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ABSTRACT 6G and beyond networks tend towards fully intelligent and adaptive design in order to
provide better operational agility in maintaining universal wireless access and supporting a wide range of
services and use cases while dealing with network complexity efficiently. Such enhanced network agility
will require developing a self-evolving capability in designing both the network architecture and resource
management to intelligently utilize resources, reduce operational costs, and achieve the coveted quality of
service (QoS). To enable this capability, the necessity of considering an integrated vertical heterogeneous
network (VHetNet) architecture appears to be inevitable due to its high inherent agility. Moreover,
employing an intelligent framework is another crucial requirement for self-evolving networks to deal with
real-time network optimization problems. Hence, in this work, to provide a better insight into network
architecture design in support of self-evolving networks, we highlight the merits of integrated VHetNet
architecture while proposing an intelligent framework for self-evolving integrated vertical heterogeneous
networks (SEI-VHetNets). The impact of the challenges associated with SEI-VHetNet architecture, on
network management is also studied considering a generalized network model. Furthermore, the current
literature on network management of integrated VHetNets along with the recent advancements in artificial
intelligence (AI)/machine learning (ML) solutions are discussed. Accordingly, the core challenges of
integrating AI/ML in SEI-VHetNets are identified. Finally, the potential future research directions for
advancing the autonomous and self-evolving capabilities of SEI-VHetNets are discussed.

INDEX TERMS SEI-VHetNet, network management, optimization problems, AI/ML solutions.

I. INTRODUCTION
A. MOTIVATION

CONTEMPORARY networks are an amalgamation of
distinct terrestrial, aerial, and space/satellite platforms

or tiers. These tiers operate independently and under loose
coordination, with human supervision as a standard and
essential part of their operations [1]. Continuous monitor-
ing and intervention by expert engineers limit the capability
to meet new and unforeseen requirements, maintain univer-
sal wireless access, and support novel use-cases and services
yet to be conceptualized in 6G networks [2]. To fulfill these,
two necessary approaches are needed: 1) revisit the current
network architecture and aim to design an integrated network
that consists of all terrestrial, aerial, and space/satellite tiers;

2) enable fully autonomous coordination and management in
different aspects of the network, including network architec-
ture and resource management. Recently, integrated vertical
heterogeneous network (VHetNet) architecture has been
introduced to combine all the vertical tiers [3]. Here verti-
cal refers to a physical characteristic of such networks, e.g.,
altitude heterogeneity of the network layers or tiers. Hence,
in this work, the fully intelligent and adaptive coordina-
tion and management of integrated VHetNets is advocated.
Unlike terrestrial networks for which there has been steady
progress in the network management policies [4], integrated
scenarios of aerial, terrestrial, and satellite networks, i.e.,
integrated VHetNets, have yet to be thoroughly studied.
Indeed, integrated VHetNets face many challenges despite
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all their advantages when it comes to full integration and
coordination between the vertical tiers, and network resource
management [5]. In a fully coordinated integrated VHetNet,
available resources need to be assigned efficiently across
vertical tiers based on the user demands/needs. Also, the
network topology should be managed continuously in an
adaptive fashion based on the use-case, requested services,
and the future predicted demands [6]. Such coordinated
and adaptive network management is unprecedented and
cannot be accomplished by existing solutions and tech-
nologies such as network virtualization [7]. Hence, to
tackle these challenges in integrated VHetNets, it is nec-
essary to develop an intelligent framework that enables
fully autonomous and adaptive network management across
all vertical tiers, while ensuring full coordination and
integration [8].

In recent literature, self-organizing networks (SONs) and
machine learning (ML) enabled SONs have been introduced
to enable intelligent network management [9], [10], [11].
In these works, the focus is on rule-based configura-
tion, optimization, and adaptation of an existing terrestrial
network [12], [13], [14], [15]. However, to bring intelligence
to integrated VHetNets, it will require a paradigm shift from
conventional SON architecture to adapt the functionalities
of integrated VHetNets and their topology to specific envi-
ronments in self-evolving ways, allowing these networks to
respond to a wide range of user demands and perform under
dynamic and complex conditions. Such self-evolving capabil-
ity will transform network management from self-organizing
into a continuous, fully automatic, and intelligently evolv-
ing entity [16]. A self-evolving structure is expected to
drive network management from self-organization to con-
tinuous and automatic evolvement, where even management
policies can be self-adjusted, to automatically react to
unknown environments and triggers, requiring self-adaptive
and resilient learning mechanisms. Specifically, continuous
and automatic configuration and coordination targets real-
time automated initial network parameter configuration and
auto-connectivity. Moreover, self-evolving networks aim to
self-manage a network of networks that spans across multiple
operators, tiers, and ecosystems (e.g., satellite, aerial, and
terrestrial networks). It is also expected to support contin-
uous, adaptive, and automated self-optimization aiming to
optimize certain aspects and operations such as coverage
and capacity, interference, handover settings, and energy
savings. Hence, unlike SONs, self-evolving networks are
believed to be capable of making autonomous management
decisions across multiple vertical tiers, making them suit-
able for integrated VHetNets. In addition, the self-evolving
capability will improve overall network performance across
each vertical tier and will manage coordination among the
several entities in the future integrated networks [16]. This
capability will also consider the provision, optimization,
and management of all aspects of network management,
including communication, computational, control, hardware,
and software resources. Table 1 provides a comparison

between the characteristics of SON and self-evolving
networks.
The main tool to enable self-evolving capability is artifi-

cial intelligence (AI) which has been considered the science
of training machines to perform human tasks [17]. A
specific subset of AI involves training machines on how
to learn, which constitutes a new framework known as
Machine Learning (ML) [19]. In this context, ML can
provide solutions in scenarios where a massive number
of devices simultaneously require access to the network’s
resources in a dynamic, heterogeneous, and unpredictable
way (e.g., in IoT communications) [20]. ML is expected to
be a key solution for empowering self-evolving networks
in order to configure, coordinate, manage, and optimize
beyond 5G network functions in an automated, adaptive,
and continuous fashion so as to achieve full coordination
and integration, and full radio access network automation
across multiple vertical tiers. In recent studies [22], [23],
[24], [25], ML has mainly been considered for resolving
complications in the design of communications protocols
which subsequently degrade the communication efficiency
and network overall performance. The use of machine
learning methods to develop communication systems has
demonstrated its effectiveness [26], [27]. Recent applications
of various ML techniques have been studied in coexisting
terrestrial-aerial wireless networks [28]. In most of these
works [29], [30], [31], [32], the main objective has been
to find the best strategy for network resource management
on the basis of local observations using modern ML meth-
ods [33]. Although the idea of employing AI/ML techniques
to solve network optimization problems is gaining momen-
tum, few studies exist in the literature on how AI/ML
can ensure the coordination, connectivity, and integration
of networks [35]. As network architecture becomes increas-
ingly heterogeneous, the deployment and integration of ML
are becoming increasingly necessary due to the higher com-
plexity of infrastructure and higher diversity of associated
devices and resources [17]. In integrated VHetNets, which
are highly heterogeneous and composed of several verti-
cal tiers, the integration of AI/ML is a crucial requirement.
In these networks, AI/ML can be employed for designing
an intelligent mechanism to develop algorithms for network
optimization while also guaranteeing full coordination, con-
nectivity, and integration among tiers [36]. Furthermore,
self-evolving capabilities require an intelligent framework
that relies heavily on AI/ML, since these capabilities require
real-time, online, and joint decisions or operations in differ-
ent aspects of network management across vertical tiers [16].
Hence, the intelligence enabled by ML algorithms can work
as the core of the self-evolving structure in an integrated
VHetNet architecture and it will be powered by both the
communications environment’s collected data (e.g., spatial
and temporal traffic distributions, user demands, and mobil-
ity patterns) and external source improvements such as novel
technologies, emerging network components, and advanced
communication services.
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TABLE 1. Summary and classification of existing related works.

In considering an integrated VHetNet with self-
evolving capability which we refer to as a self-evolving
integrated (SEI)-VHetNet, the following objectives should
be addressed.

• What are the unique attributes, key components, and
challenges of a typical SEI-VHetNet architecture? What
are the main differences between SON and self-evolving
networks? (Section II).
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• What are the impacts of challenges associated with inte-
grated VHetNet architecture, on network management
policies and, accordingly, the formulation of network
management optimization problems? (Section III).

• How to design an intelligent framework to enable self-
evolving capability in integrated VHetNets, and analyze
and deal with associated real-time network management
problems? (Section IV).

• Why do intelligent solution methods are of necessary
for coordination between the vertical tiers and satisfy
the self-evolving requirements? (Section IV).

• What are the most effective approaches in terms of
performance metrics, such as delay, accuracy, precision
time, network throughput, etc., for addressing the chal-
lenges of ML integration in SEI-VHetNets? (Section V).

B. EXISTING RELATED SURVEYS
A number of surveys exist in the literature on various aspects
of wireless networks with aerial nodes. Table 1 provides
a classification along with the summaries of these works.
Although these surveys address important communication
problems related to various aspects of so-called unmanned
aerial vehicle (UAV)-enabled communications, they do not
investigate the management aspect of these networks. Also,
only a few considered AI/ML as an enabler for vertical
networks. Finally, only one work addressed an integrated
tiered architecture. Based on these studies, major challenges
appear as the effect of high mobility, dynamic vertical topol-
ogy, full integration complexity, stability and reliability of
platforms, and safety.

C. CONTRIBUTIONS
In this work, we discuss a unified network management
framework and examine its design issues and possible
approaches suitable for current and future integrated vertical
networks. We investigate vertical integration and coor-
dination between three tiers with AI/ML-based network
management. The main contributions of this paper are as
follows:

• We conceptualize an architecture of SEI-VHetNets and
identify open challenges to realize this architecture.

• We propose an intelligent framework for enabling self-
evolving capabilities in integrated VHetNets.

• We investigate the impact of the challenges associated
with integrated VHetNet architecture on network man-
agement considering a generalized system model. To
fulfill this, we consider a unified network manage-
ment framework and study the synergistic interaction
of vertical tiers in SEI-VHetNets.

• We examine and provide a classification of various solu-
tion methods suitable for integrated VHetNets available
in the literature.

• We investigate the suitability, effectiveness, and effi-
ciency of modern ML methods for SEI-VHetNets.

• We provide our vision for potential future research
directions for advancing the autonomous and self-
evolving capabilities of SEI-VHetNets.

D. ORGANIZATION OF THE PAPER
As shown in Fig. 1, the rest of the paper is organized as
follows. In Section II, we provide an overview of current
VHetNets and the characteristics of self-evolving networks.
In Section III, we discuss network management in inte-
grated VHetNets and propose a unified network management
system while also identifying new architecture-dependent
challenges. Also in this section, we analyze network man-
agement optimization problems considering a generalized
system model. In Section IV, we discuss AI/ML-based solu-
tions for dealing with network optimization problems and
examine the core challenges of AI/ML integration in SEI-
VHetNets. Potential applications and future directions to
enhance the SEI-VHetNets are studied in Section V. Finally,
Section VI concludes the paper.

