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Long-Horizon Vehicle Motion Planning and Control
Through Serially Cascaded Model Complexity

Vincent A. Laurense , Member, IEEE, and J. Christian Gerdes , Member, IEEE

Abstract— The computational burden of nonlinear model pre-
dictive control (NMPC) often limits its use to short planning
horizons, simple systems with slow dynamics, offline applica-
tions, or approximations of the optimal control problem. This
article introduces a novel concept for NMPC, to help enable real-
time integrated motion planning and control with a long plan-
ning horizon for automated vehicles. The proposed framework
cascades plant models of different levels of complexity within
a single planning horizon, in a single optimization problem.
Leveraging the receding nature of MPC, a high-fidelity plant
model in the first part of the planning horizon continuously
provides a high quality of control, while the planning horizon
is extended significantly at low computational cost with a lower
fidelity model. Cascading the model complexity serially in a
single planning horizon, rather than in different control loops,
avoids infeasible reference trajectories between control loops. The
concept is successfully validated with real-time motion planning
and control of a full-scale automated race car, featuring combined
lateral and longitudinal control and operating the vehicle near
the limits of tire-road friction. The framework is deployed
with open-source numerical optimization tools. In the real-world
experiment, the proposed design both better approaches the
optimal minimum-time solution and has a lower median solve
time compared to a benchmark architecture with a single-vehicle
model and a necessarily shorter planning horizon.

Index Terms— Autonomous vehicles, nonlinear model predic-
tive control (NMPC), real-time motion planning, reduced order
systems.

I. INTRODUCTION

MANY physical systems exhibit nonlinear dynamics and
are subject to time-varying nonlinear constraints. Non-

linear model predictive control (NMPC) provides a means of
determining inputs for such a system that optimize a certain
objective function while respecting these nonlinear dynamics
and constraints. The computational expense of the resulting
nonlinear program (NLP) is frequently a major obstacle to
applying this powerful technique.

The task of planning a dynamically feasible and collision-
free trajectory of an automated road vehicle through its
environment showcases both the strengths and limitations
of NMPC. This integrated planning and control problem is
nonlinear and involves making important tradeoffs between
lateral and longitudinal motion—a combination for which
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Fig. 1. Block diagrams for two different architectures for vehicle motion
and planning and control. (a) A hierarchical approach with multiple control
loops. (b) The proposed single-loop approach for vehicle motion planning and
control with serially cascaded model complexity.

NMPC is ideally suited. The computational demands, however,
are daunting. Typical vehicle speeds require a relatively long
planning horizon of multiple seconds, while vehicle stabiliza-
tion and obstacle avoidance require a fast control loop and a
sufficient level of model complexity to capture the relevant
dynamics. A simulation study in this article shows that it is
impossible to solve the resulting NLP with current in-vehicle
computer hardware in real time.

In the literature, various methods have been developed for
real-time motion planning and control. A popular method is
to approximate the problem and address different tasks in
different control loops, as shown in Fig. 1(a). For example,
Gros et al. [1] presented a two-time-scale scheme with MPC
in a slow trajectory generation loop and a fast inner loop
with time-varying linear feedback for the control of a quad-
copter. Gao et al. [2] showed experimental results of obstacle
avoidance for ground vehicles, with a point-mass model for
high-level path planning and a simple four-wheel model for
low-level path following. In a similar approach for a simulated
race environment, Novi et al. [3] constructed a hierarchical
approach with NMPC based on a point-mass model in an outer
loop, providing a near-term terminal velocity constraint for
short-horizon NMPC with a planar four-wheel vehicle model.

With simpler models in outer control loops, however, the tar-
get trajectory that a high-level planner passes to a low-level
tracking controller could be infeasible to track or overly
conservative—both of which are undesirable. A more accurate
high-level planner (which requires more time to solve) is not
able to swiftly respond to disturbances or changes in the
environment, which, of course, can also be dangerous.

Gray et al. [4] addressed the issue of infeasibility of the
reference trajectory generated by a high-level planner in a
multiple-loop architecture with motion primitives. These can
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be constructed with a high-fidelity model; however, the result-
ing set of possible control actions is finite and in general
suboptimal.

A second general method is to approximate the NLP by a
quadratic program (QP), for which fast convex optimization
tools can be leveraged, for example as described by Wang
and Boyd [5]. Falcone et al. [6] and Funke et al. [7] set up
a time-varying QP with online model linearization for lateral
control and stabilization of an automated vehicle, with convex
constraints on the inputs and states that prevent the vehicle
from operating in unstable conditions. This provides optimal
steering control for a predetermined speed, but these examples
do not consider the tradeoffs in combined lateral and longitu-
dinal control and in general solve only an approximation of
the underlying nonlinear control problem.

A different approach considers model complexity reduction
with constraint augmentation. Liu et al. [8] demonstrated
that rollover risk mitigation for a vehicle accurately mod-
eled with 14 degrees of freedom could be achieved with a
conservative model with two degrees of freedom augmented
with a nonlinear bound on the maximum steering angle.
In this example, the conservative bound could prevent rollover
but does increase the minimum turning radius, potentially
inhibiting the controller’s potential to avoid an obstacle even
if that is physically possible. In general, conservative bounds
on a simpler vehicle model can nominally keep the system
away from dangerous regions of the state space but prevent
the controller from using the system’s full physical capabilities
in emergency situations.

Yet, another approach is to solve the optimal control prob-
lem offline, rather than online, for a finite number of poly-
hedral regions of the parameter vector. Thereby, the so-called
explicit MPC reduces the online computation to polyhedron
identification and the evaluation of a suboptimal state feedback
law. Metzler et al. employed this technique for vehicle stability
control through braking [9], and Canale et al. employed
this technique for vehicle stability control through control of
an active rear differential [10]. However, when the number
of states, inputs, or linear inequalities gets large, explicit
MPC is no longer practically feasible. Moreover, this method
cannot handle optimization problems in which the system, cost
function, or constraints are time-varying [5].

Lastly, Diehl et al. [11] introduced a real-time iteration
scheme that provides approximations of the optimal feedback
control which are iteratively refined during the runtime of the
controlled process. Frasch et al. [12] and Siampis et al. [13]
explored this method for real-time obstacle avoidance for
ground vehicles. The approximate solution from real-time iter-
ation is suboptimal and potentially infeasible, and the stability
of the framework can only be guaranteed if disturbances from
one controller tick to the next are sufficiently small.

In the control of safety-critical systems such as automated
vehicles, at no level and at no time should the framework
be overly conservative, suboptimal, or generating infeasible
reference signals, in order to maximize the capability of con-
trolling the system away from critical states. This article seeks
to address that with a novel concept for real-time NMPC with
a long planning horizon, in which vehicle models of different
levels of complexity are cascaded within a single horizon,

as shown in Fig. 1(b), in a single optimization problem.
With the receding nature of MPC, a high-fidelity plant model
continuously provides dynamically feasible trajectories in the
near term that can control the system to its full potential,
whereas a low-fidelity model allows for significant extension
of the planning horizon at low computational cost.

