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ABSTRACT In 5G-and-beyond networks, the concept of Network Slicing is used to support multiple
independent and co-existing logical networks on a physical network infrastructure. The infrastructure
provider (InP) owns the set of virtual and physical resources that are used to support the tenant slice
requests. Each slice request specifies a service level agreement (SLA) that contains the required slice-
level resources (computation and communication) and the revenue provided by the tenant. Due to limited
resources, the InP cannot accommodate all requests made by the tenants. In general, it has been found that
tenants tend to overestimate their resource demands (e.g., for 5G Core computation) to reduce possible
SLA violations. In this paper, we consider two major slice types: Elastic (low priority and low revenue)
and Inelastic (high priority and high revenue). We apply the concept of overbooking, where the InP accepts
more slices while considering slice priorities in order to maximize the overall revenue and utilization.
We consider a multi-tenant environment and propose a slice admission system named PRLOV, which is
based on Reinforcement Learning (RL) and prediction methods. The system predicts the future resource
demands of Elastic slices and applies an opportunistic overbooking technique to overbook InP for accepting
more slices. In addition, the admission decision is formulated as an Markov Decision Process (MDP)
problem and solved using standard RL techniques (Policy Iteration, Q-Learning, DQN). The performance
of our proposed work is compared against three other heuristics (Basic, Prediction, PRL) that do not use
overbooking. Data traces from the Materna data center networks were used for prediction purposes. The
important performance metrics measures include InP total revenue, the acceptance rate of respective slices
and overall resource utilization for different slices. The results show that the proposed work significantly
outperforms the other mechanisms in terms of revenue gain and resource utilization. Simulation results
show that PRLOV provides a revenue gain of 6%, 26%, and 102% compared to the PRL, Prediction
and Basic scheme.

INDEX TERMS 5G networks, network slicing, infrastructure provider, overbooking, reinforcement
learning, prediction, slice priority.

. INTRODUCTION

ETWORK Slicing (NS) is an important aspect of

5G networks [1], [2], where a shared physical
network is divided into multiple virtual networks having
tailored capabilities. In 5G networks, the network infras-
tructure provider shares its underlying resources for specific
use cases standardized by 3GPP and ITU-R [3], such
as enhanced Mobile Broadband communication (eMBB),
Ultra-reliable low-latency communication (URLLC) and
machine-to-machine type communication (MMTC) [4].

The concepts of Software Defined Networking (SDN) [5]
and Network Function Virtualization (NFV) [6] enable the
implementation of network slicing. NFV enables a slice to
perform its functionality by emulating hardware with vir-
tual machines, whereas SDN manages the network traffic
using concepts such as control and data-plane separation.
The functionality of a network slice is realized using a group
of Network Functions (NFs) that run on virtual machines as
Virtualized Network Functions (VNFs) [7]. Slice resources
can be generalized into two types: link and node resources.
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Link resources relate to bandwidth, link buffers, etc. whereas
node resources consist of main memory and computing
(CPU/GPU cores).

In this paper, we focus on node NFs for a slice, assum-
ing that enough link capacity is provided unless there is a
topology change or any fault, which occurs rarely. We con-
sider two network entities: Tenant and Infrastructure Provider
(InP). Tenants are the users of a slice, while the InP pro-
vides slice-as-a-service (SlaaS) to the tenants to manage the
required service resources. The overall resource requirements
for the NFs of a slice are determined by the tenant and the
corresponding physical resources are requested from the InP.

Slices are categorized into different slice types, based on
the type of resources and services that a slice needs to sup-
port. Slice types can be defined based on two scenarios: Use
cases or verticals (eMBB, mMTC, URLLC) and Elasticity
of resource requirements. In this paper, we consider slice
types based on their Elastic nature. In Inter-slice admis-
sion, a tenant requests an independent slice from the InP.
The InP can accept a slice only when it can allocate the
desired resources, maintaining the Service Level Agreement
(SLA) and Quality of Service (QoS) [8]. A 5G network will
have a limited amount of InP resources resulting in some of
the tenants’ demands being not satisfied at a given instant
of time. Due to resource limitations and multiple tenants
requesting the same type of resources, InP cannot accept all
the slices and a brokering scheme needs to be applied. The
problem of deciding whether a slice should be accepted or
not is termed as slice admission control. The request may be
accepted or rejected immediately, or the tenant may choose
to wait till resources are available. In this paper, we consider
the case where a slice is rejected if adequate resources are
not available when the request is made.

One of the main goals of the InP is to earn maximum
revenue, while admitting as many tenants (slices) as pos-
sible without violating SLA constraints. This goal can be
achieved by: (1) admitting more slices, by utilizing resources
efficiently, and (2) giving preference to higher priority slices
while admitting. The two approaches are contrary to each
other since one wants to admit more and more slices which
can lead to SLA violations (SLAV) due to resource defi-
ciency. In comparison, admitting higher priority slices will
require guaranteed QoS, which means reserving the entire
requested demand throughout their lifetime.

In this work, we have proposed an approach that consid-
ers the two conflicting goals and present a balanced way
of maintaining resource utilization. It has been observed
from past trends that tenants tend to over-estimate resources
demand in order to reduce SLA violations for the slice’s
end-users [9]. Hence, some resources will remain idle. This
situation can be improved by an admission technique that
admits more slices to use these idle resources. InP, on the
other hand, has to provide service quality to make a profit.

We use the concept of overbooking given that it does
not use all resources and at the same time gives higher
priority to slices that pay higher revenue on admission.

30

Overbooking [10] refers to accepting more requests when
requested demand exceeds the available system capacity.
Overbooking is frequently practiced in airlines and hostel
bookings to increase their profit, assuming cancellations and
no-shows. Here, overbooking is considered since tenants tend
to request more resources, during admission request, than the
actual usage. Hence, we overbook the InP to accept more
slices than the capacity permits [9].

Slices are classified into two categories: Inelastic slices,
also known as higher priority slices; and Elastic, also known
as best effort slices. Inelastic slices are very stringent in their
resources requirements but offer higher revenues. Any SLA
violation in Inelastic slices will lead to the InP paying a
high penalty. Elastic slices, on the other hand, have flexible
SLA requirements but offer lower revenues.

We propose a method called Prediction and RL based
Overbooking (PRLOV) that tries to balance the twin goals
of InP, increased resource utilization and providing better
services. We present a Slice Admission architecture where,
a Slice Forecasting block (SRF) predicts the future resource
(CPU, Memory, Bandwidth) usage of currently active Elastic
slices for the next time window using the Long Short-Term
Memory (LSTM) approach [11]. This predicted information
is used by an opportunistic overbooking heuristic, where
the system allocates the required resources to each slice.
Thereafter, we admit the new slices using an intelligent
policy on the basis of available resources.

This work is the extension of our previous work [12]
which solves admission using a simple overbooking method
and Q learning. In this paper, the state entity is modified to
a reduced form. Also, the admission technique is improved
by using Deep Reinforcement Learning (DRL) [13] over
Q-Learning [14] for reducing state space and time complex-
ity. The admission block is generalized, and a benchmark
algorithm (policy iteration), which is a dynamic approach,
is also formulated to compare the performance of the DRL
scheme. An efficient and rigorous overbooking method is
also proposed rather than a simple method, which uses
RL as feedback to adjust the overbooking amount through
exploration and exploitation techniques.

The proposed PRLOV method is evaluated on the Materna
data centre traces which is used to generate the slice
resource data [15]. It consists of three months data for vir-
tual machines (VMs) that consists of different performance
metrics. The performance of our proposed work is compared
against three other heuristics (Basic, Prediction, PRL) that
do not use overbooking. The results show that the proposed
work significantly outperforms the other three mechanisms
in terms of revenue gain and resource utilization. PRLOV
show about 102%, 26%, 6% revenue gains against the other
three algorithms respectively.