II. VERTICAL HETEROGENEOUS NETWORKS
A. CURRENT VHETNETS
Due to their unique attributes such as high flexibility and
mobility, aerial networks have already gained significant atten-
tion both in academia and industry [62], [63], [64], [65]. The
3rd generation partnership project (3GPP) has already initiated
its activities regarding the non-terrestrial network (NTN), as
defined in Technical Report 38.821 [66]. Recently, a fully inte-
grated VHetNet with three tiers, including terrestrial, aerial,
and space/satellite, has been focused in literature [55] as a
promising solution to provide feasible ubiquitous connectivity
while supporting the requirements of unknown and possibly
revolutionary applications. With the rapid proliferation of
mobile wireless devices and accompanying data traffic, tradi-
tional terrestrial networks face difficulties in supporting data
rates and ever-increasing strict delay requirements. Even more
importantly, the cost of deploying terrestrial infrastructure is
prohibitive in remote areas. To tackle these limitations and
challenges, integrating current terrestrial networks with aerial
networks along with satellite/space networks has become a
necessity. In [67], it is stated that traditional communications
between terrestrial nodes and satellite nodes (as base stations
or relay nodes) suffer from several factors: 1) Traditional
satellite communications are constrained by high path-loss
attenuation, 2) satellites are located at various orbital altitudes
causing significant propagation delays [68], [69]. To address
these factors, aerial networks can be a promising solution,
and they can work along with existing satellite and terrestrial
networks [70]. As shown in Fig. 2, the three-tier architecture is
composed of a satellite/space tier, an aerial tier, and a terrestrial
tier. Aerial networks consist of two sub-tiers, including low-
altitude platforms and high-altitude platforms (HAPs). HAPs
refer to airships and balloons operating in the stratosphere, at
altitudes of 17 Km to 20 Km, depending on where the wind
currents and turbulence are the lowest [71]. Therefore, HAPs
can act as aerial base stations or relay nodes to improve the
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FIGURE 1. The structural diagram of this paper.

communication links between satellite stations and ground
nodes and hence improve the overall network throughput. As
the demand for comprehensive broadband services, global
coverage, and ubiquitous access has grown, non-terrestrial
networks can provide strong support for well-established ter-
restrial backhaul networks. Low altitude platforms operate
below 400 m and facilitate various civilian, commercial and
governmental missions, as well as IoT applications, rang-
ing from military and security operations to entertainment
and telecommunications. Low-altitude platforms are mainly
responsible for network optimization [72]. Unmanned aerial
vehicles (UAVs) or drones are the major representatives of
low-altitude platforms. UAVs are generally employed for
short periods of time (up to several hours), allowing for the

rapid deployment of a multi-hop communication backbone
in challenging situations, such as public safety, search and
rescue missions, surveillance, emergency communications in
post-disaster situations, and so forth [41], [73]. Hence, this
terrestrial-aerial-satellite integrated network architecture can
play an important role in civilian life, with opportunities for
improving wireless connectivity in general and for public
safety and first responders in particular.

B. SELF-EVOLVING NETWORKS
To envision integrated VHetNets capable of adapting dynam-
ically to changing topologies and network management
policies, we need to first identify the main characteristics

556 VOLUME 4, 2023



FIGURE 2. SEI-VHetNet: The big picture.

TABLE 2. A comparison of SON and SE networks characteristics.

of self-evolving networks and their differences from self-
organizing networks SONs. We then discuss a potential
network structure for SE networks. In spite of the 3GPP-
introduced progressive concept of SONs in 4G and 5G
documents, e.g., to automate network management, sev-
eral challenges/shortcomings may remain as the SONs
hardly harness/provide sufficient agility for dealing with
the immense levels of complexity, heterogeneity, and mobil-
ity in the envisioned beyond-5G integrated networks [12],
[13], [14]. Integrated VHetNets with self-evolving capa-
bilities are expected to provide end-to-end intelligent and
closed-loop network automation that is not limited to opti-
mizing network configuration parameters but can reach
the level of automatically forming a temporary commu-
nications network (i.e., through mobile and agile base
stations) to fulfill the demands of specific regions for
certain durations. In the following, we identify the main

characteristics of self-evolving networks, taking integrated
VHetNet architecture into account. Moreover, In Table 2,
we provide a summary comparison between the main
characteristics of SON and self-evolving concepts.

• Distributed and Intelligent Decision-Making: By facili-
tating integrated VHetNets with self-evolving capabili-
ties, there will be a set of self-evolving (SE) units that
collaborate to exchange specific or general information.
An SE unit will be able to create, organize, control,
manage, and sustain itself autonomously based on its
own network and environmental observations along with
the exchanged information from other SE units. This
will create high adaptability to changes in the network
environment and increase the scalability, robustness, and
fault tolerance.

• Fully Dynamic, 3D, and Agile Topology: Considering
the architecture of integrated VHetNets, due to the 3D
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FIGURE 3. Proposed intelligent framework for SEI-VHetNets. A key component to support this framework is a distributed AI approach (e.g., federated learning and transfer
learning) to ensure full integration and coordination.

topology of each node at any vertical tier, everything
in the network can move, including users and base
stations (e.g., UAV, HAP, or satellite). Integrating self-
evolving frameworks in such highly dynamic topologies
will allow the forming, splitting, and slicing of networks
based on changes in user demands and environmental
conditions (e.g., link quality). Agility and flexibility of
a self-evolving framework can prevent over-engineering
or excessive densification of terrestrial networks, such
that better network throughput, data rate, or cover-
age can be achieved for a wide range of applications.
SE units will be able to intelligently, adaptively, and
automatically manage network resources and adjust the
network topology to cope with variable user demands
and random changes in network environment status.

• Seamless Connectivity: SEI-VHetNets are expected to
support ubiquitous connectivity and massive network
traffic while providing various services across all ver-
tical tiers including terrestrial, aerial, and space tiers.
The integration of an SE framework will ensure full
integration and coordination and subsequently, seamless
connectivity between these tiers since network resource
management along with topology adjustment will be
controlled collaboratively by SE units.

• Distributed Multi-Level Computing and Caching: Due
to the demand for high performance of remote resource
access in transparent computing, there is a requirement
in SEI-VHetNets to design an adaptive multi-level cache
framework to provide a global cache resource schedul-
ing and to alleviate the network latency. Existing cache

frameworks in CPU and Web systems cannot be applied
simply because the remote resource access architec-
ture needs to be extended to support multi-level cache,
and the ways that resources are accessed in transpar-
ent computing require specific designs. To tackle these
challenges, the SE framework can manage the collabo-
ration among smart devices, e.g., autonomous vehicles,
and with the edge computing nodes at any vertical tier
to achieve distributed intelligent learning and decision-
making. The computational and caching resources
not only support terrestrial/aerial/space node applica-
tions, but they also support the intelligent automation
functionality in SE networks.

C. SELF-EVOLVING FRAMEWORK FOR INTEGRATED
VHETNETS
In Fig. 3, we show the SE structure and its interaction
with future integrated networks (e.g., integrated VHetNet).
The terrestrial layer consists of conventional base stations.
UAVs, flying aircrafts, and HAPS systems are the main com-
ponents of aerial networks. UAVs can be used either as
an aerial base station or as user equipment. The proposed
SEI-VHetNet architecture not only integrates the terrestrial-
aerial-satellite networks but also incorporates intelligence and
provides a computation and caching platform to enable multi-
level edge computing. The distributed computing resources
in SEI-VHetNet form the core of the distributed and collabo-
rative computing component of the SE structure. To elaborate
on the process in which the SE framework and integrated
VHetNet work together, consider the situation of providing
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communication coverage for a specific event in a region where
there is no terrestrial network coverage. The SE unit first uti-
lizes AI/ML-based techniques to predict the location where
the demand for network capacity and coverage is very high.
This can be done using the collected data about node mobil-
ity, behavior, service requirements, and used applications.
Second, by using the prediction outcomes, the SE unit makes
an intelligent and automated decision to send and adjust some
cross-tier beams, such as UAVs to terrestrial BSs to extend
the network coverage to the event region and accelerate its
capacity to support various services for users across the ver-
tical tier during the event time. Through learning the QoS
requirements of nodes’ used applications, the SE unit has
the capability to select the optimal approach to backhaul the
transmission to the core network through terrestrial, aerial, or
space networks. If some applications require computational
offloading, then the SE unit directs the offloading to the
most suitable computational level (e.g., cloud computing, fog
computing, user equipment collaborative computing). Third,
the SE unit keeps monitoring and evaluating the network
environment by gathering data about network performance
and measuring user satisfaction levels. Finally, the network
environment evaluation is deployed as feedback to the SE unit
in order to adapt to changes and make more accurate intelli-
gence, and automated decisions while evolving the network
performance. Moreover, throughout this process, coordination
management and conflict avoidance of the SE unit resolve
any conflicts that might arise between different components,
networks, operators, or tiers. The required computational and
communication power to run the SE unit can be provided
through the distributed and collaborative computing compo-
nent that utilizes the available computational resources of
integrated VHetNet. The SE structure is supposed to have
several units including one or more local SE units at each
vertical tier and one or a limited number of global SE units,
which are described as follows.

• Local SE Unit: Local SE units at each vertical tier
and one or a limited number of global SE units. Local
SE units are embedded at each tier or across a set of
interacting networks and operators within the same tier.
They can automatically manage and self-allocate the
required communications and computational resources
to fulfill the constantly changing node demands in the
same tier or network. They make their observation of
the network environment, user demands, and service
requirements, and train and learn the ML models to
make automated control and management decisions.
The automated decision-making process needs to be per-
formed jointly with continuous collaboration with the
global SE unit, to ensure full integration and coordina-
tion among all three vertical tiers. This unit can also be
treated as a SON in 3GPP standardization which oper-
ates in connection with a centralized intelligent unit to
make a self-evolving network.

• Centralized (Global) SE Unit: On the other hand,
the global SE unit collects the network control and

management data from each tier in order to enable
coordination and integration among tiers and support
cross-tier control and management decisions collabora-
tively. The global SE unit has three main components:
a) a data collection entity; b) a computation and
coordination management entity; c) a distributed and
collaborative computing component. The concept of SE
capability implements multi-level intelligent network
management policies, which can work across different
networks, operators, and even ecosystems (e.g., cellular
or satellite ecosystems). SE is supported by advances in
ML (e.g., federated learning, online learning, continual
learning), the availability of edge and distributed col-
laborative computing, and also the agility and mobility
of network resources.

III. NETWORK MANAGEMENT IN INTEGRATED
VHETNETS
A. BACKGROUND
Conventionally, according to the IEEE reference open
systems interconnect (OSI) model as a layered architec-
ture [74], all network tasks and functions are assigned to
specific layers, which basically operate in a hierarchical
manner. Each layer provides a set of specific services by
introducing a certain set of protocols. Based on the lay-
ered architecture, there is no interaction between the layers
and they basically operate individually or separately [75].
The only communication between adjacent layers is to send
and receive the processed data. This conventional network
management solution will not be suitable for integrated
VHetNets. Conventional methods assume that infrastructure
changes slowly, over a period of weeks and months [75];
integrated VHetNets, by contrast, are dynamic with infras-
tructure that may change in a matter of minutes [16].
Moreover, there is no single model that can cover all pos-
sible scenarios. Hence, to design an efficient and adaptive
protocol in order to improve the overall network performance
along layers involving various network resource management
aspects, a novel design is required such that the information
between different layers will be exchanged and shared. In
such designs, each layer is characterized by a set of spe-
cific parameters such that each parameter can be recognized
by other layers and they may benefit from it. Furthermore,
these designs are mostly formulated as optimization prob-
lems, with a set of optimization variables and a number of
constraints [76]. The optimization variables usually refer to
the parameters in each layer, and the constraints refer to
quality of service (QoS) constraints in different layers [77].