In addition to illustrating this concept of serially cascaded
model complexity through simulation, we experimentally val-
idate the concept with real-time motion planning and control
of a full-scale automated race car. The scenario of racing is
purposefully challenging; the minimum-time objective con-
stantly pushes the vehicle to its limits, important tradeoffs
in longitudinal and lateral control need to be made, and
the nonlinear tire dynamics are significant. Racing does not
allow for conservatism, and lap time provides an absolute
benchmark. By pushing an automated vehicle to its limits on
the race track, we can learn how to reliably address a vehicle’s
full physical potential in emergency situations on the street.

The experiment compares the proposed cascaded model
architecture to a benchmark architecture with a single high-
fidelity model, for which the planning horizon is necessarily
shorter due to the computational limits for online optimization.
The results show that the cascaded model design achieves a
lower lap time, while the median NLP solve time is also lower.

This article is structured as follows. First, Section II pro-
vides more details on the concept of cascaded model com-
plexity in MPC-based optimal control. Section III introduces
two vehicle models of different levels of complexity that are
common in vehicle motion planning and control—the dynamic
single-track model and the point-mass model. The nonlinear
optimization problem with serially cascaded model complexity
is detailed in Section IV, and Section V presents the exper-
iment design. Simulation results in Section VI illustrate how
serially cascaded model complexity can help enable NMPC
for real-time applications, followed by successful experimental
results with an automated research vehicle in Section VII.
Final conclusions are presented in Section VIII.

II. CONCEPT OF CASCADED MODEL COMPLEXITY

In a control system design, it is evident that a plant model
needs to be selected that captures all relevant dynamics to meet
the control objectives. For example, in the context of vehicle
motion planning and control, the objective of stabilizing the
car requires a model that includes its yaw dynamics. For the
objective of avoiding obstacles and road departures, one needs
a model for planning the vehicle’s position, direction of travel,
and speed over a sufficiently long planning horizon.

The control objectives, however, do not necessarily have
a constant level of relevance, or criticality, throughout the
planning horizon. As an example, for vehicle stabilization,
the steering inputs on the order of a second are crucial. For
safely negotiating a turn that is further in the future, on the
other hand, the exact steering inputs and yaw dynamics are
less (or: not yet) relevant—but for an upcoming turn, it is
already important to plan a safe path and start decelerating to
an appropriate speed.

For model-based optimal control, the combination of the
highest level of model complexity and the longest planning
horizon required to meet all control objectives leads to a
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Fig. 2. Dynamic single-track vehicle model (left) and point-mass vehicle model (right) with their states relative to the road descriptor path (top view).

significant computational burden. This often prohibits real-
time applications. However, different control tasks could be
addressed with different plant models and different planning
horizons. This is the strategy in controller hierarchies with
multiple loops (shown in Fig. 1(a) and discussed in Section I),
with an outer, potentially slower, planning loop with a long
horizon and relatively simple plant model, and an inner track-
ing loop with a higher fidelity model. A simple plant model for
high-level trajectory planning, however, could lead to infeasi-
ble reference signals between the control loops or conservative
reference signals that do not plan to use the system to its full
potential.

The novel concept introduced in this article cascades the
vehicle models in a single planning horizon serially and
computes the optimal control sequence from a single NLP.
This eliminates slow control loops and infeasible reference
signals between loops. By leveraging the receding nature of
MPC, a high-fidelity plant model in the first part of the
planning horizon continuously provides the high quality of
control, using the system to its full potential without controller
switching, while the planning horizon is extended significantly
at low computational cost with a lower fidelity model. The
resulting NLP has a low computational burden that makes it
tractable for real-time control.

When serially cascading different plant models, the final
state of one model must be carefully propagated to the initial
state of the next model. In addition, the constraints and cost
function terms should be consistent across the cascaded plant
models, to avoid inconsistencies in the closed-loop behavior.

Finally, it is noted that when more computational resources
become available in the future, the concept of cascaded model
complexity does not necessarily become superfluous. Any
plant model mismatch integrates over the open-loop planning
horizon, and in addition, the system could be disturbed by
external factors, making the fast and less damped states in a
high-fidelity model far into the planning horizon less reliable.
With the proposed framework, an efficient controller could
therefore be constructed without delivering a false sense of
accuracy of its planned actions.

III. VEHICLE DYNAMICS MODELING

This section introduces two vehicle models that are com-
mon in the field of vehicle motion planning and control:
the dynamic single-track model and the point-mass model.
Section III-C briefly discusses the concatenation of these
models in the proposed serially cascaded model architecture.

A. Dynamic Single-Track Vehicle Model

1) Overview and Equations of Motion: In the dynamic
single-track vehicle model, the two tires per axle are lumped
together into a single tire, which is parameterized in such a
way to incorporate relevant effects such as steady-state lateral
load transfer. This provides a simple planar model that includes
the vehicle’s yaw dynamics, which allows for stabilization.
Combined with a nonlinear tire model, it describes the vehi-
cle’s dynamics up to the very limits of its physical capabilities.

The model, shown on the left in Fig. 2 with sign conven-
tions specified by ISO 8855 [14], has three velocity states
associated with its center of gravity (CG): longitudinal speed
Ux , lateral speed Uy , and yaw rate r . Furthermore, there are
three position states in relation to a road descriptor path: the
curvilinear coordinate along this path and the lateral distance
to this path, s and e, respectively, and the difference in
heading between the vehicle’s chassis and the path, denoted
by �ψ . The path’s curvature κ defines the horizontal path
geometry.

The vehicle has mass m and yaw moment of inertia Izz ,
and the front steer angle is indicated by δ. The distances from
the CG to the front and rear axle are denoted by a and b,
respectively, summing up to the wheelbase L, as shown in the
side-view schematic in Fig. 3. The CG is at a distance hcg

above the ground. The front and rear longitudinal axle forces
are denoted by Fx f and Fxr , respectively; the lateral axle forces
are denoted by Fy f and Fyr .

