argument down. Then,
the integer (i−1−� i−1

ML 	ML) is converted to a sequence of L
digits with base number M and sent into a standard M PSK
modulator to generate a particular sequence of L phases.

C. AMBIGUITY FUNCTION
In order to derive the AF, we normalise the signal energy
to one and re-express the i-th waveform in (30) as

si(t) =
√

1

LT

L−1∑
l=0

sp(t − lT) exp
(
j
(
ωi
l(t − lT)+ θ il

))
, (32)

where ωi
l = 2π f il is the frequency in radians per second.

Following similar steps as in Section III-A, we can write
the complex AF of the waveform in (32) as

Â(τ, ω) = 1

LT

L−1∑
l=0

L−1∑
n=0

Âp
(
τ + (n− l)T, ω −

(
ωi
n − ωi

l

))

× ej
(
ωlT+ωin(τ+(n−l)T)+(θ il−θ in

))
. (33)

Taking the absolute value of (33), we express the AF of the
waveform as

A(τ, ω) =
∣∣∣∣∣

1

LT

L−1∑
l=0

L−1∑
n=0

Âp
(
τ + (n− l)T, ω −

(
ωi
n − ωi

l

))

× ej
(
ωlT+ωin(τ+(n−l)T)+(θ il−θ in

))∣∣∣∣∣. (34)

Similarly, the zero-Doppler cut and the zero-delay cut can
be expressed as

A(τ, 0) =
∣∣∣∣∣

1

LT

L−1∑
l=0

L−1∑
n=0

Âp
(
τ + (n− l)T, ωi

l − ωi
n

)

× ej
(
ωin(τ−(n−l)T)+(θ il−θ in

))∣∣∣∣∣, (35)

A(0, ω) =
∣∣∣∣∣

1

LT

L−1∑
l=0

L−1∑
n=0

Âp
(
(n− l)T, ω −

(
ωi
n − ωi

l

))

× ej
(
ωlT+ωin(n−l)T+

(
θ il−θ in

))∣∣∣∣∣. (36)
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The zero-delay cut in (36) can be simplified as

A(0, ω) =
∣∣∣∣∣

1

LT

L−1∑
l=0

Âp(0, ω)ejωlT
∣∣∣∣∣, (37)

which implies that the zero-delay cut is not affected by
frequency permutation and phase change.
As is analysed in [31], the overall structure of the AF

resulting from the random stepped frequency permutation
based waveform has a narrow main-lobe and small sidelobes.
In Section IV-E, using numerical examples we demonstrate
that these desirable radar properties are little affected. Such
an AF can achieve good radar performance since low side-
lobe levels can reduce the probability for the radar receiver
to pick a wrong delay Doppler cell. More specifically, when
a noisy reflected signal is passed through the radar receiver,
the probability that the noisy matched filter output at the
delay and Doppler shift values corresponding to a high AF
side-lobe exceeds that corresponding to the AF main-lobe is
significant. This leads to an incorrect detection, i.e., picking
the wrong point on the delay Doppler plane, while low AF
side-lobes can reduce the probability of incorrect detection.
Low AF side-lobe levels are also important for clutter [31].

Generally speaking, there is a useful averaging effect on the
AF side-lobes because the transmitter sends waveforms based
on random incoming information, which we do not control.
This indicates that clutter enters via the average AF side-
lobe level, averaged over different waveforms. Therefore, in
the following we analyse the overall performance using the
average of the AF. We note from (33) that the complex AF
in (33) is a sum of bounded and weakly correlated complex
exponential terms whose exponents are random variables.
The weak correlation between terms is due to the inde-
pendent and identically distributed (i.i.d) phase terms in the
exponents. In this situation, the modified central limit theory
such as [37] motivates the use of a Gaussian approxima-
tion to the distribution of the complex AF value when the
number of terms in the summation is large. More specifi-
cally, Â(τ, ω) can be approximated by a complex Gaussian

random variable whose real and imaginary parts are inde-
pendent. Thus, A(τ, ω) can be approximated using a Rician
distribution which can be fully described using the mean of
Â(τ, ω) and the second moment of A(τ, ω). Following the
steps in Appendix A, the second moment of the AF in (34)
can be expressed as

E
[
A2(τ, ω)

]
=
⎧⎨
⎩
a0(T), −T ≤ τ < 0,

a0(−T), 0 ≤ τ < T,

a1, otherwise,
(38)

where a0(·) and a1 are defined in (39) and (40), shown at
the bottom of the page, respectively, and

b(x) =
{
L, x ∈ Z,
1−exp(j2πxL)
1−exp(j2πx) , otherwise.

(41)

The mean of the complex Gaussian random variable is the
mean of the complex AF, which can be expressed as

E
[
Â(τ, ω)

]
=
{

Âp(τ,ω)ejω0τ b(�f τ)b(ωT/(2π))

L2T
, |τ | < T,

0, otherwise.
(42)

Detailed steps of the derivation of (42) are provided in
Appendix B. Using (38), (42) and the Rician approximation,
the mean of A(τ, ω) can be expressed as

E[A(τ, ω)] ≈
√

π

2
σ(τ, ω)L1/2

⎛
⎜⎝−
∣∣∣E[Â(τ, ω)

]∣∣∣2
2σ 2(τ, ω)

⎞
⎟⎠, (43)

where σ(τ, ω) denotes the standard deviation of the real
and imaginary parts of the approximation, which can be
expressed as

σ(τ, ω) =

√√√√E
[
A2(τ, ω)

]− ∣∣∣E[Â(τ, ω)
]∣∣∣2

2
, (44)

and L1/2(x) is a Laguerre function which is defined as

L1/2(x) = ex/2
[
(1− x)I0

(
− x

2

)
− xI1

(
− x

2

)]
, (45)

a0(x) = (τ + x)2

L3(L− 1)T2
sinc2

( ω

2π
(τ − T)

)(
|b(�f τ)|2 − L

)(∣∣∣∣b
(

ωT

2π

)∣∣∣∣
2

− L
)

+ 1

L3T2

L−1∑
k=−(L−1)

k 
=0

(L− |k|)τ 2sinc2
(( ω

2π
− k�f

)
τ
)
+ (τ + x)2

LT2
sinc2

( ω

2π
(τ + x)

)
, (39)

a1 = 1

L3(L− 1)T2

L−1∑
k=−(L−1)

k 
=0

(L− |k|)
{(
L−
∣∣∣� τ
T
	
∣∣∣)(T − τ + � τ

T
	T
)2

× sinc2
(( ω

2π
− k�f

)(
T − τ + � τ

T
	T
))

+
(
L−
∣∣∣� τ
T
	 + 1

∣∣∣)(τ − � τ
T
	T
)2
sinc2

(( ω

2π
− k�f

)(
τ − � τ

T
	T
))}

. (40)
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with I0(x) and I1(x) the modified Bessel functions [38].
We note from (42) that E[Â(τ, ω)] is zero when |τ | ≥ T .