B. A UNIFIED NETWORK MANAGEMENT FRAMEWORK
In order to jointly tackle the novel architecture-dependent
challenges and network management requirements, we pro-
pose a unified network management framework as shown in
Fig. 4. In this framework, network management aspects are
classified into a set of four network management design
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FIGURE 4. A unified network management framework for SEI-VHetNets.

aspects, which consist of communication, control, com-
putation/caching, and security. Our aim in proposing this
framework is the following:

• To investigate the network management problems in a
more tangible way.

• To discuss how and why network management in
integrated VHetNets is different from conventional
approaches. Moreover, we investigate and identify the
cooperation and interaction between each VHetNet-
specific architecture-dependent challenge and network
management requirement, and we show how joint
optimization problems can be formulated for each
interaction in Section III.

• To analyze how best to address the resulting highly
coupled and complex optimization problems. This opens
up the discussion of AI-enabled solutions, which we
discuss in more detail in Section IV.

As we can see in Fig. 4, the unified network management
framework consists of two axes: an axis for aspects of network
management and an axis for novel architecture-dependent
challenges. Each of these is described in detail here.
Aspects of Network Management Axis: This axis covers all

four network management aspects, namely communication,
control, computation/caching, and security. In general, to
design a network management policy, these aspects cooperate
with each other. Each aspect involves different services and
requirements, which are classified here:

1) Communication aspects: This refers to the services
and requirements that are mainly involved in transmit-
ting or receiving a signal over the wireless medium.
Hence, it includes all the services in the physical
layer according to the OSI model: channel modeling,
antenna design (including beamforming/precoding),
coding/decoding scheme, detection and estimation,

rate adaptation, and channel state information (CSI)
acquisition.

2) Control aspects: This covers any operation or require-
ment that involves controlling aspects of a wireless
communication system. Hence, it includes all the
services in the data-link layer according to the OSI
model: including interference and collision avoid-
ance policies, admission control, user scheduling,
and association policy, network selection control,
bandwidth allocation, power control/allocation, and
positioning.

3) Computation/caching aspects: This covers any oper-
ation related to content caching, content offloading
to cloud services, and computational tasks. Hence,
it includes computation task allocation, content man-
agement, and content caching scheduling (cache
placement).

4) Security aspects: This refers to the operations, services,
and requirements in developing the security tech-
niques for integrated VHetNets. Such techniques may
include modeling for eavesdropping and cyber-attack
avoidance strategies. Cyber-attacks include control
over flight path/hijacking, crashing/landing at will,
and access to file system/access to media files.
Security aspects basically coordinate encryption pro-
tocols and security strategies/technologies across dif-
ferent network layers. Several encryption methods are
available at various layers, which can provide end-
to-end encryption for the transport, application, and
network layers, respectively. To analyze the security
problems in greater detail, in this survey, we mainly
focus on physical layer security issues and techniques
in VHetNets.

Novel Architecture-Dependent Challenges Axis: This axis
shows the core VHetNet architecture-dependent challenges
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which are basically orthogonal to network management
design aspects. These challenges include high mobility, full
integration and coordination, dynamic topology, availabil-
ity and stability, safety, backhauling, and fully intelligent
decision-making. Any intersection between an architecture-
dependent challenge and an aspect of network management
can be interpreted as a new joint optimization problem, which
will require a solution, whether analytical or ML-based.

C. TECHNICAL ANALYSIS
In this section, we identify and analyze some examples of
key architecture-dependent challenges in both current and
future integrated VHetNets to demonstrate the requirement
for a unified framework. Moreover, according to the unified
network management framework, we study the most impor-
tant joint optimization problems, each as an intersection
between a specific architecture-dependent challenge and an
aspect of network management.
In order to analyze and identify these challenges and

their corresponding constraints mathematically, we consider
a general VHetNet network model. Let K nodes, fixed or
mobile, be randomly dispersed in the terrestrial tier and
M aerial nodes hovering in the aerial tier. Moreover, we
assume N nodes are dispersed across the satellite/space tier.
In the terrestrial tier, the horizontal coordinate of each ground
node k is at wk(t) = [xk(t), yk(t)], k ∈ K, at time instant
t with 0 ≤ t ≤ T where T is the total communication
time/period. In the aerial tier, the nodes may operate at dif-
ferent altitudes with a fixed or variable altitude H, above
the terrestrial tier. Hence, the time-varying coordinate of
each aerial node m ∈ M at time instant t can be denoted
by Sm(t) = [qm(t),Hm(t)] where qm(t) = [xm(t), ym(t)].
Moreover, since satellite nodes usually fly at fixed alti-
tudes, we can assume the satellite node n ∈ N has a fixed
altitude Ĥn at each time instant t such that its instanta-
neous location can be denoted by Bn(t) = [q̂n(t), Ĥn] where
q̂n(t) = [x̂n(t), ŷn(t)].
Current VHetNet Architecture-Dependent Challenges:

• High Node Mobility Constraints: The high mobility of
nodes is the most dominant issue in current VHetNets
and it will remain so. The list of mobility or trajectory
constraints that one may impose in integrated VHetNets
are as follows:

1) Maximum speed constraint: Aerial nodes may
fly horizontally or vertically, either with a fixed
or variable speed at each time instant. Due to
mechanical limitations, they have a limited maxi-
mum speed in both directions which needs to be
factored into the problem as follows:

||q′
m(t)|| ≤ Vmax

XY , 0 ≤ t ≤ T,∀m, (1)

||H′
m(t)|| ≤ Vmax

Z , 0 ≤ t ≤ T,∀m, (2)

where ||.|| denotes the magnitude, and Vmax
XY and

Vmax
Z are the maximum aerial speeds in hor-

izontal and vertical directions, respectively, in

meter/second (m/s). Moreover, q′
m(t) and H′

m(t)
denote the first-order derivative of aerial horizontal
and vertical locations, respectively.

2) Minimum speed constraint: This constraint is prac-
tically valid for rotary-wing aerial nodes capable
of remaining stationary at fixed positions, i.e.,
a minimum zero-speed is feasible. However, for
the fixed-wing aerial nodes that must always be
moving, a minimum speed constraint must be
considered:

||q′
m(t)|| ≥ Vmin

XY > 0, 0 ≤ t ≤ T, ∀m, (3)

where Vmin
XY is the minimum speed of the aerial

node in the horizontal direction.
3) Initial and final location constraint: If any aerial

node needs to return to its initial location by
the end of a communication period T , then the
aerial node trajectory needs to satisfy the following
constraint:

qm(0) = qm(T), Hm(0) = Hm(T), ∀m. (4)

If an aerial node does not need to return to its
initial location after a communication period, this
constraint can be relaxed.

4) Altitude and beamwidth constraint: If aerial node
m has an adjustable antenna beamwidth, the fol-
lowing constraints are imposed on both altitude
and beamwidth at each time instant to ensure that
all serving nodes (whether terrestrial/aerial/space
nodes) are covered by the main lobe of the antenna
at any altitude:

Hmin
m (t) ≤ Hm(t) ≤ Hmax

m (t), 0 ≤ t ≤ T,∀m, (5)

θmin
m (t) ≤ θm(t) ≤ θmax

m (t), 0 ≤ t ≤ T,∀m, (6)

||qm(t) − wk(t)|| ≤ Hm(t) tan θm(t),

0 ≤ t ≤ T,∀k,m. (7)

• Backhaul Connectivity: Aerial/space nodes can be
employed as base stations or relay nodes for back-
hauling such that uninterrupted connectivity with the
core network is maintained. With free-space optical
(FSO) communications, several aerial nodes, e.g., HAPS
systems, can form a powerful backbone network and
enable ultra-low latency backhaul connectivity for aerial
and terrestrial network elements. FSO systems are inher-
ently secure and energy efficient while offering huge
bandwidths [78]. To extend the coverage, a satellite
platform can be employed for the backhaul traffic
between the access and the core networks via point-
to-point RF/FSO links. To ensure reliable and seamless
FSO backhaul connectivity in such three-tier vertical
networks, several associated performance parameters
need to be taken into account, including the probability
of fade, outage probability, and instantaneous end-to-
end signal-to-interference-plus-noise ratio (SINR) [79].
For instance, let γ bh

m (t), γ̂ bh
n (t), be SINR of the links
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between the aerial node m or space node n, and the core
network, respectively. Then the following backhauling
associated constraints are required to be satisfied:

γ bh
m (t) ≥ γth, 0 ≤ t ≤ T,∀m, (8)

γ̂ bh
n (t) ≥ γ̂th, 0 ≤ t ≤ T,∀n, (9)

where γth and γ̂th are the defined thresholds ensur-
ing the backhaul connectivity. Such thresholds can
also be considered for outage probability and prob-
ability of fade [80]. With manual or semi-automated
network management in such a complicated vertical
network, its capabilities will be limited, the resources
will be wasted, and its operational costs will increase
significantly. Hence, a fully automated and intelligent
network management framework is vital for integrated
VHetNets.

SEI-VHetNet Architecture-Dependent Challenges:

• Dynamic Topology: Given that aerial nodes are in gen-
eral highly mobile and can move in unpredictable ways,
vehicular density can fluctuate depending on location
and time. Based on their relative speeds, aerial nodes
also require sufficient time for any other aerial/terrestrial
node to transmit its data. Owing to the dynamic envi-
ronment and frequent topology changes, maintaining
connectivity during the transmission time is difficult.
On the other hand, the competitive and autonomous
behavior of mobile nodes, and the scalability, in future
VHetNets, will require a transformation of routing and
handoff strategies into more topology-aware, adaptive,
and real-time policies. In particular, there will be a mas-
sive number of highly mobile nodes in the near future
with differing and competing objectives. To handle such
a congested network with massive data traffic along with
high node and vertical tier mobility, the following con-
straints in designing routing and handoff strategies need
to be considered:

1) Real-time mobility-aware routing: Depending on
the application, the QoS and QoE requirements,
and the routing protocol need to respond accord-
ingly to achieve the ultimate goal. In the literature,
proposed routing algorithms can be classified into
several types, including reactive routing, hybrid
routing, position-based routing, security-based
routing, cluster-based routing, SDN-based routing,
and DTN-based routing. In general, depending on
the network model, each routing scheme has its
own advantages and disadvantages. However, in
integrated VHetNets, two additional aspects need
to be taken into account: 1) Due to the highly
dynamic nature of the network topology, a num-
ber of novel constraints are imposed on routing
protocol designs; 2) to achieve self-evolving capa-
bilities, an intelligent and topology-aware routing
protocol must be employed. In this paper, we
focus on delay constraint routing, energy-efficient

routing, and secured routing. The corresponding
constraints we consider are (1) the probability of
successful packet transmission and (2) the delay
of an average packet transmission.

