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ABSTRACT This paper studies the application of neural networks to Viterbi detection of FTN signals
in an intersymbol interference (ISI) channel. The main contribution of this paper is to propose a receiver
structure for detecting FTN signals in unknown static ISI channel. In particular, we propose a novel low-
complexity neural network structure for calculating the branch metrics, and we explore its suitability for
FTN signalling with channel uncertainty. We compare the proposed network, which we call the Metric Net
(MetNet), to a benchmark neural network-based technique for metric calculation, the ViterbiNet, which
was originally designed for ISI channels. The simulation results confirm that the MetNet outperforms
the ViterbiNet, with two orders of magnitude lower complexity, and is much more resilient to channel
uncertainty than the traditional Viterbi detector, which uses Euclidean distance for metric calculations.
We further show that the MetNet exhibits robustness to being trained at mismatched SNR values and
FTN pulse acceleration factors, meaning that the number of trained models required can be significantly
reduced. Additionally, the results show that the proposed MetNet remains a favorable alternative at much
higher levels of channel uncertainties. The results also reflect that we can generalize the MetNet to work
with different channel models defined by different decaying factors. Finally, we show that we succeed
in achieving a bandwidth efficiency gain of 33% due to FTN by using the MetNet in the presence of
channel uncertainty.

INDEX TERMS Faster-than-Nyquist, maximum likelihood sequence estimation, AI based signal detection,
spectral efficiency enhancement, intersymbol interference.

I. INTRODUCTION

CONTEMPORARY communication systems leverage
Nyquist signaling techniques to avoid intersymbol

interference (ISI), however, with recent advances in silicon
technology, some ISI can be handled at the receiver in order
to achieve higher rates. Faster-than-Nyquist (FTN) signalling
is a promising transmission technique which improves spec-
tral efficiency within the same operating bandwidth through
accelerating signal transmission by a factor of 1/τ , where
0 < τ ≤ 1. This results in self-induced pulse-shaping ISI
that can be handled at the receiver to a certain extent. The
authors in [1] show that using uncoded root-raised cosine
transmit pulses with roll-off β = 0.3, τ can go down to

0.703 without bit error rate (BER) performance loss – the
minimum value of τ we can operate at without observing
any performance degradation asymptotically at high SNRs,
is known as the Mazo limit. This result can be achieved
when using optimal detection based on maximum likelihood
sequence estimation [2], or in other words, using a Viterbi
detector, which is inherently optimized to work with white
noise.
In this paper, we explore the performance of FTN in

an ISI channel, where we have an additional and unknown
source of ISI underlying within the channel, on top of the
pulse-shaping ISI in FTN - this results in longer and more
severe ISI. At the receiver we compare the performance of a
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regular Viterbi detector against neural network aided metric
calculators for Viterbi detection, in the presence of channel
state information uncertainty.
Different FTN receivers were explored in [3], [4]. The

authors in [3] established a low complexity, sub-optimal FTN
detector based on convex relaxation, primal-dual-predictor-
corrector interior point method, and quantization. While the
authors in [4] exploit a mathematical programming tech-
nique based on the alternating directions multiplier method
to design an FTN detector for ultra-high modulation orders
up to 64K with notable spectral efficiency gains. Channel
estimation issues for FTN signals in ISI channels where the
channel state information (CSI) is unknown were investi-
gated [5], [6] using pilot symbols. The performance of FTN
in different multi-path channels was explored in [7], [8].
Furthermore, machine learning (ML) based receivers for
FTN systems were designed in [9], [10].
Other ML applications outside FTN for ISI channels

without perfect CSI knowledge were explored in [11],
which introduced the sliding bidirectional recurrent neural
network (SBRNN), a neural network-aided receiver showing
resiliency to CSI uncertainty over the model-based counter-
parts. This idea gave rise to other neural network (NN) aided
receivers such as the BCJRNet [12], based on the BCJR algo-
rithm [13], and ViterbiNet [14], which we will be comparing
against a new proposed neural network architecture, which
we call the Metric Net (MetNet).
The main contribution of this paper is to propose a

receiver structure for detecting FTN signals in unknown
static ISI channel. In particular, we propose a novel low-
complexity neural network structure for metric computation
of the Viterbi Detector, which does not require accurate
channel state information during training or deployment. We
present the performance of the MetNet in an FTN system
under different levels of CSI uncertainty. We compare the
MetNet to the ViterbiNet in terms of computational com-
plexity and performance, as well as comparing it to the
traditional method of computing metrics for Viterbi detec-
tion using Euclidean distance (ED) [15]. We also explore
the MetNet’s performance when trained with no noise at
all, as well as tuning the number of channels used during
training as well as the number of epochs. Moreover, we
explore the network’s ability to perform over different ISI
channels governed by decaying factors, γ , instances, when
its trained using a dataset generated from different chan-
nels over a range of γ -values. Further, we test the resiliency
of the MetNet to being trained on different τ values than
the actual. Additionally, we present the performance of the
MetNet with very high levels of channel uncertainty, and
finally, we report on the bandwidth efficiency gains when
using the MetNet in the FTN system.
Most neural network-based receivers designed for gen-

eral ISI aim to replace model-based receivers and achieve
desired results through proper training and tuning, but for
the most part the network-based receiver is treated as a
black box [11], [16], whereas the MetNet, similar to the