Therefore, (43) can be simplified by considering a Rayleigh
approximation, resulting in

E[A(τ, ω)] ≈
√

πE
[
A2(τ, ω)

]
2

, |τ | ≥ T. (46)

We also observe from (44) that σ(0, ω) = 0, which indicates
that the variance of the approximation is 0 when τ = 0. This
is consistent with (37) that the zero-delay cut of the AF is
invariant with the selection of waveforms. By substituting τ

with 0 in (43) and using the asymptotic expansions of I1(x)
and I2(x) when x→∞ [38], we can express E[A(0, ω)] as

E[A(0, ω)] =
∣∣∣E[Â(0, ω)

]∣∣∣, (47)

which is exactly the same as the invariant zero-delay cut
in (37). Thus, the approximation in (43) is an exact result
when τ = 0.

Please note that the approximation in (43) is accurate
when the number of terms in the summation is large. We
note that this condition does not hold for all (τ, ω) pairs.
When τ = kT and ω = r�f , where both k and r are integers,
the complex AF can be derived using (34) as

Â(kT, r�f ) = 1

j2π�fLT

L−1∑
l=k

{
ej
(
θ il−θ il−k

)

× ej2π�f
(
nil−nil−k+r

)
T − 1

r + nil − nil−k
ej2πrl

}
.

(48)

Note that the number of terms in (48) is small. This indi-
cates that the approximation is inaccurate when τ = kT and
ω = r�f or close to these regions. However, the approx-
imation in (43) is still reasonable on the majority of the
delay-Doppler plane.
In Section III-C, we further discuss the performance of

the AFs and the approximations with different parameters
using numerical examples.

D. FISHER INFORMATION MATRIX AND CRAMER-RAO
LOWER BOUNDS
In this section, we follow similar steps as in Section and
derive the FIM for the new waveform. Replacing ωm and θm

in (20) to (22) with ωi
m and θ im, respectively, the new FIM

elements can be expressed as

J11 ≈ 2CB

LT

(
L−

L−2∑
l=0

cos
(
ω0T + θ il − θ il+1

))
, (49)

J12 = J21 ≈ −CT
2

2

L−1∑
l=0

ωi
l(2l+ 1), (50)

J22 = CL2T2

12
. (51)

Based on (49)-(51), the CRLBs of the delay esti-
mation and Doppler shift estimation errors can be
approximated by (52) and (53), respectively. Based
on [33, eq. (10.94), (10.95)], (52) and (53) can be further
simplified to looser bounds, which can be expressed as

CRLBτ ≈ C−1LT

2B
(
L−∑L−2

l=0 cos
(
ω0T + θ il − θ il+1

)) , (54)

CRLBω ≈ 12C−1

L2T2
. (55)

Again, the simplified expressions in (54) and (55) clearly
show the effect of parameters on the estimation errors. The
delay estimation error lower bound in (54) is inversely pro-
portional to B and to the effective bandwidth, 1/T , of a single
subpulse. The Doppler shift estimation error lower bound
in (55) is inversely proportional to the square of time dura-
tion of the whole waveform LT . Compared to (27) and (28),
the frequency permutation has no effect on both CRLBτ

and CRLBω. In addition, compared to [31, eq. (48), (49)],
it can be found that the phase modulation has exactly no
effect on the simplified CRLBω while it does affect CRLBτ .
Similar to Section III-B, the maximum value (when all cos (·)
terms equal 1) and minimum value (when all cos (·) terms
equal −1) of CRLBτ in (55) are kept unchanged when phase
modulation is introduced. The analysis is supported by the
numerical examples in Section III-C.

E. NUMERICAL EXAMPLES
In this section, we provide numerical examples to verify the
theoretical analyses in Section III-A and Section IV-D. Fig. 5
and Fig. 6 illustrate the AFs and the corresponding contour
plots for the random frequency permutation based waveforms
for L = 8 with and without phase modulation, respectively
The phase sequence of the waveform in Fig. 6 is the same
as that in Fig. 2 and the frequency permutation is randomly

CRLBτ ≈ C−1L2T

2LB
(
L−∑L−2

l=0 cos
(
ω0T + θ il − θ il+1

))− 3T3
(∑L−1

l=0 (2l+ 1)ωi
l

)2
, (52)

CRLBω ≈
24C−1B

(
L−∑L−2

l=0 cos
(
ω0T + θ il − θ il+1

))

2L2T2B
(
L−∑L−2

l=0 cos
(
ω0T + θ il − θ il+1

))− 3LT5
(∑L−1

l=0 (2l+ 1)ωi
l

)2
. (53)
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FIGURE 5. AF of a frequency permutation based waveform for L = 8 and �f = 1/T . The frequency sequence is [f2, f7, f5, f0, f4, f1, f6, f3].

FIGURE 6. The AF of a frequency permutation and PSK based waveform for L = 8, M = 4 and �f = 1/T . The frequency sequence is [f2, f7, f5, f0, f4, f1, f6, f3]. The phase
sequence is [3π/4, 3π/4, 3π/4, π/2, 3π/4, π/2, π/4, π/2].

generated. Both of them will be fixed in the AF and CRLB
examples for the remainder of this section. We observe that
the main-lobes of the AFs in Fig. 5 and Fig. 6 are very
similar, which again implies that the phase modulation has
negligible impact on the AF around the origin. In addition, by
comparing Fig. 5 with [35, Fig. 2] and Fig. 6 with Fig. 2, it
can be observed that the frequency permutation has a larger
impact on the broader structure of the AF than the phase
modulation. By randomly choosing a frequency permutation,
the volume under the AF is more likely to be evenly spread
over the delay-Doppler plane as is evident by the side-lobe
structure of Fig. 5 and Fig. 6 compared to that of a waveform
with an ascending frequency sequence given in [35, Fig. 2]
and Fig. 2.