2) Mobility-aware handoff: The inherited mobility of
aerial nodes, e.g., UAVs, leads to frequent switch-
ing from one serving BS to another, i.e., handoff.
As such, an additional amount of information is
exchanged, which degrades further the transmis-
sion links. Even though the energy consumption
related to the communication overhead is rela-
tively small compared to the aerial nodes’ motion
energy, handoff events should be kept to the
minimum in order to guarantee network relia-
bility and stability [81]. Hence, one major goal
in integrated three-tier networks is to minimize
the handoff events. In [82], the authors investi-
gated the disconnectivity and handoff aware path
planning problem for the cargo-UAV, aiming to
minimize both its energy consumption and hand-
off rate. However, this type of offline approach
may not be suitable for integrated VHetNets. In
contrast to conventional handoff protocols, in inte-
grated VHetNets, handoff strategies need to be
designed with respect to the connectivity between
the three vertical tiers. For this reason, intelli-
gent and topology-aware strategies are vital to
maintaining connectivity and stability. The self-
evolving intelligent and automated management
approach enables the self-deployment of UAV-
BSs handles their fast mobility and handoffs and
manages the connections of the hundreds or pos-
sibly thousands of users that are served by the
UAV-BS. In [83], a speed and direction-based call
admission control scheme was developed for a
standalone HAPS system with the objective of
reducing the handoff call dropping probability as
much as possible, as forced termination is less
desirable than the blocking of a new call. For
this scheme, the system continuously tracked the
SIR received from the user equipment (UE)’s serv-
ing BS’s pilot channel and the next strongest SIR
received from the UE’s neighboring base stations’
pilot signals. It was used to derive the speed and
direction of the mobile UE relative to the rest of
the UEs.

• Full Integration and Coordination: In order to achieve
full integration and coordination between the three verti-
cal tiers, it is necessary to set a number of constraints on
network management. The main constraints for this are
(1) non-singular connectivity, (2) carrier aggregation,
(3) minimum rate requirement, and (4) delay require-
ment. Moreover, by introducing novel use-cases and
applications, such as digital twin [84], virtual real-
ity (VR), and e-surgery [85], a set of new constraints
may also be imposed, which will need to be addressed
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to ensure full integration and connectivity. For future
delay-sensitive applications in SEI-VHetNets, such as
VR, the interaction latency constraint across the verti-
cal tiers is expected to be one of the main constraints
in optimizing the long-term QoE for users of these
applications and services [2].

• Availability and Stability: The availability of nodes in
the communication process and the stability of their
links at each tier highly depend on how they are asso-
ciated with other nodes in the network (e.g., aerial base
station). In order to ensure the availability and stabil-
ity of wireless communication between terrestrial and
non-terrestrial nodes, the following set of constraints
are expected to be imposed on the network.
1) Conventional association constraint: Considering

the mobility of both terrestrial and aerial nodes,
in each time slot, to ensure the availability of the
communication link, the node association needs to
be specified along with the node communication
scheduling. Each aerial node (as a base station)
may serve a group of other terrestrial/aerial/space
nodes; hence, each terrestrial node can be asso-
ciated with at most one aerial node. This aerial-
terrestrial node association imposes a constraint on
the network. In general, a binary variable αk,m[n]
is defined to indicate that node k, as a terrestrial
node, is served by aerial node m at time slot n if
αk,m[n] = 1; otherwise, αk,m[n] = 0. This imposes
the following constraints at each time slot:

K∑

k=1

αk,m(t) ≤ 1, 0 ≤ t ≤ T,∀m, (10)

M∑

m=1

αk,m(t) ≤ 1, 0 ≤ t ≤ T,∀k, (11)

αk,m(t) ∈ {0, 1}, 0 ≤ t ≤ T,∀k,m. (12)

Similarly, for the association between aerial nodes
and satellite nodes in the space tier, the following
association constraints are imposed:

M∑

m=1

βm,n(t) ≤ 1, 0 ≤ t ≤ T,∀n, (13)

N∑

n=1

βm,n(t) ≤ 1, 0 ≤ t ≤ T,∀m, (14)

βm,n(t) ∈ {0, 1}, 0 ≤ t ≤ T,∀m, n, (15)

where βm,n(t) is a binary variable such that aerial
node m is served by satellite node n if βm,n(t) = 1;
otherwise, βm,n(t) = 0.

2) New association constraints: The conventional
association policies will not be able to address
dynamic and collaborative approaches in future
networks. In particular, the nodes in different ver-
tical tiers may not need to be associated with a sin-
gle server or base station. One promising approach

involves multiple nodes transmitting their mes-
sages simultaneously, and multiple receivers across
the tiers decoding them collaboratively. Hence,
these novel association techniques are expected
to impose some new constraints on the problem,
which should be taken into account.

3) Energy and power constraints: Energy will be
consumed by distinct operations of aerial nodes,
including flying, communication, computation,
and sensing, each with specific power require-
ments. Due to the limited power budget of aerial
nodes, a general constraint may impose on the
power management of these nodes. Hence, for
an aerial node m, m ∈ M at time instant t,
with the energy consumption required for flying
pfm(t), communication ptm(t), computation pcm(t),
and sensing psm(t), its total available power budget
is subject to the following constraint:

0 ≤ pfm(t) + ptm(t) + pcm(t) + psm(t) ≤ Pmax
m ,

0 ≤ t ≤ T,∀m, (16)

where Pmax
m is the maximum available power of

aerial node m [103]. Subsequently, the maxi-
mum energy constraint can also be represented
as follows:

∫ T

0
pfm(t)dt +

∫ T

0
ptm(t)dt +

∫ T

0
pcm(t)dt

+
∫ T

0
psm(t)dt ≤ Emax

m ,∀m, (17)

where Emax
m is the maximum available energy of

aerial node m [104].

• Safety: By safety, we mean the safety of humans and the
infrastructure accounting for the autonomous movement
of nodes.

1) Collision avoidance constraint: In case there are
multiple nodes in an aerial or space tier, each node
must keep a minimum distance from other nodes
to avoid a collision. Thus, this constraint can be
defined as follows:

||qm(t) − qm′(t)||2 + ||Hm(t) − Hm′(t)||2 ≥ d2
min,

||q̂n(t) − q̂n′(t)||2 ≥ d̂2
min, (18)

0 ≤ t ≤ T, ∀m′ �= m, n′ �= n, (19)

where dmin and d̂min denote the minimum safe dis-
tance between the aerial nodes and satellite nodes,
respectively, to ensure collision avoidance in both
aerial and space tiers.

2) Turning angle constraint: This constraint limits the
aerial nodes’ horizontal turning angles to avoid the
phenomenon of so-called chattering. With turning
angle constraints, an aerial node cannot arbitrarily
adjust its horizontal flight direction, especially for
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fixed-wing aerial devices. This constraint can be
defined as follows:

φm(t) ≤ φmax
m −→ cos φm(t) ≤ cos φmax

m ,

0 ≤ t ≤ T,∀m, (20)

where φmax
m is the maximum turning angle of aerial

node m.

• Multi-Tier Interference: Within each vertical tier, there
can be two types of interference, including intra-tier
interference in the licensed spectrum, which is the same
as inter-cell interference in a cellular network, and inter-
operator interference in the unlicensed spectrum. On the
other hand, there can be interference across the tiers,
which we refer to as multi-tier. Control and management
of this interference is a crucial task in enabling the
self-evolving capability by supporting full integration
and coordination across tiers. To avoid this interference,
one approach is that all base stations can be collocated
on the same tier and exploited for uplink or downlink
connections [105]. This feature is supported in aerial
nodes, such as HAPS, and unlike terrestrial cellular
networks, can allow the exchange of information on the
interference conditions within the service area between
base stations with no signaling overhead. Then, if the
total power at any BS is less than or equal to a power
outage threshold, the call gets accepted; otherwise, it
gets blocked.Moreover, the mobility of nodes across the
service area, which can be an integration of two or three
tiers, has an impact on how power should be controlled
such that node or user admission is optimized. In these
networks, some of the aerial nodes at higher altitudes,
such as HAPS, can be used to provide coverage for base
stations at lower tiers, e.g., SMBSs, and the terrestrial
cellular towers can be used for macro-cell coverage
at a different frequency band, therefore multi-tier or
cross-layer interference is avoided [106].

• Fully Intelligent and Automated Decision-Making:
One fundamental requirement of integrated VHetNets
with self-evolving capability is to support intel-
ligent decision-making to provide online, auto-
mated, and adaptive network management policies.
ML can be effective in learning from experience
and detecting changes. Thus, with such knowledge
and self-awareness, continuous, intelligent, and auto-
mated decision-making can be made to evolve the
network. For example, intelligent decisions can be
made to inject more communications/computation
resources/components, or add services in the network
when there are expected demands for extra high
data rates or ultra-low latency edge computing [107].
Intelligent management services can support satellite,
HAPS, UAV, and terrestrial networks’ requirement to
be self-controlled and self-managed with automated
decision-making capabilities. Likewise, satellite global
coverage can support the multi-level data collection

and computational offloading required for self-evolving
functionalities. To enable this automated and evolv-
ing capability, a novel architecture with advanced
AI/ML-based policies which are discussed in detail in
Section V.

D. UNIFIED FRAMEWORK: OPTIMIZATION PROBLEM
ANALYSIS
A general optimization problem can be formulated as
follows:

min
x

f (x)

s.t.

hi(x) ≤ bi, i = 1, 2, . . . ,m,

gj(x) = cj, j = 1, 2, . . . , n, (21)

where x is the set of optimization variables. The func-
tion f (x) is the objective function. The constraint conditions
hi(x) ≤ bi and gj(x) = cj is the inequality and equality con-
straints, respectively. If there is no constraint, the problem is
unconstrained. The optimization problem formulated in (21)
describes the problem of finding an optimal x∗ that mini-
mizes f (x) among all x satisfying the constraints hi(x) ≤ bi
and gj(x) = cj. Therefore, x∗ is called the optimal solution
of the problem (21).
Convex optimization is an important class of optimization

problems. A standard convex optimization is defined as
where f (x) and hi(x) are convex functions. Compared to
problem (21), the convex problem is such that the objective
function and inequality constraint functions must be con-
vex, while the equality constraint functions gj(x) = dTj x− cj
must be affine, where dtj is the transposed vector of dj.
Convex optimization problems can be solved optimally by
many efficient algorithms, such as interior-point methods.
If a practical problem can be formulated as a convex
optimization problem, the original problem can then be
solved. Therefore, many problems can be solved via con-
vex optimization by transforming the original problem into a
convex optimization problem. Another class of optimization
problems is non-convex optimization, which covers problems
with non-convex objective functions or/and non-convex con-
straint functions [86]. Non-convex optimization problems are
usually intractable. The complexity of global optimization
methods for non-convex problems may grow exponentially
according to the size of the problem. However, some non-
convex problems can be transformed into or approximated by
convex problems. By solving the resulting convex problems,
we can get the optimal solution for the original non-convex
problems. Moreover, to overcome the difficulties of solv-
ing non-convex problems, some heuristic algorithms can
be designed on the basis of convex optimization, such as
randomized algorithms where an approximate solution to a
non-convex problem is found by drawing candidates from a
probability distribution and taking the best candidate as the
approximate solution [87].
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In the following, we analyze network management
optimization problems involving the coordination of any
architecture-dependent challenges and network management
aspects according to the proposed unified management
framework.