The equations of motion for this model are as follows:

U̇x = Fx f cos δ − Fy f sin δ + Fxr − Fd

m
+ rUy (1a)

U̇y = Fy f cos δ + Fx f sin δ + Fyr + Fb

m
− rUx (1b)

ṙ = a
�
Fy f cos δ + Fx f sin δ

� − bFyr

Izz
(1c)

ṡ = Ux cos�ψ − Uy sin�ψ

1 − κe
(1d)

ė = Ux sin�ψ + Uy cos�ψ (1e)

�ψ̇ = r − κ ṡ. (1f)

The sum of drag forces, e.g., rolling resistance Frr and
aerodynamic drag with coefficient CD , is represented by Fd

Fd = Frr + CDU 2
x − mg sin θ. (2)

This model also includes the effect of the road grade angle θ
(downhill positive, as in Fig. 3). Similarly, the effect of the
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Fig. 3. Side-view schematic of the single-track vehicle model.

road bank angle ϕ is modeled by the lateral force Fb

Fb = −mg cos θ sin ϕ (3)

where positive ϕ denotes a road surface tilted to the right.
2) Input Model: The selected inputs for this model are the

steering angle rate δ̇ and the total longitudinal force command
Fx . The drive/brake force distribution χ provides the mapping
from the total longitudinal force to the longitudinal force at
each of the axles

Fx f = χ f Fx (4a)

Fxr = χr Fx (4b)

where χ f + χr = 1.
However, the front/rear proportioning of total longitudinal

force is generally not equal for drive forces and brake forces.
For example, for a front-wheel-drive car, the fraction of engine
torque on the front axle is χfd = 1, but since a car also has rear
brakes, only a fraction of the total longitudinal force command
is demanded from the front axle in braking, i.e., χfb < 1.
Thus, the distribution of the total longitudinal force command
χ depends on the sign of Fx

�
χ f , χr

� =
�
(χ fd , χrd ), if Fx ≥0

(χ fb , χrb), otherwise.
(5)

Fig. 4 shows that a simple longitudinal force distribution with
constant brake proportioning on a front-wheel-drive vehicle is
discontinuous. For numerical optimization with an interior-
point line-search filter method, such as IPOPT, however,
the objective and the constraint functions of the NLP should be
twice continuously differentiable [15]. Therefore, for numer-
ical optimization, the drive/brake force distribution model is
approximated as follows:

χ̃ f = d f − b f

2
tanh(2(Fx + 0.5))+ d f + b f

2
(6a)

χ̃r = br − dr

2
tanh(−2(Fx + 0.5))+ dr + br

2
(6b)

where Fx is in kilonewtons. The approximation function is
slightly offset from zero to better reflect the fact that the
experimental vehicle used in this research is purely front-
wheel drive and is overlaid with the true mechanical longitu-
dinal force distribution in Fig. 4. This differentiable function

Fig. 4. Front/rear longitudinal tire force distribution as a function of the
total longitudinal force; discontinuous true function and the differentiable
approximation from (6), for the parameters listed in Table I.

approximates the front and rear longitudinal tire forces as a
function of the total force command

F̃x f = χ̃ f (Fx ) · Fx (7a)

F̃xr = χ̃r (Fx) · Fx . (7b)

3) Tire Model: For the dynamic single-track model,
a coupled nonlinear brush tire model describes the lateral
axle forces, as derived by Pacejka [16] and adapted by
Hindiyeh [17]. In this model, the maximum lateral tire force
potential is derated with the tire’s longitudinal force command

Fmax
y =

��
μFz

�2 − �
F̃x

�2
(8)

where μ denotes the tire-road friction coefficient and Fz

is the tire’s instantaneous normal load. The longitudinal
force command cannot exceed the tire force potential,
i.e., |F̃x | ≤ μFz .

In fact, in numerical optimization, difficulties arise with (8)
when |F̃x | = μFz , i.e., during maximum straight line accelera-
tion or deceleration, because the partial derivative of Fmax

y with
respect to F̃x vanishes. To avoid this, Fmax

y is approximated,
and in the optimization problem, the maximum lateral force
derating is implemented with only 99% of the longitudinal
input force

F̃max
y =

��
μFz

�2 − �
0.99F̃x

�2
. (9)

The brush tire model then describes the lateral force for each
of the lumped tires as a function of slip angle α

Fy =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Cα tan α

+ C 2
α

3 Fmax
y

|tan α| tan α

− C 3
α

27
�
Fmax

y

�2 tan3 α, if |α| ≤ αsl

−Fmax
y sgn α, otherwise.

(10)

The lumped tire model is defined by the axle’s cornering
stiffness Cα and the tire-road friction coefficient μ. These
parameters are fit to measurement data from ramp steer
maneuvers [18]. In this way, the effect of steady-state lateral
load transfer is accounted for in the single-track model.



170 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 30, NO. 1, JANUARY 2022

The front and rear slip angles in the single-track model
(shown in Fig. 2) are computed from

αf = arctan



Uy + ar

Ux

�
− δ (11a)

αr = arctan



Uy − br

Ux

�
. (11b)

Full sliding, also denoted as saturation, of a tire contact patch
occurs at sliding slip angle αsl [17]

αsl = arctan



3 Fmax

y

Cα

�
. (12)

Fig. 5 shows the brush model in (10) with experimental data
from the ramp steer maneuvers. The figure shows that the tire
model describes the measurement data well.

The figure also illustrates that any front slip angle exceeding
±αsl

f generates a constant lateral force. This too can cause
difficulties in numerical optimization, because when the local
derivative vanishes, steering inputs are rendered completely
ineffective. In this case, a gradient-based optimization scheme
might not be able to find a steering angle command that would
actually put the tires back in the nonsaturated region to realize
a decrease in lateral force.

Anecdotally, when the planning horizon always contains
some stages in which the tires are not fully saturated and
the steering inputs are coupled through steering rate con-
straints or costs, the solver should have a way to pull saturated
stages out of the sliding region. However, with sustained
cornering in racing or planning a long evasive maneuver
in a single direction, this cannot be guaranteed. Therefore,
the tire model is modified to have a nonzero slope in the
saturated region, making the model strictly monotonic. The
tangent line modification starts at fraction ξ of the maximum
lateral force

αmod = arctan



3 Fmax

y ξ

Cα

�
(13)

where ξ is a user-defined parameter between 0 and 1, leaving
the tire model intact up to that point. Matching slopes yields
the following modified tire model:

F̃y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Cα tan α

+ C 2
α

3F̃max
y

|tan α| tan α

− C 3
α

27
�
F̃max

y

�2 tan3 α if |α| ≤ αmod

−Cα

�
1 − 2ξ + ξ2� tan α

−F̃max
y

�
3ξ2 − 2ξ3

�
sgn α otherwise

(14a)

= f̃tire(α, Fz , Fx). (14b)

Fig. 5 shows the original and the modified tire model with
ξ = 0.85, when Fx f = 0 kN and 7 kN. The mismatch between
the measurement data and the modified model is minor.

The modified tire model implies that more lateral tire force
is available with larger slip angles, but these higher forces
cannot be physically realized. Therefore, in motion planning
and control, the NLP needs to penalize slip angles exceeding
±αmod to discourage the solver from exploiting this.