Fig. 7 plots the one dimensional cuts of the AFs in Fig. 5
and Fig. 6. The zero-Doppler cuts in Fig. 7 (a) indicate that
the change due to the phase modulation in both the highest
side-lobe level and the curvature at the origin is negligible.
As is discussed in Section III-A, the zero-delay cut is not
affected by the phase modulation, which can also be observed

in Fig. 7 (b). Compared to Fig. 3, we also notice that the
frequency permutation does not affect the zero-delay cuts.
This agrees with the expression in (37) as well as the analysis
in (55).
Fig. 6 and Fig. 7 illustrate the side-lobe levels using

an example AF. In order to analyse the average side-lobe
performance of the AFs of all possible waveforms, Fig. 8
plots the empirical mean of the AFs and the average AF
based on the Rician approximation in (43) with L = 8
and M = 4. We observe from the empirical mean in
Fig. 8 (a) and (b) that the side-lobe level of the AFs is low on
average. By comparing Fig. 8 (c) and (d) with (a) and (b), we
observe that the Rician approximation has a similar struc-
ture to the empirical mean, and that the approximation is
accurate in general.
Fig. 9 further studies the accuracy of the approximation

by plotting the difference between the Rician approximation
mean and the empirical mean of the AFs in Fig. 8. We
observe that the error is insignificant on the majority of
the delay-Doppler plane, except when τ and ω are close to
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FIGURE 7. The (a) zero-Doppler cuts and (b) zero-delay cuts of the AFs in Fig. 5 and Fig. 6.

FIGURE 8. (a) The empirical mean of the AFs (b) its corresponding contour plot and (c) the average AF based on the Rician approximation (d) its corresponding contour plot
for L = 8, M = 4 and �f = 1/T .

integer multiples of T and 2π�f , respectively. In order to
analyse the significance of the error, we evaluate the values
of the empirical mean and the difference on the diagonal of

the delay-Doppler plane, i.e., when τ = kT, ω = 2π × k�f ,
k ∈ {1, . . . ,L − 1}. The difference decreases slowly from
0.0209 to 0.0127 with k while the mean AF decrease rapidly
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FIGURE 9. The (a) difference between the Rician approximation mean and the empirical mean of the AFs in Fig. 8 and (b) its contour plot.

FIGURE 10. The empirical CDFs and the Rayleigh approximations of
(a) A(τ = 1.75T ,ω = 2π × 1.25/T ) and (b) A(τ = 2T ,ω = 2π × /T ) with L = 8, M = 4 and
�f = 1/T .

from 0.0828 to 0.0021, which indicates that the significance
of the error increases when moving away from the origin.
However, this is acceptable since the high side-lobe levels
close to the origin are of more interest. Furthermore, we

observe from Fig. 9 that the Rician approximation becomes
higher than the empirical mean when τ and ω are close to
integer multiples of T and 2π�f except for the area around
the origin. Hence, the method is conservative and provides
a reliable indication of low AF side-lobe levels.
Fig. 10 plots the empirical cumulative distribution func-

tions (CDFs) of A(τ, ω) for L = 8 and M = 4 and the
corresponding approximations for two examples of τ, ω val-
ues. Note that the simple Rayleigh approximation in (46)
is used as both τ values are greater than T . We observe
in Fig. 10 (b) that when τ is an integer multiple of T and
ω is an integer multiple of 2π�f , the empirical distribu-
tion is “discrete” since the number of complex exponentials
in the summation in (48) is small. However, away form
these points we see an excellent fit, as can be observed
in Fig. 10 (a).
In order to analyse the impact of phase modulation on

the mean of the AFs, Fig. 11 compares the zero-Doppler
cuts and zero-delay cuts of the average AFs in Fig. 8 and
the empirical average of the AFs of waveforms without
phase modulation. We observe that the approximation in (43)
shows high accuracy on the two axes. We also observe that
the difference between the AF cuts with and without phase
modulation is insignificant, which indicates that the phase
modulation has a limited impact on the average side-lobe
levels in the two AF cuts.
Fig. 12 plots the CDF and empirical probability density

function (PDF) of the normalised peak side-lobe levels of
the AFs with and without phase modulation for L = 8 and
M = 4. When phase modulation is introduced, both the
CDF and PDF become smoother. Besides, from Fig. 12 (b),
we observe that the empirical mean of the peak side-lobe
level is slightly decreased from 0.326 to 0.303 with phase
modulation. This clearly illustrates that phase modulation
does not have a significant effect on the average side-lobe
levels of the AFs.
Fig. 13 plots the normalised CRLBs on delay estimation

error in [31, eq. (48)] and (54), as well as the normalised
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FIGURE 11. The (a) zero-Doppler cuts and (b) zero-delay cuts of the average AFs in Fig. 8 and the empirical average of the AFs of waveforms without phase modulation.

FIGURE 12. The (a) empirical CDF and (b) empirical PDF of the normalised peak side-lobe levels of AFs with and without phase modulation for L = 8 and M = 4.

FIGURE 13. The (a) approximated CRLBs in (54) on delay estimation errors and (b) approximated CRLBs in (55) on Doppler shift estimation errors for stepped frequency based
waveforms with and without phase modulation.

CRLBs on Doppler shift estimation error in [31, eq. (49)]
and (55) versus the received SNR, respectively. Since f0 = 0
Hz and �f = 1/T Hz, the simplified CRLBτ in (54) is
maximised without phase modulation and is decreased due

to the change of phases, which is shown in Fig. 13 (a).
Agreeing with the analytical results, the simplified CRLBω

in (55) remains unchanged with phase change, as is shown
in Fig. 13 (b).
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V. COMMUNICATIONS PERFORMANCE ANALYSIS
In this section, we focus on the communication performance
of the proposed waveform. In Section III, we consider the
traditional MPSK modulation for which the communication
performance is quite well known and therefore is not dis-
cussed in this paper. In Section IV we consider combining
MPSK modulation with frequency permutation, which results
in a new signalling scheme. In this section, we focus on
this interesting new communication system and analyse its
performance in terms of the block error probability. We per-
form the optimal ML detection at the communication receiver
and derive analytical expressions for the union bound, near-
est neighbour approximation and a new upper bound on the
block error probability. In addition, we propose the imple-
mentation of an efficient communication receiver based on
the Hungarian algorithm. While we only focus on the block
error probability performance, we should notice that the
achievable data rate of the proposed waveform depends on
the total number of waveforms we can generate which is
�log2(MT)	/LT bits/second.