The main contributions of this paper are: (i) use of
Long Short-Term Memory (LSTM) [11] based forecasting
with the application of opportunistic overbooking to allocate
resources at InP efficiently; (ii) consideration of an online
setting based on a reinforcement learning [16] model to
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FIGURE 1. Network Slicing in 5G networks.

dynamically accept or reject slices; and (iii) training of slice
usage based on the Materna data center traces [15] and a
detailed performance study based on this training.

With respect to existing work, the main novelty is the use
of overbooking concept coupled with LSTM and RL. The
overbooking concept uses the RL feedback mechanism and
converges automatically to the best overbooking factor, with
the help of predicted information from LSTM based slice
resource forecasting. The design of RL policy to accept or
reject slices in the framed system is novel. Most of them
have not considered a real dataset; and none of them are
considering the actual resources requirements and wasting
a lot of resources. A detailed comparison is presented in
Section II.

The remainder of the paper is organized as follows.
Section II presents a literature review. Section III presents the
system model and gives a detailed view of system architec-
ture used in designing the model. Section IV details how the
problem is formulated for the RL agent to optimize the slice
admission decision. Section V presents the performance eval-
uation results for different scenarios. Section VI summarizes
the paper.

Il. BACKGROUND AND RELATED WORK
This section presents the relevant background material and
related work.

The system architecture of a 5G network is composed
of three major components: Access Network, Transport
Network, and Core [17]. A network slice is defined as
a logical end-to-end network that utilizes resources from
the underlying network for a specific application vertical
or a client. Fig. 1 depicts the concept of network slicing,
where each slice spans these network components; this is
known as end-to-end network slicing [18]. In this paper, we
consider crucial 5G Core domain resources, i.e., Compute,
Memory and Bandwidth; however, the work can be extended
to include access and transport network resources.
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The system consists of two network entities: Infrastructure
Provider (InP) and Tenants. InP provides relevant services,
and tenants are the consumer of services. When a tenant
requests its slice to the InP, the Communication Service
Management Function (CSMF) translates communication-
related resources into slice requirements. The Network
Slice Management Function (NSMF) uses the information
to create a slice blueprint called a network slice tem-
plate (NST). The NFV resource requirement for NST
is mapped to a network slice descriptor (NSD) avail-
able in the InP slice catalog, managed by the NFV
Management and Network Orchestration (MANO) entity.
When a slice blueprint is created, we install the admission
control module to determine if the requested slice should be
accepted.

The InP has to decide whether to admit each slice or not,
based on the available and requested resources, priorities
among slices and revenue generated. One of the chief objec-
tives of slicing admission control is to maximize the InP’s
profit, while ensuring efficient resource utilization, fairness
among slice types and other factors.

Machine Learning techniques have been applied for vari-
ous networking problems in recent years [30]. In particular,
several works in Network Slicing have considered the appli-
cation of Machine Learning (ML) techniques [31] to address
the slice admission problem. Multiple deep learning solu-
tions have been applied for predicting the resource demand
of slices, and based on the remaining resources; a slice
admission decision is taken. The work in [23] presents an
admission scheme for slices using predictions using big data
analytics for resource requirements of existing slices. The
admission is performed based on whether the requested slice
and existing slices could be scaled up or not. The objective
is to increase InP profit by minimizing losses incurred when
the accepted slices can not be scaled when required. In [21],
an RL-based 5G network slice broker (RL-NSB), built on
predictions using Holt-Winters [32] theory, is presented. The
slices are accepted and scheduled on resource availability in
First-Come-First-Serve (FCFS) order. The number of SLAVs
for each slice is fed back to the forecasting engine using RL,
and parameters of the prediction algorithm are updated on
frequent violations.

The work in [25] uses probabilistic forecasting based
DeepAR to predict slice resources from a real dataset and
admits slices based on resource availability. In [20], two
slice classes, namely Best Effort and Guaranteed Service are
considered. It uses a genetic algorithm for accepting slices
intelligently and shows that it is better than Q-Learning. The
drawback of genetic algorithms is that they rely on the quan-
tized fitness values [33] of different overall strategies instead
of the reward value of every single action. The authors of [22]
present a Deep RL-based admission policy that uses neural
networks in the context of 5G radio access networks (RAN).
The objective is to minimize the losses from rejected slices
and degraded services. The proposed algorithm performs
greedily such that it learns to selectively reject the slices
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TABLE 1. Summary of related works on slice admission control in 5G networks.

Paper Domain(s) Dataset Priority | Approach(es) Objective(s) Admission Policy
Bega et al. 2017 | RAN Synthetic Y RL Revenue maximization, QoS | Optimal
[19] control
Han et al. 2018 [20] | End-to-End Synthetic Y Genetic Resource utilization Greedy
Algorithm
Salvat et al. 2020 | End-to-End Synthetic N Heuristic Loss minimization, Resource | Overbooking
[9] utilization
Sciancalepore et al. | — Synthetic Y Prediction, Resource Utilization, Mini- User spatial distribu-
2019 [21] Heuristic, RL mizing SLA violation tion
Raza et al. 2019 | RAN Synthetic Y DRL Revenue maximization Greedy
[22]
Raza et al. 2019 | RAN, Core Synthetic N Prediction Revenue maximization FCFES
[23]
Bega et al. 2020 | RAN Synthetic Y DRL Revenue maximization, QoS | Optimal
[24] control
Jiang et al. 2022 | - Real Y Prediction Revenue maximization, Re- | FCFS
[25] source utilization
Sulaiman et al. 2022 | RAN Synthetic Y DRL Revenue maximization, Slic- | Multi agent
[26] ing
Haque et al. 2022 | — Synthetic Y DRL Revenue maximization Optimal
[27]
Wu, Zhouxiang et | — Synthetic Y RL Revenue maximization Offline
al. 2021 [28]
Villo et al. 2022 | Core Synthetic N DRL Revenue maximization, Re- | Optimal
[29] source utilization
Our work Core Real Y Prediction, Revenue maximization, Re- | Optimal, RL Over-
Heuristic, DRL source utilization, QoS control | booking

that generate low revenues (i.e., Low Priority) in favor of
those that generate higher revenues (i.e., High Priority).

In [19], the authors derive an analytical model of slices
traffic requests from tenants to InP considering only the spec-
trum resource. It provides a relationship between slices that
can be accepted inside the admissibility region. In this work,
the admission problem is modeled as a Markov Decision
Problem (MDP), where an optimal policy is derived using
Q-Learning in RL for the admission of Inelastic and Elastic
slices. The work in [24] extends that of [19] by using the
DRL technique over Q-Learning to reduce high state-space
complexity and early convergence.

The work in [26] solves the joint admission and network
slicing problem using DRL for multi-RL agents. The work
in [29] considers use Core VNF resources and consider
different slices types using a DRL approach. It does not
consider slice priorities. The scheme in [28] uses a recur-
rent neural network (RNN) as encoder and RL to train the
model for slice admission decision, in an offline manner.
The work in [27] also addresses slice admission using the
DRL approach. All these works have a common objective
to increase InP revenue.

