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ABSTRACT We propose and evaluate a technique that learns the probability of a network transmis-
sion link experiencing a fault by using outlier flows (in the performance sense) as training data. This
technique autonomously determines the most likely links causing performance degradation in a commu-
nications network; a critical feature of zero-touch network management. Our new Network Link Outlier
Factor (NLOF) with most likely links (NLOF:MLL) is experimentally compared to the existing literature
(including our original NLOF) using classification performance measures: recall, precision, F1-score, and
time-to-detection. We utilize inferential statistics and a wide set of Mininet experiments to determine
statistically significant performance differences. We find that our NLOF:MLL outperforms the existing
literature wrt the important F1-score while exhibiting a competitive time-to-detection.

INDEX TERMS Zero-touch network management, clustering, outlier detection, data streaming, fault
detection, fault localization.

I. INTRODUCTION

NETWORK management can be quite overwhelming for
network managers due to the large scale and hetero-

geneity of the networks they manage. The FCAPS model [1]
adapted from ITU M.3400 partitions network management
into five tasks:

1) Fault detection and correction
2) Configuration and operation
3) Accounting and billing
4) Performance assessment and optimization
5) Security assurance and protection

To perform these tasks, network managers must consis-
tently analyze network systems that are in many cases large
scale and composed of heterogeneous devices. Enterprise
networks consist of many hosts, switches and transmis-
sion channels; in many cases supplied by several vendors.
Service provider networks are even larger with even more
heterogeneity. When building networks, network managers
purposefully select equipment from various vendors so they
never become solely dependent on a single vendor. Software-
defined networking (SDN) [2], [3] interfaces to network
devices and software systems utilizing those interfaces can
lead to the automation of network management tasks;
relieving the burden on human network managers. Recent

advances in machine learning algorithms/implementations
coupled with instrumentation to collect voluminous data
have made the application of machine learning quite fruitful.
Indeed machine learning can be fruitfully applied to auto-
mate the tasks of network management; this is often referred
to as zero-touch network management [4], [5], [6], [7].

We believe the network management task of fault detection
and correction is quite stressful for network managers. These
tasks are often preceded by user complaints and need to be
resolved as quickly as possible. Automating this task will
have a significant positive impact on the practice of network
management. Specifically, the task of fault detection requires
acquiring and analyzing diverse information spread across
a network. That task can be overwhelming for a human
network operator especially when subject to the stress of
having to resolve the problem quickly. As a result, machine
learning has a very important role to both reduce mistakes
and reduce time-to-detection.
Our work seeks to apply machine learning to advance

the automation of network fault localization. We formerly
proposed and evaluated our Network Link Outlier Factor
(NLOF) [8], [9], [10] for that purpose. NLOF utilizes
network flow and topology data to localize network faults
through the computation of outlier scores for every link in
a network under management. Those outlier scores are a
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FIGURE 1. Our original Network Link Outlier Factor (NLOF) [10] consists of a 4-stage pipeline: clustering, flow tracing, and outlier scores (flows and links).

measure, from 0 to 1, indicating how a link is isolated from
others (i.e., an outlier) in a performance context. Another
view is that the outlier scores represent the probability that
a link is experiencing a fault. When a link’s outlier score
exceeds a threshold, a link is classified as experiencing a
fault. We discuss the selection of this threshold and other
algorithm hyper-parameters in Section II-E.
NLOF consists of a 4-stage pipeline of unsupervised

machine learning algorithms. In stage 1, flows are clus-
tered into performance cohorts in two sub-stages using the
DBSCAN algorithm and then our TPCluster algorithm. In
stage 2, each flow is assigned an outlier score that measures
its distance in feature space to a performance exemplar in its
cohort cluster. In stage 3, flows and network links are corre-
lated using the topology data. Finally, in stage 4 each network
link is assigned an outlier score that is the ratio of outlier
flows to all flows traversing that link. Figure 1 illustrates
this 4-stage pipeline of clustering and outlier detection.
When detecting faults on links at the edge of the

network we found that a simple threshold-based detec-
tion/classification rule on the outlier scores is sufficient.
However, when a fault occurs on a link toward the core
of the network the network links that are downstream (i.e.,
closer to the edge) have indistinguishable outlier scores from
the actual link experiencing the fault, thereby resulting in
false positives for those downstream links.

A. LIMITATIONS OF ORIGINAL NLOF
If we consider topological relationships in our detection rule
we can isolate the upstream link that is the origin of the
fault [10]. However, we want to simplify the detection rule
so, in this work, we are proposing a different approach to
the final stage of the NLOF pipeline: the link outlier score
computation. To understand the limitations of using the ratio
of outlier flows to all flows traversing a link as the outlier
score, we conducted a sensitivity analysis, see the Appendix
for details. The objective is that the ratio of observed outlier
flows to all observed flows (i.e., the outlier score) reflects
the probability that a link is experiencing a fault that reduces

the throughput of those outlier flows. From our sensitivity
analysis, we can see that this ratio is not only affected by a
fault on a link but is sensitive to where flows are sampled.
This sensitivity limits the effectiveness of our original NLOF.
We need an outlier score that is not derived from that ratio but
rather learned through observing outlier and normal flows,
in the performance context.

B. OUR CONTRIBUTION
We redesign the outlier score computation of NLOF such
that a simple threshold-based detection rule can be used
in all instances and prevent the false positives discussed
above. Specifically, we propose and evaluate a technique that
learns the probability of a link experiencing a fault by using
network flows as training data; performance outlier flows
increase fault probability and normal flows decrease fault
probability. Our technique also learns the specific links along
a flow path most responsible for the performance degradation
of a flow thereby improving the learning of the fault proba-
bilities (i.e., outlier scores) that determine the fault locations.
This approach to determining an outlier score is in contrast to
our previous NLOF algorithm that assigned an outlier score
as the ratio of outlier flows to total flows traversing a link.
With our new machine learning technique we thereby learn
the most likely links causing the performance degradation
of the outlier flows. Our new NLOF with most likely links
(NLOF:MLL) is experimentally compared to the existing
literature (including our original NLOF) using classifica-
tion performance measures: recall, precision, F1-score, and
time-to-detection. We employ inferential statistics to iden-
tify statistically significant differences in those performance
measures.