ViterbiNet, embeds a neural network within a known model-
based detector. Moreover, some NN-based receivers in ISI
channels leverage recurrent neural networks or other archi-
tectures with memory to learn the underlying correlations in
ISI channels, however, the MetNet does not leverage them to
keep the complexity low while still able to achieve superior
BER performances.

II. RELEVANT LITERATURE OVERVIEW
The work in this paper is motivated by previous works
that investigate deep learning techniques used to train
detection algorithms using simulated samples of received sig-
nals, without accurate knowledge of the underlying channel
coefficients. The work in [11] proposes a technique based
on recurrent neural networks (RNNs) that is trained on a
diverse dataset that contains received samples from differ-
ent realizations of channel conditions, which results in a
detector that is robust to channel uncertainty, the detector is
called a sliding-bidirectional RNN (SBRNN). The SBRNN
was shown to approach the BER performance of an optimal
Viterbi detector when the channel conditions are perfectly
known, and to outperform the Viterbi detector under CSI
uncertainty.
Following the SBRNN, another NN-based detector was

developed, called the ViterbiNet, which achieved superior
results to the SBRNN [14]. The ViterbiNet, just like the
MetNet in this work, acts as a metric calculator which feeds
likelihood values into a Viterbi detector, where convention-
ally the Viterbi detector would use the Euclidean distance
to compute these metrics instead. Similar to the SBRNN,
the ViterbiNet outperforms traditional metric calculation in
Viterbi detectors in the presence of CSI uncertainty. Similar
results are demonstrated when using the BCJRnet [12],
which is a network that learns a factor graph represent-
ing the channel, and carries out symbol recovery using a
sum-product algorithm.
Building on top of the ViterbiNet, the Meta-ViterbiNet was

proposed in [20] to enable the network to stay viable with
more diverse and dynamic channel conditions through rapid
online retraining of the network. This approach shows advan-
tages over the static training of a dataset generated through
different channel conditions realizations for two main rea-
sons, first being the dataset needs to be large enough to
represent all the different conditions, and secondly since
the second approach struggles when the channel conditions
greatly deviate from training conditions. Online training rep-
resents a valuable future work for our MetNet, especially
with its low complexity nature making it suitable for frequent
retraining, but it is outside the scope of this work.
Other interesting deep learning-based detectors for FTN

signals include the work in [9] which introduces a joint
deep learning-based detector followed by a successive
interference cancellation block that calculates and subtracts
the interference from received signals to obtain more accurate
log-likelihood ratios.
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FIGURE 1. System Block Diagram.

III. SYSTEM MODEL
The system implemented is an FTN-based wireless system
over an ISI channel with a Viterbi detector, as shown by
the block diagram in Fig. 1. With FTN signalling, symbols
are transmitted at a higher rate, but the pulse width is not
changed. That is, the symbol period is reduced to τT , where
0 < τ < 1 is known as accelerating (or squeezing) parameter,
so the transmitted signal becomes

s(t) =
∑

n

vnhT(t − nτT), (1)

where {vn} are the transmitted symbols, T is the symbol
period, and hT(t) is the root raised cosine pulse shape with
roll-off factor β.
We consider an Lc-tap ISI channel, with impulse response

hISI(t) =
Lc−1∑

l=0

αlδ(t − lτT), (2)

where αl is the gain of the lth-tap. We also explore different
levels of channel state information (CSI) at the receiver.
The combination of the root-raised cosine pulse shape,

the Lc-tap ISI channel with channel gains of αl for l ∈
[0, 1, . . . ,Lc−1] and additive white Gaussian noise (AWGN)
with power spectral density (PSD) of N0, the matched fil-
ter and the noise whitening filter, can be modeled as the
equivalent discrete-time channel given by

rn =
L−1∑

l=0

vn−lhl + wn, (3)

where vn are the transmitted symbols, hn are the effective
channel taps, L is the effective channel length including the
ISI from both the channel and the FTN pulses, and wn is
the noise, modeled by i.i.d Gaussian random variables with
zero-mean and variance N0/2. The effective channel taps are
given by

hn =
Lc−1∑

l=0

αlfRC,n−l, (4)

where αl are the channel gains of the underlying ISI chan-
nel and fRC,n are the coefficients of the factorization of the
samples of a raised cosine pulse, hRC,n = hRC(nτT).