Apart from using ML and RL techniques, the work
presented in [9] proposes a probabilistic model for yield-
driven end-to-end slice orchestration and applies slice over-
booking. In this work, a controller decides on the admission
control and resource reservation (AC-RR) using monitoring
and forecasting information. The AC-RR problem is for-
mulated as an optimization problem to minimize the penalty
caused due to SLAV, which is solved using an offline method.
The profit gained from different slices is not taken care of
in this work, and the slices are served on an FCFS basis.
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Table 1 presents a summary of the existing approaches and
our proposed work. The drawbacks of the these approaches
are that some consider effective resource utilization with
QoS control, and some consider intelligent admission for
revenue management, but none consider both. Also, none
of the mentioned works use real data except [25]. However,
it uses hard coding to admit slices concerning slice pri-
orities and only focus on prediction techniques. Our work
focuses on effective resource utilization while maintaining
the QoS and increasing revenue using real-time ML tech-
niques. The proposed work predicts the future resources
demand of existing Elastic slices based on history using
Recurrent Neural Networks (RNN) [34]. We consider over-
estimation of resources, particularly in the core domain, and
apply overbooking InP to reduce it. Further, we consider
online slice request arrivals that are dynamically admit-
ted based on the availability of resources using prediction
information and overbooking factor.

lll. SLICE ADMISSION FRAMEWORK
This section presents the proposed admission control frame-
work and related definitions.

A. SLICE MODEL

The slice’s Service Level Agreement (SLA) defines the
service class of slice as Inelastic (I) type or Elastic (E).
Inelastic slices have strict service quality requirements and
offer higher bids for using its slice. The Elastic slices are
flexible. We consider a set of service classes, [ € {I, E},
where every slice class is represented as <A, i, p, v, p>.
Here, A is the arrival rate of slices belonging to class [
based on an arrival process, u is the slice duration mean, p
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FIGURE 2. Slice admission control framework.

is the bid value, v is the penalty given on any SLA violation
depending on service class, and ¢ is the specific slack value
which is degradation tolerance level of any slice. We define
¢ = 0 for [ = I since Inelastic slices cannot suffer from any
service degradation, whereas ¢ ranges from 0.2 to 0.3 for
elastic slices.

In the admission control block, we represent the incoming
slice request u as <N,, d, p, g, [>, where N, denotes resource
demand for r type of resources, d is slice holding duration,
p is per-unit cost (bid value) of using a unit InP resource, g
is the slack value and [ is the service class of slice u. Here,
r denotes different types of physical resources required such
as CPU, Memory and Bandwidth. The p and g values of a
slice u are dependent on its slice class /, with p, = p; and
gu = ¢y. Also, it is assumed that p; > pg.

Three 5G Core resource types are considered:
Computation as the number of CPU Cores, Storage as
Memory (GB), and Network as Bandwidth (Mbps). The InP
has a fixed capacity of available resources. At every point in
time, the system constraints listed in Eq. (1) must be satis-
fied, such that the summation of all the allocated resources
to existing slices is less than or equal to the overall system
resources.

n n n
da<Cy m <MYy b <B ()
k=1 k=1 k=1

Here, C, M, B are the maximum available system capac-
ities of resources in CPU cores, memory, and bandwidth,
respectively; ck, mg, by are the allocated core, Memory, and
bandwidth resources to an existing slice k.

B. PREDICTION-RL-OVERBOOKING (PRLOV)

Fig. 2 presents Prediction-RL-Overbooking (PRLOV), the
proposed Admission Control (AC) based 5G system architec-
ture. It includes an LSTM-based prediction framework (SRF)
to predict the following resource requirements of active E
slices in each network window (NW). With the help of
prediction, we apply opportunistic overbooking (OO) at InP
to improve resource utilization by creating space for more
slices acceptance. In addition, an adaptive decision algo-
rithm (AD) is designed to decide the acceptance or rejection
of an incoming slice. According to the overall framework,
opportunistic overbooking is applied to each NW in accor-
dance with the prediction results and historical data. The net
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available resource information is then fed to an intelligent
decision algorithm for future slices admission decisions.

The Admission Decision block, shown in Fig. 3, is respon-
sible for deciding whether to accept or reject any incoming
slice. A learning-based policy drives the decision making
process. Considering the two slice classes, it becomes cru-
cial to admit slices considering different factors that define
a class rather than just random or an FCFS accept. Different
slice classes have different priorities and offer different bid
values to InP. The slice classes can be generalized such that
higher priority slices pay a higher profit. To increase InP
profit, it needs to make the best decision for itself. Once
a decision is taken to accept the slice, it is created and
allocated resources. Once a slice is rejected, there are two
possibilities; either the tenant has to wait, which can lead to
balking; or it is discarded, and the tenant must request a new
slice again. We opt for the second option in this paper. We
propose a decision policy aiming to maximize InP’s overall
profit, as described in Section IV.

C. SLICE RESOURCE FORECASTING (SRF)
The Slice Resource Forecasting (SRF) component is used
to predict the future resource demand of CPU, Memory,
and Bandwidth for all active slices at InP. Since none of
the predictions are perfect, if we allocate resources based on
forecasting results in [ class slices, any under-prediction will
cost a very high penalty on InP. Hence, we apply predictions
only for accepted slices that belong to E type service class.
The system maintains a list of currently active slices. At the
start of every new window NW,, 1, the maximum resource
demand of all active slices is predicted for the current win-
dow. Since our focus is not on designing a new prediction
algorithm, we use existing deep neural networks techniques
for prediction.

Due to high uncertainty in 5G data, we use the Long
Short-Term Memory (LSTM) technique for prediction [11].
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An LSTM neural network is designed such that it con-
sists of an input, an output layer, and a single hidden
layer. As a thumb rule, only one hidden layer is enough
to train a neural network for simple predictions. We con-
struct three separate neural networks for each CPU, Memory,
and Bandwidth prediction. We use n-step prediction where
a single RNN takes as input the past 7 observations
and outputs the next n steps resource demand for each
slice. In time series prediction, if a slice resource usage
is given as {r(n)|t = 1,2,...,T}, the n'h prediction on
resource usage for time f+4n is a function f such that
qr(t+n) =f(r@),r(t—1),...,r(1)). Here, f is a mapping
from the past resource demands to the predicted resource
usage g for n time steps ahead; n is defined as the Network
Window (NW) in this paper.
This is represented by:

InputLayer : ci(t), cx(t — 1), ..., cr(2), ck(1)
OutputLayer : gi(t 4+ 1), gr(t +2), ..., gt + n)

Here, ci(1) denotes the actual CPU usage of past T time
from  and g (t+ n) denotes the predicted CPU usage of n'"
step ahead of time ¢.

A similar model is used for Memory (m) and Bandwidth
(b) predictions. The LSTM weights are updated such that the
algorithm learns the neuron’s weights by running the back-
propagation through time [35]. Fig. 3 shows the weights
update process for traffic flow forecasts using an online train-
ing window. Here, the oldest features are discarded, and only
the most recent observations are retained. The observation
window here is the Input layer for LSTM. Using trial and
error method, the number of hidden neurons is chosen to
be 8 while using the Mean Squared Error (MSE) [36] loss
function.

When a slice k is accepted, the maximum resource demand
(Nyx) is allocated since there is not enough data for train-
ing. The agent retrains its slice model to forecast better
when enough new data become available or if the model
consistently under-predicts. Slices that the agent accepts are
dropped when they depart. In the next block, overbooking is
managed based on the predicted information. This process
is repeated for each start of NW.

D. OPPORTUNISTIC OVERBOOKING (0O)

The need for overbooking arises since prediction may
not be perfect for all slices. This may result in under-
predictions, accurate prediction, or over-prediction of the
resource demand. Resources are allocated to each slice based
on prediction results, so in case of under-prediction, we have
no choice but to penalize the InP. In case of over-prediction,
we have an opportunity to overbook the InP to accept more
slices. The system goal is to maximize the InP profit through
overbooking with minimal or no Service Level Agreement
Violation (SLAV). When there are not enough resources for
new slices to be accepted, the system attempts to overbook
slices. One of the main challenges with overbooking is find-
ing the exact amount of each type of resource that needs to

34

TABLE 2. Symbols and notations.