Fig. 5. Original and modified (ξ = 0.85) model for the front axle lateral
force, for Fx f = 0 kN and derated by 7 kN, on a flat and level road, with
μf = 0.90 (dry asphalt) and the parameters listed in Table I, superposed on
measurement data.

Although we consider the planar dynamics of the single-
track model, the model for front and rear axle normal loads
does include the effects of vertical road topography, in addition
to steady-state longitudinal load transfer

Fz f = b

L
m

�
g cos θ cosϕ + AV 2U 2

x

� − hcg

L
Fx (15a)

Fzr = a

L
m

�
g cos θ cosϕ + AV 2U 2

x

� + hcg

L
Fx . (15b)

In this model, Fx is the total commanded longitudinal force
and (following the notation in [19]) AV 2 captures the speed
effect of vertical curvature (cresting hills) and banked turns
on the vehicle’s total normal load:

AV 2 = −∂θ
∂s

cosϕ − κ sin ϕ cos θ. (16)

We assume that the vehicle stays relatively close to the road
descriptor path for which the topography profile is measured
and that the topography is relatively constant along the width
of the track.

B. Point-Mass Model
A simpler model of a vehicle is the planar point-mass model,

indicated on the right side in Fig. 2, with an overbar over its
variables to clearly separate them from the variables associated
with the single-track model. The point-mass model has only
one velocity state, the total horizontal velocity V̄ . It too has
three position states in relation to the road descriptor path: the
distance along this path and the lateral distance to this path,
s̄ and ē, respectively, and the difference in direction of the
velocity vector and the local tangent to the descriptor path,
denoted by course error φ̄. The model is described by the
following equations of motion:

˙̄V = F̄x − F̄d

m
(17a)

˙̄s = V̄ cos φ̄

1 − κ ē
(17b)

˙̄e = V̄ sin φ̄ (17c)

˙̄φ = F̄y + F̄b

mV̄
− κ ˙̄s. (17d)
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Fig. 6. Total input-force limits for the point-mass model resulting from the
intersection of the friction limits at each of the axles, for μf = 0.90 and
μr = 0.95 (dry asphalt), a flat level road, and the parameters listed in Table I.

The model for drag force F̄d is the same as in (2) but with V̄
instead of Ux , and F̄b is defined by (3). There is no tire force
model in this point-mass model; the inputs are the total lateral
force F̄y and total longitudinal force F̄x .

The limits on the input forces follow from the intersection
of the friction limits at each of the axles. Under the assumption
of steady-state cornering, these limits are�

b
L F̄y

�2 + �
χ̃ f F̄x

�2 ≤ �
μ f Fz f

�2
(18a)�

a
L F̄y

�2 + �
χ̃r F̄x

�2 ≤ �
μr Fzr

�2
. (18b)

In these inequality constraints, the normal loads Fz f and Fzr

are computed according to (15), with V̄ instead of Ux . The
total input force limits for the point-mass model resulting from
the friction limits at each of the axles are shown in Fig. 6.

The friction limits describe ellipses. For a front-wheel-drive
vehicle, the rear axle normal load increases significantly under
acceleration due to longitudinal load transfer, without this axle
generating any longitudinal force. Therefore, the friction limit
for the rear axle is considerably larger than that for the front
axle.

C. Cascaded Vehicle Models

In a cascaded model design, the translational states of the
dynamic single-track model can directly be mapped to the
states of the point-mass model

s̄ = s (19a)

V̄ =
�

U 2
x + U 2

y (19b)

ē = e (19c)

φ̄ = arctan



Uy

Ux

�
+�ψ. (19d)

The point-mass model does not contain the vehicle’s yaw
dynamics and can therefore not be used for yaw stabilization.
However, the previous two sections reveal two key properties.

1) The point-mass model is simpler and requires fewer
optimization variables and constraints.

2) Without the fast yaw dynamics, the point-mass model
can be discretized with a larger step size.

Both these properties are crucial in extending the MPC
planning horizon at low computational cost.

IV. IMPLEMENTATION OF THE NLP

A. Overview

The NLP cost function could be configured for various
applications. In this case, the cost function is set up to mini-
mize time along a finite planning horizon. The minimum-time
objective constantly pushes the vehicle to its limits, forcing
the controller to make important tradeoffs in lateral and longi-
tudinal control, and motivates the controller at every time step
to seek the fastest trajectory from the vehicle’s current state.

For real-world experiments, we desire gradually ramping
up the level of acceleration at which the vehicle is operating,
for which we introduce two inequality constraints with a
user-defined friction limit μlim. The constraints are relaxed
with slack variables Fe f and Fer : in case of plant model
mismatch or external perturbations, these slack variables allow
prioritization of mitigating large penalties, e.g., imminent road
boundary intrusion or a slip angle violation, over the desired
level of accelerations.

The NLP for the proposed controller framework with seri-
ally cascaded model complexity, that is presented in more
detail in the following sections, is as follows:

min
xk, uk, zk,

x̄l, ūl

t̄M + Jterm + Jrb + Jrd + Ju̇ + Jα + JF

s.t. Uxk ≥ U min
x (State limits)

V̄l ≥ V̄ min

δmin ≤ δk ≤ δmax

δ̇min ≤ δ̇k ≤ δ̇max (Input limits)

Fxk ≤ Peng

Uxk

F̄xl ≤ Peng

V̄l

F̃y f k
= f̃tire

�
αf , F̃x f , Fz f

�
k

(Tire model)

F̃yr k
= f̃tire

�
αr , F̃xr , Fzr

�
k

−μf Fz f k
cosαf k

≤ F̃x fk
≤ μf Fz fk

cosαf k

−μr Fzr k
cosαrk ≤ F̃xrk

≤ μr Fzrk
cosαrk

x0 = xmeas (Dynamics)

xk+1 = gst(xk, uk)

x̄0 = gtr(xN )

x̄k+1 = gpm(x̄k, ūk)

F̃ 2
x fk

+ F̃ 2
y fk

≤ (μlim Fz fk
)2 + F 2

e fk
(Friction limits)

F̃ 2
xrk

+ F̃ 2
yrk

≤ (μlim Fzrk
)2 + F 2

erk

F̄ 2
x fl

+
� b

L
F̄yl

2 ≤
�

min
�
μf , μlim

�
F̄z fl

2

F̄ 2
xrl

+
� a

L
F̄yl

2 ≤
�

min(μr , μlim)F̄zrl

2
. (20)

The optimization variables for this discretized problem with
multiple shooting are related to the dynamic single-track
model and the point-mass model. For the single-track model,
the state x , input u, and helper variable z (which helps with
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NLP sparsity) at each planning stage k are defined as

xk = �
Ux Uy r t e �ψ δ

�ᵀ
k

uk = �
Fx δ̇

�ᵀ
k

zk = �
Fy f Fyr Fe f Fer

�ᵀ
k

⎫⎬
⎭∀ k = 0, . . . , N. (21)

The state x̄ and input ū for the remaining stages l in the
planning horizon with the point-mass model are defined as

x̄l = �
V̄ t̄ ē ψ̄

�ᵀ
l

ūl = �
F̄x F̄y

�ᵀ
l

�
∀ l = 0, . . . ,M. (22)

The dynamics of the vehicle’s position states, presented
in (1) and (17), are only marginally stable. Hence, continuous
control of the vehicle is required, especially when the vehicle
is to be pushed to its limits in racing or an emergency
maneuver. Therefore, in this application of MPC, the control
horizon is selected to be as long as the state prediction horizon.

