
2012 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 5, SEPTEMBER 2021

Dual Quaternion Particle Filtering for
Pose Estimation

Aksel Sveier , Member, IEEE, and Olav Egeland , Senior Member, IEEE

Abstract— This article presents a particle filter for pose estima-
tion using unit dual quaternion kinematics. The eight-parameter
unit dual quaternion is used for global representation of the
pose, whereas the six parameters of the dual modified Rodrigues
parameters (MRPs) are used for local pose representation in the
state-space model. The dual MRPs enable estimates of the mean
and the covariance to be calculated from the particles without
violating the algebraic constraint of the unit dual quaternion.
For verification of the filter and comparison with state of
the art, we consider pose measurements available in the form
of unit dual quaternions. Angular velocity and specific force
measurements from a body-mounted inertial measurement unit
are also considered in the filtering. We show through simulations
that the suggested particle filter has comparable accuracy with a
previously proposed unscented Kalman filter based on unit dual
quaternions. We also consider a practical application where the
pose of an arbitrary rigid object is estimated using a sequence of
point clouds from a 3-D camera. A model point cloud of the object
is displaced with the unit dual quaternion associated with each
particle, and a fitting score is calculated between the displaced
model point cloud and the measured point cloud from the 3-D
camera. The likelihoods of the fitting scores are calculated from
an exponential distribution and are used to update the weights
of the particles. The system was verified in an experiment where
the motion of a swinging payload hanging from a crane was
estimated using a 3-D camera.

Index Terms— Dual quaternions, kalman filters, nonlinear
filters, particle filtters, pose estimation.

I. INTRODUCTION

AMULTIPLICATIVE extended Kalman filter (EKF) for
attitude estimation based on unit quaternions was pre-

sented in [1]. The unit quaternion is a four-parameter global
parameterization of attitude, where the parameters appear lin-
early in the kinematic equation of motion. The multiplicative
measurement update of the EKF ensures the unit constraint
of the quaternion. A survey of attitude parameterizations was
presented in [2], while nonlinear filtering methods for attitude
estimation were surveyed in [3]. It was concluded that the
unit quaternion was the most widely used parameterization in
attitude estimation, due to the aforementioned properties.

A unit dual quaternion is an eight-parameter global parame-
terization of pose. The kinematic equation of motion describes

Manuscript received December 14, 2018; revised May 5, 2020; accepted
September 4, 2020. Date of publication October 14, 2020; date of current
version August 5, 2021. Manuscript received in final form September 23,
2020. This work was supported by the Norwegian Research Council, SFI Off-
shore Mechatronics, under Project 237896. Recommended by Associate Editor
J.-S. Li. (Corresponding author: Aksel Sveier.)

The authors are with the Department of Mechanical and Industrial Engi-
neering, Norwegian University of Science and Technology (NTNU), 7491
Trondheim, Norway (e-mail: akselsveier@gmail.com; olav.egeland@ntnu.no).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2020.3026926

the simultaneous motion of translation and rotation and has
a similar structure as the kinematic equation of the unit
quaternion. EKFs with unit dual quaternions in the state
were developed in [4] and [5], where both methods used
additive measurement updates, which meant that the algebraic
constraint of the unit dual quaternion would not hold without
a normalization of the updates. The multiplicative approach
for attitude estimation with unit quaternions in [1], which
ensured that the algebraic constraint would hold, was extended
to a multiplicative EKF for pose estimation with unit dual
quaternions in [6].

An unscented Kalman filter (UKF) for attitude estimation
with unit quaternion kinematics was presented in [7]. Modified
Rodrigues parameters (MRPs) were used for local attitude
representation in the state, whereas unit quaternions were used
for global representation. With this approach, the mean and
covariance of the state could be obtained from the sigma
points of the UKF without violating the algebraic constraint
of the unit quaternion. These results were extended to UKF
for pose estimation with unit dual quaternions in [8]. The unit
dual quaternion was transformed into the six parameter twistor
representation [9] in the state, where the twistor corresponds
to a dual MRP.

Particle filters require methods for finding estimates such
as the weighted mean and covariance from a set of weighted
state particles. This is analogous to calculating the mean and
covariance from sigma points in the UKF. The results in [7]
were used to develop a particle filter for attitude estimation
with unit quaternions in [10], where the local MRPs were used
in the particle states. Unlike EKFs and UKFs, the particle
filter does not assume that the state is distributed with a
Gaussian probability density function (pdf). Instead, a large
number of weighted samples, drawn from the state space,
approximate the continuous pdf of the state. This approach
assumes no functional form of the pdf and can solve nonlinear
and non-Gaussian filtering problems [11].

Particle filters are especially suited in combination with
camera sensor systems, as retrieving pose measurements from
visual data results in nonlinear and non-Gaussian operations.
In [12], a likelihood function with an exponential distribution
was used in a particle filter to estimate the pose of an object in
consecutive images from a 2-D camera. A known wireframe
of the object was projected into the image using the particle
pose. In [13], a particle filter was used to estimate the pose
of objects in a 3-D camera field of view. The 3-D images
were represented as point clouds, and point cloud models
of the objects were evaluated with an exponential likelihood
function. In general, clutter and occlusions in visual data may

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4018-4743
https://orcid.org/0000-0001-5472-9743


SVEIER AND EGELAND: DUAL QUATERNION PARTICLE FILTERING FOR POSE ESTIMATION 2013

also cause ambiguities in the measurements, causing the state
to be distributed with a multimodal pdf. A classical example
is found in [14], where curves in 2-D images were tracked in
a cluttered environment using a particle filter.

