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ABSTRACT In this paper, an ensemble learning-driven edge caching (ELDEC) strategy and a meta-based
ensemble learning-driven edge caching (MELDEC) strategy are proposed for content popularity prediction
and cache content placement in Internet-of-Vehicles (IoV) networks. Specifically, the proposed MELDEC
and ELDEC strategies incorporate meta learning and ensemble learning for enhanced content popularity
prediction in IoV networks. Closed-form outage probability and finite signal-to-noise ratio (SNR) diversity
gain expressions are also derived to establish the relationship between the proposed edge caching strategies
and the wireless performance of IoV networks. When compared against benchmark schemes, the proposed
MELDEC and ELDEC strategies achieve near-optimal cache hit rates, outage probability, and finite SNR
diversity gain under imperfect channel state information (CSI) estimation. We also show that the outage
probability decay rate in the IoV network depends on the number of base stations and roadside units,
and it is independent of the content popularity prediction of the MELDEC strategy, ELDEC strategy, and
benchmark schemes. The performance analysis demonstrates that the proposed MELDEC and ELDEC
strategies are promising solutions towards achieving reliable content access in IoV networks.

INDEX TERMS Deep learning, ensemble learning, meta learning, multi-access edge computing, edge
caching, Internet-of-Vehicles, vehicular networks, outage probability, finite signal-to-noise ratio (SNR),
diversity.

I. INTRODUCTION

RECENT interests to support connected vehicles (CVs),
road side units (RSUs), and cellular base stations (BSs),

as part of next-generation intelligent transportation systems
(ITSs) have necessitated a transition towards Internet-of-
Vehicles (IoV) networks [1], [2], [3]. Such IoV networks
are envisioned to be able to meet the mission-critical
requirements of ITS applications. However, one challenge in
realizing IoV networks lies in the fact that the intensity of
information exchanged in ITS applications ultimately results
in significant backhaul overheads [4]. Apart from backhaul
overheads, developing frameworks for accurate outage and
finite signal-to-noise (SNR) characterization and identifica-
tion of performance bounds in IoV networks remain an open

research problem due to vehicular mobility, wireless chan-
nel environment, and the accurate modeling of RSU and BS
placements for vehicular communications [5].

To reduce backhaul overheads, one can turn towards the
concept of edge caching from the multi-access edge com-
puting (MEC) paradigm [6], [7], [8]. The main idea is to
employ edge caching in IoV networks to reduce overall back-
haul overheads by proactively storing, i.e., caching, popular
contents at MEC servers located near CVs [4], e.g., cellular
BSs or RSUs. In this aspect, the adoption of edge caching
in IoV networks has been widely studied in the literature,
e.g., [4], [5], with studies investigating the application of
deep learning for edge caching and the performance of edge
caching in IoV networks.
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A. RELATED WORKS
1) DEEP LEARNING-BASED EDGE CACHING IN IOV
NETWORKS

In the literature, studies employing deep learning-driven
schemes for content popularity prediction and placement in
edge caching have been noted in IoV networks. For exam-
ple, the authors in [9] proposed an edge caching scheme
based on cross-entropy to determine popular contents that
should be cached at RSUs. An analysis showed that the
proposed edge caching scheme achieves higher cache hit
rates and lower latency than other benchmark non-learning
schemes. In [10], deep reinforcement learning and particle
swarm schemes are employed as part of an edge caching and
resource allocation framework in IoV networks. Likewise,
the authors in [11] propose a cooperative deep reinforcement
learning-based edge caching scheme, while [12] proposed a
convolutional neural network-based edge caching scheme to
predict the popularity of infotainment contents.
It is evident from [9], [10], [11], [12] that the focus has

largely been on enhancing the content popularity prediction
accuracy. Yet, the proposed schemes can be computation-
ally complex to implement in practice. In turn, this may
lead to longer execution time and unnecessary backhaul
overheads. Furthermore, the performance characterization
of deep learning-based edge caching schemes to identify
performance bounds in IoV networks remains unaddressed.

2) PERFORMANCE CHARACTERIZATION OF
CACHE-ENABLED IOV NETWORKS

As noted earlier, the performance of cache-enabled wire-
less networks has been widely investigated in the literature.
In [13], [14], the successful content delivery probability
was analyzed for different cooperative schemes in cellular
networks where closed-form expressions for coverage prob-
ability were provided and evaluated to identify performance
bounds. Likewise, the content retrieval delay in cooper-
ative cellular networks was analyzed in [15] while [16]
characterized the successful content delivery performance
for backhaul-limited cache-enabled heterogeneous networks.
In [17], the successful content delivery probability was ana-
lyzed for reinforcement learning-based probabilistic caching
with a priori knowledge of content popularity. Similar
successful content delivery probability analysis was also
conducted in [18] for online content popularity prediction
techniques. In [19], an outage probability analysis was also
noted for deep learning-based edge caching in device-to-
device networks.
For IoV networks, the outage probability and content

retrieval delay for in-vehicle caching was investigated in [20].
Similar studies on coverage probability analysis have also
been noted in [4] and [5]. Apart from outage and cov-
erage probability, finite SNR analysis is another useful
tool to aid in the performance characterization of wire-
less networks. In particular, finite SNR analysis enables
one to evaluate the finite SNR diversity gain of wireless
networks [21], [22], [23], [24]. The finite SNR diversity

gain of wireless networks effectively quantifies the outage
probability decay rate for a given SNR [23]. With finite
SNR analysis, one can uncover outage probability behaviors
which are noticeable at only finite SNR regimes, e.g., SNRs
below 30dBm. As most wireless networks operate at finite
SNR regimes [24], finite SNR analysis has been shown to
be useful in providing accurate outage probability charac-
terizations. For instance, finite SNR diversity gain has been
employed in unmanned aerial vehicle networks to determine
interference-limited scenarios [21], [24].
Yet, there remains limited studies on employing finite SNR

analysis for performance characterization in IoV networks.
In addition, the above mentioned studies, i.e., [4], [5], [13],
[14], [15], [16], [17], [20], have assumed a priori knowl-
edge of content popularity while the study in [18] assumed
that all future content popularity predictions are related to
past predictions. However, content popularity knowledge
in edge caching-based wireless networks is unavailable in
practice [18], may be unrelated to past content popularity
knowledge, and that assuming otherwise may lead to an unre-
alistic outage and finite SNR characterization. Furthermore,
the performance analysis insights in [13], [14], [15], [16],
[17], [18], [19] have limited applications outside of IoV
networks.