C. RELATED WORK
Early work on automated network fault detection in the
1990s and 2000s was driven mostly by a few research groups.
A group led by F. Feather at Carnegie Mellon [11], [12] uti-
lized the detection of abrupt changes in network performance
measures to detect the occurrence of a fault. This group also
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used fault feature vectors to identify the specific cause of
the fault. Similarly, a group led by C. Ji at RPI/Georgia Tech
used abrupt changes in MIB variables (i.e., network switch
event counters) to detect network faults. The abrupt change
detection technique continued to be pursued throughout the
2000s; for some examples, see [13], [14].
Another group led by M. Schwartz at Columbia [15],

[16], [17] used network alarm data to detect network faults
using context-free grammars and probabilistic finite state
machines.
Modeling network behavior and using predicted responses

of the model to detect faults in the real network was another
avenue of investigation in the 2000s; for some examples,
see [18], [19].
Similar to our NLOF:MLL, the work presented in [20]

proposes a method to assign a fault probability to each link
in a network. The method uses active measurements, active
measurements inject instrumentation traffic in the network
to make the measurement, this is in contrast to passive
measurement that makes a measurement by observing exist-
ing traffic. The active measurement of this technique is
used to determine if a path between measurement points
is meeting a service level agreement (SLA). Each active
measurement triggers an update to the fault probability of a
link. If the active measurement indicates an SLA violation
(i.e., performance degradation), then the fault probability is
increased for all links on the path and decreased for all links
not on the path. If the active measurement does not indicate
an SLA violation (i.e., there is no performance degradation),
then the fault probability is decreased for all links (on the
path and not on the path). In [21] the authors modify the
probability update to decrease the fault probability of links
on the active measurement path at a rate higher than those
not on the path. The sum of the probabilities across all
links in the network is 1; the sample space consists of all
of the links in the network. If the probability assigned to
a link exceeds a threshold, that link is classified as faulty.
NLOF instead uses passive measurements, specifically flow
and topology data; the flow data is existing traffic (i.e., no
instrumentation traffic is inserted in the network). Further,
the flow data only needs to be collected from a subset of
switches whose transiting flows cover, by their paths in the
network, a sufficient fraction of the links in the network for
the desired fault coverage.
Also similar to our NLOF:MLL, 007 [22] assigns scores

to links to localize faults. However, the manner in which 007
derives scores is quite different. 007 requires data about TCP
flows (e.g., retransmissions) collected by agents running on
each end host. It computes the scores using number of bad
flow votes (i.e., those experiencing retransmissions). In a
second round, votes can be redistributed to the link on the
path most responsible (i.e., highest number of bad votes).
NLOF uses flow data that can be collected at switches rather
than hosts and that flow data does not need to be collected
at every switch, as mentioned above. Our new outlier score
technique, proposed here, derives scores in a way that does

not assume that only one link on a path is responsible for
the degraded performance. Lastly, we use flow throughput
not retransmissions as the primary flow feature. Reduced
throughput is indicative of performance degradation with less
severity than is indicated by retransmissions; our technique
should find more subtle failures.

D. OUTLINE
The rest of this paper is organized as follows. In Section II
we describe our algorithm that learns the probability that a
link is experiencing a fault. In Section III we present our
experimental plan designed to compare the performance of
our NLOF:MLL with our original NLOF and two techniques
from the literature: 007 and abrupt change detection (ACD).
In Section IV we present the results of the experiments and
discuss our findings across four classification performance
measures: recall, precision, F1-score, and time-to-detection
(TTD). Finally, in Section V we summarize our findings and
outline paths for future investigation.

II. DETERMINING MOST LIKELY LINKS EXPERIENCING A
FAULT
NLOF scores (ranging from 0 to 1) serve as a probability
that a link is experiencing a fault. Let yi be a binary random
variable describing the state of link i as faulty when equal
to 1 and normal when equal to 0. Let P̂{yi = 1} be the NLOF
score or estimate of the probability that link i is experiencing
a fault, and γ be a threshold on that probability estimate.
We classify link i as experiencing a fault when,

P̂{yi = 1} > γ . (1)

See Section II-E for a discussion regarding setting that
threshold γ . The original NLOF scores (ratio of outlier flows
to all flows traversing a link) were inspired by the relative
frequency definition of probability. Let ai be the set of outlier
flows that traverse link i, li be the set of all flows that traverse
link i. Our original NLOF scores were computed as,

P̂{yi = 1} = |ai|
|li| . (2)

However, that approach to producing the NLOF scores has
a shortcoming: each outlier flow has an equivalent effect on
the NLOF score of each link it traverses. We now make
the reasonable assumption that not every link traversed by a
performance-degraded flow is experiencing a fault. Based
on that assumption each outlier flow should rather have
a weighted effect on the outlier score of each link it tra-
verses. This weighting should utilize historical information
to determine the most likely links responsible for the outlier
(or performance-degraded) flow. Links that have historically
been associated with more outlier flows should be consid-
ered more likely and therefore have their NLOF outlier scores
increased more by the current outlier flow. The probability
of a link being faulty is thereby learned from the outlier
flows that traverse them. Figure 2 illustrates this learning
algorithm replacing stage 4 of our NLOF pipeline.
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FIGURE 2. Our new NLOF:MLL replaces stage 4 of our original NLOF with our most likely links learning algorithm.