• Joint Mobility Model and Communication Design:
According to the unified network management
framework, the intersection between the VHetNet
architecture-dependent challenges and the communica-
tion aspect leads to a set of joint optimization problems.
In these problems the main goal is mainly to jointly
optimize the beamforming policy, preceding scheme,
adaptation parameters, and aerial mobility design,
under specific channel models [88], [89]. In [90], the
direction of 3D beamforming and the trajectory of the
aerial node were optimized, subject to the trajectory
constraints. In another work [91], the authors proposed
a joint optimization problem for statistical precoding,
3D trajectory design, and user scheduling for UAV
base stations while maximizing the sum rate of nodes.
Also, in [92], joint beamforming, user association,
and UAV-height control problem was formulated for
cellular-connected multi-UAV communications, where
the objective was to maximize the minimum achievable
rate for UAVs subject to co-existing terrestrial node
rate constraints. More recently, in [93], authors aimed
to maximize the user achievable rate via jointly
optimizing UAV trajectory, transmit precoder, and
sensing start instant, subject to the sensing frequency
and beam pattern gain constraints. Authors in [94]
also jointly designed the UAV flight trajectory together
with the transmit beamforming for optimizing the
communication performance while ensuring the sensing
requirements.

• Joint Mobility Model and Control Design: According
to the unified network management framework, the
intersection between the control aspect and high-
mobility challenge leads to a set of novel optimization
problems where the mobility model of aerial nodes
need to be jointly optimized along with controlling
policies. The mobility model may be defined as a 3D
trajectory/ path planning or 3D placement of aerial
nodes. Considering a joint 3D path planning and
resource allocation optimization problem, the corre-
sponding problem can be represented as (21), such
that constraints hi(x) and gj(t), where i = 1, . . . ,m,
j = 1, . . . , n, are divided into two groups including
the mobility constraints, i.e., eq. (1)-(7), and the
conventional well-known constraints assuring the
resource allocation requirements [95], user scheduling
and association requirements [96], and/or power control
requirements [97]. Moreover, the objective function
generally is a network performance metric, which can
be defined on the basis of the proposed system model.
The most popular performance metrics for this type of
problem are network total throughput/ sum rate [98],

geometric mean rate [99], minimum rate (among all
terrestrial/aerial nodes) [100], outage probability [101],
and proportional fairness [102]. Furthermore, in [108],
[109], [110], [111], [112], joint 3D path planning and
routing optimization problems are formulated in order
to find a joint optimal routing policy and 3D mobility
model while maximizing/minimizing the aforemen-
tioned network performance metrics. Most recently,
in [113], authors jointly optimized spectrum allocation,
power control, co-channel link pairing, and content
placement, in order to improve the UAV’s energy
efficiency. These types of problems in their general
form are non-convex mixed-integer programming
due to the non-convexity of objective function and
constraints with respect to the 3D location variables.

• Joint Cache Management and Mobility Model: This
problem is mainly formulated as a cache-aided
throughput maximization, minimum rate maximization,
or average delay minimization problem in current
VHetNets by jointly optimizing the trajectory of
caching aerial nodes (e.g., UAVs, content caching
policy, and cache data access node selection) [114],
[115], [116], [117], [118], [119], [120], [121], [122].
The main constraints which are considered in problem
formulations are energy availability constraints, QoS
requirements, such as delay or outage, and trajectory
constraints, (i.e., Eq. (1)-(7)). There are also some
studies on joint considerations for security and cache
placement while optimizing the mobility model of aerial
nodes [123], [124]. In most of the recent works [125],
[126], the formulated optimization problems are
NP-hardness. To tackle these problems efficiently,
authors decomposed the optimization problem into
some sub-problems, including UAV deployment or
trajectory problem and content placement problem.

• Joint Secure Communication and Control Design:
According to the unified network management frame-
work, this problem is basically the intersection of the
security aspect which is also coordinated with the com-
munication and control aspects, and the high mobility
challenge of integrated VHetNets. In general, jam-
ming and eavesdropping between aerial and ground
devices are two major security problems in integrated
networks [127], [128]. Towards general optimization
problem (21) in physical layer security, the objec-
tive function f (x) may be the considered performance
metrics, such as secrecy rate/capacity, secrecy outage
probability/capacity, and power consumption. In the
design of secure beamforming/precoding and 3D path
planning of multi-aerial nodes located in the aerial
tier, the set of optimization variables x will be the
beamformer/precoder and the 3D location of aerial
nodes [90]. In [129] and [130], optimization prob-
lems were formulated to maximize the average secrecy
rates of the integrated aerial-terrestrial transmissions,
by jointly optimizing the UAV’s trajectory, and the
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transmit power. Most recently, authors in [131], for-
mulated a joint power allocation and aerial jamming
problem to achieve reliable and secure communications
for the UAV-enabled NOMA communication system in
the presence of a malicious eavesdropper.Specifically,
the main idea of secure beamforming is to com-
pute the optimal beamforming vector for achieving
some performance metrics of physical layer security
by enhancing the signal quality at the destination node
and decreasing the signal quality at the eavesdropper
while optimizing the 3D path planning of aerial nodes.
Due to the special form of logarithmic subtraction in the
secrecy rate, the optimization problems of secure beam-
forming are usually neither convex nor concave in many
situations [132]. Most recently, the authors in [133]
considered the uplink of the full-duplex UAV-aided
three-layer space-air-ground communications networks,
comprising of terrestrial IoT terminals, a UAV, and an
LEO satellite, where eavesdroppers are intercepting the
information transmitted. To ensure a secure uplink trans-
mission, a joint UAV deployment and power allocation
scheme were developed for maximizing the secrecy rate,
subject to the following constraints: 1) UAV’s power,
2) the UAV deployment area, and 3) the secrecy rate,
which are imposed on the different layers.By contrast,
due to the property of logarithmic subtraction in secrecy
rate/capacity, security problems are mostly non-convex
with respect to beamforming/precoding variables.
Moreover, considering the non-convexity introduced
by the high mobility and the beamforming objective
function of the secrecy rate, the network management
problem of designing joint secure beamforming and 3D
path planning can only be solved sub-optimally or by
numerical methods with high complexity. To mitigate
the computational cost of numerical methods, some low-
complexity sub-optimal algorithms have been proposed
to simplify the beamforming designs [134]. However,
to obtain an optimal network management design, low-
complexity AI/ML-based algorithms with a high con-
vergence speed can be employed. These are discussed
in Section IV, where we introduce and study intelligent
network management for integrated VHetNets.

IV. AI/ML-EMPOWERED SOLUTIONS
A. BACKGROUND
AI/ML is increasingly employed in communications
networks to cope with two main issues inherent in
these networks: 1) lack of accurate mathematical model
(e.g., unavailability of up-to-date CSI for power control)
or when the objective functions/constraints are difficult
to be presented in closed-form mathematical expres-
sion (e.g., value-of-information or information freshness);
2) intractability of the dynamic mathematical model (e.g.,
the impact of mobility of coverage or the blockage detection
via RF and Img). It has been suggested that ML can be used

to reduce the complexity of optimization problems, but usu-
ally, the problem should be homogeneous, i.e., continuous or
combinatorial (e.g., minimum cut or shortest path). For such
cases, the best way to guarantee a reduction in complexity is
by turning the algorithm into a machine-learning structure.
As discussed in the previous section, the network man-

agement problems are usually mixed-integer non-linear
programs (MINLP), which are generally difficult to solve
due to binary variables and non-convex objective func-
tions or constraints. A relaxed version when the binary
variables are allowed to take any value between 0 and
1 may be considered; however, the relaxed version may
still be non-convex due to variables such as trajectory, in
the objective function or constraints. To tackle this issue
AI/ML-empowered solution methods have shown significant
potential and effectiveness. ML has recently emerged as a
disruptive technology to bridge the gap between computa-
tional complexity and performance in various optimization
problems. This trend has encouraged researchers to apply the
advances of machine learning to effectively address various
problems and challenges in the areas of future networking.
By contrast, when we consider an SEI-VHetNet, AI/ML is

supposed to also have a novel application in coping with new
issues. Specifically, to ensure full integration and coordina-
tion between the three tires, using advanced ML methods
seems inevitable and necessary.
Hence, in the following subsections, we first investigate

the applications of AI/ML methods in current VHetNets.
Later, we focus on the application of AI/ML in SEI-
VHetNets and identify the corresponding core challenges
and requirements.

B. APPLICATIONS OF AI/ML SOLUTIONS IN CURRENT
V-HETNETS
The ultimate goal of network management is to intelligently
control the network operations without any intervention and
still be able to cope with the unknown and challenging
requirements of novel services. To this end, ML algorithms
have been proposed as an efficient approach for addressing
the various challenges of IoT ecosystems [138]. In general,
ML is based on a pattern recognition framework and its main
idea is to exploit correlation among a set of data and/or past
good action sequences for adapting to environmental changes
without any kind of human intervention. Clearly, the advan-
tage offered by ML in wireless network operations is that it
can enable network elements to monitor, learn, and predict
various communication-related parameters, such as wireless
channel behavior, traffic patterns, user contexts, and device
locations [139].
In particular, intelligent network management seems to

have the most dominant role in envisioning an integrated
VHetNet architecture with self-evolving capability, i.e., SEI-
VHetNet. Note that: 1) joint network optimization problems
as described in Section IV are highly complex and cou-
pled, so they are computationally prohibitive to be solved
optimally; 2) almost all proposed analytical solutions are
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FIGURE 5. Applications and challenges of integrating AI/ML solutions in SEI-VHetNets.

offline resulting in static network management; 3) the highly
dynamic nature of integrated VHetNet architecture, which
demands a real-time integration and coordination process
between the tiers; 4) the life-cycle cost of running a mobile
vertical network, which requires eliminating manual con-
figuration of network elements at the time of deployment
through dynamic and intelligent optimization and trou-
bleshooting during operations; 5) the need for adaptive
and real-time responses to novel and dynamic user service
requests and to improve network performance and cus-
tomer experience [140]. In Fig. 5, the main applications of
AI/ML solutions are highlighted for each network manage-
ment aspect, along with the expected challenges and issues
for SEI-VHetNets. In the following, we discuss some of
these applications which are popular both in academia and
industry. Moreover, in Table 3, proposed ML solutions for
optimizing network management designs while improving
various network performance metrics are listed.
1) Joint Communication and Fight Control Aspects: For

any aerial node across vertical tiers in integrated
VHetNets, the 3D path-planning or placement needs
to be optimized along with control and network
management policies for supporting different network
services and requirements. In this context, there are
recently quite a number of studies on developing joint

problems. For instance, in [141], joint optimization of
3D placement and power control in multiple UAVs
scenarios were studied which aimed to maximize user
throughput and satisfy user rate requirements. The
corresponding optimization problem relied on a multi-
agent Q-learning-based algorithm in order to determine
the trajectory design of UAVs acting as agents. The
results showed that the proposed algorithm can con-
verge to an optimal state. The results also indicated
that the proposed approach can increase the through-
put up to 15%, while accuracy improves as the size
of the dataset increases. In [142], the objective was
to optimize the 3D path planning of a UAV base
station while at the same time improving sum-rate
using Q-learning. The channel between the UAV and
the ground nodes was modeled as a log-distance
path-loss. Moreover, a standard table-based approach
and a neural network (NN) approach were used to
find Q-function approximators. The simulation results
demonstrated that the online learning capability could
enable the UAV base station to find its timely landing
location. The authors in [143] studied the trajectory
optimization problem for a UAV under connectiv-
ity constraints. They employed a double Q-learning
method to solve the problem. Moreover, a UAV
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TABLE 3. Intelligent network management in current VHetNets.