FIGURE 2. MetNet Architecture.

A. METRIC COMPUTATION FOR VITERBI DETECTION
The Viterbi algorithm can be viewed as a two-step pro-
cess, the first involves calculating the metrics, the next step
is using those metrics to find the most likely sequence of
transmitted symbols.
The branch metrics, μn(rn|vn, vn−1, . . . , vn−L+1), for the

Viterbi algorithm at time n, are the negative natural log of
the likelihood functions of the current received sample, rn,
given a hypothetical transmitted symbol, vn (corresponding
to a branch between two states) and the previous L − 1
symbols, vn−1, . . . , vn−L+1 (corresponding to the state). For
the purposes of the VA with AWGN, this is equivalent to
the more commonly used Euclidean distance (ED),

μn(rn|vn, vn−1, . . . , vn−L+1) =
∣∣∣∣∣rn −

L−1∑

l=0

vn−lhl

∣∣∣∣∣

2

. (5)

This means that typically, in order to compute the metric,
we require knowledge of the channel taps, hl. This could be
prohibitive in complex or dynamic channels which usually
resort to sending reference signals often which reduces the
spectral efficiency.
Alternatively, instead of computing these metrics using the

Euclidean distance, we can train a neural network to learn
those metrics using an offline supervised learning approach,
by using simulated received signals as our the features and
transmitted signals as the true labels. The MetNet, similar to
the ViterbiNet, provides an alternative way of metrics com-
putation, with the benefit of not requiring perfect knowledge
of the channel when doing so. We will expand on the archi-
tectures of both the ViterbiNet as well as the MetNet in the
following.

IV. PROPOSED NEURAL NETWORK (METNET)
The motivation behind the MetNet is to train a network that
aims to learn and estimate the metrics of the trellis and
then uses those metrics for Viterbi detection. The aim is to
also establish a significantly lower complexity alternative to
the ViterbiNet, that achieves better BER performance under
different levels of channel uncertainty and decaying factors
in an FTN system.
The architecture of the MetNet, shown in Fig. 2 is a low

complexity one, consisting of just a 1 x ML fully connected
layer (FCL), followed by a custom activation layer, a softmax
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layer and a classification output layer. The custom activation
layer applies the following function

f (xi) = −|xi|2, (6)

which ensures that the output of the softmax layer that
follows it, closely follows a Gaussian probability density
function (PDF).
The output of an Nout ×Nin FCL is a vector y = Wx+b,

where W is the Nin × Nout weight matrix, and b is the
Nout × 1 bias vector. The weights and biases are optimized
during training. The softmax layer activation function is

f (x) = exi∑
k e

xk
, (7)

the output at the softmax layer is an estimate of the a
posteriori probabilities Pr{vn, vn−1, . . . , vn−L+1|rn}. The last
classification output layer calculates the cross-entropy loss
for classification using Adam optimizer [19], which is used
for training.
Prior to deployment, the neural network is trained based

on a sufficient number of simulated received samples corre-
sponding to known transmitted symbols with only imprecise
knowledge of the potential state of channel during deploy-
ment. During deployment, the trained neural network is
sequentially fed each received sample, rn, to generate a pos-
teriori probabilities of allML combinations of the current and
previous L−1 symbols, which are converted to branch met-
rics and fed into the Viterbi algorithm. Training for several
model is only done once offline.
Whether a neural network is used for metrics computation

or not, the next step remains the same within the Viterbi
algorithm, the metrics calculated are used to find the shortest
(survivor) path to compute an estimate for the transmitted
symbols sequence.
In the next section, we perform a complexity analysis of

our MetNet against the ViterbiNet.

A. COMPLEXITY ANALYSIS AGAINST VITERBINET
The authors in [14] presented a deep neural network (DNN),
called the ViterbiNet (VN). The architecture of the VN con-
sists of a 1 × 100 FCL, followed by a sigmoid activation
layer, a 100 × 50 FCL, a rectified linear unit (ReLU) acti-
vation layer, a 50 × ML FCL (where M is the modulation
order and L is the channel length), and a softmax activation
layer. The sigmoid activation function is applied to the input
so that the output is bound to the interval (0,1), using the
function

f (x) = 1

1 + e−xi
. (8)

The ReLU is simply a threshold operation that ensures the
output is non-negative by setting any negative input value
to zero.
Additionally, the authors incorporate a Gaussian mixture

model, that is used to estimate the marginal distribution of
the channel output samples, f (rn), that in turn is used to

TABLE 1. Complexity analysis summary.

convert the a posteriori probabilities to likelihood function
values according to Bayes’ rule.
We compare the complexity of the MetNet with the VN

during the deployment phase (after the network has trained).
Our analysis assumes that multiplications, additions, sub-
tractions and divisions all count as a single floating point
operation (flop), and exponentials and logarithms are imple-
mented using 5th-order rational polynomials which translates
to around 20 flops each.
The VN’s first fully connected layer (FCL) of size 1×100,

multiplies by the weight and adds the bias at each of the 100
nodes, which translates to 200 flops. The sigmoid activation
performs an addition, a division, and an exponential at each
node, translating to 2200 flops. The second 100 × 50 FCL
requires 50 × 100 × 2 flops, and the intermediate ReLU
activation is a simple threshold operation, so there are no
operations involved since it is just a comparison with zero.
The last 50 ×ML FCL requires ML × 50 × 2 flops.