B. MAIN MOTIVATIONS AND CONTRIBUTIONS
To address the above challenges, we propose an ensem-
ble learning-driven edge caching (ELDEC) strategy that
incorporates ensemble learning and a meta-based ensem-
ble learning-driven edge caching (MELDEC) strategy which
combines both meta and ensemble learning for edge caching
in IoV networks.
Ensemble learning allows for the outputs of weaker

learning models to be combined to enhance prediction
performance [25], [26], while meta learning enables one
to optimally combine the outputs of several weaker learning
models [26]. By leveraging on meta and ensemble learn-
ing, simple deep learning models can be used for content
popularity prediction in IoV networks. Specifically for the
MELDEC strategy, meta learning is employed to optimally
prioritize better performing deep learning models within an
ensemble of base deep learning models for enhanced content
popularity prediction. It is also worth noting that the amal-
gamation of meta learning with ensemble learning has not
been widely investigated for content popularity prediction
in edge caching. This is in contrast to the techniques noted
in [9], [10], [11], [12], which have focused on enhancing
content popularity prediction at the expense of potentially
higher computational complexity.
A comprehensive outage and finite SNR analysis frame-

work is also presented for the performance characterization
of the MELDEC strategy, ELDEC strategy, and consid-
ered benchmark schemes in the IoV network. Specifically,
outage probability and finite SNR diversity gain expres-
sions are obtained in closed-form for the MELDEC strategy,
ELDEC strategy, and benchmark schemes by extending the
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power series approaches proposed in [21] and [27] for IoV
networks. The power series approach enables complicated
functions to be expressed as a power series, leading to
a rigorous analysis of the interplay between CV mobility,
stochastic geometry, outage probability, and finite SNR diver-
sity gain. To the best of our knowledge, such a performance
characterization framework for deep learning-based edge
caching schemes in IoV networks is unavailable in the
literature.
Therefore, the main contributions of this paper are

summarized as follows:

• This paper proposes MELDEC and ELDEC for content
popularity prediction and cache content placement in
IoV networks, which to the best of our knowledge, has
not been investigated in the literature.

• Closed-form outage probability and finite SNR diversity
gain expressions are derived for the proposed MELDEC
strategy, ELDEC strategy, and benchmark schemes to
characterize and identify performance bounds in the IoV
network.

• We demonstrate that the proposed MELDEC and
ELDEC strategies achieve near-optimal cache hit rates,
outage probability, and finite SNR diversity gain when
compared against the benchmark deep learning-based
technique in [28] and non-learning based benchmark
schemes under imperfect channel state information
(CSI) estimation.

• When ideal CSI estimation is attained, we demonstrate
through finite SNR analysis that the content popularity
prediction accuracy of the MELDEC strategy, ELDEC
strategy, and benchmark schemes plays a limited role in
the overall outage probability decay. Instead, the outage
probability decay is greatly influenced by the number of
cellular BSs and RSUs, and the severity of small-scale
fading in the IoV network.

The remainder of this paper is organized as follows. The
proposed system model is introduced in Section II, with the
MELDEC and ELDEC strategies presented in Section III.
The closed-form outage probability and energy efficiency
expressions are derived Section IV. Finally, the results of
the numerical analysis are presented in Section IV, with
the conclusions and future research directions of the paper
discussed in Section VI. A summary of key mathematical
notations used in this paper is also provided in Table 1.

II. SYSTEM MODEL
In this work, we consider an IoV network comprising
MRSU RSUs and MBS cellular BSs (Fig. 1). Specifically,
we are interested in analyzing downlink cellular transmis-
sions between the typical CV and the infrastructure when
edge caching is adopted in the IoV network.1 As part of
the analysis, we assume that downlink cellular transmis-
sions are impaired by imperfect CSI due to Doppler shift

1. Enhancing the performance of the IoV network through cache-enabled
vehicle-to-vehicle links is being investigated as an extensions of this work.

TABLE 1. Summary of key mathematical notations.

FIGURE 1. A CV in an IoV network communicating with RSUs and cellular BSs.

from the mobility of CVs [29], [30] and small-scale fading
effects [31], [32]. Furthermore, network coordination within
the IoV network is assumed to occur either among RSUs
or BSs through horizontal handovers, or between RSUs and
BSs through vertical handovers [33].

A. STOCHASTIC GEOMETRY MODEL
To model the spatial locations of the RSUs and cellular
BSs, the binomial point process (BPP) model is employed
in this study. The BPP model is used to model the uniform
distribution of distances in a finite-sized cell for a fixed
number of nodes [34], [35]. In the context of IoV networks,
the number of RSUs, cellular BSs and CVs operating in a
geographical area is generally known in practice. Therefore,
the BPP model is more suitable than Poisson point processes
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(PPPs) to model the distance distribution of nodes in an IoV
network.
Let the typical CV associated to the RSUs or cellular

BSs be at the origin O with a communication radius of ra.
Then, the spatial location of the RSUs and cellular BSs
are assumed to be uniformly distributed in a disc centered
at the CV with radius ra and angle [0, 2π). The Euclidean
distance between BS-i and the CV is denoted as di, while the
Euclidean distance between RSU-j and the CV is denoted as
dj. From [34, eq. (3)], [27], the probability density function
(PDF) fdx(w) of dx, x ∈ {i, j} is given as fdx(w) = 2w

r2
a
where

0 ≤ w ≤ ra.

B. MOBILITY MODEL
In the IoV network, the CV is associated with the cellular
BS or the RSU with the strongest instantaneous signal-to-
interference-plus-noise ratio (SINR) and CSI is estimated
at the CV over a feedback period T [29], [30]. We denote
hx, x ∈ {i, j} as the channel gain between node-x and the CV,
ĥx as the estimated channel gain, ex as the CSI estimation
error, and 0 < ε < 1 as the correlation coefficient between
hx and hx+1. Using Jakes’ statistical model, ε is defined
as [29], [30], [36], [37]:

ε = J0(2π fdT), (1)

where J0 is the zero-order Bessel function of the first
kind [38, eq. (9.1.10)], fd = vfc

c is the maximum Doppler
frequency, fc is the carrier frequency, v is the vehicle speed
in m/s, and c = 3 × 108 m/s. Then, we employ the
first-order Gauss-Markov process to model hx such that
hx = εĥx + √

1 − ε2ex [29], [30], [36], [37].

C. CHANNEL MODEL AND INSTANTANEOUS SINR
At the CV, the instantaneous SINR of cellular transmissions
from BS-i (γi) or RSU-j (γj) is given as [29]:

γx =
∣
∣
∣ĥx

∣
∣
∣

2
d−l
x

1 + |ex|2d−l
x

, (2)

where l is the pathloss exponent and x ∈ {i, j}.
We assume |ĥx|2 follows the Gamma distribution with

average received power P̄tε2 and Nakagami-m fading param-
eter mx, x ∈ {i, j}, i.e., |ĥx|2 ∼ Nak(P̄tε2,mx), where
P̄t = Pt

L0η
is the normalised transmit power, Pt is the transmit

power, L0 is the pathloss at 1 m reference distance [39],
η = −174 + 10 log10(Bw) is the noise power in dBm,
and Bw is the bandwidth. Likewise, we assume |ex|2 ∼
Nak(P̄t(1 − ε2), μx), x ∈ {i, j}. Such an approach allows
a multitude of small-scale fading effects to be modeled for
both |ĥx|2 and |ex|2, e.g., Rayleigh fading [29], [30].

