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Partial Homoscedasticity in Causal
Discovery With Linear Models

Jun Wu and Mathias Drton

Abstract—Recursive linear structural equation models and the
associated directed acyclic graphs (DAGs) play an important role
in causal discovery. The classic identifiability result for this class
of models states that when only observational data is available,
each DAG can be identified only up to a Markov equivalence
class. In contrast, recent work has shown that the DAG can be
uniquely identified if the errors in the model are homoscedastic,
i.e., all have the same variance. This equal variance assumption
yields methods that, if appropriate, are highly scalable and
also sheds light on fundamental information-theoretic limits and
optimality in causal discovery. In this paper, we fill the gap that
exists between the two previously considered cases, which assume
the error variances to be either arbitrary or all equal. Specifically,
we formulate a framework of partial homoscedasticity, in which
the variables are partitioned into blocks and each block shares
the same error variance. For any such groupwise equal variances
assumption, we characterize when two DAGs give rise to identical
Gaussian linear structural equation models. Furthermore, we
show how the resulting distributional equivalence classes may be
represented using a completed partially directed acyclic graph
(CPDAG), and we give an algorithm to efficiently construct this
CPDAG. In a simulation study, we demonstrate that greedy
search provides an effective way to learn the CPDAG and exploit
partial knowledge about homoscedasticity of errors in structural
equation models.

Index Terms—Causal discovery, covariance matrix, equal
variance, graphical model, structural equation model.

I. INTRODUCTION

ASTRUCTURAL equation model (SEM) describes the
stochastic dependence among a group of random vari-

ables in terms of noisy functional relationships between causes
and their effects. In their interpretation as causal models,
SEMs furnish models of the variables’ joint distribution not
only in observational studies but also under experimental
interventions, providing a rigorous definition of the causal
effect of an intervention [1], [2]. In this realm, the problem
of causal discovery, also known as structure learning, is the
problem of learning a causal model from available data by
determining the direct causes of each variable with the help
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of statistical methods [3]. For this purpose, it is convenient to
take a point of view of probabilistic graphical modeling and
represent each SEM with the help of a directed graph, with
vertices corresponding to the random variables at hand, and
directed edges linking the functionally related variables [4].
We tacitly assume all considered SEMs to be recursive, i.e., the
underlying graph is a directed acyclic graph (DAG).

Each DAG uniquely encodes a causal model, but when only
observational data are available, different DAGs (i.e., different
systems of structural equations) may be equivalent in the sense
of defining the same statistical model for the observations.
The target of inference then becomes an equivalence class
of empirically indistinguishable SEMs. Hallmark theory for
graphical models provide a characterization of SEMs in terms
of conditional independence, show how this characteriza-
tion leads to efficient decision criteria for the observational
equivalence of two SEMs given by two different DAGs, and
finally develop a graphical representation of the resulting
Markov equivalence class by means of a completed partially
directed acyclic graph (CPDAG). This theory is summarized,
for instance, in [5].

The theory just mentioned holds for fully nonparametric
models. Somewhat amazingly, the same arguments and results
also apply to the widely considered special case of linear
SEMs with Gaussian errors with arbitrary variances, where
again only a Markov equivalence class may be inferred
from observational data; see, e.g., the review in [6] or the
recent work of [7], [8]. However, other modeling assumptions
generally behave differently and lead to a setting where every
DAG defines a unique model for observational data. This has
been shown, for example, for linear models with non-Gaussian
errors [9], [10] and nonlinear additive noise models [11], [12].
Similarly, additional assumptions may render linear Gaussian
SEMs identifiable. The most prominent example in this direc-
tion are linear SEMs with Gaussian errors that all share
a common variance [13]. Despite its restrictive nature, the
equal variance setting plays a useful role as a test bed for
developing scalable causal discovery algorithms [14], [15],
[16], [17]. It also allows for a derivation of fundamental
information-theoretic limits in the form of lower bounds
on the sample size needed for consistent estimation of the
DAG, which opens the door for optimality results on learning
algorithms [18]. Further recent work related to equal variance
models includes [19], [20], [21].

In this paper, we consider the realm of linear Gaussian
SEMs that fall between the classical case with arbitrary error
variances and the case with all error variances equal. To this
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end we formulate a novel framework: partial homoscedasticity
of the errors. Specifically, we encode the modeling assumptions
in a partition over the variables, with the interpretation that the
errors associated to the variables in the same partition block
have equal variances. In this framework, the minimal and
maximal partitions recover the previously studied cases. The
minimal partition in which every variable forms a block of size
one recovers the classical case of arbitrary error variances. The
maximal partition in which all variables are in one block gives
the equal variance case. Weakening the all-equal assumption
to groupwise equal variances is natural for data sets in which
only certain subgroups of variables are measured on similar
scales (e.g., in multiomics data in biology). We will show that
this weakening continues to be very favorable for identifiability
of causal structure; e.g., direct causes are identifiable for any
variable that appears in some equal variance constraint.

Our results are developed by first providing an implicit
description of partially homoscedastic linear Gaussian SEMs,
with a partition specifying groupwise equal variances. This
description is based on conditional independence constraints
as well as constraints we deduce from the equalities of
error variances. We then characterize when two DAGs define
the same partially homoscedastic linear Gaussian SEM. This
characterization shows that because of the equal variance
constraints, the existence of a pair of variables in the same
block of the considered partition determines the orientation of
the edges that have these two nodes as endpoints. Moreover,
we generalize the concept of a CPDAG to the partially
homoscedastic case and provide an algorithm for efficient con-
struction of the CPDAG. This algorithm is an adjusted version
of the general algorithm for constructing an equivalence class
under background knowledge [22].

The remainder of this paper is organized as follows: In
Section II, we introduce basic notation and necessary back-
ground for linear SEMs and their representation using DAGs.
In Section III, we discuss the partially homoscedastic setup
with groupwise equal error variances and derive the equal
variance constraints that are needed in an implicit description
of the models. In Section IV, we characterize the equivalence
classes in our setup and give an algorithm to construct the
CPDAG. In Section V we propose a greedy search scheme
for model selection based on information criteria, which is
seen to be effective in a simulation study. We conclude with
a discussion in Section VI.