Notations | Meaning
I, E Inelastic, Elastic
l Slice class
A Poisson arrival rate of a slice class
“w Exponential mean duration of a slice class
p Bid value of slice class
v Service degradation penalty of a slice class
¢ Degradation tolerance level of a slice class (in %)
Ny ok Demand for resource r by a slice k
d Holding duration of a slice
p Price (bid) per unit time to use a resource of InP
g Slack value of a slice
C,M,B Total CPU Cores, Memory, Bandwidth of InP
c,m,b CPU Cores, Memory, Bandwidth usage of a slice
RC. Total resource capacity of InP of resource r
NC, Net Capacity of InP resources of resource r
ALy, AV, | Total Allocated & Available resources of InP
10;, FO, | Initial & Final overbooking factor
PU, Predicted resource usage of all Elastic slices
T Overbooking regulating factor
¢ Overbooking increment value
8 Overbooking future assurance factor
Ly, Lpy Likelihood of SLAV and No SLAV
TR Total Final Revenue
s, S State & State Space
a, A Action & Action Space
R Reward Function
e Event
P Transition Probability
A Set of Active Slices
\% Value Function
v, o RL Agent Discount Factor & Learning Rate
PYria RL Agent Penalty due to slice rejection
PYinp InP penalty due to SLA violations

be overbooked. We rely on an RL feedback mechanism to
manage the overbooking.

During execution, the InP at any time ¢ has slices that
may belong to either the Inelastic or Elastic category. At the
start of every network window, we calculate the amount of
each resource allocated to all Inelastic slices and obtain the
net available capacity for each resource r from the following
Eq. (2).

NC, = RC, — ZAL, )
kel

After finding the resources allocated to Inelastic slices, the
predicted usage of resource r for all the Elastic slices (PU,)
is calculated. An initial overbooking factor /O at time ¢ for
resource r is introduced using Eq. (3).

10,(t) = NG )
T PUL
FO,(t) = Y, % 10,(t) 4)

The final overbooking factor FO, is approximated by reg-
ulating the value of Y,. The initial value of Y is set to 1.
The value of FO, is converged to an optimum value by
exploring the state space defined using RL. The state space
consists of a vector that keeps information on the Net capac-
ity, (PU,) and FO,. Each vector in the state space is mapped
to two values that denote the likelihood of SLAV (L,) and
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no SLAV (L), respectively. The two values are filled using
the exploration of state space.

When any SLAV is encountered for a corresponding state,
L, is updated with a penalty of —1; and L,,, is updated by giving
a reward of +1. The values are updated using Eq. (5)-(6).

L,=L,—1+BL"™ (5)
an = an +1+ ,BL%M (6)

Here, § is a measure of assurance based on the next
state. In case of SLAV, L™ is a maximum value of the
next state with a lower FO by value ¢, whereas L™ is a
maximum value of the state with a higher FO. A greedy
approach is used here, such that if an upper value of FO
does not result in a SLA violation, then a lower value will
also not reveal it and vice versa. A higher magnitude of
L, than L,, denotes a higher chance of SLAV occurrence.
Initially, both variables are set to 0. For any state, if the
magnitude of L, is more than L,,, the FO, is calculated by
decreasing Y by ¢; else Y is increased by value ¢ and a
new FO, is derived using Eq. (4). The traversal process is
repeated, keeping the rest of the entities of the vector same
and only changing FO, until we reach a state where the
magnitude of L, < L,,. The value of ¢ is kept small so that
the overbooking factor is gradually increased or decreased for
a better convergence value to minimize service degradation
due to excess overbooking. The above process is repeated
for every resource r.

When FO, (r € (c,m,b)) converges to the optimum
value, the available amount of resources (AV) of each type
is calculated for admitting new slices using Eq. (7):

AV, = NC,.FO, — PU, @)

E. ADMISSION DECISION (AD)
This block is responsible for deciding whether to accept or
reject any incoming slice. The major challenge is that, InP
is unaware of the arrivals of future slices. When Inelastic
slices arrive, InP should have space to admit. The InP must
be aware of the arrivals of Inelastic slices to make better
reject some Elastic slices, which makes the problem NP hard
to solve. This is solved by interacting with the environment
through RL. An artificial intelligent policy drives this deci-
sion by learning the environment. Different slice classes have
different priorities and offer different bid values to InP. The
slice classes can be generalized such that higher priority
slices pay a higher profit. Once a decision is taken to accept
the slice, it is created and allocated resources. Once a slice
is rejected, there are two possibilities; either the tenant has
to wait, which can lead to balking, or it is discarded, and
the tenant must request a new slice again. We opt for the
second option in this paper. We propose a decision policy
aiming to maximize InP’s overall profit. Section IV focuses
on designing an effective approach for slice admission.
The objective of admission policy is to maximize the
accumulated revenue of InP (7 R;), which is a function
of revenue obtained from accepted slices and penalty from
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SLAYV, until time ¢. This is similar to the objective defined
in [23]. This is defined as follows.

TRi=) (k=) @®)
k

Here, py is the profit and v is the penalty accrued to
SLA violations, of all admitted slices from system start till
time ¢. The value of v depends on p and a slice degradation
level ¢ (0 < ¢ < 1)and given as v = 3p¢.

Eq. (8) presents the net revenue obtained by InP at any
point of time ¢. This is the amount of total revenue obtained
from all active slices and the penalty from SLA violations
faced by the slices (v). The RL admission control agent,
that takes the decision to accept or reject a slice, imposes a
penalty of PY,, for rejecting any Inelastic slice considered
during the internal training of the RL agent. It has no relation
with the InP net profit or net revenue.

The overall procedure is explained in Algorithm 1, where
the input is the set of slice requests (U) at time #, and
the output is the revenue 7 R;. The algorithm predicts the
demand of currently active E slices at every (NW). The
net available resources are then calculated after performing
the overbooking mechanism. Now, at each time ¢ in NW,
the slice admission decision is taken by AD. Based on the
admission decisions, the total reward and penalties (P) from
slice SLAV is added to obtain net revenue at InP. Meanwhile,
any departing slice’s resources are also freed.

IV. RL-BASED PROBLEM FORMULATION

This section presents the reinforcement learning (RL)-based
formulation of the slice admission decision problem and
the different approaches considered, including the proposed
DRL-based approach.

A. MARKOV DECISION PROCESS (MDP)

A typical RL consists of an agent that learns and decides on
interaction with an environment. The environment sets up the
basis of the decision and can not be changed. Whenever an
agent takes action, it reaches a state and provides a reward.
In RL, the agent’s decision at any state is not pre-trained
but learns the best action through learning. The Slice admis-
sion decision problem can also be solved using RL since
the InP does not know which slices will be requested in the
future, and the best decision can be learned using the RL
technique. Such problems are often mathematically mod-
eled using Markov Decision Process (MDP) [37] in RL.
It represents system behavior as a sequence of states with
the Markovian Property. An MDP is a five-sized tuple that
defines the environment. It consists of States (s € §), Actions
(a € A), Reward (R(s, a)), Transition Function (7'(s, @)) and
a Discount Factor y. The state-space, action, and reward
functions considered in our work are defined as follows:

1) State Space (S): A state s in state-space S con-
sists of a four sized tuple consisting of all Available
resource (AV,) from Eq. (7), and event (e). The
event e € {l,, —I,} represent either the arrivals of
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TABLE 3. State transition probabilities.

current state (s) | action (a) | Next Event (e) Next state (s') Probability P(s,a,s’) | Reward R(s,a)
<c,m,b,ly > 0/1 arrival of <e,myb, I >/ <c—cy,m—my,b—by, I > % 0/(pu * du)
< c,m,b,ly > 0/1 arrival of E/ <e,m,b,E >/ <c—cy,m—my,b—by, E> TE 0/(pu * du)
<c,m,b,ly > 0/1 departure of [ <c,m,b,—I >/ <c—cy,m—my,b—by,—1 > L 0/(puy * du)
< c,m,b,ly > 0/1 departure of £ | < c¢,m,b,—E >/ <c—cuy,m— my,b—by,—E > FE 0/(pu * du)
< c,m,b,—ly, > 2 arrival of I <+ cuym+ mu, b+ by, I > AL 0
<c,m,b,—ly > 2 arrival of < c+cu,m+ my,b+by, E > o 0

< c,m,b,—ly, > 2 departure of I < c+ cuym + My, b+ by, —1 > % 0

< c,m,b, —ly > 2 departure of E <c+cyym+my,b+by,—FE > ”TE 0

a slice class [, € {I,E} or departure of a slice
—I, € {—1, —E} belonging to either Inelastic or Elastic
class. It is represented as <AV,, AV,,, AV}, e>, where
u is the requested or departed slice and ¢, m, b € (core,
Memory, Bandwidth) respectively.