D. FILE POPULARITY MODEL
A finite library of Ktotal files is assumed in the IoV network,
where each file has a size of Ksize. CVs in the IoV network
transmit file requests to both RSUs and cellular BSs such

that the file requests are first transmitted to the RSUs, and
if the requested file is unavailable at the RSU, then the file
request is serviced by cellular BSs.
To model file popularity and placement in the IoV

network, we assume that RSUs are equipped with MEC
servers that have a cache size of Kcache, and cellular BSs are
equipped with file servers hosting the library of Ktotal files
such that 1 ≤ Kcache ≤ Ktotal [19]. Furthermore, it is assumed
that the popularity of each file is unknown since file request
patterns are dynamically changing in practice. However, for
the sake of analysis, the popularity of the k-th file is assumed
to follow a Zipf distribution and the request probability of
file-k, 1 ≤ k ≤ Ktotal is given as fk = k−z

∑Ktotal
j=1 j−z

, where z is

the file popularity factor [13].
As the popularity of each file is unknown, the main aim of

this paper is to propose an ELDEC strategy for IoV networks
to enable file popularity prediction and caching at RSUs.

III. ENSEMBLE LEARNING-BASED EDGE CACHING
STRATEGIES
In this section, detailed descriptions pertaining to the
proposed ELDEC strategy, MELDEC strategy, and bench-
mark schemes are provided.

A. PROPOSED ELDEC STRATEGY
The proposed ELDEC strategy incorporates ensemble learn-
ing to predict the popularity of all Ktotal files based on file
request statistics from CVs in the IoV network. In ensemble
learning, multiple base learning models are trained and the
resultant outputs are amalgamated for improved prediction
accuracy, e.g., [26]. On its own, such base learning models
may produce lower prediction accuracy. However, if orches-
trated properly, a set of base learning models can be applied
to achieve greater prediction or classification accuracy [25].
One tradeoff to such an approach is the need to train addi-
tional base learning models, which can be computationally
intensive and may lead to longer training time. However, in
the context of IoV networks, this can be mitigated by dis-
tributing the training of base learning models across an IoV
network to RSUs and cellular BSs with sufficient processing
capability.
Therefore, we apply ensemble learning for edge caching

by training an ensemble of Kmodel deep learning neural
network (DNN) models using the file request statistics.
Thereafter, the prediction output from each DNN model
is combined into a single prediction output for all Ktotal
files. Files with high predicted popularity are then cached
at RSUs to improve the overall performance of the IoV
network. Such a technique has also been adopted in similar
studies, e.g., [26], [28].

1) DATASET GENERATION

In the IoV network, all file indices requested by CVs are
tracked by RSUs and are periodically uploaded for content
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FIGURE 2. An illustration of the content demand table (X).

FIGURE 3. An illustration of the proposed ELDEC strategy with ensemble learning.

popularity prediction over a wired backhaul link to a cloud-
based deep learning platform.2 The deep learning platform
maintains a content demand table (X) with Mdataset rows
by aggregating all file indices which have been requested
by CVs at each RSU. For the m-th row (Xm), i.e., the m-th
sample or m-th row in X, the deep learning platform tabulates
the vector Xm = [x0, . . . , xk, . . . , xKtotal−1] from all RSUs to
obtain the instantaneous file access pattern across the IoV
network, where xk denotes the total number of times file-k
was requested, before ym = Xm is obtained as the ground
truth label of Xm (Fig. 2).3,4 After populating X, Mtrain train-
ing samples and Mtest testing samples are randomly selected
from X for training and testing such that Xm is used as the
input to each DNN model. The objective behind such an
arrangement is to predict the cache content score of file-k
for content popularity prediction, where 0 ≤ k ≤ Ktotal − 1.

2) ENSEMBLE ARCHITECTURE

An ensemble of Kmodel DNN models are trained with the
main goal of predicting the total cache content score for each
file (Fig. 3). Together, the Kmodel DNN models make up an
ensemble architecture and each DNN model comprises an
input layer, hidden layers, and an output layer. We employ
fully connected layers in the DNN model, with a rectified
linear unit, i.e., ReLU, used as the activation function for
some of the hidden layers.

2. Examples of such platforms include Microsoft Azure and Google
Compute Engine.

3. It is worth noting that the DNN models used in this work only
require file index information for content popularity prediction. Future works
will investigate utilizing additional information, e.g., SINR, CV mobil-
ity and, content lifespan [40], together with distributed learning-based or
cooperative-based methods, e.g., [28], [41], [42] to enhance the accuracy
of content popularity prediction.

4. In other words, Xm indicates the total number of requests for file-k
in the IoV network, which is obtained from all RSUs.

TABLE 2. DNN model design.

Using the training and testing samples, each DNN model
is trained to minimize the categorical cross-entropy loss func-
tion. Finally, softmax [43] is used as the activation function
for the output layer and the Adam optimiser is employed
for weight update. A description of the DNN model design
is provided in Table 2, where a dropout fraction rate of 0.1
is used.

3) OFFLINE TRAINING AND DEPLOYMENT

The Kmodel DNN models in the ELDEC strategy are trained
offline and validated online using the cloud-based deep
learning platform with Mtrain samples and Mtest samples,
respectively. Specifically, the vector f̂ is obtained during
online validation usingMtest test samples for content popular-
ity prediction. Starting with the s-th test sample for the ν-th
DNN model, an output vector ȳs,ν = [ȳs,ν,0, . . . , ȳs,ν,Ktotal−1]
with Ktotal elements is obtained, where ȳs,ν,k is the cache
content score of file-k for the s-th test sample that is pre-
dicted with the ν-th DNN model.5 Then, the vector f̂ is
obtained as:

f̂ =
[( Kmodel−1

∑

ν=0

Mtest−1
∑

s=0

ȳs,ν,0

)

, . . . ,

( Kmodel−1
∑

ν=0

Mtest−1
∑

s=0

ȳs,ν,Ktotal−1

)]

,

(3)

where
∑Kmodel−1

ν=0

∑Mtest−1
s=0 ȳs,ν,k is the total cache content

score of file-k.
The vector f̂ is used to determine the total cache con-

tent score of each file based on the ensemble learning of
the Kmodel DNN models. As files with larger cache content
scores are more likely to be requested, the top Kcache files
with the highest cache content scores in f̂ are cached at
RSUs, with the corresponding file index populated in a vec-
tor f̂cache. A summary of the offline training and deployment
process for the ELDEC strategy is presented in Algorithm 1
and illustrated in Fig. 3.