A. MAXIMUM LIKELIHOOD DETECTION
Assume there are N antennas at the communications receiver.
The baseband received signal at time t can be represented
by an N × 1 vector

rc(t) = hsi(t)+ n(t), (56)

where h is the fading channel vector, si(t) is the transmit-
ted signal and n(t) is an AWGN vector in which the power
spectral density (PSD) of each element is N0. The transmis-
sion of si(t) is assumed to be equally likely among all MT

possible waveforms. Suppose the channel vector is known
at the receiver, then ML detection of the received signal is
given by

ŝi(t) = argmaxsk(t)∈
{
s1(t),...,sMT (t)

}�
{∫ LT

0
s∗k(t)hHrc(t)dt

}
,

(57)

where �{·} denotes the operation of taking the real part of
the argument.

B. ERROR PROBABILITY ANALYSIS
1) AWGN CHANNEL

First, let us consider the simple AWGN channel model. By
assuming a unit channel gain, the fading vector satisfies
hHh = N. If the i-th waveform, si(t), is transmitted the
probability of the correct detection of the waveform is given
by

Pc(i) = Pr

[
ξii = max

k∈{1,...,MT }
ξik

]
, (58)

where ξik is the k-th decision variable when si(t) is
transmitted, and is given by

ξik = �
{∫ LT

0
s∗k(t)hHrc(t)dt

}
. (59)

Since the transmission of each waveform is assumed to be
equally likely, the average probability of making a wrong
detection is

Pe = 1

MT

MT∑
i=1

(1− Pc(i)). (60)

We note that it is difficult to calculate the exact expression of
Pe since it requires multi-dimensional integrals. Therefore,
we consider the union bound on Pe, which is given by

Pe ≤ PUBe =
1

MT

MT∑
i=1

MT∑
k=1,
k 
=i

Pik, (61)

where Pik denotes the pairwise error probability (PEP) that
the k-th signal is preferred over the i-th signal when the i-th
signal is transmitted and is given by

Pik = Pr[ξik − ξii ≥ 0]. (62)

Since the distribution of the distances between a particular
waveform si(t) and all other waveforms is unchanged with
the particular selection of index i, we can further simplify
the union bound as

PUBe =
MT∑
k=2

P1k. (63)

Similar to [31, eq. (10)-(11)], next we proceed to anal-
yse Pik, by substituting (59) into (62) and rearranging the
expressions to obtain

Pik = Pr

⎡
⎣E
(
L−∑L−d

q=1 cos
(
θkl(q) − θ il(q)

))
L

hHh < Z1

⎤
⎦,

(64)

where d is the number of frequency tones si(t) and sk(t) differ
by, l(q) is the index of the q-th subpulse where si(t) and
sk(t) have the same frequency and Z1 = �{hH

∫ LT
0 (s∗k(t) −

s∗i (t))n(t)dt}. When conditioned on the channel fading, Z1
is a Gaussian random variable with zero mean and variance
E(L−∑L−d

q=1 cos(θkl(q)−θ il(q)))N0hHh/L. Thus we can express
the PEP in (62) as

Pik = Pr
[√

hHh ≤ αikZ
]
, (65)

where

αik =
√√√√ LN0

E
(
L−∑L−d

q=1 cos
(
θkl(q) − θ il(q)

)) ,

and Z ∼ N (0, 1) is a standard Gaussian random variable.
By setting hHh = N, the pairwise error probability Pik over
the AWGN channel can be represented as

Pik = Q

(√
N

αik

)
, (66)
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where Q(·) is the Gaussian Q-function. Substituting (66)
to (63) we find the resulting union bound over the AWGN
channel as

PUBe =
MT∑
k=2

Q

(√
N

α1k

)
. (67)

We note that, if L and M are large, there are MT − 1
pairwise error probabilities to be added up, which will
make the union bound far above the exact error probabil-
ity, especially in the low SNR region. To provide a better
approximation, we derive the nearest neighbour approxima-
tion of the error probability, in which we only consider
the pairwise error probabilities corresponding to the nearest
neighbours [39]. When M > 2, the nearest neighbours of a
particular waveform si(t) are the waveforms with the same
frequency permutation as si(t), while the phase is only differ-
ent in a single subpulse by the amount of 2π/M. The number
of nearest neighbours for a particular waveform is 2L. Thus
the nearest neighbour approximation can be expressed as

PNNe = 2LPNN1k , (68)

where PNN1k is the PEP that the nearest neighbour sk(t) is
preferred over s1(t) when s1(t) is transmitted, which can be
expressed as

PNN1k = Q

(√
N

αNNik

)
, (69)

where

αNNik =
√√√√ LN0

E
(

1− cos
(

2π
M

)) . (70)

When M = 2, however, the set of nearest neighbours of a
particular waveform si(t) is the union of two subsets. The
first subset has a size of L, which contains the waveforms
with the same frequency permutation as si(t), while the phase
is only different in a single subpulse by the amount of π . In
the second subset, the waveforms have L − 2 subpulses in
the same positions as si(t). For the other two subpulses, the
order of the frequency tones is different compared to si(t)
while phases do not matter. The size of the second subset
is 2L(L−1). Therefore, when M = 2, the nearest neighbour
approximation can be expressed as

PNNe =
(

2L2 − L
)
PNN1k , (71)

where PNN1k in (71) can be expressed by (69) with αNNik =√
LN0
2E . Thus, the nearest neighbour approximation over the

AWGN channel can be written as

PNNe =
⎧⎨
⎩

2LQ
(√

NE(1−cos(2π/M))
LN0

)
, M > 2(

2L2 − L)Q(√ 2NE
LN0

)
, M = 2.