II. BACKGROUND

A. Linear Structural Equation Models

A linear structural equation model (SEM) is specified via a
linear system consisting of equations among variables {Xi : i ∈
V} and random errors {εi : i ∈ V}, where V is an index set of
size |V| = p. In terms of the random vectors X := (Xi)i∈V and
ε := (εi)i∈V , the linear system can be written as

X = �TX + ε, (1)

where � = (λij) ∈ R
V×V is a matrix of coefficients represent-

ing the causal structure among the variables. Assuming that the
matrix I −� is invertible (I is the identity matrix), the linear

equation system (1) is solved uniquely by X = (I − �)−Tε,
with covariance matrix

Var [X] = (I −�)−T�(I −�)−1, (2)

where � is the covariance matrix of the random vector of
stochastic errors ε. We assume that the errors are independent
such that � = diag(ω) is a diagonal matrix with all diagonal
entries positive. Any specific SEM makes the assumption that
a subset of the entries of � is zero. Such an assumption
is naturally encoded in a directed graph. We will detail the
connection between a linear SEM and its directed graph in
Section II-C.

B. Graph Terminology

A directed graph G = (V, E) is a tuple that pairs a set of
nodes V with a set of edges E ∈ V × V . The elements in E
are ordered pairs of the form (i, j), i �= j, encoding the edge
i→ j in the graph. We say that the edge (i, j) is an outgoing
edge from the arrow tail i and an incoming edge to the arrow
head j. The node i is a parent of j and the node j is a child
of i. We denote the sets of all parents and children of a node
i by pa(i) and ch(i), respectively. Similarly, the notation an(i)
denotes the set of ancestors of i and de(i) denotes the set of
descendants of i. For simplicity, we adopt the convention that
i /∈ an(i) and i ∈ de(i). If an(i) ∩ de(i) = ∅, then node i does
not lie on any directed cycle. If an(i) ∩ de(i) = ∅ for every
node i, then the graph is a directed acyclic graph (DAG). To
distinguish those sets in different graphs, we use graph index
as the subscript: paG, etc.

A collider triple in a directed graph G = (V, E) is a triple
of vertices (i, j, k) such that there are edges between i and
j and between j and k, with j being a head on both these
edges (i → j ← k). If there exists an edge between i and
k, i.e., (i, k) ∈ E or (k, i) ∈ E, then the middle node j is a
shielded collider in this collider triple. Otherwise, the node j
is an unshielded collider.

In a directed graph G = (V, E), a path is an alternating
sequence of nodes from V and edges from E, such that each
edge in the sequence is an edge between the nodes that precede
and succeed it. Note that this definition allows a path to contain
a node more than once. Given a fixed set S ⊆ V , two nodes
i, j /∈ S are d-connected by S if G contains a path from i to
j that has all colliders in S and all non-colliders outside S. If
there exists no such path, then i and j are d-separated by S,
denoted as i ⊥d j | S. A trek is a path without collider triples,
making its endpoints d-connected given ∅. A trek takes the
form

iLl ← · · · ← iL1 ← i0 → iR1 → · · · → iRr ,

where i0 is called the top node. This top node is characterized
by not being the head of any edge on the trek. Every trek has
a left hand side and a right hand side, corresponding to the
nodes with superscript L or R. By convention, the top node i0
is included in both the left hand and the right hand side of the
trek.
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C. Graphical Models, Trek Rule and Conditional
Independence

As noted earlier, any specific linear SEM is obtained by
requiring a subset of the entries in the parameter matrix � =
(λij) in (1) to vanish. This requirement may be represented by
drawing an edge i → j whenever the matrix entry λij is not
constrained to be zero.

Let G = (V, E) be a DAG. Let RE be the set of real V×V-
matrices with support in E, that is,

R
E = {� = (λij

) ∈ R
V×V : λij = 0 if i→ j /∈ E

}
. (3)

Then the DAG G encodes the linear SEM with independent
errors whose coefficient matrix is constrained to have a zero
pattern given by R

E. In the resulting linear SEM the covariance
matrix is parametrized through the map

φG : RE × (0,∞)V �→ PD,

(�,ω) �→ (I −�)−T diag(ω)(I −�)−1,

where PD denotes the cone of positive definite matrices. Note
that for a DAG, the matrix I −� is invertible for all � ∈ R

E

because the row and columns of � can be permuted to bring
the matrix in lower-triangular form.

Definition 1: The linear Gaussian model given by a DAG
G = (V, E) is the family of all multivariate normal distribu-
tions on R

V with covariance matrix in the set

MG =
{
� : � = φG(�,ω), � ∈ R

E, ω ∈ (0,∞)V}.

The map φG computes the covariance matrix of the random
vector X from the coefficient matrix � and the vector of
error variances ω. A classical result known as the trek rule
provides a combinatorial description of the coordinates of φG,
i.e., of the individual covariances between entries of X; see,
e.g., Theorem 4.1 in the review [6].

Theorem 1 (Trek rule): Let G = (V, E) be a DAG, and let
� = (λij) ∈ R

E and ω = (ωi) ∈ (0,∞)V . For i, j ∈ V , let
T (i, j) be the set of all treks between i and j. For a trek τ

with top node i0, we define the trek monomial

τ(�,ω) = ωi0

∏

k→l∈τ
λkl.

Then the covariance between Xi and Xj equals the sum of all
trek monomials for treks between i and j, i.e.,

φG(�,ω)ij =
∑

τ∈T (i,j)

τ (�,ω), i, j ∈ V.

SEMs naturally lead to conditional independence constraints
and these may be read off from an underlying DAG by inspect-
ing d-separation relations, which we recalled in Section II-B.
Furthermore, in linear Gaussian SEMs, conditional indepen-
dence corresponds to an algebraic constraint on the covariance
matrix of the distribution. We recall these facts in the following
theorem; see [6, Sec. 10] or also [23, Sec. 8] for further
discussion and pointers to the original literature.

Theorem 2: Let G = (V, E) be a DAG. Let i, j be two
distinct nodes, and let S ⊆ V\{i, j}.

(i) If X is a multivariate normal random vector with
covariance matrix �, then the conditional indepen-
dence Xi⊥⊥Xj | XS holds if and only if det(�iS,jS) = 0.

Here, �iS,jS is the submatrix of � obtained by select-
ing the rows indexed by {i} ∪ S and the columns
indexed by {j} ∪ S.

(ii) The conditional independence constraint det(�iS,jS)

= 0 holds for all covariance matrices � ∈ MG if and
only if the d-separation i ⊥d j | S holds in G.

(iii) A matrix � ∈ PD is in MG if and only if det(�iS,jS)

= 0 for all triples (i, j, S) with i ⊥d j | S in G.
Similar submatrix notation is used throughout. So �A,B is

the A × B submatrix of a matrix �, and to have compact
notation for subsets of index set V , we define iS := {i}∪S and
ijS = {i} ∪ {j} ∪ S for i, j ∈ V and S ⊂ V .

III. PARTIAL HOMOSCEDASTICITY

A. Setup

We now introduce a class of models that incorporate partial
knowledge about equality among the variances in ω = (ωi)i∈V

of the errors in the linear SEM given by a DAG G = (V, E).
We encode this partial knowledge in a partition of the vertex
set V .