4) ESTIMATED CACHE HIT RATE

Based on f̂cache, the estimated cache hit rate of the ELDEC
strategy Phit,EL is obtained as [44], [45]:

Phit,EL =
∑Mtest−1

s=0 1(s)
∑Mtest−1

s=0

∑Ktotal
k=0 xk

, (4)

5. It is important to note that since Mtest testing samples are randomly
selected from X, the s-th test sample is also a vector which is tabulated as
[x0, . . . , xk, . . . , xKtotal−1].
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Algorithm 1 ELDEC Offline Training and Deployment
Input: X, Kmodel, Mtest, Mtrain, Ktotal
Output: f̂cache
1: Randomly select Mtrain samples from X for training.
2: Allocate remaining Mtest samples from X for validation.
3: for ν = 0, 1, . . . ,Kmodel − 1 do
4: Build DNN model-ν using Table 2.
5: Train DNN model-ν with Mtrain samples.
6: for s = 0, 1, . . . ,Mtest − 1 do
7: for k = 0, 1, . . . ,Ktotal − 1 do
8: Compute ȳs,ν,k.
9: end for
10: Compute ȳs,ν .
11: end for
12: end for
13: Compute f̂ and f̂cache.
14: Populate all RSUs with files indicated in f̂cache.

where the total number of requests in the Mtest testing sam-
ples is computed in the denominator of (4), and 1(s) = xk
if the k-th file requested in the s-th sample is in f̂cache.

After calculating Phit,EL and caching the Kcache files at
RSUs, the content demand table (X) is emptied and repop-
ulated with new file index information aggregated from all
RSUs until Mdataset samples are collected.6 Offline training
and content popularity prediction are then conducted with
the ensemble of Kmodel DNN models, and Phit,EL recalcu-
lated, before the updated Kcache files are cached at RSUs. In
this way, the ELDEC strategy continues to predict popular
contents which are relevant in the near future even under
time-varying content request statistics.7

B. PROPOSED MELDEC STRATEGY
It is worth noting that the ELDEC strategy considers all
DNN models equally when computing the predicted total
cache content score of each file, i.e., f̂. Therefore, we pro-
pose the MELDEC strategy that incorporates meta learning
and ensemble learning to further improve content popularity
prediction accuracy. The main idea behind the MELDEC
strategy is to employ a meta model within a meta-based
ensemble learning architecture to aid in prioritizing better
performing learners from within an ensemble of base learners
such that f̂ more accurately reflects actual content popularity.

1) META-BASED ENSEMBLE LEARNING ARCHITECTURE

An ensemble of Kmodel,meta DNN models are trained for
content popularity prediction using the design described in

6. The time taken to collect Mdataset samples depends on the number of
RSUs and CVs in the IoV network due to the frequency of file requests.
Thus, popular content prediction and distribution can be conducted more
frequently in a larger IoV network compared to a smaller IoV network.

7. It is worth noting that Phit,EL can be further improved by caching
a mix of contents that are popular or have large content diversity in the
ELDEC strategy, as was done in [13], which will investigated in future
extensions of this paper.

FIGURE 4. An illustration of the proposed MELDEC strategy with the meta-based
ensemble learning architecture.

TABLE 3. Meta model design.

Table 2. The output from each of the Kmodel,meta DNN mod-
els are then aggregated as inputs into a meta model which
comprises an input layer, hidden layers, and an output layer.
The meta model employs fully connected layers, with ReLU
used in the hidden layers. The resulting meta-based ensemble
learning architecture comprises Kmodel,meta DNN models as
the first-level learner and the meta model as the second-level
learner.
Using the training and testing samples, the meta-based

ensemble learning architecture is trained to minimize mean
squared error. Finally, sigmoid [43] is used as the activa-
tion function for the output layer and the Adam optimiser
is employed for weight update. The proposed meta model
design is described in Table 3.

2) OFFLINE TRAINING AND DEPLOYMENT

We adopt similar offline training and deployment steps seen
in the ELDEC strategy for the MELDEC strategy. In partic-
ular, the Kmodel,meta DNN models and the meta model in the
MELDEC strategy are trained offline with Mtrain samples
and validated online with Mtest samples using the cloud-
based deep learning platform. For each of the Kmodel,meta
DNN models, the output and input layers are aggregated
and used as the inputs to the meta model and meta-based
ensemble learning architecture, respectively. The meta-based
ensemble learning architecture is then used for offline train-
ing, before f̂ and f̂cache are computed with Mtest samples. The
top Kcache files with the highest cache content scores in f̂ are
then selected to be cached at RSUs, with the correspond-
ing file index populated in f̂cache. It is worth noting that the
estimated cache hit (Phit,MEL) for the MELDEC strategy is
obtained using (4). A summary of the offline training and
deployment process for the MELDEC strategy is presented
in Algorithm 2 and illustrated in Fig. 4.

C. BENCHMARK AND OPTIMAL SCHEMES
We employ the deep learning edge caching (DLEC) strat-
egy in [28] and non learning-based Least Frequently Used
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Algorithm 2 MELDEC Offline Training and Deployment
Input: X, Kmodel,meta, Mtest, Mtrain, Ktotal

Output: f̂cache
1: Randomly select Mtrain samples from X for training.
2: Allocate remaining Mtest samples from X for validation.
3: for ν = 0, 1, . . . ,Kmodel,meta − 1 do
4: Build DNN model-ν using Table 2.
5: end for
6: Build meta model using Table 3.
7: Aggregate output layers of all Kmodel,meta DNN models

as the input to the meta model.
8: Aggregate input layers of all Kmodel,meta DNN mod-

els as the input to the meta-based ensemble learning
architecture.

9: Train meta-based ensemble learning architecture with
Mtrain samples.

10: Compute f̂ and f̂cache with the meta-based ensemble
learning architecture with Mtest samples.

11: Populate all RSUs with files indicated in f̂cache.

(LFU), Least Recently Used (LRU) as the benchmark
schemes [44], [45] to benchmark the performance of the
proposed MELDEC and ELDEC strategies in the IoV
network. We also employ the oracle algorithm as the
optimal scheme in this work [44], [45]8,9 In particu-
lar, the LFU and LRU schemes respectively removes the
least frequently used and least recently used file from the
RSUs when the MEC server cache is full. For the oracle
algorithm, the popularity of all Ktotal files is assumed to
be known a priori [45], i.e., the oracle algorithm is the
optimal scheme to determine file popularity. Using (4), we
obtain Phit,DL, Phit,LFU, Phit,LRU, and Phit,Oracle as the esti-
mated cache hit rate for DLEC in [28], LFU, LRU, and
the oracle schemes, respectively. The estimated cache hit
rate Phit,u, u ∈ {EL,MEL,DL,LFU,LRU,Oracle} enables
closed-form outage probability and finite SNR diversity gain
expressions to be derived for the proposed MELDEC strat-
egy, ELDEC strategy, and benchmark schemes, which will
be further discussed in subsequent sections.

IV. PERFORMANCE ANALYSIS OF THE IOV NETWORK
In this section, we derive the closed-form outage proba-
bility and finite signal-to-noise ratio (SNR) diversity gain
expressions in the IoV network.

A. OUTAGE PROBABILITY ANALYSIS
Let τ be the latency to download the requested file from

RSUs or cellular BSs to the CV, and γth = 2
Ksize
τBw − 1 be the

8. We choose the work in [28] as one of the benchmark schemes due
to the relatively low computational complexity, which makes it suitable for
deployment in a practical IoV network.