(72)

2) CORRELATED FADING CHANNELS

Under fading channels, we first focus on the correlated
Rician fading channel with a line-of-sight (LOS) path and a
scattered path. For such a system, the channel fading vector
can be expressed as

h =
√

K

K + 1
�+

√
1

K + 1
R1/2
u u, (73)

where � denotes the N × 1 complex LOS phase vector
with the i-th element having the property |�i|2 = 1, u ∼
CN (0, IN), K is the Rician factor which denotes the relative
strength of the LOS path to the scattered path and Ru denotes
the N×N correlation matrix of the scattered component. As
Ru is a symmetric matrix it can be expressed as

Ru = V�VH, (74)

where V is unitary and � = diag(λ1, . . . , λN) is a diag-
onal matrix containing the eigenvalues λ1, . . . , λN of Ru.
We denote the j-th element of the vector (VH�) as
(VH�)j. Whilst not given here due to page limitations,
after lengthy mathematical manipulations, P1k for correlated
Rician channels can be derived as

P1k = 1

π

∫ π/2

0

N∏
j=1

(
2(K + 1)α2

1k sin2 θ

λj + 2(K + 1)α2
1k sin2 θ

)

× exp

⎛
⎝−K

N∑
j=1

|(VH�
)
j|2

λj + 2(K + 1)α2
1k sin2 θ

⎞
⎠dθ. (75)

The full derivation of (75) is included in the
arXiv version [35, Appendix A]. Substituting (75)
into (63), (68) and (71), we obtain the union bound as well as
the nearest neighbour approximation of the error probability
over a correlated Rician fading channel.
Note that for the special case of Rayleigh fading channels

where the fading vector h does not have the LOS component,
the pairwise error probability can be simplified to

P1k = 1

π

∫ π/2

0

N∏
j=1

(
2α2

1k sin2 θ

λj + 2α2
1k sin2 θ

)
dθ. (76)

3) TIGHTER UPPER BOUND

As has been stated in Section V-B1, when L and M are large,
the union bound can be very loose, especially in the low
SNR regime. This problem becomes more severe in fading
channels since the channels are random vectors. Therefore,
in the following we propose a tighter upper bound on the
error probability for fading channels as

Pe ≤ PNBe = min
γ≥0

{
Pr
[
hHh < γ

]

+ Pr
[
hHh ≥ γ

] MT∑
k=2

P̃1k

}
, (77)
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where γ is a threshold defined for the total channel gain
and

P̃1k = Pr
[
ξ11 < ξ1k | hHh ≥ γ

]
. (78)

In (77), the bound is created by assuming that a detection
error always occurs when the channel gain is lower than
a defined threshold γ . The minimisation with respect to
γ in (77) is taken to make the upper bound as tight as
possible. Using the result in (65) and following the steps
in [35, Appendix B], (78) can be expressed as

P̃1k = 1

π Pr
[
hHh ≥ γ

]
∫ ∞

γ

∫ π/2

0
fhHh(x)

× exp

(
− x

2α2
1k sin2 θ

)
dθdx, (79)

where fhHh(x) is the PDF of hHh.
For the correlated Rayleigh fading channel, we can rewrite

hHh as

hHh = uHRuu ≡
N∑
j=1

λj|uj|2, (80)

where uj is the j-th element of the vector u and ≡ indicates
statistical equivalence. Thus, the PDF of the random variable
in (80) can be expressed as [40]

fRay
hHh

(x) =
{∑N

j=1
bj
λj
e−x/λj , x ≥ 0

0, x < 0,
(81)

where bj = λN−1
j

∏N
n=1
n 
=j

1/(λj − λn). Substituting (81)

into (79) and (77), we can express the new upper bound
over the correlated Rayleigh fading channel as

PNBe = min
γ≥0

⎧⎨
⎩

N∑
j=1

bj

(
1− e−

x
λj

)
+ 1

π

MT∑
k=2

N∑
j=1

2bjα1k sin2 θ

λj + 2α1k sin2 θ

×
∫ π/2

0
exp

(
−γ

(
1

2α1k sin2 θ
+ 1

λj

))
dθ

}
. (82)

Under the numerical examples in Section V-D we illustrate
the accuracy of the new bound and highlight that it is much
tighter than the union bound when L and M are large.

C. OPTIMAL COMMUNICATIONS RECEIVER
In this section we propose the implementation of an efficient
communications receiver for the novel signalling scheme
presented in Section IV. The optimal receiver based on the
ML detection rule in (57) looks for the maximum output over
the correlations between the received signal and all possi-
ble transmitted signals. If an exhaustive search is applied to
find the maximum, the receiver has a worst case complex-
ity of O(MT), which means the detection process will be
prohibitively slow when L and M are large. Instead of cor-
relating the whole received signal with the reference signals

as in (57), an efficient receiver can be implemented using
the correlation in each subpulse

xm̄,l = �
{∫ lT

(l−1)T
hHrc(t)φm̄(t − (l− 1)T)dt

}
, (83)

to formulate the matrix

X = (xm̄,l
) ∈ R

(ML)×L. (84)

The basis function φm̄(t) is defined as

φm̄(t) = sp(t) exp(j(2π fn−1t + θm)),

where m̄ ∈ {1, 2, . . . ,ML} is the row index of the (m̄, l)-
th element in X, l ∈ {1, 2, . . . ,L} is the column index of
the (m̄, l)-th element in X which denotes the index of the
subpulse, n = (� m̄−1

M 	 + 1) ∈ {1, 2, . . . ,L} denotes the
index of the frequency of the basis function φm̄(t), m =
(m̄− � m̄−1

M 	M) ∈ {1, 2, . . . ,M} and θm = 2π(m− 1)/M is
the phase of φm̄(t).
Then, we split X into L2 blocks ofM elements whose basis

functions have the same frequency and time slot. Using the
maximum element in each block, we can formulate a new
matrix, which can be expressed as

Y = (yn,l) ∈ R
L×L, (85)

where

yn,l = max
m̄∈{M(n−1)+1,...,Mn}

xm̄,l. (86)

The row indices of yn,l in the original matrix X is stored
separately in m̄n,l. Note that the basis function used for yn,l
is a complex exponential with frequency fn−1. The worst
case complexity of finding L2 maximums in L2 blocks is
O(L2 ×M) if an exhaustive search is used.
To detect the frequency of each subpulse, we apply

the Hungarian algorithm to Y to select L elements r̂l,
l ∈ {1, . . . ,L}, such that these elements are in L differ-
ent rows and L different columns, and the sum of the L
elements is maximised. The detection of the frequency f̂ il−1
is determined by the row index n̂l of the selected element
in the l-th column. Note that the Hungarian algorithm has a
worst case time complexity of O(L3) [41].