Definition 2: Let � = {π1, . . . , πK} be a family of non-
empty subsets of V . Then � is a partition of V if π1, . . . , πK

are pairwise disjoint and ∪K
k=1πk = V . The sets π1, . . . , πK

are the blocks of the partition. Corresponding to � is the
equivalence relation that has i, j ∈ V equivalent if i, j are in
the same block of �; we then write i ∼� j.

In order to model a priori assumptions about the equality of
some pairs of variances in ω = (ωi)i∈V , we are led to consider
the partition � such that i ∼� j precisely when the equality
ωi = ωj is implied by our a priori knowledge. Each one
of the proposed partially homoscedastic linear SEMs is thus
associated to a pair (G,�), where G = (V, E) is a DAG and �

is a partition of V . In this model, each block of � groups a set
of nodes that index error variances that are constrained to be
equal to each other. In other words, we have homoscedasticity
of the errors within each partition block, but possibly different
variances between the blocks.

Definition 3: Let G = (V, E) be a DAG, and let � be a
partition of V . The partially homoscedastic linear Gaussian
model given by the pair (G,�) is the family of all multivariate
normal distributions on R

V with covariance matrix in the set

MG,� =
{
� : � = φG(�,ω), � ∈ R

E,

ω ∈ (0,∞)V with ωi = ωjif i ∼� j
}
.

Given a partition �, we call two DAGs G1 and G2 model
equivalent if they induce the same partially homoscedastic
linear Gaussian model, i.e., if MG1,� = MG2,�.

From the point of view of causal discovery, assumptions
of (partial) homoscedasticity are interesting as extra con-
straints on error variances lead to a refinement of the Markov
equivalence classes that result from conditional independence
relations only. We exemplify this point here.

Example 1: Let G1 and G2 be the two DAGs in Figure 1.
Consider first the finest partition �min = {{1}, {2}, {3}}, which
encodes that the error variances may be arbitrary positive
numbers. Then MG1,�min = MG1 = MG2 = MG2,�min . Indeed,
the two DAGs G1 and G2 are Markov equivalent, meaning that
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Fig. 1. Under the constraint ω1 = ω2, the two Markov equivalent DAGs G1
and G2 generate different partially homoscedastic linear Gaussian models.

they encode the same conditional independence relations. Both
graphs feature precisely one d-separation relation, namely, that
nodes 1 and 2 are d-separated by 3. The model may thus
be defined by imposing the conditional independence of X1
and X2 given X3, which under Gaussianity is equivalent to the
constraint that the covariance matrix � = (σij) satisfies the
polynomial equation σ12σ23− σ12σ33 = 0 (recall Theorem 2).

Now let us change the partition to � = {{1, 2}, {3}}, i.e., we
assume that ω1 = ω2. One can then show that the model given
by G1 is the set of 3× 3 covariance matrices

MG1,� =
{
� ∈ PD : σ11σ33 = σ22σ33 − σ 2

23,

σ13σ23 − σ12σ33 = 0
}
,

whereas G2 defines

MG2,� =
{
� ∈ PD : σ22σ33 = σ11σ33 − σ 2

13,

σ13σ23 − σ12σ33 = 0
}
.

Both MG1,� and MG2,� are semialgebraic sets of dimension
4, but they are different and their intersection is of lower
dimension.

In the remainder of this section, we develop a more
general algebraic description of partially homoscedastic linear
Gaussian models. This description furnishes the basis for solv-
ing the problem of deciding model equivalence, as developed
in Section IV.

B. Equal Variance Constraints

The key difference between partially homoscedastic models
and the classical case of arbitrary Gaussian errors is the
emergence of constraints due to the equalities among error
variances. To exhibit these constraints we first review how an
error variance can be identified from the covariance matrix of
the observations.

Theorem 3: Let G = (V, E) be a DAG, and let � =
φG(�,ω) for � = (λij) ∈ R

E and ω = (ωi) ∈ (0,∞)V . Then
for any i ∈ V , the error variance ωi can be computed from the
covariance matrix � = (σij) as

ωi = σii −�i,A
(
�A,A

)−1
�A,i, (4)

where A may be any subset with pa(i) ⊆ A ⊆ V\ de(i).
Proof: We adapt the proof of [6, Theorem 7.1], where A =

pa(i). If a trek from j to i ends at i with an edge of the form
k← i, then the trek is a directed path from i to j and j ∈ de(i).
Now since A ⊆ V\ de(i), every trek from a node in A to i
must end with an edge k → i. In other words, such a trek

must visit a parent of i as the last node before i. Theorem 1
thus implies that

�A,i = �A,pa(i)�pa(i),i = �A,A�A,i. (5)

To see the first equality, partition the concerned sets of treks
according to which element of pa(i) is visited right before i.
The second equality is then due to pa(i) ⊆ A and λki = 0 for
k /∈ pa(i).

A similar reasoning for treks from i to i gives that

σii = ωi +�T
pa(i),i�pa(i),pa(i)�pa(i),i

= ωi +�T
A,i�A,A�A,i. (6)

The claim now follows by rewriting (6) to ωi = σii −
�T

A,i�A,A�A,i and substituting �A,i by (�A,A)−1�A,i, as jus-
tified by (5).

We immediately obtain the following corollary for an equal
variance assumption.

Corollary 1: If two random errors εi and εj have equal
variances, i.e., i and j are in the same block of a considered
partition �, then all covariance matrices � = (σij) in MG,�

satisfy that

σii −�i,Ai

(
�Ai,Ai

)−1
�Ai,i = σjj −�j,Aj

(
�Aj,Aj

)−1
�Aj,j (7)

for all subsets Ai and Aj such that pa(i) ⊆ Ai ⊆ V\ de(i) and
pa(j) ⊆ Aj ⊆ V\ de(j).

The fact from Theorem 3 admits the following converse.
Theorem 4: Let G = (V, E) be a DAG, and let i ∈ V be

one of its nodes. Let A ⊆ V\{i}. Fix any vector of positive
error variances ω ∈ (0,∞)V . If for all � ∈ R

E the matrix
� = φG(�,ω) satisfies equation (4), then it must hold that
pa(i) ⊆ A ⊆ V\ de(i).

Proof: Suppose there exists a node k ∈ pa(i)\A. Choose �

to have all entries zero except for λki. For this choice, the trek
rule in Theorem 1 implies that �i,A = 0 and, thus, the right
hand side of (4) is equal to σii. But the trek rule also yields
that σii = ωi + λ2

kiωk > ωi, which contradicts the assumption
that (4) holds. We conclude that pa(i) ⊆ A.