These layers are followed by the softmax activation layer,
as well as additional processing to convert the a posteriori
probabilities to likelihood functions and a negative log to
provide the branch metrics. Although these three steps were
included in the system described in [14], they serve no valu-
able purpose after the network has been trained, because the
output of the last FCL could have been directly fed into the
VA with absolutely no difference in system performance.
This is because they involve converting between log and
linear domains and back again, and including additive con-
stants to all branch metrics at a given time which will not
affect the VA’s decisions. We therefore do not include the
complexity of these three steps into our analysis. Therefore
the total number of operations of the VN is 14200 + 100ML

flops per received sample.
Similarly, we perform the same analysis for the MetNet.

The FCL we use requires ML × 2 flops, and our custom
activation layer adds an extra ML flops. In total, the MetNet
requires 3ML flops per received sample.
For example, with ML = 32, which is what we use in

the simulations, the VN needs 17400 flops to calculate the
branch metrics for each received sample, while the MetNet
needs only 96 flops, which is two orders of magnitude
better. For reference, the Euclidean distance (ED), which
is just a subtraction and a square, requires 2ML flops, as
shown in Table 1. Therefore, the MetNet is almost as low
complexity as the traditional ED used in classical VA, but
achieves a much higher performance in detecting an FTN
sequence under CSI uncertainty, as will be shown in the next
section.
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V. SIMULATION AND RESULTS
To investigate the performance of the MetNet, Monte Carlo
simulation was performed, using BPSK modulation and a
4-tap ISI channel defined by

αl = e−γ l, (9)

where l = [0, 1, . . . ,Lc−1] and Lc = 4. A decaying factor of
γ = 1 was used for most of the results, while the squeezing
parameter investigated in this study is mostly for τ = 0.8,
this technique would also work under the same ISI conditions
without FTN, but as mentioned earlier the scope of this work
is for FTN. Moreover, due to the low complexity nature of
the network, it fails to perform well under severe dynamic
fading, such as Rayleigh fading.
We compare the performance of a detector with known

channel coefficients and another one with corrupted channel
coefficients, h̃, such that

h̃l = (1 + εl)hl, (10)

where εl denotes the corruption, simulated using a zero-mean
Gaussian random variable with variance σ 2

ε .
During corrupted training, the neural network is trained

offline on simulated received symbols generated from dif-
ferent instances of corrupted channel taps. In other words,
the received samples, rn, in (3) will be simulated using h̃l
instead of hl. On the other hand, the traditional ED met-
ric calculator uses different instances of corrupted channel
taps to compute the metrics, so the metrics, μn, that are
calculated based on (5) will be computed using h̃l instead
of hl.

A. METRIC COMPUTATION COMPARISON
Fig. 3 shows the results established in [21] of the MetNet
against the ViterbiNet (VN) and the Euclidean distance (ED)
methods of metric computation at τ = 0.8, σ 2

ε = 0.1, and
γ = 1. This plot shows that when the receiver has noisy
channel estimates, h̃, both of the neural network-based archi-
tectures perform significantly better than the conventional
Euclidean distance method, which suffers from an error floor.
As a benchmark, Fig. 3 also shows the BER for the ideal
case when the ED-based metrics are used with perfect CSI.
Both NN-based approaches are nearly as good despite hav-
ing imperfect CSI. Further, the results show that the MetNet
produces better results than the VN despite having signif-
icantly lower complexity. For example, the bit error rate
(BER) of the ViterbiNet, at 8 dB, is 1.9 × 10−4, while the
MetNet has a BER of 7.5 × 10−5, which is very close to
the optimal result using the Euclidean distance with perfect
CSI to calculate the metrics, which has a BER of 5.5×10−5

at 8 dB. Meanwhile the ED metric with channel uncertainty
showed the worst results with a BER of 2 × 10−2 at 8 dB,
which shows that it is not robust to channel uncertainty.
There was basic tuning done in [21] to generate Fig. 3,

however, the next section will establish a more formal and
thorough tuning of key hyperparameters.

FIGURE 3. Probability of BER vs Eb/N0 for Euclidean distance (ED), original
ViterbiNet (VN), and MetNet (NN) for τ = 0.8, γ = 1, and σ 2

ε = 0.1.