2) Action Space (A): A represents a set of all possible
actions A € {0, 1, 2} based on events e, where a € A
represents a single action. Actions a = 0 and a = 1
indicate the decision to reject and accept any incoming
slice respectively and a = 2 means do nothing. The
action a = 2 is triggered upon departure of a slice, in
which case the agent does nothing and is not rewarded.

3) Reward Function (R): The reward defines the good-
ness of taking action a at state s. The agent receives
a bonus based on the actions it takes. The possible
events are the arrival and departure of a slice. When a
new slice u arrives, the agent either rejects or accepts
it. On departure, no action is taken, and no reward is
generated. Based on the events, the reward function
R(s, a) is given as below:

dupu; a=1
0; else

R(s,a) = { ©)
Whenever an agent accepts a new slice u, a reward
equal to the product of the slice holding duration (d,)
and the price per unit time (p,) is given to it. A zero
reward is given to the agent in case of rejection and
departure of any existing slice.

The transition between states from s to s" is taken depend-
ing on the transition probabilities P(s, a, s). It is defined as
the probability of moving from state s to a new state s
on taking action a. The average time for being on state s
is given in Eq. (10) which is a function of arrivals rates
and departures, and A is a set of active or existing slices
at InP. If a slice k with current resources allocation as
(ck, mg, by) departs at InP or is requested from InP, then
the state transition probabilities for possible events and their
corresponding next states are listed in Table 3. We can deter-
mine the transition probability at a state by dividing the
favourable outcome by the total number of possible outcomes
using Eq. (10).

(A, 1) = A+ Ag + Z wi+ Z ME
keA,l keAE

(10)
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Algorithm 1: PRLOV Slice Admission Algorithm

Input: slice request set U: < N,,d,p, g, [ >
Output: TR[?]

1 TR <~ TRI[t—1]
2 for each NetworkWindow(NW) do
3 for slice k € Active slices do
4 if k.1 == E then
5 | SliceForecastingAgent(k) // SRF
6 OpportunisticOverbooking() // 00
7 for each time t in NW do
8 Pyinp <0
9 for slice k € Active slices do
10 L TR < TR + pk
11 for each slice u € U // this is
another comment
12 do
13 admitstatus = AdmissionDecision(u)
// AD
14 if admitstatus == 1 then

/+* Add u to active slices
queue */

15 TR <~ TR+ pu

16 AllocateResource(u)

17 UpdateAvailableResource

18 if SLAViolation for k € Active slices then
19 L Pinp =D vk

20 for each slice k.t == DepartureTime do

/* Remove k from Active
slices queue =*/
21 ReleaseResource(k)
2 UpdateAvailableResources

23 L 7:7?,[1‘] ~ TR — Pyinp

B. DYNAMIC ALGORITHM: POLICY ITERATION

Policy Iteration [38] is one of the dynamic algorithms in RL
that is used to learn the optimal policy in an MDP environment
when we are aware of transition probabilities. Similar to [39],
we have applied policy iteration for our goal, which tries to
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Algorithm 2: Policy Iteration

Output: 7*(s)
1 () e A, Ve(s)=0V s

/+ Policy Evaluation */
2 while § > min do
3 t <« t+1
4 5§ <0
5 for s € S do
6 V =V.(s)
7 Vi (s) < 2, 7($). 2o Pl (R(s, a) + y Vz (s)
8 § < max(6, |V (s) = V]
/* Policy Improvement x/
9 for s € S do
10 a=m(s)
11 7(s) < argmax,(d_y ﬁi, (R(s,a) +yVz(s))
12 if 7(s) # a then
13 | Goto Step 2

Ut <~

maximize the long-term reward of the InP. It follows three
steps to find the best policy as illustrated in Algorithm 2. This
is defined as one of the baseline approaches.

Algorithm 2 learns the optimal policy 7* using the optimal
value function V*. It first considers an arbitrary policy 7 and
assigns an arbitrary value to V then iteratively improves the
policy and value function. An optimal policy 7* is optimal
only when Vix(s) > V,(s) Vsand n* >n V 7.

(1)

The policy is randomly initialized to accept every request
if resources are available and the state values V(s) are set to
be 0. In the evaluation part, the values are updated using the
transition probabilities in Table 3 and a difference between
the current value and updated value is calculated until it
reaches a minimum. After evaluating the policy that stores
the discounted reward for every state as V(s), the next step is
taken to improve the policy. y is the discount factor which is a
constant between 0 and 1. The improvement in policy means
it learns the best action that should be taken in each state.

This algorithm fails when we do not know the transi-
tion probabilities as defined in Table 3. We do not know
the arrivals of future slices, so we can not be sure of the
same transition. Also, when state space is increased, it is
hard for the algorithm to converge faster, and both the time
and space complexities increases. To solve this problem
of unknown transition probabilities, we propose another
existing algorithm for our framework, i.e., Q Learning.

V*(s) < max; Vy(s)

C. Q LEARNING

The problem with Policy Iteration is the high computation
and convergence time. Also, the InP does not have any
information about the future incoming slices and is unaware
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of the arrival rates and their duration. Q Learning is a well-
known algorithm in RL. It is different from Policy Iteration
since it is an off-policy method. The goal is to learn the
optimal policy by exploring the environment without being
greedy for action values. Q is also known as a model-free
technique since its transition probabilities are absent. Minor
modifications are made in the above state, action, and reward
function for Q Learning. In Q, we do not consider and depar-
ture of a slice as an event since no action needs to be taken.
The state space is kept quite the same as in Algorithm 2
except the last value. A state s is represented as a number of
available resources and the slice class that is being requested.
When a € {0, 1} is taken, it either rejects or accepts a slice.
The reward function R(s,a) is modified as explained in
Eq. (14) below.

s € <AV, AVy,, AVp, [,,> (12)

a e {0,1) (13)
dypy; a=1

R(s,a) = {0; a=0,I,=E (14)

—Z, a=0,1,=1

Here, I, € {I, E}. As a reward, the agent gets a zero reward
for rejecting slices in the E class, and a penalty equal to
PYVrq is rewarded for rejecting slices in the I class.

The Q Learning agent maintains a Q table that keeps
Q values for all possible states in S and actions A each,
denoted as Q(s, a). Q values are the agent’s expected reward
at state s for taking action a. The initial Qg(s,a) is set
to 0, Vs € S. Whenever the agent takes an action a, it
transitions from its current state s to next state s’. The Q(s, a)
is updated using the following Bellman optimality Eq. (15).
In this case, o represents the rate of learning of new Q
values; y represents the discount factor that balances the
current and future rewards and decides how much importance
to give to future rewards; max,(Q(s’,a’)) represents the
maximum expected future reward in the case where the next
state will be s'.