Next, suppose that there exists a node k ∈ A\(V\ de(i)) =
de(i) ∩ A. Then G contains a (non-trivial) directed path from
i to k. Without loss of generality, we may assume that all
interior nodes on the path between i and k are not in A. Indeed,
we can always pick k to be the first node in A that lies on
the path. So the path is of the form i → m1 → · · · →
mt → k with m1, . . . , mt /∈ A. Now, take � with all entries
zero except λim1 , λm1m2 , . . . , λmt−1mt , λmtk. The trek rule in
Theorem 1 asserts that σii = ωi under this parameterization
(every trek between i and i has at least one edge with zero
edge weight). But then equation (4) becomes

ωi = σii −
(
λim1λmtk

t∏

s=2

λms−1ms

)2[(
�A,A

)−1
]

kk

= σii −
(
λim1λmtk

t∏

s=2

λms−1ms

)2 1

σkk
< σii = ωi,

which is again a contradiction. We conclude that A ⊆ V\ de(i).
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Combining Theorems 3 and 4, we can characterize equal
variance constraints that hold in a partially homoscedastic
linear model. For the proof, see Appendix A.

Theorem 5: Let G = (V, E) be a DAG, and let � be a
partition of the vertex set V . Suppose i ∼� j are two distinct
nodes that lie in the same block of �, and let Ai ⊆ V\{i}
and Aj ⊆ V\{j}. Then the equation (7) holds for all matrices
� ∈ MG,� if and only if pa(i) ⊆ Ai ⊆ V\ de(i) and pa(j) ⊆
Aj ⊆ V\ de(j).

Theorem 5 yields a full algebraic characterization of par-
tially homoscedastic linear Gaussian models. Every equal
variance condition corresponds to a collection of equations
between conditional variances, in which conditioning sets may
be taken from a range of sets. The different conditioning
sets will ultimately lead to equivalent constraints once the
equal variance constraints are combined with conditional
independence constraints.

We now record an observation that will be important for
later considerations of model equivalence. It refers to the
smallest and largest conditioning sets, where we partially order
sets by set inclusion and extend the ordering lexicographically
to pairs of sets; i.e., (Ai, Aj) ≤ (Bi, Bj) if Ai � Bi or if Ai = Bi

and Aj ⊆ Bj.
Corollary 2: Let G be a DAG, and let � be a partition of

V such that i ∼� j are in the same block of the partition. Let
Aij be the family of all pairs (Ai, Aj) with Ai ⊆ V\{i} and
Aj ⊆ V\{j} for which equation (7), i.e.,

σii −�i,Ai

(
�Ai,Ai

)−1
�Ai,i = σjj −�j,Aj

(
�Aj,Aj

)−1
�Aj,j,

holds for all covariance matrices � ∈ MG,�. Then
(i) Aij contains a unique minimal pair, namely, Ai = pa(i)

and Aj = pa(j), and
(ii) Aij contains a unique maximal pair, namely, Bi =

V\ de(i) and Bj = V\ de(j).

C. Characterization of the Models

In Section III-B we considered a class of algebraic con-
straints that require equality of conditional variances, and
we characterized which of these constraints hold in a given
partially homoscedastic linear model. As we show in this
section, combining the variance constraints with conditional
independence constraints from d-separation relations yields
an implicit algebraic description of partially homoscedastic
linear models. We begin by revisiting the original proof in
[24, Ths. 1 and 3] for soundness and completeness of d-
separation in SEMs, which via a slight modification also
applies to our specialized setting. In other words, we clarify
in the following proposition that equal variance assumptions
do not alter the set of conditional independence relations in a
linear SEM.

Proposition 1: Let G = (V, E) be a DAG, and let � be
a partition of V . Let i, j be two distinct nodes, and let S ⊆
V\{i, j}. Then the conditional independence Xi⊥⊥Xj | XS holds
for all multivariate normal random vectors X with covariance
matrix in MG,� if and only if the d-separation i ⊥d j | S holds
in G.

Proof: The“if”followsfromTheorem2becauseMG,� ⊆ MG.

For the “only if”, suppose that i and j are not d-separated
by S. We then have to construct an example of � ∈ MG,�

in which the conditional independence does not hold, i.e.,
det(�iS,jS) �= 0. To this end, we may slightly modify an
example in [24]. The modification uses equal error variances
to ensure � is in MG,� and not merely in MG. We provide
the details in Appendix B.

All ingredients in place, we can now fully describe a
partially homoscedastic linear Gaussian model in terms of con-
ditional independence relations and equal variance constraints.
Evidently, all constraints are algebraic, i.e., can be expressed
in terms of polynomials.

Theorem 6: Let G = (V, E) be a DAG, and let � be a
partition of V . Then a covariance matrix � ∈ PD is in the
partially homoscedastic linear model MG,� if and only if �

satisfies all conditional independence constraints given by d-
separations and all equal variance constraints from Corollary 1.

Proof: The “if” follows from Proposition 1 and Corollary 1.
For the “only if”, let � satisfy all conditional indepen-
dence and equal variance constraints associated to G. By
Theorem 2(iii), a covariance matrix that satisfies all con-
ditional independence constraints given by d-separation has
to be an element of MG. Hence, there exist � ∈ R

E and
ω ∈ (0,∞)V such that � = φG(�,ω) ∈ MG. But then, by
Theorem 3, the equalities among conditional variances imply
that ωi = ωj for i ∼� j. Therefore, � ∈ MG,�.

IV. EQUIVALENCE CLASSES

A. Model Equivalence of DAGs

Let G1 = (V, E1) and G2 = (V, E2) be two DAGs with
the same given vertex set. An important problem for causal
discovery is to decide whether the two DAGs are equivalent
in the sense of defining the same statistical model for the
observations at hand.

Definition 4: Let � be a fixed partition of the index set V .
Two DAGs G1 = (V, E1) and G2 = (V, E2) are �-model
equivalent if MG1,� = MG2,�. We denote this by G1 ≈� G2.

The classic case of linear SEMs with arbitrary error
variances corresponds to the partition �min = {{i} : i ∈ V}.
In this case we have no equal variance constraints, and G1
and G2 are �min-model equivalent if and only if G1 and
G2 are Markov equivalent, meaning they induce the same
conditional independence relations or, equivalently, have the
same d-separation relations. Graphical models theory further
tells us that G1 and G2 are Markov equivalent if and only if
they have the same skeleton and unshielded collider triples [5].

Based on the algebraic characterization in Theorem 6,
we are able to give the following extension of the Markov
equivalence theory to the setting of partially homoscedastic
models.

Theorem 7: Let G1 = (V, E1) and G2 = (V, E2) be two
DAGs, and let � = {π1, . . . , πK} be a partition of the index
set V . Then G1 and G2 are �-model equivalent if and only if
the following two conditions hold:

(i) G1 and G2 have the same skeleton and unshielded
colliders, and
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(ii) paG1
(i) = paG2

(i) for all nodes i that belong to a
partition block πk of size |πk| ≥ 2.