We use an intermediary weight for each link that is
increased when an outlier flow traverses the link and
decreased when a normal flow traverses the link. This weight
is then normalized to become an outlier score for the link
(i.e., a probability that the link is experiencing a fault). Let
w be the vector of these intermediary weights, where each
link in the network has a corresponding element in the vec-
tor and N be the normalization factor; we will elaborate on
this factor shortly. The NLOF:MLL score is computed as,

P̂{yi = 1} = wi
N

. (3)

A. ALGORITHM OVERVIEW
Our algorithm executes periodically, each period being an
epoch such as 1 minute. The algorithm is triggered at the
conclusion of an epoch and uses the set of all flows that
terminated during a time window that ends at the end of the
epoch. We refer to that time window as the outlier window
and its beginning can extend past the beginning of the epoch
making it potentially larger than the epoch, see [10] for more
detail. Let wt be the weight vector for epoch t and ξ t be the
initial value of the weight vector for epoch t with an element
in those two vectors for each link i, wti and ξ ti . For the first
epoch, we set the initial weight vector (ξ1) to a vector with
each element equal to a small non-zero value, ε. That small
value represents no probability of a fault: ξ1 = ε. We discuss
the setting of this initial weight vector for subsequent epochs
(ξ t) in Section II-D.
For an epoch t, the link weight vector is initialized as

wt = ξ t and then updated for each flow f in the set of flows
that terminated during the outlier window. Each flow has an
associated path vector expressing the path in the network
that the flow traverses. Let p be the path vector for a flow
with each element corresponding to a link in the network
with the same ordering as the weight vectors. An element
in the path vector of a flow is 1 if that link is traversed by
the flow, and 0 if it is not.
Two examples of path vectors are visualized in Figure 3.

In Figure 3a there are 4 hosts meaning that there would be
6 unique path vector values (4 choose 2) and in Figure 3b

FIGURE 3. Path Vector Examples.

there are 5 hosts meaning there would be 10 unique path
vector values (5 choose 2). Figure 3a shows the path taken
by a flow between h0 and h3 which would traverse the
links l0, l1, l2, and l7. The corresponding path vector would
be p = [1 1 1 0 0 0 0 1]. Similarly, Figure 3b shows
the path taken by a flow between hosts h3 and h4 which
traverses the links l3, l7, l9, and l10 resulting in path vector
p = [0 0 0 1 0 0 0 1 0 1 1]. The path vectors only need to
be updated when the network topology changes or the path
between two hosts changes; efficiently doing this is outside
the scope of this work.

B. UPDATING LINK WEIGHTS
For each epoch t the link weights are updated for each flow
in the set of flows in the outlier window. Let f be the current
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flow used to update the link weights and Ff be the outlier
score of that flow (see [10] for how that flow outlier factor
(FOF) score is determined), γ be the threshold on the outlier
score for declaring a flow as a performance-degraded outlier,
pi be the ith element of the flow’s path vector p, wti be the
ith element of the link weight vector for epoch t, and λ be
the link weight decrease factor. For the current flow f the
link weight vector w is updated element-by-element using,

wti := wti + δ (4)

where

δ = 1
(
Ff > γ

) wtipi

(wt)Tp
− 1

(
Ff ≤ γ

)
min

(
λwtipi, 1

)
. (5)

Note that 1(·) is the indicator function; the value of the
indicator function is 1 if the inequality in the parentheses is
true and 0 otherwise. The left hand term in the update expres-
sion, Eq. (5), is non-zero for an outlier flow and increases
the link weight in proportion of the link weight to all of the
link weights along the path of the flow. The right hand term
in the update expression is non-zero for a normal flow and
decreases the link weight by a multiplicative factor of λ; but
will not decrease by more than 1. We discuss the setting of
the hyper-parameter λ in Section II-E.

C. NORMALIZING LINK WEIGHTS TO PRODUCE AN
OUTLIER SCORE
Let ati be the set of outlier flows that traverse link i during
the outlier window for epoch t, lti be the set of all flows
that traverse link i during the outlier window for epoch t
and yi be a binary random variable describing the state of
link i as faulty when equal to 1 and normal when equal
to 0. The final link weights (wti) can have a maximum value
of the number of outlier flows that traverse that link plus
its initial weight (|ati| + ξ ti ) if that link received all of the
probability for all of the outlier flows that traversed it. Thus,
to produce a normalized weight value (ẃti) that is restricted
to the range of 0 and 1 to represent the probability that
link lti is experiencing a fault we divide the weight value by
|ati| + ξ ti . The normalized link weights are:

ẃti = wti
N

= wti
|ati| + ξ ti

. (6)

An issue of using the number of outlier flows to normal-
ize the weights for each link is that it ignores the ratio of

outlier flows to normal flows (
|ati|
|lti| ). Meaning that if out of

many flows only one was outlier but link i received all of
the probability then the estimation of the probability of it
being the source of a fault would be 1. For a more accurate
estimation of the probability that a link is experiencing a
failure then it needs to have both a large proportion of the

probability (i.e., a high value for
wti
|ati| ), as well as a large

proportion of the flows that traverse it to be outliers (i.e., a

high value for
|ati|
|lti| ). Since we are bootstrapping the weight

values for epoch t using ξ t, that value must be added to all

the terms that do not already include it (i.e., |ati| and |lti|).
Thus, the final normalized weights (ẃti) and subsequently
the estimation for the probability that a link is a source of
a fault (P̂{yi = 1}) is given by,

ẃti = wti(|ati| + ξ ti

)

(|ati| + ξ ti

)

(|lti| + ξ ti

) = wti
|lti| + ξ ti

(7)

and

P̂{yi = 1} = ẃti = wti
|lti| + ξ ti

. (8)

D. LEARNING FROM PRIOR EPOCHS
Initializing all of the link weights to a vector of small val-
ues, ε is a reasonable initial assumption as without any prior
information it cannot be concluded that any link is experi-
encing a fault. However, since NLOF executes periodically
on an epoch-by-epoch basis we can use the learning in prior
epochs to initialize the weights for the current epoch. Let the
superscript t denote the current epoch, the superscript t− 1
denote the previous epoch, and so on. We use the average
of the normalized weights for a link from the last k epochs
to initialize the weights for the current epoch,

ξ ti =
∑k

j=1 ẃ
(t−j)
i

k
. (9)

E. SELECTION OF HYPER-PARAMETERS: γ , λ, AND k
Our learning algorithm has three hyper-parameters: 1) γ , the
outlier score threshold for classifying a flow as an outlier,
2) λ, the multiplicative factor used to decrease the link weight
for a normal flow, and 3) k, the number of previous epochs
to learn the initial link weights from.
Choosing a value for γ can be a difficult task as there

is not a single value that can be used in all situations. Due
to the nature of how the flow outlier factor (FOF) score is
computed there can be a large variation in FOF scores for
outlier flows. Rather than select a static threshold, it is best
to use the FOF scores that have already been computed to
select a value for γ . If the assumption is made that most of
the traffic that will be observed is normal then a reasonable
value can be selected for γ by taking the n-th percentile of
the FOF scores in the clustering window, where n is a high
value. In our experiments n = 95 worked well.