B. NLP Feasibility

This NLP is purposefully designed with few hard inequality
constraints. These include the steering system limits, engine
power limit, and force limits for the point-mass model. Inputs
can always be selected to respect these limits. Equality con-
straints are only present in the state transition models and for
the tire model in (14) to relate the vehicle states and inputs to
the additional optimization variables in the helper variable.

In contrast, aspects, such as deviations from the desired
terminal state and road boundary intrusion, are carefully
implemented with high costs, rather than constraints. In this
way, the NLP is always numerically feasible, even when
for example road boundary intrusion is physically unavoid-
able, the vehicle’s current position is reported to be ever so
slightly outside of the allowable road surface due to sensor
noise or a minor road boundary intrusion occurred due to
an external disturbance. Numerical feasibility is essential to
be able to persistently solve for the control actions that the
vehicle should take. With high costs on undesirable behavior,
the solver will, in fact, yield the optimal action to take
to avoid such behavior, using the vehicle’s full potential if
necessary.

C. NLP Discretization

One option for model discretization is to discretize in
time, which leaves the curvilinear coordinate s as an opti-
mization variable. Brown and Gerdes [20] took this temporal
discretization approach in a control architecture with NMPC
for obstacle avoidance. An advantage of this method is that
the discretization time step can be selected based on the
bandwidth of the plant dynamics. However, the path geometry
needs to be recomputed (e.g., interpolated from a lookup
table or modeled as a function of s) for every intermediate
iteration of the NLP solver. This has nontrivial implications for
the implementation and the performance of the optimization
routine.

Alternatively, by discretizing the model spatially, the path
geometry becomes constant for each stage in the planning
horizon. This approach is more suitable for a racing sce-
nario on a road with complicated topography, during which

the vehicle will never plan to come to a stop. Formulating
the dynamics spatially also allows for explicitly minimiz-
ing time over the fixed horizon distance. A disadvantage
of spatial dynamics is that these become stiffer with lower
vehicle speed, which changes during the optimization process,
and hence, the spatial discretization step must be selected
carefully.

In this work, the single-track model is discretized spatially
along the road descriptor path based on the current vehicle
speed at 30-ms intervals, for a total of N steps. For planning
farther ahead, the current speed is no longer representative,
as the controller will plan to accelerate and decelerate signif-
icantly over a long horizon. Therefore, the point-mass model
is discretized spatially based on the speed profile that can be
expected along the road descriptor path. For highway driving,
this anticipated speed profile can, for example, be based on
the local speed limit or the speed of the traffic ahead; for
racing, Kapania et al. [21] computed the minimum-time speed
profile for a given friction limit and path geometry. In this
article, the point-mass model is spatially discretized for a total
of M steps at 250-ms intervals along such a “racing” speed
profile.

D. NLP Objective Function Terms

The NLP objective function in (20) is the sum of seven
terms.

1) Final Time: The primary objective is to minimize the
time at which the point-mass model reaches its last stage
M of the planning horizon, denoted by t̄M . All other
terms in the objective function are expressed as time
penalties.

2) Terminal State: The final stage in the finite horizon
must be controlled to a safe terminal state. In this case,
the static road descriptor is selected for this safe state.
The combination of terminal lateral position ēM , course
error φ̄M , and excess speed V̄exc is penalized, each term
with its own weight W

Jterm = Weterm ē 2
M + Wφterm φ̄

2
M + WVterm V̄ 2

exc (23)

where

V̄ 2
exc =

� �
V̄M −V̄safeM

�2
, if V̄M ≥ V̄safeM

0, otherwise.
(24)

3) Road Boundary Intrusion: To strongly encourage the
vehicle to stay on the road, the problem is configured
with a high conditional cost on intrusion of the road
boundaries

Jrb = Wrb

N�
k=1

�sk

⎧⎪⎪⎨
⎪⎪⎩

�
ek − emax

k

�2
, if ek ≥ emax

k�
ek − emin

k

�2
, if ek ≤ emin

k

0, otherwise.

+Wrb

M�
l=1

�s̄l

⎧⎪⎪⎨
⎪⎪⎩

�
ēl − ēmax

l

�2
, if ēl ≥ ēmax

l�
ēl − ēmin

l

�2
, if ēl ≤ ēmin

l

0, otherwise.

(25)
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For consistency of the objective function throughout the
planning horizon, the intrusions are weighted by their
respective discretization step �s.

4) Deviation from the Road Descriptor Path: A small cost
on planned lateral position yields feedback to the road
descriptor

Jrd = Wrd

�
N�

k=1

�ske 2
k +

M�
l=1

�s̄l ē
2
l

�
. (26)

This provides robustness against plant model mismatch.
5) Slew Rate: Small costs on slew rates promote smooth-

ness of the control inputs

Ju̇ = Jδ̇ + J�Fy + J�Fx + J�Ftr (27)

where Jδ̇ penalizes steering rates in the single-track
model

Jδ̇ = Wδ̇

N�
k=0

δ̇ 2
k . (28)

The point-mass model does not have steering as an input;
there, the changes in total lateral force are penalized

J�Fy = W�F

M−1�
l=1

1

�s̄l

�
F̄yl+1 − F̄yl

�2
. (29)

For both models, changes in the total commanded
longitudinal force are included in the cost
function

J�Fx = W�F

N−1�
k=0

1

�sk

�
Fxk+1 − Fxk

�2

+ W�F

M−1�
l=1

1

�s̄l

�
F̄xl+1 − F̄xl

�2
. (30)

The changes in forces at the model transition are
included

J�Ftr = W�F

�s̄0

��
F̄x1 −FxN

�2+�
F̄y1 − F̃y f N

− F̃yrN

�2
(31)

for continuity in the cascaded model planning horizon.
6) Excessive Slip Angle: A penalty on excessive slip angle

prevents the tires from operating in the fully saturated
region and stabilizes the vehicle. Furthermore, this term
puts a cost on slip angles specifically beyond the point
where the tire model is modified [see (14)], to discourage
the solver from exploiting this unrealistic behavior of the
modified tire model

Jα = Wα

N�
k=1

⎧⎨
⎩

���tαfk

�� − tαmod
fk

2
,if

��tαf k

�� ≥ tαmod
fk

0, otherwise.