FIGURE 4. 3D plot of BER vs Nchs vs Neps .

B. HYPERPARAMETER TUNING
Two of the most hyperparameter to tune in order to avoid
a model that overfits or underfits are the training size and
the number of epochs, Neps. Since we established earlier that
training benefits from having blocks of sizes ML each passed
through a different channel realization, the training size is
essentially determined by the number of different channels,
Nchs we train on, i.e., training size = ML(number of different
channels).
Hence, we tune both these parameters by comparing

different models generated from different values of both
parameters where we have Nchs ∈ {10, 20, . . . , 300} and
Neps ∈ {10, 20, . . . , 300}. Fig. 4 shows a 3D plot showing
the BER for each combination of Nchs and Neps, this plot is
shown for models trained at τ = 0.8, γ = 1 and σ 2

ε = 0.1.
From this plot, we can establish that there is a trough that
is lower than the rest, and we can also see that at some
point, increasing the number of epochs or different channels
results in diminishing returns.
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TABLE 2. Hyperparameters used.

We can break this 3D plot down to two 2D plots showing
the effects of Nchs and Neps separately. Fig. 5(a) shows the
BER vs the number of epochs, where each curve shows a
different number of channel realizations trained on, and sim-
ilarly Fig. 5(b) shows the BER vs the number of channel
realizations trained on, where each curve shows a differ-
ent number of epochs trained with. Fig. 5(a) shows that for
almost all number of epochs that are high enough, training
on 100 different channel realizations yields the minimum
BER, similarly Fig. 5(b) achieves the minimum BER at 50
epochs. We note that the difference between the ideal (min-
imum BER) and other combinations of these parameters
is not very significant, however, at 100 different channels
with 50 epochs we found that we achieve the best results
at lower complexity than other results. While one might
assume that training at more channel realizations should
result in better training, it could be the case that once we
go higher than 100, the model starts saturating and per-
haps overfits a little, which would explain the trend of
slight performance dip as the number of channels trained on
goes higher. The final parameters used are summarized in
Table 2.

C. TRAINING WITHOUT NOISE
The results in Fig. 3 are generated from a system that
is trained offline with a separate model at each SNR.
Simulation results shows that the MetNet exhibits SNR-
resiliency results that can be extrapolated to really high SNR
values as shown in Fig. 6, these results show that training at
very high SNR’s such as 100, there is no loss in performance,
essentially at such high SNR, this is equivalent to training
with no noise. This approach is works because of the pres-
ence of error variance, and would not work for very low
or zero error variance, as will be shown by some results
shortly.
We configure the training bits to be a vector of justML ele-

ments, corresponding to all the possible transmitted sequence
bits, this block is repeated N times, where N is the number
of different channel realizations (taps) that we decide to train
on. With the previous approach, each block size was greater
than ML, additionally, the bits in the block were randomly
generated without ensuring that each block represented all
ML possible sequences.

We investigate different training approaches, including
training with and without noise, as well as training with

FIGURE 5. Results showing (a) BER vs Neps and (b) BER vs Nchs .

FIGURE 6. Results when training at different SNR’s.

randomly generated bits blocks and with blocks of ML corre-
sponding to all possible transmitted sequences. Fig. 7 shows
the results of each approach, we found that the best approach
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FIGURE 7. Results of different training approaches, including training with and
without noise, and with specific and random bits blocks.

to use was training with no noise, with training blocks of
size ML, which achieves a BER 5.5 × 10−4, very close to
optimal result.

D. PERFORMANCE AT HIGH ERROR VARIANCE
As stated earlier, training without noise works because of
the presence of sufficient error variance, which adds the
necessary randomness in our training dataset to generalize
well even without AWGN noise, this is illustrated in this
section.
The MetNet remains a better alternative for metric cal-

culation than using Euclidean distance and the ViterbiNet,
even as the error variance gets more severe, as shown by
Fig. 8, which shows the BER performance of the MetNet,
the ViterbiNet, and Euclidean distance over a range of differ-
ent error variances. The graph demonstrates that the MetNet
exhibits only a very slow performance degradation as the
error variance increases, whereas the ViterbiNet degrades
much more rapidly. These results are for τ = 0.8, however
the trend is the same regardless of τ .
Another important observation is the poor performance of

the MetNet at very low error variance, this is due to the
fact that when trained without noise, as well as low error
variance, there is very little variance in the training set, this
results in overfitting and degrades the BER performance on
the test set. In fact, having sufficient error variance in the
first place is what allows the system to perform very well
with no noise during training.
The next section dives deeper into the robustness of our

NN, and tests its resilience to being trained and tested
at mismatched accelerating parameters τa and decaying
factors γ .

E. ROBUSTNESS OF METNET
In addition to the SNR invariance demonstrated by the
MetNet, as well as its ability to perform well at high error
variance, the network also exhibits some τ -resiliency as well.