9. The approaches in [9], [10], [11], [12] may be computationally com-
plex to implement in practice. However, future works will investigate these
techniques for benchmarking.

threshold [13, eq. (7)]. Then, the outage probability (Pout)
of the IoV network is given in the following theorem.
Theorem 1: The outage probability of the CV in the IoV

network is:

Puout = Phit,u

[ ∞
∑

p=0

mj+p
∑

q=0

αj(p)

(
mj + p

q

)

E
{

Zqj
}

× 	j(p, q)
j(p, q)P̄t
q−(mj+p)

]MRSU

+ (

1 − Phit,u
)
[ ∞

∑

p=0

mi+p∑

q=0

αi(p)

(
mi + p

q

)

E
{

Zqi
}

× 	i(p, q)
i(p, q)P̄t
q−(mi+p)

]MBS

, (5)

where u ∈ {EL,MEL,DL,LFU,LRU,Oracle}, αx(p) =
(−1)p(mxγth)mx+p
�(mx)p!(mx+p) , E{Zqx } = �(μx+q)

�(μx)(μx)q
, 
x(p, q) = (1−ε2)q

(ε2)mx+p , and

	x(p, q) = 2rl(mx+p−q)a
l(mx+p−q)+2 .

Proof: The proof is given in Appendix A.
The function αx(p) represents the power series expansion

of the cumulative distribution function (CDF) for the random
variable (RV) |ĥx|2, x ∈ {i, j}, while E{Zqx } is the q-th moment
of the RV Z [46, Table II]. Also, the function 	x(p, q)
accounts for the impact of stochastic geometry on outage
probability in the IoV network and 
x(p, q) accounts for the
impact of CSI estimation errors on outage probability due
to the speed of the CV v and feedback period T . In the next
corollary, we show that the closed-form outage probability
expression in (5) is convergent.
Corollary 1: The closed-form outage probability expres-

sion in (5) has a convergence radius of ∞.
Proof: The proof is given in Appendix B.
At high P̄t regimes, the asymptotic outage probability

(Pout,∞) when BS-i and RSU-j of the CV is given in the
following corollary.
Corollary 2: The asymptotic outage probability of the CV

in the IoV network is:

Puout,∞ = Phit,u

[ ∞
∑

p=0

αj(p)E
{

Z
mj+p
j

}(
1 − ε2

ε2

)mj+p]MRSU

+ (

1 − Phit,u
)
[ ∞

∑

p=0

αi(p)E
{

Zmi+pi

}(
1 − ε2

ε2

)mi+p]MBS

.

(6)

Proof: From (5), limP̄t→∞(P̄t)q−mx−p = 0 when
q < mx + p for x ∈ {i, j}. For q = mx + p,
limP̄t→∞(P̄t)q−mx−p = 1. Therefore, evaluating (5) with
q = mx+p leads to the final expression in (6). This completes
the proof.
Remark 1: It is observed through (6) that the random loca-

tion of the typical CV, i.e., stochastic geometry, in the IoV
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network does not affect Puout,∞. Instead, the estimated cache
hit rate, small-scale fading in the IoV network, and CSI
estimation errors due to mobility play a larger role in deter-
mining Puout,∞ regardless of the underlying edge caching
strategies employed.
When the feedback period (T) is sufficiently long or when

the vehicle speed (v) is adequately low, then one may obtain
the ideal CSI estimation, i.e., ε ≈ 1. In such cases, the out-
age probability Puout,Ideal CSI of the CV can be approximated
from (5) as shown in the following corollary.
Corollary 3: The outage probability of the CV when ideal

CSI estimation is obtained in the IoV network is:

Puout,Ideal CSI = Phit,u

[ ∞
∑

p=0

αj(p)	j(p, 0)P̄t
−(mj+p)

]MRSU

+ (

1 − Phit,u
)
[ ∞

∑

p=0

αi(p)	i(p, 0)P̄t
−(mi+p)

]MBS

.

(7)

Proof: We begin by noting that 
x(p, q) ≈ 1 when q = 0,
while 
x(p, q) ≈ 0 when q > 0. Therefore, Puout,Ideal CSI can
be approximated from (5) with q = 0 when ε ≈ 1. Finally,
the final expression in (7) is obtained after some algebraic
simplifications. This completes the proof.
Using (5), (6), and (7), one can evaluate Puout, P

u
out,∞, and

Puout,Ideal CSI, in closed-form, respectively, after obtaining the
estimated cache hit rate of the proposed MELDEC strategy,
ELDEC strategy, or any of the benchmark schemes, i.e., Phit,u
where u ∈ {EL,MEL,DL,LFU,LRU,Oracle}. Additionally,
one will be able to evaluate any edge caching strategy with
the closed-form expressions in (5), (6), and (7), as long as
the estimated cache hit rate is obtainable.

B. FINITE SNR DIVERSITY GAIN ANALYSIS
In wireless networks operating at low to moderate SNR
regimes, the outage probability decay is quantified through
the finite SNR diversity gain df [22], [23]. Specifically, finite
SNR diversity gain is defined as [22, eq. (5)]:

df = −Pr
Pr

(O)
∂

∂Pr
Pr

(O)

, (8)

where O, Pr(O), and Pr are the outage event, outage proba-
bility, and average received power in the considered wireless
network, respectively. Using df , one also obtains the diver-
sity gain at asymptotic SNRs by evaluating (8) at high SNR
regimes [23], [47], [48]. To this end, we employ finite SNR
analysis to investigate the outage probability decay in the
IoV network.
Let the finite SNR diversity gain of the CV in

the IoV network be duf , where u ∈ {EL,MEL,DL,

LFU,LRU,Oracle}. Then, duf is given in the following
proposition.
Proposition 1: The finite SNR diversity gain of the CV

in the IoV network is:

duf = −P̄t
Puout

(

Phit,uMRSU

[ ∞
∑

p=0

mj+p
∑

q=0

αj(p)

(
mj + p

q

)

E
{

Zqj
}

× 	j(p, q)
j(p, q)P̄t
q−(mj+p)

]MRSU−1

×
[ ∞

∑

p=0

mj+p
∑

q=0

αj(p)

(
mj + p

q

)

E
{

Zqj
}

	j(p, q)

× 
j(p, q)
(

q− (

mj + p
))

P̄t
q−(mj+p)−1

]

+ (

1 − Phit,u
)

MBS

[ ∞
∑

p=0

mi+p∑

q=0

αi(p)

(
mi + p

q

)

E
{

Zqi
}

× 	i(p, q)
i(p, q)P̄t
q−(mi+p)

]MBS−1

×
[ ∞

∑

p=0

mi+p∑

q=0

αi(p)

(
mi + p

q

)

E
{

Zqi
}

	i(p, q)

× 
i(p, q)(q− (mi + p))P̄t
q−(mi+p)−1

])

. (9)

Proof: The finite SNR diversity gain of the CV is obtained
by substituting (5) into (8).
Using (9), the diversity gain of the CV, i.e., decay of

Puout, can be analzyed at low-to-medium SNR regimes.
Specifically, the impact of the estimated cache hit rate
(Phit,u), small-scale fading, and CSI estimation error on out-
age behavior in the IoV network can be observed using (9),
which would otherwise not be present at high SNR regimes.
To see this, the asymptotic diversity gain of the CV in the
IoV network is presented in the next corollary.
Corollary 4: The asymptotic diversity gain of the CV in

the IoV network is:

lim
P̄t→∞

duf = 0. (10)

Proof: We begin by noting that limP̄t→∞ duf can be
expressed as:

lim
P̄t→∞

duf = −P̄t
Puout,∞

∂

∂P̄t
Puout,∞. (11)

From (6), it is seen that Puout,∞ is independent of P̄t.