To detect the phase of each subpulse, we use the recorded
indices m̄n,l of the L elements selected by the Hungarian
method. The detection of the phase θ̂ il−1 is determined by
the row index of the selected element in the l-th column of
the original matrix X.
Algorithm 1 summarises the main steps of the Hungarian

algorithm based communication receiver. The proposed
optimal receiver is an efficient implementation of the optimal
ML detector.

D. NUMERICAL EXAMPLES
In this section we provide numerical examples to support
the theoretical analysis of the communication performance
in Section V-B. Fig. 14 to 16 illustrate the error probability of
the waveform over different communication channel models.
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Algorithm 1 Modified Hungarian Algorithm for Optimal
Communications Receiver
1: Formulate X = (xm̄,l

) ∈ R
(ML) ×L using (83) and (84)

2: for l = 1 to L do
3: for n = 1 to L do
4: yn,l ← maxm̄∈{M(n−1)+1,...,Mn} xm̄,l
5: m̄n,l ← argmaxm̄∈{M(n−1)+1,...,Mn}xm̄,l
6: end for
7: end for
8: Y← (yn,l) ∈ R

L×L
9: Apply the Hungarian algorithm to matrix Y following the steps

in [31, algorithm 1] to get L elements r̂l and their row indices
n̂l, where l ∈ {1, ...,L}

10: for l = 1 to L do
11: Detection of the frequency of the l-th subpulse f̂ il−1 ← fn̂l−1

12: Detection of the phase of the l-th subpulse θ̂ il−1 ←
2π�(m̄n̂l,l−1) /M	

M
13: end for

FIGURE 14. The block error rate versus average received SNR for L = 8, M = 4 and
N = 2, 4. The results are for the proposed baseband signalling model in an AWGN
channel.

We mainly focus on the performance of the bounds and
approximations derived in Section V-B.

Note that the analysis for correlated fading channels in
Section V-B2 holds for all Ru but in this section we use
the simple exponential correlation model. Hence, given a
correlation coefficient ρ ∈ [0, 1], the (i, j)-th entry of Ru
can be written as

Ru(i, j) = ρ|i−j|. (87)

Fig. 14 shows the block error rate versus the average
received SNR in an AWGN channel with different num-
bers of receiver antennas, N = 2, 4. The parameters of the
waveform are kept to be L = 8 and M = 4. As expected,
the block error rate decreases with an increase in N due
to the receive diversity gain. The union bounds generated
using (67) always stay above the corresponding simulation
results and approach the simulation curves in the high SNR
region. Compared to the union bounds, the nearest neighbour

FIGURE 15. The block error rate versus average received SNR for L = 8, M = 4 and
N = 2. The results are for the proposed baseband signalling model in correlated
Rician fading channels with K = 0.25, 2.5, 10 and ρ = 0.5.

approximations generated using (72) provide better approxi-
mations to the simulation results, especially in the low SNR
region.
In order to verify the optimality of the efficient receiver,

we plot the error probability performance of the Hungarian
algorithm based receiver and the exhaustive search based
receiver, denoted as “Simulation-Hun” and “Simulation-ES”,
respectively. Given the same received signal, the outputs of
the two receivers are exactly the same, which results in the
same error performance. For the convenience of simulation,
we only provide error probability results from the Hungarian
algorithm based receiver in the following figures.
Fig. 15 plots the block error rate versus the average

received SNR in correlated Rician fading channels with
different channel factors, K = 0.25, 2.5, 10. We set the wave-
form parameters, the number of receiving antennas and the
correlation coefficient to be L = 8, M = 4, N = 2 and
ρ = 0.5, respectively. As has been discussed, in fading
channels the union bounds are very loose. Thus, we only
show the nearest neighbour approximations using (71) with
the PEP and αNN1k provided in (75) and (70), respectively. The
block error rate decreases with K, since the LOS component
is increased. The nearest neighbour approximations accu-
rately approximate the corresponding simulation results in
the high SNR region. However, the approximations become
looser for smaller K in the low SNR region.

Fig. 16 plots the block error rate versus the average
received SNR in a correlated Rayleigh fading channel with
different numbers of receiver antennas, N = 2, 4. We set
the waveform parameters and the correlation coefficient to
be L = 8, M = 4 and ρ = 0.5, respectively. Similar to
what we observe in Fig. 14, the block error rate decreases
with an increase in N. Also, the nearest neighbour approach
calculated using (68) and (71) approximates the simulation
results more accurately with increasing N, especially in the
low SNR region. The new upper bound in (82) is a tighter
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FIGURE 16. The block error rate versus average received SNR for L = 8, M = 4 and
N = 2, 4. The results are for the proposed baseband signalling model in correlated
Rayleigh fading channels with ρ = 0.5.

and more accurate performance bound on the block error
rate compared to the union bound, which is not plotted in
Fig. 16 since the value is always larger than 1. Therefore, for
the proposed signalling scheme, the new upper bound does
outperform the union bound over Rayleigh fading channels.

VI. CONCLUSION AND FUTURE EXTENSIONS
In this paper, we consider the integration of radar sensing
and communications and propose a linear stepped frequency
waveform and a frequency permutation based waveform,
both with phase modulation. Compared to modulating data
using phase only, the randomisation in frequency tones in the
second signalling scheme allows more data to be transmitted.
Focusing on the fundamental theoretical aspects, we anal-

yse the effect of phase and frequency modulation on the
radar sensing functionality and establish an important and
fundamental theoretical result which shows that the phase
modulation has negligible effect on the radar local accuracy.
More specifically, we derive the AFs of both waveforms
to analyse the impact of phase change on local accuracy
and side-lobe levels. To provide quantitative measurements
of the impact of phase modulation on the local accuracy,
we also derive approximations to the CRLBs on delay and
Doppler estimation errors based on the FIMs. We conclude
that the frequency permutations result in reasonably low
AF side-lobe level in average and the phase modulation
has little impact on the local estimation accuracy. From the
perspective of communications, we focus on analysing the
block error probability of the phase modulated frequency
permutation based waveform. We consider the optimal ML
detection and derive the union bound and the nearest neigh-
bour approximation on the block error rate over AWGN
channels and correlated Rician fading channels. We also
propose a new tighter upper bound on the block error prob-
ability, for which a closed-form expression is derived under
the case of Rayleigh fading channels.