We found that selecting a small positive non-zero value
for λ worked well; in our experiments 0.1 provided good
performance. A small positive value for λ sufficiently pre-
vents weight values from growing too quickly when there are
consistent normal flows while not excessively diminishing
the weight values.
Although leveraging insight from learning in prior epochs

is useful, it is important to adapt quickly to changing con-
ditions; so we recommend setting k to either 1 or 2. This
recommendation matches guidance in the general forecast-
ing literature whereby auto-regressive models of order 2 or
less are sufficient [23]. In our experiments we used k = 1.
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FIGURE 4. Topologies used in experiments. A blue node denotes a host and orange node denotes a switch.

III. EXPERIMENTAL PLAN
Our experimental plan is designed to reveal the classifi-
cation performance differences between two fault detection
techniques from the existing literature (007 [22], and abrupt
change detection (ACD) [24]), our original NLOF, and our
NLOF:MLL proposed in this manuscript. Our NLOF:MLL
contains an algorithm that learns the probability that a link
is experiencing a fault. We have designed experiments to
provide a high-level of realism and the ability to check
for statistically significant performance differences. This is
achieved with four strategies.
First, we use Mininet [25] as our experimental platform.

Mininet uses process virtualization and network namespaces
that are available in most recent Linux kernels to emu-
late network hardware utilizing real Linux network protocol
stacks. Each host is a bash process that is created inside a
network namespace so that each host has its own network
interfaces and only has visibility of its own processes.
Switches are implemented using software-based switches
such as Open vSwitch that connect to hosts and other
switches using virtual Ethernet pairs.
Second, we utilize network topologies derived from guid-

ance for enterprise networks from the two largest equipment
manufacturers: Cisco and Juniper. Three different network
topologies representing three different sizes of enterprise
networks are used. Three different loads were presented to
the network: 0.1 Gbps, 0.5 Gbps, and 1 Gbps. We provide
details on these topologies in Section III-A.
Third, we utilize generally accepted synthetic traffic

models. We generate two types of flows, the first type
are short-life constant bit rate (CBR) flows and the sec-
ond type are long-life variable bit rate (VBR) flows with
the self-similarity property. Flow data are captured using
PMACCT [26] by monitoring all the traffic that traverses
the switch with the highest centrality in the network. We
provide more detail on our traffic models in Section III-C.
Lastly, we utilize repeated experiments whereby we re-

seed our pseudo-random number generators, use the same
random network scenario for each of the four fault detec-
tion techniques, and apply inferential statistics to check for
statistically significant performance differences. Six repeated

experiments were conducted for each combination of topol-
ogy and network load for a total of 54 experiments. During
each of the repeated experiments, network flows and faults
were randomly generated on the selected topology with
the selected network load. Each of these experiments were
2 hours. During each repeated experiment between 1 and
4 link faults are created at random. Faults are emulated by
adjusting the packet error rate of a link between 5% and 15%.
The start of the fault is randomly selected and the duration
of each fault is randomly selected to be between 500 and
1500 seconds. Shorter fault durations or a lower packet rate
seem too inconsequential to consider in our experiments. In
summary, pseudo-random number generation is used in each
repeated experiment for the selection of:

1) Number, start time, duration, and location of faults
2) Start time, and duration of flows
3) Source and destination of flows
4) Burst lengths and individual packet sizes in a packet

burst for a long-life VBR flow
5) Off period duration for a long-life VBR flow

The four fault detection techniques are compared using the
generally accepted classification metrics of recall, precision,
F1-score, and time-to-detection (TTD) over the 54 exper-
iments. Recall provides a measure of the fraction of true
positives detected and precision provides a measure of false
positives; both are important so the F1-score is the harmonic
mean of both those measures. Note that for the abrupt change
detection technique its performance will be evaluated based
on detection rather than localization as it was only designed
to detect faults and not localize them. Confidence intervals
are computed to determine statistically significant differ-
ences. A confidence interval is an interval with which we are
confident (e.g., with 95% confidence) that the true measure
is contained. Pairwise t-tests are utilized when confidence
intervals are insufficient to test for statistical significance.

A. TOPOLOGY SELECTION
The three topologies used in our experiments are shown
in Figure 4. These topologies were designed using the
medium-size enterprise design guides from Cisco [27] and
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Juniper [28]. Both guides suggest a 3-layer architecture com-
prising of core, distribution, and access layers. The guides
suggest collapsing the core and distribution layers for smaller
networks. Topology 1 has collapsed core and distribution lay-
ers as the center switch; the other switches act as the access
layer. Topology 2 has two center switches as the core and
distribution layer. Topology 3 has 3 central switches as the
core and distribution layer. While NLOF may be suitable for
localizing faults on other topologies such as a mesh topol-
ogy, that is reserved for future work. Due to computational
restrictions larger topologies were not considered.
As a network grows in size, there is an increasing number

of transmission links for which we need flows to transit
to have the effect of faults on those links affect the flow
data. The collected flows need to transit a fraction of the
links that provides the fault coverage we desire (let’s say
95%). All of those flows may be observable from a rather
small subset of switches in the network regardless of its size
depending on the structure of the network. As an example,
if a gateway switch carries flows that traverse the desired
coverage fraction of the network, then flows only need to be
observed at that single switch. The computational complexity
of our algorithm will increase with network size. The size of
the weight and path vectors are proportional to the size of the
network. The time complexity of the weight updating method
of NLOF:MLL is linear, i.e., O(n); it will scale favorably to
large networks. However, NLOF:MLL includes flow outlier
detection, which currently uses clustering methods that have
higher time complexity, typically O(n log n). Note, the input
size n is relative to the number of flows observed which is
likely to grow with the physical size of the network.
A divide and conquer approach is the best method to detect

faults in a very large network. Divide the network into sub-
networks and have an instance of our algorithm execute to
detect faults on each subnetwork. The computational com-
plexity primarily depends on the number of flows within
the clustering and outlier windows. The number of flows in
those windows is not easily related to the physical size of the
network and could change significantly over time. For that
reason, we recommend a trial and error method to determine
when to employ the divide and conquer strategy.