Therefore, −P̄t
Puout,∞

∂

∂P̄t
Puout,∞ evaluates to zero, which com-

pletes the proof.
The result in Corollary 4 is due to the fact that at high SNR

regimes, the instantaneous SINR γx, x ∈ {i, j} becomes lim-
ited by interference due to CSI estimation errors as a result
of mobility. Thus, increasing P̄t corresponds to negligible
decrease in outage probability at the CV.
For scenarios where ideal CSI estimation is obtained, the

closed-form finite SNR diversity gain duf ,Ideal CSI expression
is presented in the following proposition.
Proposition 2: When ideal CSI estimation is attained,

the finite SNR diversity gain of the CV in the IoV
network is:
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duf ,Ideal CSI = −P̄t
Puout,Ideal CSI

×
(

Phit,uMRSU

[ ∞
∑

p=0

αj(p)	j(p, 0)P̄t
−(mj+p)

]MRSU−1

×
[ ∞

∑

p=0

αj(p)	j(p, 0)
(−mj − p

)

P̄t
−(mj+p+1)

]

+ (

1 − Phit,u
)

MBS

[ ∞
∑

p=0

αi(p)	i(p, 0)P̄t
−(mi+p)

]MBS−1

×
[ ∞

∑

p=0

αi(p)	i(p, 0)(−mi − p)P̄t
−(mi+p+1)

])

.

(12)

Proof: The finite SNR diversity gain in (12) is obtained
by substituting (7) into (8).
At high SNR regimes, the asymptotic behavior of

duf ,Ideal CSI is presented in the following corollary.
Corollary 5: When ideal CSI estimation is attained, the

asymptotic diversity gain of the CV in the IoV network is
approximated as:

lim
P̄t→∞

duf ,Ideal CSI ≈ min
(

MRSUmj,MBSmi
)

. (13)

Proof: The proof is given in Appendix C.
Remark 2: It is worth emphasizing the main reason

behind adopting the BPP over the PPP in this paper lies in
the fact that the number of RSUs and cellular BSs simulated
in PPPs is a random variable. As such, assuming PPPs in the
IoV network may not lead to a tractable outage and finite
SNR analysis. This is in contrast to the BPP, which allows
one to investigate the exact relationship between MRSU and
MBS, and its impact on outage probability and diversity gain
in the IoV network as shown in (5)-(13). Furthermore, the
closed-form expressions and resulting corollaries seen in this
section are possible due to the BPP assumption adopted
in this paper. This is in contrast to the PPP assumption,
which has been widely adopted to model the random spa-
tial locations of traffic infrastructure in vehicular networks,
e.g., [5].

Corollary 5 shows that under high SNR regimes and ideal
CSI estimation, the estimated cache hit rate of the proposed
MELDEC strategy, ELDEC strategy, and the benchmark
schemes do not influence the diversity gain of the CV.
Instead, the diversity gain is determined based on the number
of cellular BSs (MBS) and RSUs (MRSU), and the severity of
Nakagami-m fading (mx, x ∈ {i, j}) experienced in the IoV
network. Using (12), (13) describes the relationship between
MBS, MRSU, mx, x ∈ {i, j}, and the diversity gain under high
SNR regimes and ideal CSI estimation in closed-form.

V. NUMERICAL AND SIMULATION RESULTS
In this section, numerical results pertaining to the
performance of the MELDEC and ELDEC strategies in the
IoV network are presented, with Monte Carlo simulations
conducted with 105 samples. We also provide the default
simulation parameters in Table 4.

TABLE 4. Default simulation parameters.

FIGURE 5. A comparison of the estimated cache hit rates for the proposed MELDEC
strategy, ELDEC strategy, and benchmark schemes.

A. ESTIMATED CACHE HIT RATE AND RUN TIME
ANALYSIS
We train the MELDEC strategy, ELDEC strategy, and bench-
mark schemes with the content demand table X using
Mdataset = 105 rows, and generate a new content demand
table Xeval with 105 rows which are populated indepen-
dently from X. The evaluation of the estimated cache hit
rate (Phit,u), u ∈ {EL,MEL,DL,LFU,LRU,Oracle} for
the MELDEC strategy, ELDEC strategy, and benchmark
schemes is then conducted using Xeval, where Phit,u is
obtained with X and validated using Xeval.
Fig. 5 shows the comparison of Phit,u, u ∈

{EL,MEL,DL,LFU,LRU,Oracle} as cache size (Kcache)

increases. It is seen that the proposed MELDEC strategy out-
performs the ELDEC strategy and the benchmark schemes,
and that similar Phit,EL is obtained when Kmodel ∈ {5, 10}.
It is also observed that the proposed MELDEC strategy
achieves near-optimal cache hit rates, i.e., Phit,MEL is
close to Phit,Oracle. Similar to the optimal oracle algorithm,
the proposed MELDEC and ELDEC strategies are also
able to achieve 100% Phit,EL and 100% Phit,MEL when
Kcache = 5000, i.e., when RSUs cache all Ktotal files. In
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TABLE 5. Run time comparison.

contrast, it is seen that the DLEC strategy achieves Phit,DL
that is less than the LFU scheme but higher than the LRU
scheme at low Kcache, i.e., Kcache < 1400. Furthermore, it
is noted that the benchmark schemes exhibit a plateauing
cache hit rate at high Kcache, e.g., Kcache > 4200 for
the LFU and LRU schemes and Kcache > 3200 for the
DLEC strategy. Similar trends have also been observed
in [44, Fig. 3] and [26, Fig. 12], and this is due to the fact
that the benchmark schemes are limited by the distribution
of the underlying file popularity [44]. Specifically, the
LFU and LRU schemes cache contents by reacting to file
requests from CVs in the IoV network. For files which are
requested for the first time, a cache miss is still recorded
despite Kcache = Ktotal = 5000 since the requested file
has not been cached at the start. For the DLEC strategy,
contents are cached based on predicted content popularity.
As a result, the DLEC strategy may not cache files
which were not requested during dataset collection despite
Kcache = Ktotal = 5000.