Possible future extensions of this work includes the
quantitative analysis of the effect of phase and frequency
modulation on the side-lobe structure of the AF. From the
communications perspective, it is desirable to extend the
analysis to incorporate coding based on which a subset of
possible waveforms can be selected to improve the error
probability performance. On the other hand, using FSK
instead of frequency permutations increases the number of
waveforms and allows the use of more DoFs in data transmis-
sion. Nevertheless, the impact of FSK on radar performance
requires further analysis.

APPENDIX A
THE SECOND MOMENT OF |A(τ ,ω)|
For simplicity, we first re-write the expression of the AF
in (34) as

A(τ, ω) =
∣∣∣∣∣

1

LT

L−1∑
l=0

L−1∑
n=0

al,ne
j
(
θ il−θ in

)∣∣∣∣∣, (88)

where

al,n = Âp
(
τ + (n− l)T, ω −

(
ωi
n − ωi

l

))
ej
(
ωlT+ωin(τ+(n−l)T)

)
.

(89)

By averaging over all possible frequency permutations and
phase sequences, the second moment of A(τ, ω) can be
expressed as

E
[
A2(τ, ω)

]
= 1

L2T2

L−1∑
l=0

L−1∑
n=0

L−1∑
p=0

L−1∑
q=0

E

[
al,na

∗
pqe

j
(
θ il−θ in−θ ip+θ iq

)]
. (90)

Since frequencies and phases are independently modulated,
we can re-write (90) as

E
[
A2(τ, ω)

]
= 1

L2T2

L−1∑
l=0

L−1∑
n=0

L−1∑
p=0

L−1∑
q=0

E�

[
al,na

∗
p,q

]
Tl,n,p,q,

(91)

where � denotes the frequency permutation and

Tl,n,p,q = E

[
e
j
(
θ il−θ in−θ ip+θ iq

)]
. (92)

By noting the fact that Eθ [ejkθ ] = 0 when k ∈ Z\{0}, where
Z denotes the set of all integers, we observe that Tl,n,p,q = 1
only when (l = n, p = q, l 
= p), (l = p, n = q, l 
= n) or
(l = n = p = q), otherwise Tl,n,p,q = 0. Therefore, (91) can
be re-expressed as

E
[
A2(τ, ω)

]

= 1

L2T2
E�

⎡
⎢⎢⎢⎣
L−1∑
l=0

L−1∑
p=0

l 
=p

al,la
∗
p,p +

L−1∑
l=0

L−1∑
p=0

l 
=n

∣∣al,n∣∣2 +
L−1∑
l=0

∣∣al,l∣∣2
⎤
⎥⎥⎥⎦.

(93)
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Substituting (89) into (91), the first term of the expectation
can be expressed as

L−1∑
l=0

L−1∑
p=0

l 
=p

E�

[
al,la

∗
p,p

]
=

L−1∑
l=0

L−1∑
p=0

l 
=p

∣∣∣Âp(τ, ω)

∣∣∣2

× ejω(l−p)TE�

[
e
j
(
ωil−ωip

)
τ
]
. (94)

The frequency of subpulse l, ωi
l, can be expressed as

2π(f0 + kl�f ), where kl is uniformly distributed among
{0, 1, . . . , L − 1}. Since only permutations of frequencies
are considered, we observe that kl 
= kp. Thus the expecta-
tion on the right hand side of (94) can be further expressed
as

E�

[
e
j
(
ωil−ωip

)
τ
]
= 1

L(L− 1)

L−1∑
kl=0

L−1∑
kp=0

kl 
=kp

ej2π(kl−kp)�f τ . (95)

After some straight forward mathematical manipula-
tions, (94) can be expressed as

L−1∑
l=0

L−1∑
p=0

l 
=p

E�

[
al,la

∗
p,p

]
= 1

L(L− 1)

∣∣∣Âp(τ, ω)

∣∣∣2

×
(
|b(�f τ)|2 − L

)

×
(
|b(ωT/(2π))|2 − L

)
, (96)

where b(·) is defined in (41). Substituting (89) into the sec-
ond term and the third term of (93), E[A2(τ, ω)] can be
expressed as (97), shown at the bottom of the page.
As is shown in (15), Âp(τ, ω) = 0 when |τ | ≥ T . Thus,

when |τ | ≥ T , it is obvious that the first and the third terms
in (97) are zero and the second term is non-zero only if
l − n = �τ/T	 or �τ/T	 + 1. Therefore, E[A2(τ, ω)] for τ

satisfying �τ/T	 ≥ 1 or �τ/T	 < −1 can be expressed as
in (98), shown at the bottom of the page.
We then focus on the derivation for �τ/T	 ≥ 1 as the

derivation for �τ/T	 < −1 is very similar. Using some
straightforward mathematical manipulations, E[A2(τ, ω)] for
τ satisfying �τ/T	 ≥ 1 can be written as in (99), shown at
the bottom of the page.
Because (ωi

l−�τ/T	, ωi
l) and (ωi

l−�τ/T	−1, ω
i
l) are two i.i.d

pairs of frequencies, we denote �ω ≡ ωi
l−�τ/T	 − ωi

l. Note
that �ω is the difference of two random unequal frequencies
and is independent to l. Thus, we further express E[A2(τ, ω)]
as in (100), shown at the bottom of the page, where the
expectation on the right hand side of (100) is taken with
respect to �ω whose probability mass function (pmf) is
given by

p(�ω) = L− |k|
L(L− 1)

, �ω = 2πk�f ,

k ∈ {−(L− 1), . . . , −1, 1, . . . , L− 1}. (101)