3D placement optimization problem was formulated
in [144], to minimize the weighted sum of UAV task
completion time and expected communication outage
time. The authors proposed a dueling double deep
Q network with a multi-step learning algorithm to
solve this problem. The authors of [145] employed
a Gaussian process (GP) was employed to predict
the communication clink quality at random UAV 3D
locations in an urban environment. The corresponding
channel model could then be used to perform optimal
UAV path planning, either in an offline or online fash-
ion based on a GP. It was shown that the offline
creation of the communication link quality map, with
a GP prior to the start of the mission, outperformed the
online creation of the map during the mission without
scanning. In [146], a network of cellular-connected
UAVs was studied, where the objective was to find
a tradeoff between maximizing energy efficiency and
minimizing both wireless latency and the interference
imposed by the terrestrial network. To deal with this
problem, the authors proposed a deep reinforcement
learning algorithm based on echo state network cells.
An aerial relaying network with mobile ground users

was studied in [147], where a hybrid approach of
learning-based measurements and model-based chan-
nel prediction was proposed to design UAV 3D path
planning while at the same time maximizing the com-
munication performance improvement of networked
nodes. The authors assumed several different types of
urban environments, including the effects of path-loss,
multi-path fading, and shadowing with empirically
known distributions. The proposed NN-based 3D path
planning showed significant performance in scenarios
where there is limited information about the mission
area. In [148], the authors developed an unsupervised
online learning technique for joint mobility prediction
and object profiling of UAVs, in order to improve con-
trol and communication schemes. The results showed a
success rate up to 90% in profiling mobile objects for
a reasonable noise level and a small training dataset
compared to conventional data-driven methods. The
joint problem of online 3D deployment and movement
designs of multiple aerial nodes was studied in [33].
The objective was to maximize the sum mean opin-
ion score of ground mobile nodes while at the same
time improving the user quality of experience (QoE).
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The authors first used a genetic algorithm-based k-
means method to obtain the initial cell partition of
mobile ground nodes. Then, by using a Q-learning-
based deployment algorithm, the optimal 3D placement
of the UAV was obtained. The results showed that
the proposed algorithms improve the performance and
accelerate the converging speed after a small number of
iterations. Moreover, in [149], to provide video stream-
ing services to ground nodes, a UAV base station was
considered. The objective was to optimize the UAV
path planning, such that the QoE of ground nodes is
improved. The authors proposed a Q-learning approach
to deal with this problem. The performance analysis
showed that the proposed Q-learning-based algorithm
can efficiently identify the UAV trajectory and improve
the QoE of the streaming services on the ground.
In [150], to jointly design a 3D trajectory for a network
of UAVs while at the same time maximizing its
throughput, a markov decision process (MDP) problem
was formulated. The authors used a deep determinis-
tic policy gradient (DDPG) algorithm to deal with this
problem. The actions taken by the UAV are related
to adjusting both the 3D location and the transmission
control.The authors in [151] considered a UAV-enabled
IoT network for data harvesting. In the uplink scenario,
a joint UAV trajectory and node scheduling design
problem was formulated to minimize the estimation
error of the channel model parameters and to maximize
the data traffic between the UAV and static ground
nodes. To deal with this problem, an iterative path
planning algorithm was proposed along with dynamic
programming techniques. The results showed the bene-
fits of the proposed learning method, proving that the
algorithm can converge to at least a locally optimal
solution.Most recently, authors in [179], proposed an
energy-efficient DRL-based algorithm for UAV trajec-
tory design and resource allocation. Simulation results
showed that the proposed learning-based approach can
achieve better performance compared to the benchmark
schemes in terms of the total throughput and fairness
among the users.

2) Control and Computation Aspects: To meet the
requirements of network resource management in cur-
rent VHetNets and solve corresponding optimization
problems efficiently, ML techniques have recently been
adopted. In [162], to efficiently predict the success
and failure rates in an aerial network, two learn-
ing algorithms based on linear regression (LR) and
support vector machine (SVM) were employed. The
authors showed that the proposed learning methods
can train aerial nodes to determine their connectivity
with neighboring nodes. Simulation results revealed
that the packet transmission probability can be exactly
predicted by 0.0000531 in root mean square error mea-
surement. To predict cell quality for UAVs connected
to a cellular network, learning techniques were used

in [163]. A new conditional random field (CRF) posi-
tion was adopted for predicting the optimal serving
cell. In fact, the idea was to exploit the spatial cor-
relation that naturally exists in the nearby positions
of aerial channels. The performance analysis under
real 3GPP LTE simulation parameters showed that
the proposed approach provides better accuracy while
improving the overall performance.To decrease the
number of unnecessary handoffs in aerial networks, the
authors in [164] proposed an RL algorithm. For mobil-
ity control, they also applied a k-means algorithm.
The simulation results demonstrated that the hybrid
approach of using RL and k-means algorithms can
significantly reduce the unnecessary handoffs while
at the same time increasing the network through-
put.Considering a network of multiple HAPS systems,
the authors in [165] aimed to improve communica-
tion coverage by using learning-based algorithms. For
this aim, RL and swarm intelligence was employed.
It was shown that the RL algorithm obtains higher
peak coverage rates with the cost of slower conver-
gence while the swarm intelligence-based the approach
achieves lower coverage peaks and improved cov-
erage stability and convergence.Aerial devices with
device-to-device (D2D) communications can be used
to support connectivity in disaster areas. In [166],
such a scenario was studied. The authors consid-
ered multiple UAV base stations in order to serve
ground nodes via D2D connections, such that the
objective was to maximize the weighted sum-rate.
They proposed a k-means-based algorithm to solve
this user association problem. The performance analy-
sis demonstrated that the proposed learning algorithm
has a better performance with lower computational
complexity. In [167], the authors considered a UAV-
assisted LTE-U network, where UAVs were able to
access both the licensed and unlicensed frequency
bands. Their main objective was to maximize the QoS
while at the same time meeting the delay require-
ments, by designing an efficient network resource
allocation policy. To fulfill this, an echo state network
(ESN) algorithm was adopted with leaky integrator
neurons. The performance evaluation showed that the
proposed learning approach achieved up to 20% QoS
performance gains for the users which were associated
with UAVs. Moreover, a UAV-assisted cellular network
was considered in [168] such that it consisted of
multiple UAVs, acting as aerial base stations, and a set
of ground base stations. The authors aimed to predict
traffic congestion in order to use UAVs as temporary
base stations with minimum requirements regarding
communication and mobility powers. They proposed
a Gaussian mixture model based on a weighted
expectation maximization algorithm. The simulation
results demonstrated that the proposed learning algo-
rithm can significantly decrease the requirements for
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the downlink communication power and the mobility
power as compared to scenarios without using learning
techniques. To support on-demand services for ground
cellular users, authors in [169] proposed a learn-
ing technique, which enables a predictive, efficient
deployment of aerial base stations. More specifically,
the proposed learning framework was based on a
Gaussian mixture model and also a weighted expecta-
tion maximization algorithm was introduced to predict
the potential network congestion. The numerical results
showed that the proposed strategy could effectively
improve the collaboration between the aerial clus-
ters. Most recently, authors in [183], studied an aerial
mobile edge computing architecture, by taking advan-
tage of the UAVs to serve as the flying platform.
They aimed to minimize the energy consumption of
all the ground users by optimizing the UAVs’ path
planning, user associations, and resource allocation. In
order to solve the multi-UAVs’ path planning problem,
a convex optimization-based trajectory control algo-
rithm was first proposed. Then, in order to perform
fast decisions, a DRL-based algorithm including a
matching algorithm was proposed. The results showed
that these learning-based algorithms have considerable
performance.

3) Joint Communication, Control, and Security Aspects: In
recent years, several ML approaches have been adopted
to traditional medium access control (MAC), routing
protocols, and security schemes, to improve their sup-
port of the highly dynamic nature of current aerial
communication networks, enabling intelligent secure
network coordination and user scheduling, and rout-
ing via dynamic path selection. Along these lines,
the authors in [170], studied a network of multiple
drones, which were equipped with GPS and an iden-
tical antenna array. To find the routing path with the
minimum delay, they adopted an RL-based protocol
where all droneswere able to exchange their channel sta-
tus information. The proposed learning-based approach
enabled self-configuration and intelligent operation by
establishing connectivity through the optimal routing
path. The performance evaluation demonstrated that
the proposed routing strategy can enhance the network
performance over existing ones and also can ensure
successful transmission with lower delay.In order to
improve security by detecting the attackers, the authors
in [171], was developed a new ML model to classify
the spoofed and authentic signals received by UAVs.
In their proposed methodology, several ML algorithms
along with K-learning models were deployed in order
to select a suitable classification algorithm. To achieve
the desired task, they used GPS signal characteristics
as features. Although the results showed an enhanced
security performance, the adaptivity to highly dynamic
topology in an integrated VHetNet still can not be guar-
anteed. An SVM-based MAC scheme was proposed

without demodulation in [172]. The proposed approach
included an ML classifier in it and its performance
was evaluated using two typical MAC protocols,
including time division multiple access (TDMA) and
carrier sensing multiple access with collision avoid-
ance (CSMA/CA). The simulation results showed an
access accuracy rate up to 90% while for the case
without ML, it was below 60%. Furthermore, an adap-
tive MAC scheme was proposed in [173] where a
network with multiple aerial nodes was considered.
A decentralized Q-learning-based MAC scheme, based
on a practical byzantine fault tolerance procedure, was
used to determine the MAC protocol, whether TDMA
or CSMA/CA, according to the aerial nodes’ cur-
rent situation. According to this approach, each aerial
node was able to evaluate its performance and select
the best MAC protocol. The performance evaluation
showed that the performance of the proposed scheme
with respect to the average network throughput, delay,
and packet retransmission ratio improved over conven-
tional MAC protocols. The authors in [174], introduced
a combination of a novel position prediction-based
directional MAC protocol and a self-learning routing
protocol based on RL routing protocol, as an adaptive
hybrid communication protocol. The simulation results
showed that the proposed MAC protocol resolves the
directional deafness issue, which occurs when the
transmitter fails to communicate with the receiver due
to having the receiver’s antenna oriented in a different
direction. Moreover, the proposed RL-based routing
strategy provided a self-evolving and more effective
routing scheme, appropriate for autonomous FANETs.
A multi-armed bandit (MAB) technique was adopted
in [175], in order to determine the energy-efficient and
processing data offload paths between a source and
target UAV. The authors considered a decentralized
large-scale edge UAV swarm and their performance
analysis showed that the proposed MAB technique
could enable energy-efficient and processor-friendly
path solutions compared to other solutions. In [176],
an integrated vertical network consisting of UAVs,
low earth orbit (LEO), medium earth orbit (MEO),
and geostationary earth orbit (GEO) satellites were
studied. The authors employed a DL technique to
ensure data traffic balance. More specifically, the main
idea was to transfer some portion of traffic to GEO
satellites with a reduced computational cost if dis-
tributed periodical training was used. The extensive
simulation results demonstrated that the proposed DL
approach improved overall network throughput while
at the same time reducing packet loss rate compared to
other routing schemes. Most recently, authors in [177],
developed a smart UAV that has the ability to detect
a dynamic intruder target. The problem of optimiz-
ing the search path of the UAV was formulated as
an RL problem, where the objective is to maximize
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the search benefits. The proposed RL schemes enable
the smart UAV that is able to learn the behavior
of the intruder target and detect it with high prob-
ability. Simulation results showed that their proposed
algorithms outperform conventional approaches.