A comparison of the run time for the MELDEC strat-
egy, ELDEC strategy, and benchmark schemes is provided
in Table 5.10 We define the run time as the total time taken
to run the ELDEC strategy and the benchmark schemes for
content popularity prediction over Mtest test samples. The
run times of the MELDEC strategy, ELDEC strategy, and
benchmark schemes are obtained using the same Intel Core
i7-1165G7 processor with multi-core processing disabled to
ensure that a single core is used during simulations.11 As
with [25], [50], the MELDEC, ELDEC, and DLEC run times
do not account for the training time as the training for both
strategies in this paper are conducted offline. From Table 5,
it is seen that the DLEC strategy exhibits a shorter run time
than the MELDEC, ELDEC, LFU, and LRU schemes. The
MELDEC strategy is also noted to have 50% shorter run
time than the ELDEC strategy. Furthermore, we observed
that the MELDEC and ELDEC strategies achieve a shorter

10. We omit the run time attained by the oracle algorithm, as it is
unrealisable in practice due to the assumption that content popularity is
known a priori.

11. Similar to [25], [50], the run time across the MELDEC strategy,
ELDEC strategy, and benchmark schemes is chosen as the main metric for
complexity analysis in this work. This is because evaluating the number
of floating point operations across all schemes may not lead to a fair
comparison, since both the LFU and LRU schemes are iterative in nature
when compared to the ELDEC and DLEC strategies. Furthermore, popular
deep learning libraries, e.g., TensorFlow, have also been optimized for deep
learning implementation [25].

FIGURE 6. The impact of Kcache on the outage probability of the proposed MELDEC
strategy, ELDEC strategy, and benchmark schemes.

run time as the LFU and LRU schemes. Although MELDEC
and ELDEC have longer run times than DLEC, Phit,EL and
Phit,MEL are considerably higher than the benchmark schemes
and is near-optimal when compared to the oracle algorithm.
In practice, the run time of the MELDEC and ELDEC strate-
gies can be reduced by utilizing parallel computing platforms
such as graphic processing units (GPUs) in IoV networks.12

B. OUTAGE PROBABILITY AND FINITE SNR ANALYSIS
The impact of Kcache on outage probability is shown in
Fig. 6 for the proposed MELDEC strategy, ELDEC strat-
egy, and benchmark schemes. When Kcache is small, e.g.,
Kcache < 200, the estimated cache hit rate Phit,u, u ∈
{EL,MEL,DL,LFU,LRU,Oracle} for the MELDEC strat-
egy, ELDEC strategy, and benchmark schemes is low due
to the limited availability of cache storage at RSUs. In turn,
the outage probability Puout becomes limited by the asso-
ciated cellular BS link of the CV. As Kcache increases, a
higher Phit,u ensues due to a greater availability of cache
storage at the RSUs. As a result, the outage probability Puout
improves and becomes increasingly influenced by the respec-
tive estimated cache hit rate Phit,u for the MELDEC strategy,
ELDEC strategy, and benchmark schemes. Specifically, this
can be observed at high Kcache where the outage probabil-
ity of the benchmark schemes plateaus, e.g., Kcache > 3000.
Such an observation is due to the fact that Phit,DL, Phit,LFU,
and Phit,LFU also begins to plateau when Kcache > 3000,
which can also be seen in Fig. 5. Likewise, a lower out-
age probability is attained when employing the proposed
MELDEC and ELDEC strategies due to higher Phit,EL and
Phit,MEL (as seen in Fig. 5). As such, Fig. 6 shows that the
choice of Kcache greatly influences Puout in the IoV network.

In Fig. 7, the impact of transmit power (Pt) on outage
probability and diversity gain is seen for low-to-high SNR
regimes. It is seen in Fig. 7(a) that PLFUout < PDLout < PLRUout ,
as Phit,LFU > Phit,DL > Phit,LRU for Kcache = 600 (Fig. 5).

12. It is worth noting that the authors in [25] have similarly proposed
using GPUs to reduce the run time of deep learning-based power control
in wireless networks.
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FIGURE 7. The impact of Pt on the outage probability and finite SNR diversity gain
of the proposed MELDEC strategy, ELDEC strategy, and benchmark schemes.

More importantly, it is observed that PELout and PMEL
out are

close to POracleout for 0 dBm ≤ Pt ≤ 30 dBm. Corollary 2
is also validated, as it is seen that Puout → Puout,∞ when
Pt → 30 dBm. In Fig. 7(b), it is observed that the diver-
sity gains (duf ) of the MELDEC strategy, ELDEC strategy,
and benchmark schemes peak at Pt = 3 dBm before grad-
ually decreasing as Pt increases. This can also be observed
in Fig. 7(a), where Puout decays rapidly at low Pt regimes
before the decay rate becomes negligible at high Pt regimes.
Furthermore, Corollary 4 is validated as it is seen that
duf → 0 when Pt → 30 dBm. Thus, Fig. 7 demonstrates that
the proposed MELDEC and ELDEC strategies are capable
of achieving near-optimal outage probability and finite SNR
diversity gain in the IoV network.
In Fig. 8, the impact of Pt on outage probability and

diversity gain under ideal CSI estimation is seen for low-
to-high SNR regimes. In particular, it is seen in Fig. 8(a)
that the MELDEC strategy, ELDEC strategy, and bench-
mark schemes achieve similar outage probability Puout,Ideal CSI
when 0 dBm ≤ Pt ≤ 30 dBm, with PLFUout,Ideal CSI <

PDLout,Ideal CSI < PLRUout,Ideal CSI. Furthermore, it is noted that
PELout,Ideal CSI and PMEL

out,Ideal CSI are close to POracleout,Ideal CSI. In
Fig. 8(b), it is seen that the MELDEC strategy, ELDEC
strategy, and the benchmark schemes attain similar duf ,Ideal CSI
when 0 dBm ≤ Pt ≤ 30 dBm. Such a trend is also noted

FIGURE 8. The impact of Pt on the outage probability and finite SNR diversity gain
of the proposed MELDEC strategy, ELDEC strategy, and benchmark schemes when
ideal CSI estimation is attained.

in Fig. 8(a) where the respective decay rate of Puout,Ideal CSI
for the MELDEC strategy, ELDEC strategy, and benchmark
schemes remain largely similar for 0 dBm ≤ Pt ≤ 30 dBm.
As Pt → 30 dBm, Corollary 5 is validated since it is
observed that duf ,Ideal CSI ≈ min(MRSUmj,MBSmi). Evidently,
Fig. 8 shows that the impact of the estimated cache hit rate
Phit,u on outage probability and diversity gain is greatly
diminished when ideal CSI estimation is attained.13 Instead,
we demonstrate through Corollary 5 that the number of cel-
lular BSs and RSUs, along with the severity of Nakagami-m
fading in the IoV network, largely determine the outage
probability and diversity gain at the CV under ideal CSI
estimation.