+Wα

N�
k=1

⎧⎨
⎩

���tαrk

�� − tαmod
rk

2
,if

��tαrk

�� ≥ tαmod
rk

0, otherwise
(32)

where t denotes the tangent function.
7) Excessive Force Usage Beyond the Imposed Limit:

The slack variables in the soft friction constraints are
penalized

JF = WF

N�
k=0


�
F 2

e f k

2 +
�

F 2
er k

2
�
. (33)

E. NLP Constraints
1) State Limits: The tire model and point-mass model expe-

rience a singularity when Ux = 0 m/s and V̄ = 0 m/s,
respectively, and with spatial discretization, the time
between steps becomes infinite when the car comes to
a stop. Therefore, in this racing application, Ux and V̄
are lower bounded

Uxk ≥ U min
x ∀ k = 1, . . . , N (34a)

V̄l ≥ V̄ min ∀ l = 1, . . . ,M. (34b)

Despite these lower bounds on the longitudinal speed
over the planning horizon and initial vehicle state,
the research vehicle takes off reliably from a standstill.
For more general applications, we successfully experi-
mented with transitioning to kinematic vehicle models
(that do not suffer from such singularities) at low speeds,
but this is beyond the scope of this article.
The maximum steering angle is dictated by the vehicle’s
mechanical steering limits

δmin ≤ δk ≤ δmax ∀ k = 1, . . . , N. (35)

2) Input Limits: The single-track model has a steering rate
limit

δ̇min ≤ δ̇k ≤ δ̇max ∀ k = 0, . . . , N (36)

and for both vehicle models, the maximum engine power
Peng is incorporated with inequality constraints

Fxk ≤ Peng

Uxk

∀ k = 0, . . . , N (37a)

F̄xl ≤ Peng

V̄l
∀ l = 0, . . . ,M. (37b)

3) Tire Model: The lateral axle forces are computed with
the modified coupled tire model in (14)

F̃y fk
= f̃tire

�
αf k
, F̃x fk

, Fz fk


∀ k = 0, . . . , N (38a)

F̃yrk
= f̃tire

�
αrk , F̃xrk

, Fzrk


.

... (38b)

The longitudinal forces are constrained to the friction
potential based on the instantaneous axle normal loads.
Furthermore, we recognize that when an isotropic tire
generates a force opposite to the direction of slip and
the tires could lock but not experience excessive positive
longitudinal slip, both bounds on the longitudinal tire
forces must be corrected with the cosine of the slip angle

−μ f Fz fk
cosα fk ≤ F̃x fk

≤μ f Fz f cosα fk ∀ k =0,...,N (39a)

−μr Fzrk
cosαrk ≤ F̃xrk

≤μr Fzr cosαrk .
... (39b)

Fig. 7 illustrates this.
4) Dynamics: The initial state of the single-track model is

equal to the measured vehicle state

x0 = xmeas (40)

where the initial steering angle command is obtained
from the previous controller time step. The initial lon-
gitudinal speed is set to at least U min

x = V̄ min = 5 m/s,
even when the vehicle is actually traveling more slowly,
to ensure that the initial state respects the state limits
and a feasible solution to the NLP exists.
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Fig. 7. An isotropic tire generates a force opposite to the direction of its
velocity Vtire with respect to the road. The longitudinal force that the tire
can generate, if longitudinal slip is limited, is bounded by the cosine of its
slip angle α.

Let ν � denote the derivative of generic variable ν
with respect to the curvilinear coordinate s, i.e., ν � =
dν/ds. Then, the following expressions describe the
spatial dynamics gst for the dynamic single-track model
from (1):

U �
x = 1

ṡ

�
F̃x f cos δ− F̃y f sin δ+ F̃xr −Fd

m
+ rUy

�
(41a)

U �
y = 1

ṡ

�
F̃y f cos δ+ F̃x f sin δ+ F̃yr +Fb

m
− rUx

�
(41b)

r � = 1

ṡ

�
a
�
F̃y f cos δ + F̃x f sin δ

� − bF̃yr

Izz

�
(41c)

t � = 1

ṡ
(41d)

e� = (1 − κe) tan



arctan



Uy

Ux

�
+�ψ

�
(41e)

�ψ � = r

ṡ
− κ (41f)

δ� = 1

ṡ
δ̇. (41g)

These dynamics are integrated with the trapezoidal rule,
with zero-order hold for the inputs (δ̇ and Fx ) and first-
order hold for the path geometry.
The spatial dynamics of the point-mass model gpm are

V̄ � = 1
˙̄s
�
F̄x − F̄d

�
m

(42a)

t̄ � = 1
˙̄s (42b)

ē� = (1 − κ ē) tan φ̄ (42c)

φ̄� = 1
˙̄s
�
F̄y + F̄b

�
mV̄

− κ. (42d)

These dynamics are integrated with the simple forward
Euler method, also with zero-order hold for the inputs
(F̄x and F̄y) and first-order hold for the path geometry.
Mapping of the final state of the single-track model to
the initial state of the point-mass model gtr is described
by (19).

5) Friction Limits: For conducting real-world experiments,
friction limits with a user-defined friction coefficient

allow for gradually ramping up the levels of acceleration
at which the research vehicle is operating

F̃ 2
x fk

+ F̃ 2
y fk

≤ �
μlim Fz fk

�2+F 2
e fk

∀ k = 0, . . . , N (43a)

F̃ 2
xrk

+ F̃ 2
yrk

≤ �
μlim Fzrk

�2+F 2
erk
.

... (43b)

The normal load models include the effects of steady-
state longitudinal load transfer and effects of road topog-
raphy as in (15), the lateral axle forces follow from (14),
and the longitudinal axle forces are computed with the
differentiable functions in (7). We reiterate that the soft
friction constraints in (43) merely provide a means to
bound the accelerations for real-world testing, if so
desired. For the single-track model, the framework can
never plan with forces that exceed those that can be
realized with its tire models.
Similarly, the input forces to the point-mass model are
constrained by the minimum of the user-defined friction
limit and the tire-road friction coefficients. These con-
straints leverage steady-state assumptions for the lateral
axle forces and are shown in Fig. 6

F̄ 2
x fl

+�
b
L F̄yl

�2 ≤�
min

�
μ f ,μlim

�
F̄z fl

�2 ∀ l =0,...,M (44a)

F̄ 2
xrl

+�
a
L F̄yl

�2 ≤�
min(μr ,μlim)F̄zrl

�2
.