FIGURE 8. BER of different metric computation methods over different error
variances for τ = 0.8, and γ = 1.

TABLE 3. Performance difference when using a network trained at τ = 1.

For example, a network trained at τ = 1 still performs rel-
atively well at τ = 0.9, but that does not remain true for
τ = 0.8, as shown by Table 3. These results are generated
at 8 dB with CSI uncertainty σ 2

ε = 0.1.
Moreover, the MetNet shows some resiliency to being

trained at mismatched decaying factors, γ . Fig. 9 demon-
strates these results for a network trained at γ = 1, τ = 0.8,
σ 2

ε = 0.1 and SNR = 8 dB, the results suggests that when
training at a lower decaying factor (more severe ISI), the
MetNet can still perform relatively well on higher decaying
factors (less ISI), in this particular example, for a network
trained at γ = 1, the results at γ = 1.2 were still within
a close BER. However, when testing at lower decay values
than the one trained at, the BER drop-off is more severe
and noticeable, as we can see from the Fig. 9, the result at
γ = 0.8 had a much more steep BER performance drop than
at γ = 1.2. Therefore, it is important to also observe the
results of a network tested at γ = 1, while being trained on
mismatched γ -values. Fig. 10 shows the results of a network
trained at different γ -values, at τ = 0.8, σ 2

ε = 0.1 and SNR
= 8 dB, and tested at γ = 1, we notice the same trend as
in Fig. 9.
Building a network that has even stronger γ -resiliency

is desirable, as that mean that the network is able to work
better in more varied channel conditions. We build several
other networks, that are trained on a dataset generated from
different realizations of γ .
Next, we test the robustness of each network when it’s

trained on a range of γ = X ± 0.1, and tested at γ = X.
Fig. 11(a) compares the baseline results for a network trained
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FIGURE 9. BER of different networks trained at γ = 1, τ = 0.8, σ 2
ε = 0.1 and SNR =

8 dB, and tested on mismatched γ values.

FIGURE 10. BER of different networks trained at different γ -values, τ = 0.8, σ 2
ε = 0.1

and SNR = 8 dB, and tested on γ = 1.

and tested at the same γ values (red), to the results when
we train on γ = X ± 0.1, and tested at γ = X, Fig. 11(b)
repeats the same experiment but the models are tested on
γ = X ± 0.2 instead, with τ = 0.8, σ 2

ε = 0.1 and SNR =
8 dB. These results show that we can afford training over
a range without much of a BER loss, for lower γ -values, a
smaller training of range of γ ± 0.1 is preferred, however at
higher γ -values we achieve good results when training over
a slightly bigger range of γ ± 0.2, meaning we can afford
to train even less models at higher γ -values.

We can also test the baseline performance (which trains at
every γ -value tested on), with 3 networks, trained over the
following ranges net1 ∈ [0.7, 0.8, 0.9], net2 ∈ [0.9, 1.0, 1.1],
and net3 ∈ [1.1, 1.2, 1.3], and another with the following
ranges, net1 ∈ [0.4, 0.5, . . . , 0.8], net2 ∈ [0.8, 0.9, . . . , 1.2],
and net3 ∈ [1.2, 1.3, . . . , 1.6], both are tested over a sweep
of a γ range. Fig. 12 shows these results against the baseline
established earlier with τ = 0.8, σ 2

ε = 0.1 and SNR = 8 dB.
These results show we can establish an adaptive system,
with way less models trained, each model valid for a certain

FIGURE 11. Results of training a network at γ = X ± ε values and testing at γ = X .
Subfigure (a) ε = 0.1 (b) ε = 0.2.

range of decaying factors γ . We can also see again that
when operating at lower γ values, it is better to stick with
a smaller range, as shown by Fig. 12(a), while at higher
γ -values, we can one model that works well over a range
of 5 values of gamma ∈ [1.2, 1.3, . . . , 1.5] as shown by
Fig. 12(b), instead of training one for each realization.
The approach of training over a range can really shine

in a system limited to having only a certain number of
models. For instance, if we are limited to having just
5 models, we investigate the best way of training these
models. Method 1 would be training at 5 discrete γ val-
ues, and Method 2 would be training over 5 different
ranges of γ . Fig. 13 shows the result of both methods,
each network’s result is shown within its region of oper-
ation, with τ = 0.8, σ 2

ε = 0.1 and SNR = 8 dB. For
Method 1, the 5 models are trained over the following values
of γ ∈ [0.4, 0.7, 1, 1.3, 1.6] and for Method 2, the 5 models
are trained over the following uniformly distributed ranges
net1 ∈ [0.2, 0.3, . . . , 0.55], net2 ∈ [0.55, 0.65, . . . , 0.85],
net3 ∈ [0.85, 0.95, . . . , 1.15], net4 ∈ [1.15, 1.25, . . . , 1.45],
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FIGURE 12. Results of training 3 networks at a range of ±0.1 and another of a wider
range of ±0.2. Subfigure (a) range ±0.1 (b) range ±0.2.