VI. CONCLUSION AND FUTURE RESEARCH
DIRECTIONS
An ELDEC strategy that incorporates ensemble learning and
an MELDEC strategy which combines meta and ensemble
learning is proposed in this paper for content popularity
prediction and cache content placement in IoV networks.
Specifically, closed-form outage probability and finite SNR
diversity gain expressions are derived for the performance

13. Such scenarios can occur in practice when CVs in an IoV network
are stationary at traffic junctions.
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characterization of the MELDEC strategy, ELDEC strategy,
and benchmark schemes. Through a comprehensive anal-
ysis, we show that the proposed MELDEC strategy and
ELDEC strategy achieve near-optimal cache hit rates, outage
probability, and finite SNR diversity gain when compared
to the benchmark schemes under imperfect CSI estima-
tion scenarios. It is also demonstrated that the finite SNR
diversity gain under ideal CSI estimation is independent
of the estimated cache hit rates of the MELDEC strategy,
ELDEC strategy, and benchmark schemes. Instead, we reveal
through finite SNR analysis that the finite SNR diversity gain
under ideal CSI estimation is dependent on the number of
cellular BSs and RSUs, and the severity of Nakagami-m
fading in the IoV network. The near-optimal performance
of the MELDEC and ELDEC strategies demonstrate both as
viable solutions for deep learning-based edge caching in IoV
networks.
Nevertheless, enhancing the content popularity prediction

accuracy, i.e., cache hit rate, of both MELDEC and ELDEC
strategies remains an open challenge. Specifically, the cache
hit rates of both the MELDEC and ELDEC strategies can be
potentially improved by considering other temporal factors,
e.g., CV mobility and content lifespan. Thus, a redesign of
the content demand table to properly consider temporal fac-
tors together with content access rates is proposed as part of
future directions of this study. Additionally, the performance
of content popularity prediction for both MELDEC and
ELDEC strategies can be improved by incorporating ele-
ments of distributed learning and cooperative-based vehicle-
to-vehicle communications. Hence, enhancing the MELDEC
and ELDEC strategies with distributed learning and coopera-
tive methods while mitigating the associated high overheads
and handovers is also proposed as part of future research
directions of this study.

APPENDIX A
PROOF OF (5)
We begin by first noting that an outage occurs in the IoV
network when the CV is unable to download the requested
file from the associated RSU and cellular BS. Hence, the
outage probability (Pout) is defined as:

Puout = Phit,uP

(

max
1≤j≤MRSU

(

γj
) ≤ γth

)

+ (

1 − Phit,u
)

P

(

max
1≤i≤MBS

(γi) ≤ γth

)

, (14)

where i and j are the indices of the associated cellular BS
and RSU, respectively. The first term in (14) occurs if the
requested file is available at RSU-j, while the second term
in (14) occurs if the file is only available at BS-i.
Since cellular links experience Nakagami-m fading, the

outage probability conditioned on di and dj can be written
as [27], [46]:

Puout|di,dj

= Phit,u

[

E

{

F|ĥj|2
(

γth
[

1 + |ej|2d−l
j

]

dlj

)
∣
∣
∣
∣
dj

}]MRSU

+ (

1 − Phit,u
)
[

E

{

F|ĥi|2
(

γth
[

1 + |ei|2d−l
i

]

dli

)
∣
∣
∣
∣
di

}]MBS

,

(15)

where F|ĥx|2(·), x ∈ {i, j} is the CDF of |ĥx|2.
Thereafter, we apply the techniques in [27, Lemma 1]

and [46, Th. 1] to express (15) as:

Puout|di,dj

= Phit,u

[ ∞
∑

p=0

mj+p
∑

q=0

αj(p)

(
mj + p

q

)
E

{

Zqj
}


j(p, q)
(

P̄td
−l
j

)(mj+p−q)

]MRSU

+ (

1 − Phit,u
)
[ ∞

∑

p=0

mi+p∑

q=0

αi(p)

(
mi + p

q

)
E

{

Zqi
}


i(p, q)
(

P̄td
−l
i

)(mi+p−q)

]MBS

.

(16)

Finally, averaging Pout over the PDFs of di and dj
yields (5). This completes the proof.

APPENDIX B
PROOF OF CONVERGENCE FOR (5)
We begin the proof by letting yx(p, q) =
αx(p)

(mx+p
q

)

E{Zqx }	x(p, q)
x(p, q)P̄t
q−(mx+p), where

x ∈ {i, j}. Then, (5) can be rewritten as:

Puout = Phit,u

[ ∞
∑

p=0

mj+p
∑

q=0

yj(p, q)

]MRSU

+ (

1 − Phit,u
)
[ ∞

∑

p=0

mi+p∑

q=0

yi(p, q)

]MBS

, (17)

To prove the convergence of (5), we need to show that
the power series expressions in (17) are convergent. Invoking
the D’Alembert test, limp→∞ |yx(p+1,q)|

|yx(p,q)| is evaluated as:

lim
p→∞

|yx(p+ 1, q)|
|yx(p, q)|

= lim
p→∞

(mx+p+1
q

)

p!(mx + p)mxγth
(mx+p

q

)

(p+ 1)!(mx + p+ 1)ε2P̄t

× (l(mx + p− q) + 2)rla
l(mx + p+ 1 − q) + 2

(a)= lim
p→∞

mxγthrla
[

l(mx + p− q) + 2
]

(mx + p)

ε2P̄t
[

l(mx + p+ 1 − q) + 2
]

(mx + p+ 1)p

= lim
p→∞

mxγthrla
ε2P̄t

[

1 − 1

mx + p− q+ 2
l + 1

]

×
[

1 − 1

mx + p+ 1

](
1

p

)

= 0, (18)

where (a) is obtained using [38, eq. (6.1.15)] and the
asymptotic identity �[m+ n] ≈ mn�[m] in [46, eq. (25)].
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Thus, using (18), (5) has a convergence radius of ∞.
Therefore, (5) is shown to be convergent. This completes
the proof.

APPENDIX C
PROOF OF (5)
We begin by noting that when evaluating
limP̄t→∞ duf ,Ideal CSI, only p = 0 needs to be considered

since limP̄t→∞ P̄t
−(mx+p+n) = 0 when x ∈ {i, j} and n ≥ 0.

Therefore, limP̄t→∞ duf ,Ideal CSI can be approximated as:

lim
P̄t→∞

duf ,Ideal CSI

≈ lim
P̄t→∞

(

Phit,uMRSUmj

[

αj(0)	j(0, 0)P̄t
−mj

]MRSU

+ (

1 − Phit,u
)

MBSmi

[

αi(0)	i(0, 0)P̄t
−mi

]MBS)

/(

Phit,u

[

αj(0)	j(0, 0)P̄t
−mj

]MRSU

+ (

1 − Phit,u
)
[

αi(0)	i(0, 0)P̄t
−mi

]MBS)

= MRSUmj

1 + (1−Phit,u)
[

αi(0)	i(0,0)
]MBS

Phit,u
[

αj(0)	j(0,0)
]MRSU

limP̄t→∞ P̄t
MRSUmj−MBSmi

+ MBSmi

1 + Phit,u
[

αj(0)	j(0,0)
]MRSU

(1−Phit,u)
[

αi(0)	i(0,0)
]MBS

limP̄t→∞ P̄t
MBSmi−MRSUmj

(19)

Thereafter, evaluating the limits in (19) for MRSUmj <

MBSmi and MRSUmj > MBSmi yields (13). This completes
the proof.
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