... (44b)

F. Stability Analysis

For multivariable optimization of nonlinear systems, it is
generally difficult to analytically investigate the system’s sta-
bility characteristics as a function of the various weights in
the objective function. In order to leverage analysis tools that
are commonplace in classical control design, here the behavior
of the NMPC framework is cast into a linear quadratic reg-
ulator (LQR) design. We consider the following equations of
motion for the vehicle’s yaw dynamics at constant longitudinal
speed, linearized around equilibria, with steering rate as the
input [22]:⎡
⎢⎢⎢⎢⎢⎣

˙̃Uy

˙̃r

˙̃δ

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−C̃αf − C̃αr

mUx

bC̃αr − aC̃αf

mUx
− Ux

C̃αf

m
bC̃αr − aC̃αf

IzzUx

a2C̃αr − b2C̃αf

IzzUx

aC̃αf

Izz

0 0 0

⎤
⎥⎥⎥⎥⎥⎦

×
⎡
⎣Ũy

r̃
δ̃

⎤
⎦ +

⎡
⎣0

0
1

⎤
⎦ ˙̃δ. (45)

The NMPC objective function in (20) is approximated by
two terms that encode its balancing of competing objectives
in an LQR design: the deviation of front slip angle, to reflect
the incentive to maintain maximum front lateral in order to
minimize time around a turn, and the steering rate, to obtain
smooth control inputs. This can directly be cast into the
quadratic cost function for an LQR design of the standard
form

J =
� ∞

0

�
x T Qx + uT Ru

�
dt =

� ∞

0

�
α2

f + W̃δ̇ δ̇
2�dt (46)
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Fig. 8. Automated Volkswagen Golf GTI. Photograph by Patrick Beaudouin.

with a small angle approximation of the front slip angle

αf ≈ Uy + ar

Ux
− δ. (47)

For the quadratic LQR cost function, this yields

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

U 2
x

a

U 2
x

− 1

Ux

a

U 2
x

a2

U 2
x

− a

Ux

− 1

Ux
− a

Ux
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and R = W̃δ̇ . (48)

By varying the value of W̃δ̇ , the relative importance of the
steering rate in the objective function is directly altered, which
leads to a different optimal gain matrix in the LQR design.
Fig. 9 shows the resulting eigenvalues of the closed-loop linear
system for two different values of W̃δ̇ when linearizing the
system between 0% and 100% front slip angle saturation.

The analysis shows that in all driving, the closed-loop poles
are stable. At 100% front slip angle saturation, the imaginary
poles all end up in the same location. This is as expected since,
at the sliding slip angle, changes in slip angle no longer lead
to a change in lateral force (see Section III-A3). Thus, at this
point, steering inputs have become ineffective in control of the
yaw dynamics.1 Below the absolute limits, however, the root
loci show that the damping of these closed-loop dynamics
changes as a function of the weight on the steering rate in
the LQR objective function.

At first sight, the conclusion that the system’s performance
(damping) decreases with a lower weight on steering rate
seemed counterintuitive. We expected that a lower weight
would make the system more responsive in counteracting dis-
turbances. Nonetheless, the analytical results are confirmed by
experimental results: with a relatively low weight on steering
rate in the NMPC objective function, the research vehicle
displays oscillatory yaw behavior in sustained turns [22].

V. EXPERIMENT DESIGN

The concept of cascaded model complexity is validated in
two steps, with a simulation study and a real-world experiment.

1This also implies that at the limits of handling, steering is no longer an
effective input to control the vehicle’s position states. Hence, in racing and
emergency maneuvers, combined lateral and longitudinal control is crucial.

Fig. 9. Closed-loop poles for two different values of the relative weight on
steering rate in an LQR framework, with the linearizations from 0% to 100%
front slip angle saturation, for Ux = 30 m/s.

The studies feature the same optimization software and com-
puter hardware and compare the cascaded model architecture
with an architecture that features only the single-track model.

The optimization problem is implemented with
CasADi 3.4.3, a free and open-source symbolic framework
for automatic differentiation and optimal control [23]. The
NLP is solved with IPOPT 3.12.0, a free and open-source
software package for large-scale nonlinear optimization [15],
using the free HSL MA27 linear solver [24].

An automated 2018 Volkswagen Golf VII GTI Performance,
shown in Fig. 8, serves as the research platform for the exper-
iments. Table I shows the main vehicle and tire parameters.
The proposed control framework is deployed on an onboard
computer, which has an Intel Core i7-5700EQ processor with
a clock speed of 2.60 GHz. A dSpace MicroAutoBox II
provides the low-level interfaces to the vehicle. A low-level
steering controller running at 1 kHz tracks the desired steering
angle by sending a torque command to an electronic power
steering (EPS) system. Positive longitudinal force commands
are converted into a throttle pedal voltage, based on an engine
map that is created from measurements of the research vehicle
on a dynamometer. Negative longitudinal force commands
are mapped to front and rear brake pressure commands
according to a static brake proportioning function. The vehicle
is equipped with an antilock brake system (ABS), but no
electronic stability control (ESC) or traction control (TC)
is active. An Oxford Technical Solutions RT3002 provides
vehicle state estimates from an integrated inertial measurement
unit (IMU) and a single-antenna GPS receiver with differential
corrections from an on-site GPS base station.

The simulation study and the real-world experiment are
conducted on the West track at Thunderhill Raceway Park in
Willows, CA, USA, for which the layout is shown in Fig. 10.
This is a full-scale race track with a length of 2.6 km that
exposes the vehicle to many different challenging driving
scenarios. The track includes tight hairpin turns, high-speed
sweeping turns, s-turns, banked turns, and a turn on top of a
hill crest. The virtual road boundaries for the controller are
placed at 1 m from the physical edges of the track, to create a
safety margin for real-world testing near the limits of handling.
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TABLE I

VEHICLE AND TIRE MODEL PARAMETERS (TWO
PASSENGERS, WET ASPHALT)

Fig. 10. Layout of the West race track at Thunderhill Raceway Park.

Since the race track is very wide, often in excess of 8 m,
the track centerline is not a realistic descriptor for the path
that the vehicle will take: the controller will aim to use the
full width of the track in order to minimize time. Therefore,
the centerline is not representative of the topography that the
vehicle will encounter, and its associated speed profile will not
accurately reflect the vehicle’s speed for model discretization.
Instead, for this racing application, the descriptor trajectory
is generated offline in a single NLP for a full lap around
the track, using the point-mass model with a minimum-time
objective. To reflect the fact that the point-mass model is not
an accurate description of the vehicle’s dynamics, the NLP is
configured to leave a conservative minimum distance of 1.5 m
to the road edges. The resulting trajectory, i.e., path and speed
profile, provides the basis for the static map that is loaded
to the vehicle. As such, computation of the road descriptor
path or its speed profile is not part of the online motion
planning and control architecture.