0(@s,a) = (1 —a)0(s,a) + a{R(s, a)+vy me}x(Q(s” a/))}
(15)

In Q Learning, when a slice departs, its allocated resources
are released, and the agent takes no action. On acceptance of
a new slice, the agent transitions from the previous state s to
the next state s’ and receives a reward which is added to the
InP’s expected revenue (7R). When the agent decides to
reject a slice, it remains at its previous state s. When enough
resources are not available to fulfill the slice request, the slice
is always rejected. The transitions from one state to other
in Q Learning is explained in Table 4. We aim to maximize
the revenue in the long run, so we accept more / slices since
they produce a higher profit. It is accomplished by imposing
a penalty of P)Ygq on the agent for rejecting each slice
of 1. After the learning phase of Exploration-Exploitation
principle [40] is over, the policy is learned that maximizes
the revenue of InP.
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TABLE 4. Qtransitions.

current state (s) | action (a) Next state (s') Reward R (s, a)
<c,m,b, I > 0 <c,m,b, I > 0
<ec,m,b E> 0 <c,m,b, E > 0
<c,m,b,I> 1 < C—CyuyM — My, b—by, I >/ < c—Cy,m — My, b—by, B> (pu * du)
<c,m,b,E > 1 < C—CuyM — My, b—by, I >/ < c—cCy,m—my,b—by, £ > (pu * du)

Algorithm 3: Q Learning

Input: slice request u < N, d, p, g, >, Available
Resources < AV,, AV,,, AV), >
Output: Accept(1)/Reject(0)
o, €,y
s < (AV;, AV,,, AV, 1)
if (N, > AV,Y r) then
L a <0

= W oo =

// action

5 else
6 if uniform.random() < € then
7 L a < choice(0,1)

8 else
9 L a < argmax,Q(s, a)

// Explore

// Exploit

s, R(s, a) < next state, Reward
Q' < R(s,a) +y maxy(Q(s', a'))
/+ Update Q value =x/
| 0Gs,a) < (1 —).0(s,a) + .0

3 return a

10
11

—_

1) EXPLORATION AND EXPLOITATION

This algorithm uses the Exploration-Exploitation feature
in Q Learning. The trade-off between exploration and
exploitation is balanced by setting a parameter €, determin-
ing how often we want to explore other possible states.
Exploitation chooses the action of being greedy, which basi-
cally exploits the agent’s current estimated value to get the
most reward. The exploration is taking action randomly from
a set of all possible actions with probability €. In exploita-
tion, the agent considers estimated value which is not the
actual value, and this may lead the agent to take action
which might not be profitable. The exploration is important,
which restricts the agent from being greedy all the time
and explores other states by taking random actions which
may end up being the best action in that state. The best
possible method to decide the occurrence of exploration-
exploitation is to set € to use a decaying epsilon greedy
approach.

The Q Learning algorithm is explained in Algorithm 3,
where the input is a slice requests u at time ¢ and output is the
admission decision. The Admission decision algorithm gives
the decision based on the Q decision. The agent provides the
Q decision for the action with the maximum Q value at that
state. This decision is given to InP to accept or reject the
slice. The Q agent learns the optimal policy on interaction
with the environment.
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FIGURE 4. Deep neural network.

D. DEEP Q LEARNING (DQL)

In Q Learning, the main problem is the size of the Q table.
In the learning phase, it is difficult to maintain the state
space when it increases, which hinders exploring all states.
Due to improper learning, the agent cannot take the desired
action. The problem of state space can be solved using neural
network techniques where we need not store the full Q table;
instead, we train the neurons and update weights to predict
the required action.

The RL algorithms that use neural networks to reduce
the state space are known as Deep RL (DRL) algorithms.
Since we use the Bellman equation in Q Learning for update
of weights while training, it is termed Deep Q Learning, a
standard RL algorithm that solves Q using a generalization.
It replaces the Q table with a neural network.

In the DQL [13] technique, a neural network’s input states
are mapped to the Q states and it outputs as all possible actions.
The value of output nodes is equal to the Q’s action values.
Fig. 4 depicts the neural network used to solve AD using
DQL. It consists of an input layer, one hidden layer, and an
output layer. The input layer consists of four neurons, and the
output layer has two. Each output represents action and gives
the Q value for that action. The neural network predicts the
best action that has the highest Q value among other possible
actions, i.e., a = argmax,Q(s, a) for the state provided as
input to the network. Every neuron passes its input through an
activation function that decides whether the neuron should be
fired or not and sends its weighted summation to the neurons
of the next layer of the network.

There are two neural networks in DQL: the main network,
also known as the Q network, and the target network, which
shares the same architecture but carries different weights. In
DQL, the past experiences are stored in a memory buffer
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known as the Experience replay buffer in the format of
<state, next state, action, reward> to make the network
update more stable. Q network uses a mini-batch of tran-
sitions sampled from experience replay during training the
network for computing the loss and gradient. After a cer-
tain number of steps, the weights from the Q network are
copied to the target network. The Q network approximates
the Q values for the state-action pair. Deep neural network is
trained with parameter 6 which estimates the Q values, i.e.,
0(s, a; 0) =~ Q(s, a). The weights are updated by minimiz-
ing loss function L;(6;) at each step ¢, which is calculated by
taking the means square error of TD (temporal difference)
error as in Eq. (17), over a batch of transitions sampled from
replay buffer. y, is the TD target.

yi=R+ymax Qs a’; b-1) (16)
Ley= E_[oi—0wao)?]  an
s,s",a, R

The DQL approach is explained in Algorithm 4. DQL
agent follows the same state space S as input, action space
A and reward function R (s, a) as in Egs. (12), (13), and (14)
respectively. First, the weights of neural networks are ini-
tialized randomly. For every event e of the arrival of a new
request, the agent takes the input and predicts the best action
using the epsilon greedy exploration approach. The action
a is chosen randomly with a probability of € and a greedy
action with a probability of 1-€. In the case of a neural
network, the Q values for each action are predicted. The
action with the highest predicted Q value is the best at
that state. The observations are stored in A replay memory.
According to the Bellman Equation, the agent trains the neu-
ral network and updates its weights. Training first involves
the calculation of TD target y;, which is calculated using the
target network, and weights are updated for the Q network.
After every N steps, the weights of the Q network are copied
into the target network.

To summarize, the reason to apply Deep Q-networks
(DQN) is that the state transition probabilities are not known.
If they are known, one can apply dynamic algorithms and
solve using value iteration or policy iterations method in
RL. The dynamic approach will give us the best solution.
However, in practical scenarios, the slice arrival probabilities
are not known making the problem hard to solve. This is
addressed using by Q-Learning. The drawback of Q-Learning
is that it takes a lot of memory. In order to handle the
space constraints, we apply deep queuing networks that helps
reduce the state space. The dynamic algorithm approach,
namely Policy Iteration, is used as a baseline to determine
the performance of applying Q Learning and DQN.

V. PERFORMANCE EVALUATION

This section presents the implementation details and
performance studies of the approaches presented in the
previous section. The experiments were conducted on a com-
puting system with an Intel 17-8700 3.20 GHz CPU, 32 GB
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Algorithm 4: Deep Q Learning

1 Initialize weights of neural networks randomly.
2 Initialize n, €, y,0,t < 0
385 < (AV,, AV, AV, 1)

4 if (N, > AV,Y r) then
5

La<—0 // action

6 else

7 Provide Input(s) to DQL Agent
8 if uniform.random() < € then
9 L a < Choice(0,1)

10 else

11
ol
13 s, R(s, a) < next state, Reward
14 ReplayBuffer.append([s, a, s', R(s, a)])
15 S=ReplayBuffer.sample()
16 for every entity in S do
17 | Target(y) = R(s, a) + y max, Q(s', d’; 6;_1)
18 Train QNetwork using SGD.
19 if t % n == 0 then
/* Copy weights =/
L TargetNetwork. W() < QNetwork.W()

// Explore

actionsQval=PredictQScore(s)

a < argmax,(actionsQval) // Exploit

20 t<—t+1
Repeat Steps 3 to 21 for every slice request u

[
[\S]

RAM, and 6 CPU Cores. The results are generated by aver-
aging the results obtained by running the overall experiments
ten times.