Before proving the theorem, we would like to give some
intuition for condition (ii), which is the result of the assumed
equality among error variances. In the usual Markov equiv-
alence theory, a DAG may contain directed edges that can
be reversed while leaving the associated model unchanged. In
the linear Gaussian case, such a reversal generally leads to a
change of conditional variances (i.e., error variances) for the
nodes incident to the reversed edge. Condition (ii) in the above
theorem reflects the fact that an equality among error variances
can generally not be preserved in this edge reversal step. Thus,
if a node i is subject to an equal variance constraint, then its
parent set pa(i) must be preserved across model equivalent
graphs.

Proof of Theorem 7: For the “if” direction, suppose
that conditions (i) and (ii) hold. By the standard Markov
equivalence theory, condition (i) implies that G1 and G2 have
the same d-separation relations and, thus, MG1 = MG2 . Now,
let � be an arbitrary element of MG1,�. Since MG1,� ⊆ MG1 =
MG2 , there is a (unique) choice of �(2) ∈ R

E2 and ω(2) ∈
(0,∞)V such that � = φG2(�

(2),ω(2)). Let i �= j be any two
nodes with i ∼� j, i.e., there is a partition block πk of size
|πk| ≥ 2 that contains both i, j. By Equation (7) of Corollary 1,
since � ∈ MG1,�, we have

σii −�i,paG1
(i)

(
�paG1

(i),paG1
(i)

)−1
�paG1

(i),i

= σjj −�j,paG1
(j)

(
�paG1

(j),paG1
(j)

)−1
�paG1

(j),j.

By condition (ii), paG1
(i) = paG2

(i) and paG1
(j) = paG2

(j).
Therefore, we have

ω
(2)
i = σii −�i,paG2

(i)

(
�paG2

(i),paG2
(i)

)−1
�paG2

(i),i

= σjj −�j,paG2
(j)

(
�paG2

(j),paG2
(j)

)−1
�paG2

(j),j = ω
(2)
j .

We conclude that � ∈ MG2,� and, thus, MG1,� ⊆ MG2,�.
Swapping the role of G1 and G2, we conclude that MG1,� =
MG2,� and G1 ≈� G2.

For the “only if” direction, suppose MG1,� = MG2,�.
Theorem 6 implies that G1 and G2 induce the same conditional
independence constraints and the same set of equal variance
constraints (as specified in Corollary 1). We deduce that
G1 and G2 have the same d-separation relations and, thus,
condition (i) holds. Let i, j be any two distinct nodes in the
same partition block πk. Since G1 and G2 induce the same set
of equal variance constraints, the set Aij defined in Corollary 2
is the same for G1 as for G2. Corollary 2 now implies that
the unique minimal element of Aij must be comprised of the
parent sets of node i and j in both G1 and G2. But this means
that paG1

(i) = paG2
(i) and paG1

(j) = paG2
(j). Therefore,

condition (ii) holds.
Remark 1: The two extreme cases of our setup are the

classic setting in which all variances are freely varying (|�| =
|V| or in other words � = �min = {{i} : i ∈ V}) and the
previously studied case with all variances equal (|�| = 1
or in other words � = �max = {V}). When � = �min,
condition (ii) in Theorem 7 never applies and the theorem

is just the classic Markov equivalence theorem. When � =
�max, condition (ii) applies to all nodes, and Theorem 7 thus
recovers the fact that under an equal variance assumption no
two DAGs define the same model.

Remark 2: Another interesting special case arises in the
context of two-sample problems, in which we observe each
one of d variables under two different experimental conditions.
In this setting, it is of interest to estimate the difference
between the two DAGs for the two samples. This problem
is greatly simplified by assuming equality of the two error
variances that arise in the structural equations for the two inde-
pendent copies of the kth random variables, k = 1, . . . , d [25].
We can accommodate the two-sample problem in our frame-
work by grouping all 2d random variables together. We then
have a single combined graph of even size |V| = 2d that
consists of the disjoint union of the two DAGs for the two
samples. The equal variance assumption in [25] corresponds
to a partition � = {π1, . . . , πd} with |π1| = · · · = |πd| = 2.
Each partition block contains the two copies of one variable as
it is observed in the two samples. Theorem 7 implies that under
this partition the combined DAG is uniquely determined by
the joint distribution of the observations from the two samples.

B. Completed Partially Directed Acyclic Graph (CPDAG)

Beyond characterizing equivalence of two DAGs as in
Theorem 7, it is also of interest to provide a representation of
each equivalence class. Similar to the classic heteroscedastic
setup, we can represent the equivalence class by a completed
partially directed acyclic graph (CPDAG) [26].

Definition 5: Let � be a partition of the vertex set of a
DAG G = (V, E). The completed partially directed acyclic
graph (CPDAG) of the DAG G under partition � is the graph
obtained by forming the union of all DAGs equivalent to G:

G∗� :=
⋃

G′≈�G

G′. (8)

So, G∗� contains edge i→ j if the edge is contained in some
DAG G′ ≈� G. It is customary to draw G∗� as a mixed graph
with an undirected edge between nodes i and j for which both
i→ j and j→ i are in G∗�.

We emphasize that an undirected edge in a CPDAG indi-
cates that there exist two DAGs in the equivalence class in
which the edge appears with opposite directions. Moreover,
a CPDAG contains a directed edge i → j precisely when all
DAGs in the equivalence class of G contain this edge.

In the standard heteroscedastic setting (i.e., � = �min =
{{i} : i ∈ V}), the CPDAG may be constructed using an
algorithm developed in [22]. In addition, Meek [22] shows how
to construct a CPDAG in a setting where there is background
knowledge about some of the edges. The background knowl-
edge is of the form K = 〈F, R〉, where F contains the edges
not in the DAG and R contains the edges in the DAG. The
algorithm first translates conditional independence statements
into adjacencies and unshielded collider triples. Then the first
3 of the 4 orientation rules in [27] (Figure 2) are applied to
obtain the CPDAG without background knowledge, which is
exactly the CPDAG under �p. The last phase incorporates
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Fig. 2. The four orientation rules.

background knowledge and checks whether a compatible
CPDAG exists or not. The following is the procedure, in
which background knowledge is inserted edge by edge, and
the CPDAG at the current step is denoted by G∗:
S1 If there is an edge i→ j in F such that i→ j in G∗ then

FAIL.
S1′ If there is an edge i→ j in R such that j→ i in G∗ or

i, j are not adjacent in G∗ then FAIL.
S2 Randomly choose one edge i → j from R, and let R =

R\{i→ j}.
S3 Orient i→ j in G∗ and close orientations under rules R1,

R2, R3 and R4 in Figure 2.
S4 If R �= ∅, then go to step S1.