Table II lists the values for the weights in the NLP objective
function. These are selected based on simulations, empirical
tuning in real-world experiments with the automated research
vehicle, and the stability analysis presented in Section IV-F.
The tuning process focuses on obtaining good closed-loop
stability and proper prioritization of control objectives. For
example, the weights for excessive slip angles and road
boundary intrusion are selected such that the cost on slip angle

TABLE II

VALUES OF THE WEIGHTS IN THE NLP OBJECTIVE FUNCTION

Fig. 11. Simulated lap time for μlim = 0.6, plotted against the median NLP
solve time, for different combinations of N steps with the single-track model
followed by M steps with the point-mass model. Note the change in scaling
of the horizontal axis.

in a limit oversteer situation or an imminent road departure
outweighs the cost for the steering slew rate required for
recovery.

VI. SIMULATION STUDY

The simulation study serves two main purposes.

1) Demonstrate that a cascaded model architecture and an
architecture with only a single-track model achieve the
same lap time if their horizons are sufficiently long.

2) Illustrate that the horizon length for the single-track
model to achieve the minimum lap time prohibits real-
time control, but not in case of a cascaded model design.

To these ends, the simulation study evaluates different
combinations of N planning stages with the single-track model
followed by M stages with the point-mass model. The vehicle
model in the simulation is the dynamic single-track model,
as described in Section III-A.

Fig. 11 shows the time required to complete a full lap
against the median NLP solve time. It illustrates that the per-
formance of the architecture with only the single-track model
improves when the number of planning stages is increased,
but that the median solve time increases significantly.

In contrast, with the cascaded model design, the simulated
lap time improves quickly as stages with the point-mass model
are appended, while the increase in median solve time is
modest. The planning horizon is still bound to the same
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Fig. 12. Planned position states with the two different architectures, going
into turn 3 with a nominal friction limit of 0.6. The road descriptor path is
also included.

TABLE III

DIMENSIONS OF THE NLPS IN THE REAL-WORLD EXPERIMENT

Fig. 13. Accelerations in runs where the nominal friction limit is set to 0.7,
i.e., the fastest runs in the wet conditions.

(high) costs of deviations from the road descriptor trajectory
at the end of the horizon, but because the planning horizon
is significantly longer, there is more freedom to leverage the
vehicle’s potential and the width of the track more effectively
in the near term.

Both architectures achieve the same minimum lap time, but
the computational burden with only the single-track model is
significantly larger. In fact, when targeting a replan time of
50 ms and achieving the minimum lap time, the solve time for
this architecture prohibits real-time control. With the cascaded
model design, on the other hand, the minimum lap time can
be achieved well within a median NLP solve time of 50 ms.

Effectively, as the planning horizon is extended, the control
framework transitions from predominantly trajectory tracking
of the terminal state to a framework that approaches the
globally optimal solution from the current state. Fig. 11 reveals

Fig. 14. Measured lateral position from the road descriptor path in between
the virtual road edges (in black), and measured horizontal speed with the two
different architectures, in runs where the nominal friction limit is set to 0.6.

that for this specific scenario, the practical limit is a planning
horizon of approximately 7 s (N = 20 and M = 30 or N =
200); beyond that, the lap time does not decrease.

VII. REAL-WORLD EXPERIMENT

For real-time implementation of the NMPC framework,
a replan interval of 50 ms is targeted. With this requirement,
the simulation study, and the notion that the solve times fluctu-
ate, two architectures are selected for a benchmark experiment.

1) Single-Track Model Only: The vehicle’s dynamics are
propagated with only the single-track model, in N =
32 steps, making up a nominal horizon length of 0.96 s.

2) Cascaded Models: The first part of the horizon consists
of N = 22 steps with the single-track model (nominally
0.66 s), followed by M = 22 steps with the point-
mass model (nominally 5.5 s). The combined nominal
planning horizon length is 6.16 s.

Fig. 12 shows how the planning horizon of the cascaded
setup extends through two full turns of the test track, while
the planning horizon with only the single-track model barely
covers the first half of the first turn for this configuration of
the number of stages. Table III lists the dimensions of the
resulting NLPs. Despite the difference in the total number of
stages between the two architectures, the number of variables
and the number of constraints are comparable. The cascaded
model design does have fewer nonzeros in the Hessian of
the Lagrangian and the constraint Jacobian; this increase in
sparsity is hypothesized to lead to a lower median solve time.

The experiments cover the first to the last turn of the
Thunderhill West race track, from s = 450–2575 m. In the
experiment, which coincidentally took place in very wet
weather conditions, five levels of the nominal friction limit
μlim are tested: 0.5, 0.6, 0.65, 0.68, and 0.7. In these weather
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Fig. 15. Measured section time from s = 450–2,575 m, for all tested levels
of the nominal friction limit.

Fig. 16. Tukey boxplot of the wall-clock time of solving the NLPs with the
two different NMPC architectures in all benchmark runs. The targeted replan
time is 50 ms.

conditions, the vehicle is operating very close to its physical
limits when the nominal friction limit is set to 0.7. Fig. 13
shows that in the fastest runs, the lateral and longitudinal
accelerations are around 7 m/s2 as expected and the minimum-
time objective constantly pushes the vehicle to its limits.

Indeed, with a longer planning horizon, the controller can
more effectively use the distance to the road edges, as shown
in Fig. 14. It also illustrates how this allows the car to carry
more speed through the turns. The ability to use the width of
the track more effectively to minimize distance and increase
cornering speeds has a significant effect on the closed-loop
performance. Over a measurement distance of 2,125 m along
the road descriptor path, the serially cascaded model design is
between 1.4 and 5.9 s faster, as shown in Fig. 15.

Fig. 16 compares the computational burden of the two
architectures in a Tukey boxplot and confirms the hypothesis
that with the cascaded model architecture, the median NLP
solve time is consistently reduced.

VIII. CONCLUSION

This article introduces the concept of cascaded model com-
plexity within a single planning horizon for vehicle motion
planning and control. The framework leverages the fact that
lower complexity models require fewer optimization variables
and constraints and that the slower dynamics of lower com-
plexity models allow for a larger discretization step. This
yields a significant extension of the horizon at low compu-
tational cost while maintaining the high quality of control
with a high-fidelity model in the first part of the horizon.
In simulations and real-world experiments with an automated

race car, the proposed concept proves to be valuable, lowering
both the lap time and the median solve time of the optimization
problem.

This article considers hand-picked nonlinear vehicle models.
Future work will explore automatic model reduction tech-
niques for general linear and nonlinear systems and will
seek other applications. For more advanced vehicle control,
the framework could, for example, be extended with vehicle
models for torque vectoring and rollover protection.

As an extension of the current work, it will be investigated if
the horizon can be extended so far with the point-mass model,
up to the real-time computation limits, that we can always plan
to stop at the end of the horizon. This could eliminate the need
for any offline computations of a safe speed profile for the road
descriptor path.
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