B. ALGORITHM HYPER-PARAMETERS
In our experiments we used the following algorithm hyper-
parameters: 95th percentile of FOF scores for γ , 0.1 for λ,
and 1 for k.

C. TRAFFIC GENERATION
To generate traffic a total load is presented to the network
by generating flows between hosts in the network. The total
load presented to the network is constant and is defined
by the emulation parameter that controls the load presented
to the network (β) in bits per second (bps). To maintain
a constant load a number of active flows will be generated
that will supply that load. The number of active flows at any
given time during an emulation is 2/3 the number of hosts

(|h|) on the network, e.g., if there are 9 hosts on the network
then there will be 6 active flows at any given time. Each of
the active flows will be one of two different types of flows; a
short-life CBR flow, or a long-life VBR flow. VBR flows are
generated using a self-similar model derived from the one
presented in [29]; packet sizes follow the IMIX distribution.
Self-similar models are shown to accurately model Ethernet
traffic [30]. Half of the active flows are CBR flows and the
other half are VBR flows.

1) SHORT-LIFE CONSTANT BIT RATE (CBR) FLOWS

CBR flows are implemented using a Python socket connec-
tion between two hosts in Mininet. The duration is randomly
selected between a range of 1 and 15 seconds. The total num-
ber of bytes to be sent are split into equal-sized packets sent
out with a deterministic inter-packet delay.

2) LONG-LIFE VARIABLE BIT RATE (VBR) FLOWS

VBR flows are also implemented using Python socket con-
nections between two hosts in Mininet. The self-similarity
of each flow is determined by the Hurst parameter, which
is set to 0.75. Each flow has a queue thread that is fed by
32 streams. Each of the streams has its own thread which
generates bursts of packets that are fed into a queue for the
flow. The number of packets in a burst are sampled from a
Pareto distribution with shape α = 3 and scale m = 10. The
delay between bursts of packets is also sampled from a Pareto
distribution with α = 3 − (2 ∗ 0.75) which means the delay
exhibits the property of self-similarity. The scale parame-
ter (m) is then computed given all the other information to
achieve the desired average bit rate over a long period. A
separate thread handles sending the data in the queue over a
Python socket connection, which will check the queue and
send the data in the queue for the duration of the flow. The
duration of the VBR flows is selected randomly between 60
and 600 seconds. The size of each packet sent is randomly
selected from the IMIX packet size distribution.

IV. EXPERIMENTAL PERFORMANCE ANALYSIS
We compared the four fault detection techniques using
the classification performance measures of recall, precision,
F1-score, and time-to-detection (TTD). We discuss each of
these performance measures in the next four sub-sections.

A. RECALL
Figure 5 shows the average recall for each technique over the
54 experiments. The results also include the 95% confidence
interval computed over the 54 experiments. The average
recall of 007, abrupt change detection (ACD), NLOF, and
NLOF:MLL were 0.986, 0.666, 0.504, and 0.823, respec-
tively. 007 has a much higher recall than any of the other
techniques as it is able to localize almost all of the faults
that occurred. The recall performance of 007 does have a
caveat, it declares most links as faulty resulting in many true
positives but also many false positives. When only consider-
ing the recall 007 performs deceptively well, but the overall
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FIGURE 5. Average recall of each technique over all 54 experiments, with 95%
confidence intervals.

TABLE 1. P-values for two-sided pairwise t-tests to compare the average recall
between each pair of techniques, each value in bold indicates a statistically significant
difference with over 95% confidence.

performance will be made clear in the following subsections.
NLOF:MLL has a slightly lower recall but is still able to
localize most faults that occurred and provides a significant
improvement compared to NLOF. The abrupt change detec-
tion method performed poorly even when only evaluated on
its ability to detect faults rather than localize them.
A two-sided pairwise t-test was conducted to uncover sta-

tistically significant differences in average recall between
each pair of techniques. The results are shown in Table 1.
The t-tests show that most of the techniques are statis-
tically significantly different with over 99% confidence.
The exception is when comparing abrupt change detection
with NLOF and NLOF:MLL; p-values were 5.22e-02 and
4.84e-02, respectively.

B. PRECISION
Figure 6 shows the average precision for each technique
over the 54 experiments. The results also include the 95%
confidence interval computed over the 54 experiments. The
average precision of 007, abrupt change detection (ACD),
NLOF, and NLOF:MLL were 0.009, 0.066, 0.364, and 0.899,
respectively. While 007 had a nearly perfect recall, its
precision was near 0. This indicates that 007 is producing
many false positives since 007 declares any link with more
than 1% of the votes as faulty resulting in very high recall
but also very low precision. The approach taken by 007 is
not robust to noise; i.e., when a retransmission is caused by
something other than a faulty link. This observation is cor-
roborated by the Omnimon performance comparison with
007, see [31]. The abrupt change detection has the same
problem generating many false positives likely due to abrupt
changes in the traffic behavior when there is no fault, which

FIGURE 6. Average precision of each technique over all 54 experiments, with 95%
confidence intervals.

TABLE 2. P-values for two-sided pairwise t-tests to compare the average precision
between each pair of techniques, each value in bold indicates a statistically significant
difference with over 95% confidence.

could happen in the case of congestion or large bursts of
traffic. NLOF:MLL has significantly higher precision than
all of the other techniques, meaning that NLOF:MLL can
localize most of the faults while producing much fewer false
positives than the other techniques.
A two-sided pairwise t-test was conducted to check for sta-

tistically significant differences in average precision between
each pair of techniques. The results are shown in Table 2.
The results of the t-tests show that there is a statistically sig-
nificant difference between each pair of techniques with well
over 99% confidence. Note that there is a statistically sig-
nificant difference in the average precision between NLOF
and NLOF:MLL indicating that NLOF:MLL did address the
issue of NLOF generating false positives when a faulty core
link is present.