In our setup, we want to compute the equivalence class of a
DAG under a partition, which restricts edge orientations in the
DAG’s equivalence class. These restrictions can be interpreted
as providing background knowledge as considered by Meek. In
our case, a CPDAG compatible to the background knowledge
always exists, and we can use a simplified version of the
general algorithm to construct the equivalence class.

Given a DAG G and a partition �, the equivalence class is
obtained by the following algorithm (Algorithm 1). Theorem 8
below certifies the correctness of the algorithm. The proof of
the theorem justifies the simplifications in the algorithm and
is given in Appendix C.

Theorem 8: Given a DAG G and partition �, Algorithm 1
outputs the CPDAG G∗�.

Example 2: Consider the DAG G in Figure 3 with
node set V = {1, 2, 3, 4, 5, 6} and the partition � =
{{1, 2}, {3}, {4}, {5}, {6}}, which is illustrated through different
line styles when drawing nodes. In other words, the partition
sequence is (1, 1, 2, 3, 4, 5), where the i′th element of the
sequence indicates the block that node i belongs to. To
determine the equivalence class of G, we first keep the skeleton
and unshielded colliders. Then those edges containing node
1 or 2 (partition block size ≥ 2) are oriented the same way
as they are in G. Next, we propagate the edge orientation by

Algorithm 1 Constructing the Equivalence Class of a DAG,
Given the Partition
Require: A DAG G, the partition �

1: Create an empty graph G′
2: Copy the skeleton and all edge orientations with

unshielded colliders of G to G′
3: Apply rules R1, R2 and R3 on G′ until no more edges

can be oriented
4: for i ∈ V with i ∈ πk and |πk| ≥ 2 do
5: Copy the orientation of edges in G having one end-

point at i to G′
6: end for
7: Apply rules R1 and R2 on G′ until no more edges can be

oriented
8: return G∗� = G′

Fig. 3. A DAG and the corresponding CPDAG, under a fixed partition.

rules R1 and R2, and we find that the edge between 4 and 6
is oriented as 4 → 6. Finally, the remaining edge 3 − 5 can
have both direction and is kept undirected in the final CPDAG
that represents the equivalence class of G.

V. GREEDY SEARCH

A. Likelihood Inference

Let X = (X1, . . . , Xp)
T ∈ R

p×n be a data matrix comprised
of n observations for each one of the |V| = p considered
variables. The columns of X are assumed to be generated as
an i.i.d. sample from a joint multivariate normal distribution.
Without loss of generality, we may assume the mean vector
of the normal distribution to be zero. (Otherwise, we may
estimate the means by sample means and recenter each row
of the data matrix.) Define the sample covariance matrix S =
XXT/n. Then omitting a constant, the Gaussian log-likelihood
function is n

2 (− log det(�) − tr(�−1S)) with � being the
covariance matrix.

For a fixed DAG G = (V, E) and partition � of V ,
the partially homoscedastic linear Gaussian model given by
(G,�) has the covariance matrix of the form � = (I −
�)−T diag(ω)(I − �)−1. Thus, the model’s log-likelihood
function is

�G(�,ω) = n

2

(
− log det(diag(ω))+ log det(I −�)2

− tr
{
(I −�) diag(ω)−1(I −�)T S

})
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= n

2

(
− log det(diag(ω))

− 1

n
tr
{

XT(I −�) diag(ω)−1(I −�)T X
})

= n

2

(

−
p∑

i=1

log ωi − 1

n

p∑

i=1

1

ωi

∥∥∥Xi −�T
pa(i),iXpa(i)

∥∥∥
2
)

,

where the acyclicity of the DAG ensures that det(I −�) = 1.
Let � = {π1, . . . , πK}. Then

�G(�,ω) = n

2

K∑

k=1

�G,πk(�,ωk)

is the sum of log-likelihood values of the K blocks, with

�G,πk(�,ωk) = −|πk| log ωk − 1

nωk

∑

i∈πk

∥∥∥Xi −�T
pa(i),iXpa(i)

∥∥∥
2
.

We observe that the maximum log-likelihood is achieved at
the pair (�̂, ω̂) with

�̂pa(i),i = argmin
�pa(i),i∈R| pa(i)|

‖Xi −�T
pa(i),iXpa(i)‖2,

ω̂k =
∑

i∈πk

∥∥∥Xi − �̂T
pa(i),iXpa(i)

∥∥∥
2

n|πk| .

In order to solve the problem of selecting the DAG G, we
appeal to information criteria. Plugging the maximum likeli-
hood estimate (�̂, ω̂) back into the log-likelihood function, we
can compute the Bayesian information criterion (BIC) score
for the DAG G given the data X. This score decomposes into
the sum of scores of each block:

sBIC(G) = 1

n

(
�G
(
�̂, ω̂

)− log(n)

2
|E|
)

= 1

2

K∑

k=1

⎛

⎝−|πk| log ω̂k − |πk| − log(n)

n

∑

i∈πk

| pa(i)|
⎞

⎠,

(9)

where the simplification arises from the fact that
1

nω̂k

∑
i∈πk
‖Xi − �̂T

i,pa(i)Xpa(i)‖2 = |πk|.

B. Search Scheme

For model selection, we maximize the BIC score over the
space of DAGs. The number of possible DAGs grows very
quickly with the number of nodes p; e.g., we have 1.2× 1015

for p = 10 [28]. We thus follow prior work and adopt a
greedy search algorithm, which starts at some initial random
or empty DAG and selects the DAG with highest BIC score in
the local neighborhood at each step. The procedure terminates
when the considered DAG has higher BIC score than all other
DAGs in the local neighborhood. Here, we define the local
neighborhood of a DAG G as the set of all DAGs that can be
obtained from G by addition, removal or reversal of a single
edge. Note that in this work we search only over DAGs, for
a given fixed partition π .

An edge addition or removal always changes the equiva-
lence class of a DAG. Whether an edge reversal creates a
DAG in a different equivalence class is determined by parents
and partition information, as specified in our previous results.
We can thus search DAGs that are in the neighborhood and

in different equivalence classes. To speed up the search we
also restrict the local neighborhood to a random subset with
size bound. To relieve issues of local optima, we perform
the greedy search multiple times starting from different initial
DAGs. In this work, for each realization of the greedy search,
we restart the method 5 times with neighborhood size bound
k = 300. We refer to this scheme as greedy search with
Groupwise Equal Variances (GEV).