C. WHAT IS DIFFERENT IN SEI-VHETNETS?
To develop self-evolving capability, intelligent decision-
making strategies and automated operations are needed. In
integrated VHetNets due to the unique three-tier network
architecture and corresponding challenges, discussed in the
previous section, the idea of enabling self-evolving capability
is even more complex, requiring novel AL/ML approaches.
Hence, the most vital requirement of SEI-VHetNets is
the capability of being fully intelligent and automated
in almost all aspects of the network. The integration of
AI/ML techniques in wireless networks can generally lever-
age intelligence for addressing various issues [16]. This
combination of AI/ML and integrated VHetNet architecture
appears to be strongly correlated in different disciplines and
applications and throughout the network, promising unprece-
dented performance gains and reduced complexity [135].
The self-evolving framework enables integrated VHetNets
to automatically manage and self-allocate the communica-
tions and computational resources required to fulfill the
constantly changing user demands along the vertical tiers.
However, most of the currently proposed ML solutions
often suffer from a lack of convergence as the number of
users/samples increases, as well as sample inefficiency due
to sparse rewards and high variance in their optimization
algorithms. Before effective solutions can be considered, a
deep understanding of the challenges and issues in the inte-
gration of AI/ML in SEI-VHetNets is absolutely necessary.
In the following section, we identify such challenges and
issues.

V. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS
The integration of AI/ML solutions in SEI-VHetNets is
expected to impose some fundamental challenges and issues
which need to be addressed carefully. As also highlighted
in Fig. 5, in the following, we introduce the core chal-
lenges that are the main bottlenecks impeding the large-scale
deployment of AI/ML solutions in SEI-VHetNets.

A. CORE CHALLENGES OF INTEGRATING AI/ML
SOLUTIONS IN SEI-VHETNETS

• Data Selection and Compression: Most of the samples
in the datasets are redundant, carrying almost no addi-
tional information for the learning task. A fundamental
open question in this learning structure is how to charac-
terize and algorithmically identify a small set of critical
samples without losing the full integrity and coordina-
tion of SEI-VHetNets. For instance, in the proposed
intelligent framework for SEI-VHetNet in Fig. 3, it
may be enough to share small representative datasets
among local SE agents instead of sharing the original

large ones, which would lead to a significant reduc-
tion in power consumption and required communication
bandwidth. Hence, there exists a challenge in how to
efficiently select the best small critical samples in each
dataset [184]. Furthermore, large datasets are generally
time and energy-consuming in model training processes.
This inefficiency can be a big concern in SEI-VHetNets
since any delay in decision-making or shortage in the
energy budget can lead to a loss of network integrity and
coordination thereby failing in satisfying self-evolving
capability. Hence, whether or not large datasets can be
compressed, and how efficient and accurate this com-
pression can be, also need to be well investigated.
Moreover, a general framework is needed for func-
tion approximation, where choosing the samples that
best describe the function is done in conjunction with
learning the function itself.

• Computation and Energy Concerns: The energy con-
sumption of aerial nodes at higher tiers is mainly due
to their hovering and transmitting/receiving information,
which makes it important to design energy-efficient
ML solutions to deal with network optimizations [185].
Moreover, to outsource the computational needs and
minimize the costs of ML solutions, the use of cloud-
based computing seems inevitable. Also, with the
distributed computational resources in SEI-VHetNet,
implementing distributed ML algorithms will be practi-
cal and feasible. Local SE units, whether implemented
on devices/users (distributed) or in a data center (cen-
tralized), have to deal with computationally intensive
data analysis requiring considerable energy. This is
due to the massive number of samples received from
different resources for various network management
purposes/services, and for this reason, the local datasets
are expected to be uncommonly large and complicated.
Hence, cloud-based distributed computation units not
only require high-performance systems, but also a strat-
egy to scale up computation size with only modestly
increased energy consumption. Such balanced compu-
tation scaling for deep neural networks is critical to
minimize their energy overhead. Furthermore, the par-
allel use of many small, energy-efficient computation
nodes at each tier to accommodate large computations,
has its own challenges, such as how the small com-
putation nodes should be implemented since aerial
nodes (e.g., UAVs) are mostly moving and may not
be available to cooperate with other computation units.
Consequently, the parallel slowdown issue of computa-
tional parallelization is expected to be intensified and
more difficult to deal with in SEI-VHetNets due to the
availability concerns and highly dynamic nature of the
vertical architecture.

• Excessive Communication: Since distributed learning
approaches involve a massive number of devices par-
ticipating during model training, communication is
a critical bottleneck for integrating distributed ML

VOLUME 4, 2023 571



FARAJZADEH et al.: SEI-VHetNets

methods as part of local SE units in SEI-VHetNets.
To improve communication efficiency and make the
distributed ML framework suitable for SEI-VHetNets
with massive, heterogeneous devices and networks,
it is necessary to develop a communication-efficient
method, which can greatly reduce the number of gra-
dients exchanged between the devices and the cloud
instead of all gradients information. In order to further
reduce communication overhead in these settings, two
key aspects need to be considered [186]: 1) reducing the
total number of communication rounds, and 2) reducing
the number of gradients in each communication round.

• Data Privacy and Security Concerns: Since SEI-
VHetNets can provide ubiquitous services across a
wide geographic area, the computing and communica-
tion capabilities of each device in any tier may vary
due to changes in hardware (CPU, GPU), network
connectivity (4G, 5G, 6G, WiFi), and energy (bat-
tery level). Obviously, system heterogeneity between
devices will present some confusion and faults for the
learning models and subsequently SEI-VHetNets. For
instance, there may be unreliable devices in distributed
learning approaches, such as federated learning, which
may cause the Byzantine failure of the system [187].
Similarly, hackers may launch active learning-based
attacks (like poisoning attacks and backdoor attacks)
on heterogeneous devices and cause errors in the learn-
ing system. The security vulnerabilities of these dis-
tributed learning systems greatly exacerbate challenges,
such as mitigating attacks, tolerance, and faults [188].
Therefore, developing secure and robust learning meth-
ods must: 1) defend against malicious attacks, 2) tolerate
heterogeneous hardware, 3) achieve robust aggrega-
tion algorithms, 4) support large-scale spectrum trading
in an untrusted and nontransparent trading environ-
ment, and 5) provide decentralized spectrum trading
to efficiently manage the trading among the operators
and base station in diff rent tiers. Moreover, although
distributed learning techniques protect the privacy of
each device by sharing model updates (e.g., gradients
information) instead of raw data, from a privacy per-
spective, concerns regarding/about disclosing data (for
example during the interaction between the device and
the cloud at each local SE unit) may still exist. For
instance, hackers will launch membership inference or
gradient leakage attacks to steal local training data from
the devices [189]. Recently, blockchain technology is
considered a possible solution to address the above chal-
lenges because of its advantages of decentralization,
anonymity, and trust [190]. Blockchain is a decen-
tralized ledger-based storage method, which provides
a unique tool for secure transactions in a distributed
fashion without trusted agents [191]. Since the SE
framework has distributed structure, blockchain tech-
nology can well suit this framework supporting high
security and privacy for integrated VHetNets. Moreover,

encryption techniques can be employed to accomplish
security and tackle some of the aforementioned chal-
lenges in SEI-VHetNets. The encryption process can
be executed by every node in any tier depending on
the data type that needs encryption [192]. For instance,
flight control or communication data encryption can be
processed in the flight control mechanism, and transmis-
sion data encrypting for the mission can be processed in
the mission servers [193]. Hence, encryption techniques
can also have the potential to be adopted into the SE
framework and utilized as a proficient tool for secure
communication and classification in highly dynamic
environments.

• Implementation and Coordination Concerns:
Implementing the ML solution methods at each
vertical tier involve two main aspects which are needed
to be taken into consideration simultaneously including
distributed/centralized implementation and coordination
between the ML units. ML model training can be
implemented either on-device (distributed [194]) or
partially/totally on a data center (centralized [195]) at
each tier. One challenge with implementation has to do
with the nodes selected for distributed implementation,
since there may be a massive number of nodes at
each tier. Consequently, this raises a question: Is it a
good idea to have dedicated nodes for this purpose in
such a highly dynamic vertical architecture, or should
we have non-dedicated nodes meaning that all nodes
need to be provided with an ML training structure?
Another challenge has to do with how these ML
units should be implemented at each tier such that
the online and real-time coordination with other ML
units at other tiers is guaranteed in order to make
network management decisions (e.g., routing) that
involve information from all vertical tiers.

• Performance Metrics: The impact of the architecture-
dependent challenges on overall network performance
and most importantly on sustainability in terms of
full integration and coordination in VHetNets raise an
important question: Are the current performance metrics
(e.g., accuracy rate [196]) to evaluate the effectiveness
of ML solutions sufficient or do we need to come
up with new or modified metrics for evaluating the
efficiency of data compression and selection?

• Time-Delay Synchronization: If tasks in one tier are con-
nected or depend on other tasks in any other tier, time-
delayed decisions need to be synchronized. Otherwise,
it is not going to be real-time decision-making that
maintains the full integration and coordination in SEI-
VHetNets.

• Inference Latency: In large-scale wireless networks with
several connected communication platforms (i.e., inte-
grated VHetNets), where there can be a massive number
of nodes, inference latency [197] can be a big con-
cern if the objective is to make quick decisions to
sustain full-integration and cooperation. To handle this
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problem, the size of deep neural networks needs to be
reduced. Hence, designing a quantization-aware train-
ing structure [198] in local SE units may be critical
to improve the total throughput by taking advantage of
high throughput integer instructions.

• Dataset Lifetime Issue: To have a self-evolving network
architecture, the ML datasets of all vertical tiers need
to be updated at some point, otherwise decisions will
be less efficient and will not ensure the coordination
between local SE units; hence, there is a challenge of
having a dynamic training where the lifetimes of the
datasets are taken into account and updated accordingly
over time [199].

B. DEPLOYMENT OF ADVANCED ML SOLUTIONS
To tackle the aforementioned challenges and difficulties
of integrating ML solutions in SEI-VHetNets in order to
enable self-evolving capability and improve the overall
network performance, some propitious learning concepts
have recently gained attention due to their remarkable effec-
tiveness in solving complex problems [200], [201]. In the
following, we briefly identify and study the main character-
istics of these advanced learning approaches and techniques
which can meet the requirements of SEI-VHetNets.