C. F1-SCORE
Figure 7 shows the average F1-score for each technique over
the 54 experiments. The results also include the 95% con-
fidence interval computed over the 54 experiments. Given
that the F1-score is the harmonic mean of precision and
recall the results show exactly what is expected with 007,
abrupt change detection (ACD), NLOF, and NLOF:MLL
having average F1-scores of 0.018, 0.110, 0.350, and 0.837,
respectively.
A two-sided pairwise t-test was conducted to check for

statistically significant differences in the average F1-score
between each pair of techniques. The results are shown in
Table 3. The results of the t-tests show that there is a statis-
tically significant difference between each pair of techniques
with well over 99% confidence. Given that NLOF:MLL has
a much higher average F1-score than the other techniques in
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FIGURE 7. Average F1-score of each technique over all 54 experiments, with 95%
confidence intervals.

TABLE 3. P-values for two-sided pairwise t-tests to compare the average F1-score
between each pair of techniques, each value in bold indicates a statistically significant
difference with over 95% confidence.

FIGURE 8. Average Time To Detection (TTD), in seconds, of each technique over all
54 experiments.

this wide set of experiments, we conclude that NLOF:MLL
can localize most faults without producing too many false
positives.

D. TIME TO DETECTION (TTD)
Figure 8 shows the average time to detection over all of the
correctly localized/detected faults for each technique. 007,
abrupt change detection (ACD), NLOF, and NLOF:MLL had
an average Time To Detection (TTD), in seconds, of 40, 317,
340 and 257, respectively. From the results it is clear that
007 has the advantage when it comes to how quickly it
can localize a fault. This is due to the data that is used by
each technique. 007 uses retransmissions that are reported
immediately when they occur. Comparatively, NLOF:MLL
uses flow records that are not observable until a flow has
terminated and its record is written to persistent storage such
as a database. The abrupt change detection technique, NLOF,
and NLOF:MLL all have reasonable average TTD values as

TABLE 4. P-values for two-sided t-tests to compare the average time to detection
(TTD) between each pair of techniques, each value in bold indicates a statistically
significant difference with over 95% confidence.

the fault can be localized within a few minutes of the fault
beginning to affect traffic.
A two-sided t-test was performed between each pair of

techniques to check for statistically significant differences
in average TTD. The p-values resulting from the t-tests are
shown in Table 4. There is a statistically significant differ-
ence in the average TTD for most pairs of techniques. The
exceptions are abrupt change detection compared to either
NLOF or NLOF:MLL. An important observation is that the
average TTD of NLOF:MLL is smaller than that of NLOF.
The smaller TTD provided by NLOF:MLL is a result of
the running average method that is used by NLOF:MLL
allowing NLOF scores to increase more quickly.

V. CONCLUSION
In conclusion, our NLOF:MLL technique outperforms our
original NLOF, abrupt change detection, and 007 on
precision and F1-score in our wide ranging Mininet exper-
iments; the performance differences are statistically signifi-
cant. 007 had higher recall but at the expense of very poor
precision as a result of excessive false positives. The time-to-
detection of NLOF:MLL was competitive with abrupt change
detection but higher than 007. NLOF:MLL improved the
time-to-detection over our original NLOF.
In future work we can explore strategies to reduce the

time-to-detection. Other paths for future work can explore
the use of additional flow features, and techniques other than
averaging to incorporate learning from prior epochs.

APPENDIX
NLOF uses clustering and outlier detection in its first
two stages to identify flows that are performance outliers;
performance-degraded flows. The performance of those two
stages has sensitivities that we do not analyze in this work.
In the third stage, NLOF associates flows to the links they
traverse. In the fourth and final stage, NLOF assigns an out-
lier score to each link as a ratio of outlier flows to all flows
traversing that link. That ratio is sensitive to the flows that
are observed (due to flow export locations). We analyze this
particular sensitivity in this Appendix.
Recall from Section II, ai is the set of outlier flows that

traverse link i, li is the set of all flows that traverse link i.
Therefore, our original NLOF scores are computed as,

P̂{yi = 1} = |ai|
|li| . (10)

To facilitate the sensitivity analysis, we will assume all
flows traversing a faulty link will be properly labeled as
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FIGURE 9. Topology used to describe the sensitivity of NLOF to probe placement
and to the traffic matrix.

a performance outlier (i.e., performance-degraded). We will
also compute NLOF scores by considering flows traversing
the same path as an aggregate: flow-producing host-pairs.
Specifically, we assume every pair of hosts produces flows
that traverse the same path; a reasonable assumption in the
absence of route flapping. We further assume a balanced
traffic matrix: pairs of hosts produce the same number of
flows over time. Those assumptions allow computing the
NLOF scores using numbers of host-pairs. Host-pairs whose
flows would traverse a faulty link would increment the count
of ai by 1 for each link i they traverse; whether the link has
a fault or not. All host pairs whose flows would traverse a
link i would be counted in li, the NLOF score for link i is
the ratio of those two values as can be seen in the equation
above. Using the granularity of flow-producing host-pairs
simplifies the sensitivity analysis.
Figure 9 shows the simple network topology we are con-

sidering in the following NLOF outlier score sensitivity
analysis. This topology consists of 2 switches, 6 hosts, and
7 links; there are 15 combinations of pairs of hosts. We
explore two fault examples: a) a fault on edge link l1, and
b) a fault on core link l0.

With the topology in Figure 9 we have two switches;
so we consider three possibilities: i) exporting from both
switches, ii) exporting only from switch S0, and iii) exporting
only from switch S1.