C. Simulation Study

We investigate the numerical performance of our algo-
rithm (GEV) by comparing against greedy equivalence search
(GES) [29] and the PC-algorithm [2]. The former tries to find
the structure with maximum �0-penalized log-likelihood and
the default penalty is log(n)/2n, corresponding to the BIC
score. The latter has a significance level α for conditional inde-
pendence tests that determine edges. To make the score-based
and the constraint-based methods comparable, we consider a
grid of values for α from 10−5 to 0.8, increasing by the ratio
1.1 [30]. Then we can choose the value of α according to the
maximum BIC score.

Both PC and GES algorithm do not incorporate any pos-
sible (partial) homoscedasticity and return a standard Markov
equivalence class. In our partially homoscedastic model setup,
the greedy search is performed among DAGs and returns
the CPDAG of the final DAG, as described in Section V-B.
Since the parental information (or edge directions) plays
an important role in our idenfitiability result, we adopt the
modified structural Hamming distance (SHD) in [13] as the
error measurement. The classic SHD is the number of edge
additions, deletions and reversals in order to transform one
graph to another graph, i.e., all edge mistakes count as 1, while
the modified version assigns a distance of 2 to each pair of
reversed edges.

In the simulation we use 24 different configurations of
(p, n, sp), where p ∈ {5, 10, 20, 40} is the number of
nodes, n ∈ {100, 500, 1000} is the sample size and sp ∈
{sparse, dense} controls the sparsity of randomly generated
DAGs. In the sparse setting, each pair of nodes has the
adjacency probability prob = 3/(2p − 2), while in the dense
setting the probability is 0.3. For each (i, j) pair with i < j, we
simulate independent uniform random variables Uij ∼ U(0, 1).
If Uij < prob, the edge i → j is introduced. Every edge
weight is uniformly drawn from [−1,−0.3]∪[0.3, 1], and the
error variance of each partition block is uniformly drawn from
[0.3, 1]. After traversing all node pairs, we randomly permute
the node labels. For each configuration we run the simulation
100 times.

The box-plots that follow show the SHD between the
true CPDAG and the estimated CPDAG obtained by the
considered methods. We study the case of 2 partition blocks
as well as a more subtle case with �p/3� + 1 blocks. In
the former case, the simulation experiments summarized in
Figures 4 and 5 show that the greedy search algorithm for
partially homoscedastic models is able to very effectively
exploit the available homoscedasticity in both sparse and dense
settings as well as across all three sample sizes and four
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Fig. 4. Box-plots of SHD by groups of p and n, sparse graphs 2 blocks.

Fig. 5. Box-plots of SHD by groups of p and n, dense graphs, 2 blocks.

Fig. 6. Box-plots of SHD by groups of p and n, sparse graphs, �p/3� + 1
blocks.

dimensions. Its SHDs are consistently lower as for GES and
PC. This said, the dense is clearly far more challenging than
the sparse—as is to be expected. Moreover, the simulations
confirm the intuition that the SHDs should be smaller if
extra equal error variances information is utilized by the
algorithm. For the larger number of blocks, Figure 6 shows

Fig. 7. Box-plots of SHD by groups of p and n, dense graphs, �p/3� + 1
blocks.

the same pattern of clearly better performance. However, in
the dense case depicted in Figure 7 one now sees the problem
becoming difficult in the highest-dimensional case where the
PC algorithm shows best performance.

VI. DISCUSSION

The framework of partially homoscedastic linear Gaussian
models is a generalization of linear SEMs with equal error
variances. It encodes equal variance assumption through a
partition of the variables. The framework unifies the classical
setting in which the error variances may be arbitrary and the
equal error variance setup that has been studied in recent
literature. These two cases are captured by the two extreme
partitions, with a single block and all variables in separate
blocks, respectively.

Each partially homoscedastic linear model can be charac-
terized algebraically via conditional independence constraints
and equal variance constraints. The former are well known
from the classical graphical model perspective on linear SEMs,
and we explicitly derived the latter in this paper. The equal
variance constraints reveal the essence of how equal variance
assumptions lead to identifiability of edge orientations. This
perspective differs from previous work on the equal variance
assumption and, in particular, work that considered ordering
variances [e.g., [15]]. We also showed how equivalence classes
in the partially homoscedastic setting are naturally represented
by a refined CPDAG, which may be constructed efficiently
with the help of existing results on CPDAGs in setting with
background knowledge. For model selection, we demonstrated
that greedy search provides an effective tool to exploit knowl-
edge about partial homoscedasticity.

APPENDIX A
PROOF OF THEOREM 5

The “if” direction is given by Corollary 1. For the “only
if” direction, we distinguish several cases for the set Ai. The
arguments for the corresponding different cases of Aj are
analogous. In each case, we construct a set of parameters such
that the considered rational equation in (7) does not hold.
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Fig. 8. The three subcases when there exists a node k ∈ de(i) ∩ Ai.

a) ∃ k ∈ pa(i)\Ai: We choose λki �= 0 and set all other
edge weights equal to zero. Then since k /∈ Ai, the trek
rule implies that �i,Ai = 0. Hence (7) yields that

σii = σjj −�j,Aj

(
�Aj,Aj

)−1
�Aj,j ≤ σjj.

By the trek rule, it further holds that σjj = ωj and σii =
ωi + λ2

kiωk. We arrive at the following contradiction:

σii ≤ σjj = ωj = ωi < ωi + λ2
kiωk = σii.

We conclude that pa(i) ⊆ Ai.
b) ∃ k ∈ de(i)∩Ai: There is then a directed path from i to k

and as in the proof of Theorem 4, we assume that k was
chosen such that this path is “minimal”. In other words,
the directed path is of the form i→ m1 → · · · → mt →
k with m1, . . . , mt /∈ Ai. We proceed by distinguishing
three subcases (illustrated in Figure 8):

(i) Suppose k can be chosen such that there exists a
directed path from i to k that is minimal in the
above sense and does not intersect j. Then we can
set all edge weights zero except those on the path.
As in the proof of Theorem 4, we have σii = ωi =
ωj = σjj and find a contradiction because under
equation (7),

ωi = σii −
(

λim1λmtk

t∏

s=2

λms−1ms

)2
1

σkk

< σii = σjj = ωj.

(ii) Next, consider the case where every minimal
directed path from i to a node k ∈ de(i) ∩ Ai

contains the node j and where in addition Aj ∩

Fig. 9. An example of an active path q.

de(j) �= ∅. Let k′ ∈ de(j) ∩ Aj. Then there exists
a directed path from j to k′. It follows that in this
subcase j must be in de(i). Since the graph is a
DAG, the considered directed path from j to k′
may not contain i. Hence, we encounter exactly the
situation of subcase (i), but with the role of i and j
switched. Hence, also in this case we can construct
a counterexample to equation (7).