and net5 ∈ [1.45, 1.55, . . . , 1.8]. We do not observe a
clear advantage of Method 2 over Method 1 in this set-
up, Method 1 is expectedly superior when tested at γ values
it was trained on, while Method 2 is marginally better at
other values.
We can improve on the Method 2, based on our knowl-

edge through previous experiments that at lower values
of γ a network performs better when its trained over
smaller range of γ , hence we can have a modified version,
namely Method 3, which trains over the following ranges
instead net1 ∈ [0.2, 0.3, 0.45], net2 ∈ [0.45, 0.55, 0.65],
net3 ∈ [0.65, 0.75, 0.85, 0.95], net4 ∈ [0.95, 1.05, . . . , 1.35],
and net5 ∈ [1.35, 1.45, . . . , 1.8]. Fig. 14(a) shows the results
of Method 3, and Fig. 14(b) cascades all methods on the
same plot as the baseline. While it might not be clear right
away from Fig. 14(b) which method works best, we can com-
pare the mean BER of each method over the testing γ range,
and the means are as follows: μ1 = 1.5 × 10−4 for Method
1, μ2 = 1.08 × 10−4 for Method 2, and μ3 = 8.9 × 10−5

for Method 3. Hence we were able to get the best results in

FIGURE 13. Results of Method 1: Training 5 models on discrete values of γ and
Method 2: training 5 models on a range of γ -values uniformly distributed. Subfigure
(a) Method 1 (b) Method 2.

the models-limited system using Method 3, which is train-
ing over a range of γ ’s that are more narrow with lower γ

values.
Overall, we can adopt an adaptive system, which enables

us to train less models with a slight losses in BER
performance that is more obvious when operating at lower
decaying factor γ values where ISI is more severe.
These results suggests that training time and the memory

requirement can be significantly reduced – instead of training
at each SNR, τ and γ realizations, fewer networks trained
with no noise and fewer τ and γ values are sufficient and
more practical.

F. BENEFITS OF CUSTOM ACTIVATION LAYER
In the MetNet, a custom activation layer that performs
f (x) = −|x|2 was applies to the output of the fully con-
nect layer. Although theoretically the inclusion of this layer
may be unnecessary since the network should be able to
learn without being guided by model-based knowledge, it
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FIGURE 14. Results of Method 3: Training 5 models on a range of γ -values uniquely
chosen, and the results of all methods with the baseline. Subfigure (a) Method 3 (b) All
methods plus baseline.

does improve the system performance as shown by Fig. 15.
The graph demonstrates that results improve when using
the extra activation layer, showing an SNR gain of around
0.5 dB at a BER of 2 × 10−4. These results are for the
MetNet with CSI uncertainty at τ = 0.8, γ = 1, and the
same trend holds true for different individual values of γ

with varying degrees of improvement.
With that being established, we now present the results

of our tuned system with the activation layer that is trained
with no noise, and observe the improvements we can achieve
over the results achieved earlier in Fig. 3.

G. PERFORMANCE OF TUNED SYSTEM
In this section, we present the results of the system after
the hyperparameter tuning showed earlier, with a training
dataset that is simulated without AWGN, as well as with the
inclusion of the activation layer. Fig. 16 shows the improved
results we can achieve with our MetNet, the result we can
achieve with CSI uncertainty is near-perfect, as both our

FIGURE 15. BER results with and without using extra activation layer for τ = 0.8,
σ 2

ε = 0.1, and γ = 1.

FIGURE 16. Probability of BER vs Eb/N0 for Euclidean distance (ED), original
ViterbiNet (VN), and tuned MetNet (NN) that is trained with no noise for τ = 0.8, γ = 1,
and σ 2

ε = 0.1.

NN and the optimal result using the ED have a BER of
5.5 × 10−5 at 8 dB.
In the next section we will extend these results and test

them over the average of a range of different channel models
defined by different decaying factors, to show that we can
maintain the performance over different channels.

H. EFFECTS OF DIFFERENT CHANNEL MODELS
We explore the performance in 20 different channel models
corresponding to 20 values of gamma and present the average
BER, as was done in [14]. We average our results over
a sweep of decaying factors over the range γ ∈ { n

10 |n ∈
{1, 2, . . . , 20}}.