A. EXAMPLE A: FAULT ON EDGE LINK L1
With a fault on edge link l1, all host-pairs including h1
(five total) will be performance-degraded the other ten host-
pairs will not be. Full flow visibility (i.e., flow export from
both Switches S0 and S1) means the NLOF score for link
l1 is 1 and less than 1 for the other 5 links as they will
have host-pairs other than those that traverse the faulty link.
Specifically, the scores will be 0.2 for the other edge links

and 0.33 for the core link l0; thereby clearly distinguishing
the faulty link with the NLOF score. As an example, for
link l2 there are 5 observable flow-producing host-pairs but
only one is performance degraded h1:h2 for a ratio of 0.2.

Exporting flows only from Switch S0 permits observing
all of the flows for host-pairs that include h1 and results in
NLOF scores similar to full visibility.
If flows are only exported from Switch S1 not all of the

flows for host-pairs including h1 are visible. NLOF scores
are 0 for links l2 and l3 because the performance-degraded
host-pairs h1:h2 and h1:h3 are not observable, otherwise the
results are the same as the other two flow export scenarios.
Importantly, the NLOF score of the faulty link is still clearly
distinguished.
This analysis suggests faults on edge links are robust to

flow export location(s). This matches our experimental find-
ings reported in [10]. In practice, not all flows traversing a
faulty link will be labeled as an outlier either due to the fault
not consistently degrading flow performance or the clustering
and outlier detection not properly labeling the performance-
degraded flow. As a result, we found that setting a lower
threshold (i.e., 0.66) worked well in our experiments.

B. EXAMPLE B: FAULT ON CORE LINK L0
With a fault on the core link l0, all host-pairs that cross
through the two switches in the topology of Figure 9 will
be performance-degraded (nine total), the other six host-pairs
will not be. Full flow visibility results in the NLOF score
being 1 for link l0 but 0.6 for the other links; all links have
high NLOF scores. However, a threshold of 0.66 isolates the
faulty link l0. See Table 5 for details on the NLOF score
computations.
If flows are only exported from one of the two switches

(either Switch S0 or S1) then several links will have NLOF
scores of 1 in addition to the faulty link. Thereby causing
the faulty link to be indistinguishable from those other links
without considering additional criteria. In our original NLOF
we utilized topological relationships to make the distinction
making the detection rule quite complicated. Tables 6 and 7
show the details of the NLOF score computations.

C. GENERALIZATION
Let’s assume a single faulty link, let lf be the set of flows
traversing that faulty link, and af be the set of outlier flows
traversing that faulty link, then the NLOF score of the faulty
link (Nf ) from Eq. (10) is,

Nf = |af |
|lf | . (11)

Eq. (11) by its definition is the proportion of flows
traversing the faulty link that are performance-degraded.
The intersection of the set of flows traversing the faulty

link and a non-faulty link i, (i.e., li ∩ lf ), are the flows that
traverse both the faulty link and link i. We will refer to these
as the “common flows” among the faulty link and link i.
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TABLE 5. Core link error (l0): Flow export from both switches (i.e., full visibility).

TABLE 6. Core link error (l0): Flow export from only switch S0.

TABLE 7. Core link error (l0): Flow export from only switch S1.

Let α be the ratio of those “common flows” to all the flows
traversing link i,

α = |li ∩ lf |
|li| . (12)

Since the faulty link is the source of the outlier flows
traversing link i,

|ai| ≤ Nf |li ∩ lf | (13)

and it therefore follows that the NLOF score (Ni) for a link
i is,

Ni = |ai|
|li| ≤ Nf |li ∩ lf |

|li| . (14)

Using the ratio of those “common flows”, α,

Ni ≤ αNf (15)

and therefore has a range from 0 to Nf .

As a result, any link’s NLOF score can approach the
NLOF score of the faulty link. In the extreme case, when
all of the flows traversing the faulty link are the same as
those traversing the link i where i is not the faulty link,
unfortunately Ni = Nf .

It is important that the ratio of “common flows” is as low
as possible. There are two factors that affect that ratio α:

1) the naturally occuring traffic matrix
2) flow observability impacted by the flow export location
Our new NLOF:MLL algorithm mitigates these NLOF

score sensitivies by making Equation (14) not relevant
because the NLOF score is no longer the ratio of outlier
flows to all flows traversing the link.

REFERENCES
[1] A. Gupta, “Network management: Current trends and future per-

spectives,” J. Netw. Syst. Manag., vol. 14, no. 4, pp. 483–491,
Dec. 2006.

VOLUME 4, 2023 669



MENDOZA AND MCGARRY: DETERMINING MLLs FOR NETWORK FAULT LOCALIZATION

[2] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on
software-defined networking,” IEEE Commun. Surveys Tuts., vol. 17,
no. 1, pp. 27–51, 1st Quart., 2015.

[3] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A
comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76,
Jan. 2015.

[4] S. Ayoubi et al., “Machine learning for cognitive network manage-
ment,” IEEE Commun. Mag., vol. 56, no. 1, pp. 158–165, Jan. 2018.

[5] C. Benzaid and T. Taleb, “AI-driven zero touch network and service
management in 5G and beyond: Challenges and research directions,”
IEEE Netw., vol. 34, no. 2, pp. 186–194, Mar./Apr. 2020.

[6] J. Gallego-Madrid, R. Sanchez-Iborra, P. M. Ruiz, and A. F. Skarmeta,
“Machine learning-based zero-touch network and service manage-
ment: A survey,” Digit. Commun. Netw., vol. 8, no. 2, pp. 105–123,
Apr. 2022.

[7] E. Coronado et al., “Zero touch management: A survey of network
automation solutions for 5G and 6G networks,” IEEE Commun.
Surveys Tuts., vol. 24, no. 4, pp. 2535–2578, 4th Quart., 2022.

[8] C. Mendoza, V. Dasari, and M. P. McGarry, “Detecting network soft-
failures with the network link outlier factor (NLOF),” in Proc. IEEE
Int. Conf. Big Data (Big Data), Dec. 2019, pp. 3978–3983.

[9] C. Mendoza, V. Dasari, and M. P. McGarry, “The network link outlier
factor (NLOF),” in Proc. Disruptive Technol. Inf. Sci. IV, Apr. 2020,
Art. no. 114190O.