A. IMPLEMENTATION DETAILS

1) DATASET

The GWA-T-13 Materna-trace dataset [15] has been used
for creating 5G network slice data. The original dataset
consists of Materna-trace-1, Materna-trace-2, and Materna-
trace-3. Materna-trace-1 consists of performance metrics of
520 Virtual Machines (VMs), Materna-trace-2 consists of
527 VMs, and the third trace consists of 547 VMs. Each
trace represents one month of data. In each file of its VM,
data is recorded every 5 minutes. Three metrics are extracted,
i.e., CPU usage, which is in terms of MHz, Memory usage,
which is actively used in terms of KB, and network trans-
mitted throughput in Kbps. The three metrics are converted
to the required format for creating a slice for C, M, B. The
CPU usage, which is in MHz, is divided by the speed per
core and obtained CPU in number of Cores. Memory usage
is converted into GBs, and Network throughput is used as
Bandwidth in Mbps. To create a resource usage slice in a
time series manner, we have summed up these three metrics
of 10 continuous VMs in every trace. The number of CPU
cores and network bandwidth information is scaled by 10 in
each slice, so that all resource requirements are on the same
scale, while maintaining the same distribution.
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TABLE 5. System parameter values.

Parameters | C'(Cores) | M(GB) | B(Mbps) | Nc(Cores) | Np(GB) | Np(Mbps) | Ar (/min) | Ag (/min) | pr (hr) | pwg (hr) | pr | pE
value 15000 15000 15000 50 50 50 5 16 9 9 0 | 2
2) LSTM The InP capacity and slice parameters are listed in Table 5.

The slice data is first preprocessed before being trained for
forecasting. In preprocessing, the outliers are removed using
the Interquartile range (IQR) approach. The slice forecasting
agent based on LSTM is implemented using Tensorflow [41]
and Keras [42] packages. We employ an online training
window for LSTM, which is trained for the past 10 hours
of data. The observation window for history data is kept
to be 80 minutes, and resource demand is predicted for
40 minutes. Without loss of generality, the data is normalized
in range of [0,1] using the MinMaxScalar [43] technique
from the sklearn Python library [44]. We arrived at different
hyperparameter values of the LSTM neural network by hyper
tuning. LSTMs are trained for 300 epochs in batches of
64 with eight neurons in a hidden layer using Adam [45]
optimizer at an initial learning rate of 0.1 with an exponential
decay rate of 0.96. The neural network is trained on Materna
slice data for time-series prediction using the ReLU [46]
activation function.

3) DQL AGENT

The entire framework is implemented in Python 3.6.9. The
Q learning agent and DQL agent are trained at a learning
rate (o) and discount factor (y) using Tensorflow [47]. In
DQL, the Experience Replay Buffer size can store 50,000
observations. A mini-batch of 128 observations is sam-
pled from Replay Buffer for training the neural network.
Both the Q and target network consist of two dense hidden
layers with size 32 and 16 neurons and use ReLu activa-
tion function each. The Q Network is trained after every
four steps using Bellman and a model with a batch size
of 32, 64, 128 is tried where we chose a batch size of
128. The Q Weights are copied into the target network
after every 100 steps. The DQL agent calculates the loss
using Mean-Squared-Error [36]. The weights are updated
through back-propagation by using various optimizers where
the Stochastic Gradient Descent [48] gives best results.

4) SLICE SIMULATION

The slice arrivals and their departures are generated using the
SimPy discrete-event simulator package [49]. Slice arrivals
are modeled using a Poisson process with an arrival rate of
A slices per minute. The arrival rate and mean exponential
distribution @ for the departure of slice classes vary such
that A > A; and pu; = pg respectively. A rejection penalty
of PV, = 1000 is set for the RL agent when it rejects
an [ slice. The bid value of the [ slice class is assumed to
be ten times higher than E, i.e., py = Spg per hr. The bid
value for using each resource is kept the same. The value of
B is set to 0.5 in opportunistic overbooking, since it gives
significant importance to the future states.
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In simulation results, it is assumed that each slice requests
an equal and fixed amount of resource r from InP denoted
as N,. The simulation is run for a continuous time ¢. Each unit
t represents five minutes, and a network window NW size
is considered 40 minutes. A Poisson process determines the
number of slices arriving at each time ¢, where ¢ represents
5 minutes. Based on arrival rates, a total of 5352 slices are
generated for ¢+ = 2200x5 minutes in which 1313 belong to
I and 4039 to E class for ;=5 and Ag=16 respectively. The
decision to accept or reject a slice is taken every unit time
that AD decides.

Whenever a slice gets accepted, it is added to the active
slices queue and generates revenue each time until its life-
time. The revenue from each slice is proportional to bid
value and requested resources. This paper considers SLAV
as occurring when the InP does not provide enough resources
to a slice. In case any slice experiences resource deficiency,
dependent on its class’s ¢ value, the InP is penalized to 3
times its bid value for insufficient resources. The waiting
queue for slices is considered to be infinite. The AD runs
when requests arrive, whereas slice forecasting and over-
booking decisions are made once at the start of every network
window to reallocate resources to all active slices.

5) ALGORITHMS USED FOR COMPARISON

The performance of the proposed framework (PRLQOV) is
compared with three other heuristic algorithms. These are:

1) Basic Admission:

It simply admits slice requests if requested resources
are available at InP in FCFS order. It does not give
any preference in accepting higher priority slices.

2) Prediction Admission: It includes the Slice
Forecasting (SRF) that predicts the resources
demand of currently active E slices at each NW and
then accepts the incoming slices based on remaining
resources in FCFS order. It also does not account for
slice priorities.

3) PRL: It is similar to the proposed algorithm PRLOV
except considering the slice opportunistic overbooking.

B. PERFORMANCE ANALYSIS
1) INP NET REVENUE

Fig. 5(a) shows the performance of the proposed framework
PRLOV in terms of revenue, for 15,000 units per resource,
after + = 2200 units. The results for using Deep RL in AD
in the case of PRL and PRLOV are presented. The instanta-
neous revenues averaged over the last 1200 times for Basic,
Prediction, PRL-DQ, and PRLOV-DQ are 3428, 5520,
6556, 6942 respectively, as shown in Fig. 5(b). The results
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TABLE 6. Results analysis at InP resource size of 15,000.

Algorithms
Parameters Basic  Prediction PRL-DQ PRLOV-DQ
Admitted I Slices 349 538 785 815
Admitted E Slices 1182 1853 1246 1284
Total Admitted Slices 1531 2391 2031 2099

show the effectiveness of using prediction and overbooking
concepts, that results in higher revenue with PRLOV.

The revenues obtained from two classes that constitute the
overall revenue are also analyzed. Table 6 shows the number
of overall accepted slices over 5352 slices by InP for each
slice class. It shows the individual contribution of revenue
at InP by different slice classes / and E along with the
total revenue. The overall revenue obtained for the proposed
scheme PRLOV-DQ is the highest, whereas it is the least for
Basic scheme. The revenue obtained for the E slices class
is maximum for Prediction, since it accepts the maximum
number of Elastic slices, whereas, for 7, it is maximum for

PRLOV-DQ.

2) RESOURCE UTILIZATION

Fig. 6 and Fig. 7 present the percentage of resources
(CPU, Memory, Bandwidth) utilized for the four different
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TABLE 7. Accepted slices for different arrival rates.