• Personalized Federated Learning: The federated learn-
ing (FL) architecture in its basic form consists of a curator
or server that sits at its center and coordinates the train-
ing activities. Clients or users are mainly edge devices,
which can run into millions in number. These devices
communicate at least twice with the server per training
iteration. To start with, they each receive the current
global model’s weights from the server, and train it on
each of their local data to generate updated parameters
which are then uploaded back to the server for aggre-
gation [202], [203]. This communication cycle persists
until a pre-set epoch number or an accuracy condition is
reached. Hence, the procedure of FL-based architecture
can be divided into three phases: initialization, training,
and aggregation. Each phase involves some tasks and
operations, which are summarized as follows:

– Initialization phase: In this phase, some actions
or operations are required for each user, such as
checking the service demands and connection con-
ditions. After this, each user makes a decision
on whether to join the closest cloud server or
not. Upon joining the cloud, each registered user
receives an initialized and pre-defined global model
in order to train this model. The global model is
shared and transmitted by the cloud server.

– Training phase: In this phase, each user employs
its local dataset to update the received global
model in an iterative manner. The objective is basi-
cally to minimize a loss function at each iteration.
After each update, each user transmits the updated
training model to the cloud.

– Aggregation phase: In this phase, all the uploaded
updated training models are received and collected
by the cloud server. Based on these collected mod-
els, the cloud derives a new global model which
will be transmitted to a random set of users again.
This iterative process continues until the algorithm
converges or reaches a halt benchmark.

Considering the characteristics of FL and how it oper-
ates, in SEI-VHetNets, FL has the potential to play a key
role. However, conventional FL schemes only develop a
common output for all the users, and, therefore, it does
not adapt the model to each user. This is an impor-
tant missing feature, especially given the heterogeneity
of the underlying data distribution for various users
in SEI-VHetNets. Hence, a personalized variant of FL
seems to be a better solution. This personalization keeps
all the benefits of the federated learning architecture,
and, by structure, leads to a more personalized model
for each user across vertical tiers [208]. By employ-
ing personalized FL, each vertical tier can be enabled
to make local decisions on its local network manage-
ment aspects while transmitting its local ML model to
a centralized unit in order to develop and train a global
model which is a necessity to ensure full integration
and coordination between the tiers.

• Federated Meta Learning:Meta-learning, also known as
“learning to learn,” refers toMLmodels that can learn new
skills or adapt to new environments rapidly with a few
training examples. There are three common approaches:
1) learn an efficient distancemetric (metric-based), 2) use
a (recurrent) network with external or internal memory
(model-based), 3) optimize the model parameters explic-
itly for fast learning (optimization-based) [204], [210].
Meta-learning has been widely applied in the field of
multi-task Reinforcement Learning. In meta-learning,
a meta-model is obtained through a large number of
pre-trainings and is able to adapt quickly to novel
tasks in a test. Meta-learning opens up a new per-
spective in multi-task RL. It pursues a compromise in
every task. Meta reinforcement learning refers to the
problem of learning policy that can adapt quickly to
novel tasks by using prior experience on different but
related tasks [205]. Most recently, in [204], a novel and
flexible approach was proposed to meta-learning for
learning-to-learn from only a few examples. In appli-
cations of federated learning in SEI-VHetNets, it is
expected that the statistical and systematic challenges in
collaboratively training machine learning models across
the distributed vertical networks of mobile users are
the bottlenecks. Moreover, due to the highly dynamic
nature and the massive number of nodes and connec-
tions, rapid decision-making strategies are needed to
maintain connectivity and coordination between tiers.
Otherwise, full integration will fail. To resolve these
issues, meta-learning is a natural choice to be adapted
into the federated meta-learning framework, where a

VOLUME 4, 2023 573



FARAJZADEH et al.: SEI-VHetNets

parameterized algorithm (or meta-learner) is shared,
instead of a global model. Hence, meta-learning can
improve the effectiveness and convergence speed of ML
solutions to satisfy the requirements of SEI-VHetNets.

• Federated Transfer Learning: Transfer learning is the
idea of overcoming isolated learning paradigms and
using knowledge acquired for one task to solve related
ones. Specifically, transfer learning is the ability of a
system to recognize and apply knowledge and skills
learned in previous tasks to novel tasks. According to
this definition, transfer learning aims to extract knowl-
edge from one or more source tasks and apply this
knowledge to a target task. Unlike multi-task learning,
where the source and target tasks are learned simul-
taneously, transfer learning focuses on a target task.
The roles of the source and target tasks are no longer
symmetric in transfer learning [206], [209]. In SEI-
VHetNets, it is expected that many tasks will need
to be solved simultaneously or not; hence, employ-
ing the knowledge obtained for similar tasks across
the vertical networks or operators can accelerate the
decision-making process and also improve precision and
convergence in other networks or operators. An integra-
tion of transfer learning into FL systems can provide
a unique feature to allow knowledge to be transferred
across vertical tiers that do not have many overlap-
ping features and users. Therefore, the performance
of self-evolving capabilities is expected to improve
significantly by using federated transfer learning
methods.

• Hierarchical Federated Learning: One of the major
issues with current learning methods, such as deep rein-
forcement learning, is the demand for massive amounts
of sampled data. In conventional centralized FL, users
transmit their computation results to the parameter
server for aggregation at each iteration. However, in
large-scale networks, such as integrated VHetNets, this
centralized framework may result in high communica-
tion latency and thus increases the convergence time.
Hence, this poses several challenges in SEI-VHetNets,
which were discussed in the previous section. Most
recently, to tackle these issues, hierarchical federated
learning, as a sample efficient learning approach, is
introduced in which multiple servers are employed in
parallel to reduce the communication latency [211].
Recent studies reveal that hierarchical learning is robust
to hyperparameters and can speed up the learning pro-
cess compared to conventional approaches. In [207],
due to the non-convex and combinatorial structure of
the maximization problem, the authors developed a
deep reinforcement learning approach that adapts the
beamforming and relaying strategies dynamically. In
particular, a novel optimization-driven hierarchical deep
deterministic policy gradient was employed and shown
to have superior performance. Moreover, in [211], the
authors show that a hierarchical federated learning

solution can significantly reduce communication latency
without sacrificing the model accuracy in heterogeneous
cellular networks.

• Continual Active Learning: Continual active learning is
an effective approach to mitigate the effects of wire-
less network degradation on the training data and can
help to adapt models to the changing environment by
training on a continuous data stream [212]. This learn-
ing algorithm can determine the training samples with
the highest quality of information that has a significant
effect on the model construction and its accuracy. The
high-quality subset of the continuous training samples
thus obtained can be provided with a higher level of
protection in the wireless channel by means of increased
allocation of network resources and priorities. Continual
active earning has been widely considered a promising
solution in many modern machine learning applica-
tions where obtaining a new labeled training sample
is expensive and complex due to the highly dynamic
environment. The main components of continual active
learning include parameterized model, a measure of the
model’s uncertainty, and an acquisition function that
decides based on the model’s uncertainty for the next
sample to be labeled on a continuous data stream [213].
In SEI-VHetNets, since it is expected that the datasets
will be very large due to the massive number of nodes
and connections along all three tiers, and the envi-
ronment will be highly dynamic and changing, the
lack of an efficient continuous labeling procedure will
cause delays in decision-making. Hence, to decrease
the delay in training ML models in the self-evolving
framework and resolve the time-delay synchronization
issue, employing a continual active learning algorithm
seems to be necessary.

• Quantization-Aware Model Training: To resolve the
inference latency issue, which is expected to be
more significant in SEI-VHetNets, a quantization-aware
ML model training algorithm is a promising solu-
tion. Quantization can lead to significant memory
and processing power reductions in local SE units in
the self-evolving framework. Quantization-aware train-
ing is important to achieve higher accuracy during
inference, as it models quantization errors during train-
ing to match quantization effects during the inference.
Quantization awareness is performed by introducing
so-called fake quantizations, which means that the
quantization is directly followed by a dequantization.
Specifically, quantization has a distinct stage of data
conversion from floating-point into integer-point num-
bers. In general, the process of quantization is associated
with the reduction of the matrix dimension via lim-
ited precision of the numbers. However, the training
and inference stages of deep learning neural networks
are limited by the space of the memory and a vari-
ety of factors, including programming complexity and
even the reliability of the system. The process of
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quantization has become increasingly popular due to the
significant impact on performance and minimal accu-
racy loss [214]. Furthermore, to ensure that local SE
decisions are synchronized with minimum time delay,
dynamic models that are trained online will be indis-
pensable. That is, data is continually entering the local
SE units at each tier and it is incorporated into the
model through continuous updates. This approach also
takes the life of samples and observations in datasets
into account, thereby reducing computation and energy
consumption in local SE datasets.

• Data-Driven Proactive Decision-Making: SEI-VHetNets
will require network management optimization to be
service-oriented and user-oriented as well as proac-
tive rather than passive. This will open up a new
research direction on how terrestrial/aerial/satellite user
demands, contexts, and experiences can affect SEI-
VHetNet network optimization problems which are
modified by the new architecture-dependent challenges.
The network optimization will be boosted if it can
understand user behavior and spatial-temporal traffic
patterns through application data along the vertical
tiers. In this case, the optimization needs the status
information of concrete entities in social space (e.g., UEs)
or virtual entities in cyberspace (e.g., software). Such
user-centric meta-information is generally called context.
The context represents all the terrestrial/aerial/satellite
user information, indicating spatial-temporal network
traffic characteristics for a user-centric network, includ-
ing geolocation, user behavior and preference, personal
trajectory, content popularity, and popular region [215].
The methods to gain context are named context-aware or
context-awareness. The optimization algorithm requires
a context-aware module that automatically collects and
analyzes data from different sources (e.g., online data and
personal devices), then supplies context for any network
management purpose, such as efficiently allocating com-
munication resources while optimizing the aerial nodes’
trajectory. Hence, a data-driven ML solution will help
to make quick, effective, and improved decisions, espe-
cially in a distributed sense, on network management
optimization problems in SEI-VHetNets.

VI. CONCLUSION
Beyond 5G networks of the future are expected to usher
in a radical paradigm shift both in their architecture and
network management designs. These highly agile networks
can support global coverage and connectivity, and meet
the demands of new use cases and applications while effi-
ciently dealing with network complexity. To provide such
agility, enabling self-evolving capabilities appears to be
inevitable. In this work, we discussed the merits of integrated
three-tier vertical architecture, i.e., integrated VHetNet, as
a promising solution in support of self-evolving networks.
New challenges and difficulties associated with integrated

VHetNet architecture were also highlighted from a network
management perspective by considering a general scenario.
Furthermore, in drawing attention to the importance of

employing AI/ML methods for efficiently dealing with
network management problems and providing full coordi-
nation and integration in integrated VHetNets, we discussed
the current literature on network management and AI/ML
solutions. To ensure that SEI-VHetNets are capable of oper-
ating in a fully intelligent, automated, and online way, with
full integration and coordination between vertical tiers, we
proposed an intelligent framework for SEI-VHetNets. We
also identified the associated core challenges and require-
ments. Finally, we discussed potential solutions and future
research directions to resolve these challenges and fulfill the
vision of SEI-VHetNets.
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