[10] C. Mendoza and M. P. McGarry, “The network link outlier factor
(NLOF) for fault localization,” IEEE Open J. Commun. Soc., vol. 1,
pp. 1539–1550, 2020.

[11] R. A. Maxion and F. E. Feather, “A case study of Ethernet anomalies
in a distributed computing environment,” IEEE Trans. Rel., vol. 39,
no. 4, pp. 433–443, Oct. 1990.

[12] F. Feather, D. Siewiorek, and R. Maxion, “Fault detection in an
Ethernet network using anomaly signature matching,” SIGCOMM
Comput. Commun. Rev., vol. 23, no. 4, pp. 279–288, Oct. 1993.

[13] E. Kiciman and A. Fox, “Detecting application-level failures in
component-based Internet services,” IEEE Trans. Neural Netw.,
vol. 16, no. 5, pp. 1027–1041, Sep. 2005.

[14] H. Hajji, “Statistical analysis of network traffic for adaptive faults
detection,” IEEE Trans. Neural Netw., vol. 16, no. 5, pp. 1053–1063,
Sep. 2005.

[15] G. W. Hart and A. T. Bouloutas, “Correcting dependent errors
in sequences generated by finite-state processes,” IEEE Trans. Inf.
Theory, vol. 39, no. 4, pp. 1249–1260, Jul. 1993.

[16] A. T. Bouloutas, S. Calo, and A. Finkel, “Alarm correlation and fault
identification in communication networks,” IEEE Trans. Commun.,
vol. 42, no. 234, pp. 523–533, Feb.–Apr. 1994.

[17] I. Rouvellou and G. W. Hart, “Automatic alarm correlation for
fault identification,” in Proc. IEEE INFOCOM, vol. 2, Apr. 1995,
pp. 553–561.

[18] K. Appleby, G. Goldszmidt, and M. Steinder, “Yemanja—A layered
fault localization system for multi-domain computing utilities,” J.
Netw. Syst. Manag., vol. 10, no. 2, pp. 171–194, Jun. 2002.

[19] E. Athanasopoulou and C. N. Hadjicostis, “Probabilistic approaches
to fault detection in networked discrete event systems,” IEEE Trans.
Neural Netw., vol. 16, no. 5, pp. 1042–1052, Sep. 2005.

[20] A. Johnsson and C. Meirosu, “Towards automatic network fault local-
ization in real time using probabilistic inference,” in Proc. IFIP/IEEE
Int. Symp. Integr. Netw. Manag. (IM), May 2013, pp. 1393–1398.

[21] A. Johnsson, C. Meirosu, and C. Flinta, “Online network performance
degradation localization using probabilistic inference and change
detection,” in Proc. IEEE Netw. Oper. Manag. Symp. (NOMS),
May 2014, pp. 1–8.

[22] B. Arzani et al., “007: Democratically finding the cause of packet
drops,” in Proc. 15th USENIX Symp. Netw. Syst. Des. Implement.
(NSDI), Apr. 2018, pp. 419–435.

[23] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control. Hoboken, NJ, USA: Wiley, 2008.

[24] M. Thottan and C. Ji, “Proactive anomaly detection using dis-
tributed intelligent agents,” IEEE Netw., vol. 12, no. 5, pp. 21–27,
Sep./Oct. 1998.

[25] “Mininet: Rapid prototyping for software defined networks.” 2022.
[Online]. Available: https://github.com/mininet/mininet

[26] P. Lucente. “PMACCT: IP traffic accounting.” 2023. [Online].
Available: https://github.com/pmacct/pmacct

[27] “Medium enterprise design profile reference guide.” Cisco. Dec. 2013.
[Online]. Available: https://www.cisco.com/c/en/us/td/docs/solutions/
Enterprise/Medium_Enterprise_Design_Profile/MEDP/chap2.html

[28] “Understanding the design of the midsize enterprise campus solution.”
Juniper. Nov. 2016. [Online]. Available: https://www.juniper.net/
documentation/en_US/release-independent/nce/information-products/
topic-collections/nce/nce-143-campus-solution-configuring/topic-
93447.html

[29] G. Kramer, B. Mukherjee, and G. Pesavento, “IPACT a dynamic
protocol for an Ethernet PON (EPON),” IEEE Commun. Mag., vol. 40,
no. 2, pp. 74–80, Feb. 2002.

[30] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the
self-similar nature of Ethernet traffic (extended version),” IEEE/ACM
Trans. Netw., vol. 2, no. 1, pp. 1–15, Feb. 1994.

[31] Q. Huang, H. Sun, P. P. C. Lee, W. Bai, F. Zhu, and Y. Bao,
“OmniMon: Re-architecting network telemetry with resource effi-
ciency and full accuracy,” in Proc. Annu. Conf. ACM Spec. Interest
Group Data Commun. Appl. Technol. Archit. Protocols Comput.
Commun., Jul. 2020, pp. 404–421.

CHRISTOPHER MENDOZA received the Ph.D.
degree in electrical and computer engineer-
ing from the University of Texas at El Paso
in December 2021, under the supervision of
Prof. M. P. McGarry. His research interests
include automated network fault management
using machine learning and natural language
processing.

MICHAEL P. MCGARRY (Senior Member, IEEE)
received the B.S. degree in computer engineering
from the Polytechnic Institute of NYU and the
M.S. and Ph.D. degrees in electrical engineering
from Arizona State University in 2004 and 2007,
respectively. He is an Associate Professor with the
University of Texas at El Paso, where he has been
on the faculty since 2010. From 2008 to 2010,
he was an Assistant Professor with the University
of Akron. His published works in optical access
networks and software-defined networking have

received over 2000 citations according to Google Scholar. One of his articles
was a recipient of the IEEE Communications Society Best Tutorial Paper
Award in 2009. He has served for several years and continues to serve as an
Associate Editor for IEEE COMMUNICATIONS SURVEYS AND TUTORIALS

as well as Optical Switching and Networking (Elsevier). His current research
interest is in applying machine learning to automate communication network
management.

670 VOLUME 4, 2023



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