A7 (/min) | Total I/ | Total £ | Admitted / | Admitted £
5 1313 4039 815 1284
8 2046 4039 965 993
10 2532 4039 1049 880
12 3028 4039 1063 786
16 4039 4039 1157 629

mentioned algorithms by slice class I and E, respectively.
The maximum resources utilization for Basic Admission
is lowest, i.e., (47%, 37%, 47%) for each resource type.
Considering only Prediction, PRL and PRLOV, the max-
imal resources utilization is similar; however, PRLOV
achieves high resource utilization along with higher revenue.
The revenue gains for Prediction and PRL are lower than
that of PRLQOV, indicating inefficient resource utilization.
Fig. 6 shows that PRLOV achieves the highest usage of
resources for slice class I for all type of resources. PRL
shows higher than Prediction for 7 but less than the proposed
algorithm due to overbooking, which admits more slices.
The plot in Fig. 7 gives the resources used by E slices.
The resources utilization curves for each resource for E do
not show a significant difference; still, PRLOV shows the
highest utilization. The reason is that PRL and PRLOV try
to reject E if there is more possibility of incoming an I slice.
Since PRLOV uses overbooking, it accepts more slices,
whereas PRL only focused on priority, resulting in lower
resource utilization. The Prediction scheme shows increased
resource utilization for E slices because it only accepts slices
based on FCFS order without considering slice priorities. The
maximum utilization is not 100% since slices that belong
to I are assigned the full requested resource N,, but may
not use all the resources. To be totally free from any SLA
violation for I slices, we do not perform any prediction
and overbooking, and the InP provides them with all the
requested resources. The results show that the proposed
PRLQOV scheme shows a balanced way of obtaining higher
revenue while maintaining better resource utilization.

3) VARYING ARRIVAL RATE

Fig. 8(b) shows the total revenues obtained after + = 2200 at
a fixed rate of E, Ap = 16 and varying the arrival rate, A; €
{5, 8,10, 12, 16}. As the rate of arrival for Inelastic slices
increases, the acceptance rate of Inelastic slices increases
whereas rate of acceptance for Elastic slices decreases. This
is due to the priority given to Inelastic slices. The revenues
obtained from each slice class show similar behaviour. The
overall revenue is also increased with the increase in A;, as
expected. Table 7 presents the total number of simulated and
accepted slices of I and E by varying the arrival rates.

4) CONVERGENCE TIME

The time taken to converge the QL and DQL is expressed
in the number of episodes. The maximum time is taken
by policy iteration, a model-based approach used as a
benchmark to evaluate the results obtained from PRLOV-Q
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and PRLOV-DQ. Fig. 8(a) shows the number of episodes
required for convergence of the Q-Learning and Deep Q
Learning. DQL converges faster within 300k-450K episodes,
whereas, Q-Learning requires more episodes to converge.
The convergence time of QL and DQL also depends upon
the learning rate «. The results of varying the value of y
are shown in Fig. 8(c). From running multiple experiments,
the learning rate (o) of 0.09 and a discount factor (y) of
0.65 is chosen, respectively.

5) COMPARISON WITH OUR EARLIER SCHEME [12]

There may be cases when resources are over-predicted
and under-predicted. In case of over-prediction, the T is
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(b) Variation in Revenue vs. Ay

(c) Variation in Revenue vs v

increased by the ¢ factor and converged to a new overbook-
ing value. In contrast, when actual usage for any slice is
higher than predicted, the proposed mechanism reduces the
overall overbooking and admits fewer slices. The revenues
obtained from varying the regulating factor ¢ that use the RL
feedback mechanism to regulate overbooking are compared
against the existing overbooking scheme in [12] by varying
& value. The results obtained for different values increment-
ing the overbooking regulating factors are shown in Fig. 9(a)
and 9(b). We see an enhanced overbooking solution using
RL is far better than the existing scheme. The maximum rev-
enue obtained by varying the £ values is always lower than
the revenue obtained by the proposed RL feedback scheme.
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6) COMPARING RL ALGORITHMS

Simulation experiments were conducted for InP resource
size of 50,000 for r = 5000, at different arrival rates of
A7 € {5, 10, 15} and Ag = 16 per minute and © = 9 hours.
The number of slice requests generated were 11751, 14555,
and 17283 slices respectively for the three values of A;. Of
this, 2813, 5617, and 8345 respectively belonged to the [
class. Since different slice types arrived at different rates,
the revenue values are different for the four algorithms.

Fig. 10(a) presents the revenues obtained when A; = 5
and 50,000 units of each InP resource are available. The
maximum revenue is received using Prediction, since the
InP has enough resources to accommodate all slices and there
is no need to make decisions about accepting or rejecting
slices. Due to the low arrival rate, there is no need to apply
an RL model with rigid rejection rules to create space for
I slices. The RL algorithms, i.e., PRL-DQ and PRLOV-
DQ, accept all Inelastic slices for A; = 5 and reject Elastic
ones, which is unnecessary when enough resources are left
unallocated.
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A similar behavior is also shown at the arrival rate A; =
10 in Fig. 10(b), where PRL-DQ and PRLOV-DQ reject
some Elastic slices in order to accept most of the Inelastic
slices. When there are enough slices such that InP cannot
accommodate all the slice requests. In such cases, we see an
improvement using the RL models. As seen in Fig. 10(c),
the proposed model PRLOV yields the highest revenue at
InP size of 50,000 and A;=15, which is similar to the InP
size of 15,000 for A;=5 in Fig. 5(a).

The number of I and E slices accepted by different algo-
rithms at different values of A; are given in Table 8. As seen,
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TABLE 8. Results analysis at InP resources size of 50,000.

Algorithms
Parameters Basic  Prediction PRL-DQ PRLOV-DQ
Ar= 5 per min.
Admitted I Slices 2329 2813 2813 2813
Admitted £ Slices 7636 8938 4570 5254
Ar= 10 per min.
Admitted I Slices 3783 5316 5617 5617
Admitted E Slices 6295 8550 4531 5400
Ar= 15 per min.
Admitted I Slices 4929 6490 7349 7607
Admitted E Slices 5240 6929 4167 4872

PRLOV accepts more inelastic slices and less elastic slices,
which results in higher revenue generation.

Experiments were also conducted for InP resource size
of 2,000 at A; for + = 2200. We generated 1313 I slices,
and 4039 E slices. The framework accepts 45, 68, 90,
and 121 slices belonging to I and 149, 244, 198, and
205 slices from E class for Basic, Prediction, PRL, and
PRLOV respectively. We obtain a total revenue of 998,484,
1,518,000; 1,777,494, 2,106,787 at + = 2200 for the four
algorithms respectively.

VI. CONCLUSION

This paper presented a Deep Reinforcement Learning
approach for 5G network slice Admission in a service
provider’s network infrastructure. Two types of slices, Elastic
and Inelastic, have been considered, where the latter offers
higher revenue but has strict resource requirements. The
framework is driven by prediction using LSTM and over-
booking of active Elastic slices. The RL mechanism mainly
focuses on accepting higher priority slices to increase
the service providers’ revenue. Since Elastic slices’ ser-
vice requirements are relaxed, the notion of overbooking
has been applied where slices are admitted even if the
total requirements exceed the InP’s available capacity. A
detailed performance study was done using discrete event
simulation coupled with implementation of the different
schemes in TensorFlow and Keras. In comparison with other
schemes, the proposed PRLOV scheme is shown to perform
much better in terms of revenue generation and resource
utilization.

Further improvements can be made by analyzing slice
priorities using multiple agents, slice duration, the number
of resources requested, and their impact on InP’s revenue
and resources utilized.
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