Using the distribution of �ω, we can derive E[A2(τ, ω)]
with some straightforward mathematical manipulations. The

E
[
A2(τ, ω)

]
= 1

L2T2

⎛
⎜⎜⎜⎝

1

L(L− 1)

∣∣∣Âp(τ, ω)

∣∣∣2(|b(�f τ)|2 − L
)(
|b(ωT/(2π))|2 − L

)

+
L−1∑
l=0

L−1∑
p=0

l 
=n

E�

[∣∣∣Âp
(
τ + (n− l)T, ω −

(
ωi
n − ωi

l

))∣∣∣2
]
+

L−1∑
l=0

E�

[∣∣∣Âp(τ, ω)

∣∣∣2
]
⎞
⎟⎟⎟⎠. (97)

E
[
A2(τ, ω)

]
= 1

L2T2

⎛
⎝L−1∑
l=0

L−1∑
n=l−�τ/T	

E�

[∣∣∣Âp
(
τ + (n− l)T, ω −

(
ωi
n − ωi

l

))∣∣∣2
]

+
L−1∑
l=0

L−1∑
n=l−�τ/T	−1

E�

[∣∣∣Âp
(
τ + (n− l)T, ω −

(
ωi
n − ωi

l

))∣∣∣2
]⎞
⎠, �τ/T	 ≥ 1 or �τ/T	 < −1. (98)

E
[
A2(τ, ω)

]
= 1

L2T2

⎛
⎝ L−1∑
l=�τ/T	

E�

[∣∣∣Âp
(
τ − � τ

T
	T, ω −

(
ωi
l−�τ/T	 − ωi

l

))∣∣∣2
]

+
L−1∑

l=�τ/T	+1

E�

[∣∣∣Âp
(
τ −
(
� τ
T
	 + 1

)
T, ω −

(
ωi
l−�τ/T	−1 − ωi

l

))∣∣∣2
]⎞
⎠, �τ/T	 ≥ 1. (99)

E
[
A2(τ, ω)

]
= (L− �τ/T	)E�ω

[
Âp(τ − �τ/T	T, ω −�ω)

]

+ (L− �τ/T	 − 1)E�ω

[
Âp(τ − (�τ/T	 + 1)T, ω −�ω)

]
, �τ/T	 ≥ 1. (100)
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resulting expression is given by

E
[
A2(τ, ω)

]

= 1

L3(L− 1)T2

L−1∑
k=−(L−1)

k 
=0

(L− |k|)

×
{(
L− � τ

T
	
)(
T − τ + � τ

T
	T
)2

× sinc2
(( ω

2π
− k�f

)(
T − τ + � τ

T
	T
))

+
(
L− � τ

T
	 − 1

)(
τ − � τ

T
	T
)2

× sinc2
(( ω

2π
− k�f

)(
τ − � τ

T
	T
))}

, �τ/T	 ≥ 1.

(102)

Similarly, E[A2(τ, ω)] for �τ/T	 < −1 can be expressed as

E
[
A2(τ, ω)

]

= 1

L3(L− 1)T2

L−1∑
k=−(L−1)

k 
=0

(L− |k|)

×
{(
L+ � τ

T
	
)(
T − τ + � τ

T
	T
)2

× sinc2
(( ω

2π
− k�f

)(
T − τ + � τ

T
	T
))

+
(
L+ � τ

T
	 + 1

)(
τ − � τ

T
	T
)2

× sinc2
(( ω

2π
− k�f

)(
τ − � τ

T
	T
))}

, �τ/T	 < −1.

(103)

When −1 ≥ τ < 1, the first term and the third term in (97)
are non-zero. They can be easily obtained by first calculating
|Âp(τ, ω)|2 using (15)
∣∣∣Âp(τ, ω)

∣∣∣2 =
{

(τ + T)2sinc2
(

ω
2π

(τ + T)
)
, − T ≤ τ < 0,

(τ − T)2sinc2
(

ω
2π

(τ − T)
)
, 0 ≤ τ < T.

(104)

The second term in (97) can be derived following similar
steps using the pmf of �ω in (101).

APPENDIX B
THE MEAN OF Â(τ ,ω)
Consider the complex AF of the frequency permutation and
PSK based waveform in (33). We note that Âp(τ, ω) is non-
zero only when −T < τ < T . Thus, (33) can be further
expressed as

Â(τ, ω) = 1

LT

L−1∑
l=0

l−�τ/T	∑
n=l−�τ/T	−1

ej
(
ωlT+(θ il−θ in

))

× Âp
(
τ + (n− l)T, ω −

(
ωi
n − ωi

l

))
ejω

i
n(τ+(n−l)T).

(105)

Since the phase modulation is independent of the frequency
permutations, we write the mean of Â(τ, ω) as

E
[
Â(τ, ω)

]
= 1

LT

L−1∑
l=0

l−�τ/T	∑
n=l−�τ/T	−1

ejωlTE
[
ej
(
θ il−θ in

)]

× E
[
Âp(τ + (n− l)T, ω

−
(
ωi
n − ωi

l

))
ej
(
ωin(τ+(n−l)T)

]
. (106)

Since Eθ [ejkθ ] = 0 when k ∈ Z\{0}, E[ej(θ
i
l−θ in)] = 0 when

n 
= l. Since n ∈ {l − �τ/T	 − 1, l − �τ/T	}, we can
rewrite (106) as

E
[
Â(τ, ω)

]
=
⎧⎨
⎩
∑L−1

l=0 Âp(τ,ω)E

[
ejω

i
lτ
]
ejωlT

LT , |τ | < T,

0, otherwise.
(107)

By writing ωi
l as ω0 + 2π�f τkil, k

i
l = {0, . . . ,L − 1}, the

mean of ejω
i
l can be expressed as

E
[
ejω

i
lτ
]
= ejω0τ

L

L−1∑
kil=0

ej2π�f τkil . (108)

Substituting (108) into (107) and using some straightforward
mathematical manipulations, we express the mean of the
complex AF as

E
[
Â(τ, ω)

]
=
{

Âp(τ,ω)ejω0τ b(�f τ)b(ωT/(2π))

L2T
, |τ | < T,

0, otherwise,
(109)

where b(·) is defined in (41).
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