Fig. 17 shows the results of the different methods of met-
rics computation at τ = 0.8 and σ 2

ε = 0.1 values averaged
over the range of γ . The results still show that the MetNet
still outperforms both the ViterbiNet as well as the conven-
tional method of metrics calculation (ED) in the presence
of CSI uncertainty. For instance, at 8 dB, we see that the
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FIGURE 17. Comparison of different metric computations methods for τ = 0.8,
σ 2

ε = 0.1, averaged over different γ values.

optimal BER using a VA with perfect CSI knowledge is
7 × 10−5, while the MetNet, with channel corruption has a
BER 8 × 10−4 and the ViterbiNet has a BER of 2 × 10−4.
Finally, the traditional metric computation method using ED
has a much higher BER of 2×10−2, seemingly approaching
an error floor.

I. SPECTRAL EFFICIENCY GAINS
Another interesting result is showing the possible bandwidth
gains specific to the proposed neural network-aided detec-
tion in the ISI FTN system. Fig. 18 shows the BER curves
when using the MetNet architecture, with CSI uncertainty
at different values of τ . There is a slight BER performance
degradation at τ = 0.75, meaning that this is where the Mazo
limit of the system roughly lies. Hence, the bandwidth effi-
ciency improvement for the system using the MetNet under
channel uncertainty is around 33%. By comparison, when
the CSI is perfectly known and the ED metric is used, it is
possible to get a bandwidth efficiency gain of 39%, which
is only slightly higher than for the imperfect CSI case.

J. HIGHER ORDER MODULATION
The previous simulations were done using BPSK constella-
tion, the network achieves identical results to Fig. 16 when
tested at 4-QAM.
For 16-QAM, the results in Fig. 19 show that the MetNet

is still able to recover the transmitted data, albeit with a
slight performance penalty. This penalty is perhaps due to
the fact that after ISI, the distribution of the received samples
is too dense, so the MetNet is unable to always distinguish
between different transmitted symbols.

VI. CONCLUSION
In this paper we explored the performance of an FTN system
in an ISI channel, using Viterbi detection with different
methods of metric computation. We proposed a novel low
complexity neural network architecture to calculate metrics,

FIGURE 18. Results using the MetNet for different τ values, with σ 2
ε = 0.1, and γ = 1.

FIGURE 19. Result of MetNet against traditional VA at 16QAM.

the MetNet, and compare it to another neural network-based
metric calculator, the ViterbiNet, as well as the traditional
method of calculating metrics using the Euclidean distance.
We present the results of all methods when there is CSI
uncertainty present in the system.
The results show that under uncertain channel condi-

tions, both neural network approaches show significantly
better results than the Euclidean distance-based approach.
Additionally, we show through a complexity analysis that the
MetNet has very low complexity that approaches the sim-
plicity of Euclidean distance, as well as better performance
compared to the ViterbiNet.
We establish that our MetNet performs better when trained

without noise, and we tune the network to set the number
of channel instances we train our model with as well as the
suitable number of epochs. We further explore the resiliency
of the MetNet by training it over a range of decaying factors,
γ , instead of training a different model at each instance,
as well as the resiliency to being trained at mismatched
accelerating parameters τ values, these results show that
we are able to significantly reduce the number of models
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trained, and as such we establish an adaptive system that can
adopt suitable models based on the channel conditions. The
results further show that the MetNet remains the favorable
alternative for much more intense CSI uncertainties, where
it showed strong robustness and only a slow degradation of
BER performance as the error variance increased.
We showed that these results can be generalized for dif-

ferent channel models with different decaying factors, as the
trends of the result held true when averaged over a sweep of
different γ values. Moreover, we present results that reflect a
BER performance enhancement when using our custom acti-
vation layer, which makes the output of the network closely
represent a Gaussian PDF. Finally, we present the bandwidth
efficiency gains due to FTN when using the MetNet, with
CSI uncertainty over different decaying factors, the results
show that we can have a bandwidth efficiency improvement
of around 33%.
There are several directions for potential future work

regarding this study. To begin with, this neural network is
built on top of the VA, meaning that the it still has the
same ML complexity when it comes to the modulation order
and the channel length, this could prove to be limiting for
a higher order modulation systems. Exploring the potential
of this neural network on top of a reduced complexity VA,
either through channel shortening [18], reducing the trellis
size [17], or other schemes to reduce the ML complexity
is an interesting direction. This would enable higher order
modulation, where the complex part of the signal could be
handled by an identical NN structure, one part for the real
component of the signal and another for the complex part,
the low-complexity nature of the MetNet would work well
with this approach.
Moreover, exploring the application of this NN in a multi-

carrier FTN system [1], as well as channel coding [9],
would allow us to reach much higher spectral efficiency
gains. Additionally, due to the low complexity nature of the
MetNet, it is not suitable for deep dynamic fading, such
as Rayleigh fading. Exploring model enhancements that can
handle Rayleigh fading is an interesting direction and is left
for future work.
Finally, due to its similar nature to the ViterbiNet, the

MetNet has the potential to be utilized in an online-training
fashion, similar to the Meta ViterbiNet [20], where the model
is able to update in real time based on incoming signals,
resulting in a more resilient and dynamic model.
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