(iii) The remaining subcase is that every minimal
directed path from i to a node k ∈ de(i) ∩ Ai

contains the node j, and that these paths intersect
Aj only after they have visited j. Select one such
minimal directed path. If the node preceding j on
the path is not in Aj, we can reduce the problem
to case (a) by switching i and j (pa(j)\Aj �= ∅).
Otherwise, we set all edge weights zero except
those on the considered minimal path. Let A′j be
the intersection of Aj and the nodes on the path.
In the new DAG with only edges in the directed
path, the set A′j satisfies that pa(j) ⊆ A′j ⊆ V\ de(j),
and thus

ωj = σjj −�j,A′j

(
�A′j,A′j

)−1
�A′j,j

= σjj −�j,Aj

(
�Aj,Aj

)−1
�Aj,j.

However, computing the left hand side of (7) leads
to a strict inequality.

σii −�i,Ai

(
�Ai,Ai

)−1
�Ai,i

= ωi −
(

λim1λmtk

t∏

s=2

λms−1ms

)2
1

σkk

< ωi = ωj = σjj −�j,Aj

(
�Aj,Aj

)−1
�Aj,j.

APPENDIX B
“ONLY IF” PART OF PROPOSITION 1

Proof: If i and j are d-connected given S, then there exists
a path q between i and j, on which every collider is in S
(recall that our convention allows a path to visit the same node
more than once). We denote the set of all these colliders by
S′ = {z1, z2, . . . , zk} ⊆ S; see Figure 9 for an illustration. In
order to form a covariance matrix in MG,�, we assign the
same weight ρ ∈ (0, 1) to all edges of the path q and set all
other edge weights zero. We set all error variances ωi = 1.
Let � and w be the resulting choice of parameters, and let
� = φG(�,ω) the associated covariance matrix.

By the trek rule, the diagonal entries of � = (σkl) satisfy
that

σii = σjj = 1 and σkk = 1 ∀ k /∈ S\S′,
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because the fact that i and j are d-connected given S implies
that the only nodes that are both in S and on the path q are the
colliders in the set S′. Next, notice that there exists a unique
nonzero trek between each pair of consecutive nodes in the
sequence i ≡ z0, z1, z2, . . . , zk, zk+1 ≡ j. Let rt be the number
of edges on the segment of q that goes from zt to zt+1. By the
trek rule, for all t = 0, . . . , k,

σzt,zt+1 = ρrt .

Ordering the nodes as i, z1, . . . , zk, j followed by the nodes in
S\S′, we obtain that

�ijS,ijS

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 ρr0 0 · · · 0 0
ρr0 σz1,z1 ρr1 · · · 0 0

0 ρr1 σz2,z2

. . . 0 0
...

...
. . .

. . .
. . .

... O

0 0 0
. . . σzk,zk ρrk

0 0 0 · · · ρrk 1
O IS\S′

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(10)

Now observe that det(�iS,jS) = ρ
∑k

t=0 rt �= 0.

APPENDIX C
PROOF OF THEOREM 8

Algorithm 1 builds upon the work of Meek [22] who
shows how to construct the CPDAG of an equivalence class
when provided a set of conditional independence relations and
arbitrary background knowledge about the edge orientations.
His general algorithm first constructs the classical CPDAG
by reading off unshielded colliders and propagating rules R1,
R2, R3. Next, the general algorithm iteratively adds each edge
from background knowledge and applies all rules R1, R2, R3,
R4 to the 1-edge changes. Reference [22, Ths. 2–4] prove the
correctness of the general algorithm.

The application of R1-R3 before inserting background
knowledge creates the classical CPDAG for known conditional
independence relations and without extra information (it is the
CPDAG under partition �min = {{i} : i ∈ V}). In our setup,
we start with a DAG G in the equivalence class and determine
directly the skeleton and unshielded colliders and the classical
CPDAG via rules R1-R3.

The partial homoscedasticity encoded in the given partition
� now provides special ‘background knowledge’ that fixes
the orientation of all the edges with one endpoint at special
nodes. As we show in the remainder of this proof, when we
insert this special knowledge into the classical CPDAG, the
situations of R3 and R4 in [22] cannot arise. It thus suffices to
apply only R1 and R2, and we can insert all the background
knowledge simultaneously, because we know that all extra
information is compatible and the desired CPDAG always
exists.

For our proof of the correctness of the simplifications in
Algorithm 1 over Meek’s general procedure, recall that the
equal variance constraints give the adjacency directions of all

Fig. 10. i3 → i4 from R1.

Fig. 11. i3 → i4 from R2.

nodes whose block has size at least 2. The set R consists of
edges incident to these nodes, and the set F consists of the
reversal of the edges in R. We then argue as follows.

(i) First, we know there is at least one DAG in the
equivalence class, so the general algorithm will not fail.
That means the background knowledge check S1 and
S1′ are redundant. We can just iteratively perform S2,
S3 and S4 and obtain the same result.

(ii) Next, notice that we can add all edges in R simulta-
neously and close the orientations sequentially. Indeed,
every newly oriented edge is dependent on some of
the background knowledge. As long as all dependencies
are added, the edge will be oriented without con-
flicts. Either adding edges sequentially or simultaneously
would finally cover all dependencies of each orientable
edge, and results in the same final output.

(iii) Finally, we claim that only the rules R1 and R2 become
applicable in the orientation propagation step S3 of our
algorithm. Indeed, there is an unshielded collider triple
in R3, but the propagation with background knowledge
does not make any new collider triples, otherwise the
output CPDAG cannot have same conditional indepen-
dence statements as the DAG itself. Hence, any pattern
of R3 must have been obtained in the initial phase of
constructing the classical CPDAG, and will not appear
in the last propagation phase.
For R4, consider the first time that its pattern appears
in the propagation phase. The orientation i3 → i4 is
not obtained in the classical CPDAG phase as otherwise
i4 → i1 would have also been oriented and the pattern
of R4 appears in the classic CPDAG phase, which is
a contradiction. If i3 → i4 results from background
knowledge directly, then we know the orientations of all
adjacencies of either i3 or i4, which will orient i2 − i3
or i2 − i4. This is a contradiction. Figure 10 depicts the
case of i3 → i4 obtained from R1: unshielded triple
l → i3 − i4. The edge l → i2 must exist to keep
i2 − i3 not oriented, consequently the undirected edge
i2− i4 implies the adjacency between l and i4. The triple
(l, i3, i4) is shielded, contradicting the pattern of R1.
Figure 11 illustrates the case of i3 → i4 obtained from
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R2. To keep i2 − i4 not oriented, the edge l→ i2 must
exist. But then i2− i3 can be oriented as i3 → i2, which
is again a contradiction.

In conclusion, we have proved that our modification to the
general algorithm for equal variance constraints background
knowledge is correct.
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