High-rate accelerometers and gyroscopes can be used as
complementary measurements to low-rate visual measure-
ments. In [6] and [8], these sensor measurements were used in
the prediction step of the filter and were modeled as control
inputs. The sensors provide angular velocity and specific force
measurements, which are subject to drift that will accumulate
in the integration of the signals. It is therefore imperative to
correct the state estimate in the update step of the filter using
a drift-free measurement system, as discussed in detail in [15].

In this article, we extend the particle filter for attitude
estimation using unit quaternions in [10] to particle filtering for
pose estimation with unit dual quaternions. Similar to the UKF
solution in [8], we use dual MRPs for local error representation
in the state vector, whereas unit dual quaternions are used
for the global representation. Moreover, we use the Cayley
transform [16] to perform the mapping between the unit dual
quaternion representation and the dual MRP representation.
The Cayley transform is also identified as an approximation
of the exponential function for dual vectors and is used in
the discrete-time propagation of the system kinematics. The
prediction step of the particle filter is modeled with angular
and linear velocity measurements that are corrupted by bias
and noise. We show how the same model can be used when
measurements of angular and linear velocity are unavailable.
We also show how to include specific force measurements
from an accelerometer with bias and noise by replacing the
linear velocity measurements. In the measurement update,
we first consider the case where pose measurements are
available in the form of unit dual quaternions and use the
measurement relation suggested in [17]. This is used for verifi-
cation of the filter through simulations, including a comparison
with the dual quaternion UKF presented in [8]. To show how
the proposed particle filter can be used in combination with
a vision system, we then consider point cloud measurements
from a 3-D camera. The likelihood of each particle is cal-
culated from an exponential distribution using a fitting score.
This solution was verified in an experiment where the motion
of a swinging payload hanging from a crane was estimated
using a 3-D camera. A separate Aruco marker system was
used for ground-truth reference in the experiment.

This article is organized as follows. Section II presents
the preliminary results on quaternions, dual number theory,
and kinematics, and the general particle filter equations are
introduced. Section III presents the dual quaternion particle
filter with the prediction and measurement update equations
and a discussion on implementation considerations. Section IV
shows the simulation results of the particle filter, and Section V
presents the swinging payload experiment where the particle
filter was used for tracking the motion. Finally, this article is
concluded in Section VI.

II. PRELIMINARIES

In this section, we present the required background for
quaternions and dual quaternions. This includes a discussion

on exponential mappings and logarithms, a presentation of the
Cayley transform, which can be used to compute the MRPs,
and an approximation of the exponential mapping. In addition,
the particle filter equations are presented.

A. Quaternions

A quaternion can be represented as a sum q = α + β of a
scalar α ∈ R and a vector β ∈ R

3 [18], [19]. The conjugate
of the quaternion is given by q∗ = α − β, and multiplication
with a scalar λ gives λq = λα +λβ. Addition and subtraction
of two quaternions q1 = α1 + β1 and q2 = α2 + β2 are done
componentwise and give q1±q2 = (α1 ± α2)+

(
β1 ± β2

)
. The

quaternion product is denoted with ⊗ and is defined by q1 ⊗
q2 = (

α1α2 − β1 · β2

) + (
α1β2 + α2β1 + β1 × β2

)
, where ·

denotes the scalar product and × denotes the vector cross
product. A vector u can be treated as a quaternion with zero
scalar part. It follows that u∗ = −u and that q⊗u = −β ·u+
(αu + β × u). The magnitude of a quaternion is ‖q‖2 = q ⊗
q∗ = α2+β ·β and the inverse is given by q−1 = q∗/‖q‖2. The
quaternion can also be represented as a column vector [q] =
[α, β�]�. Then, the magnitude is given by ‖q‖2 = [q]�[q].

A unit quaternion q = η + σ is a quaternion with unit
magnitude ‖q‖2 = η2 + σ · σ = 1. A rotation θ about the unit
axis k through the origin can be expressed as a unit quaternion
in the form q = cos θ/2+sin θ/2k. The corresponding rotation
matrix is given by R(q) = I + 2ησ× + 2σ×σ×, where (·)×
denotes the skew symmetric form of a column vector and I
is the identity matrix. The composite rotation R = R1R2 is a
rotation R1 followed by a rotation R2. Then, if R1 corresponds
to the unit quaternion q1 and R2 corresponds to the unit
quaternion q2, the composite rotation R will correspond to the
unit quaternion q = q1 ⊗ q2. It is noted that the quaternion
product of two unit quaternions is a unit quaternion, while
the sum of two unit quaternions will be a quaternion that in
general will not be a unit quaternion.

The unit quaternion can be expressed in terms of the
exponential function

q = exp

(
θk
2

)
= 1 + θk

2
+ 1

2!
(

θk
2

)2

+ 1

3!
(

θk
2

)3

+ · · ·
where (·)n is the quaternion product of order n. The vector u =
θk/2 is therefore called the logarithm of q. If the logarithm
u is given, then ‖u‖ = ±θ/2 and u/‖u‖ = ±k. Although the
expression for k is undefined for u = 0, the exponential can
be calculated for all u from

exp(u) = cos(‖u‖) + sinc(‖u‖)u.

A similar expression was used in [20] to calculate the rotation
matrix from the logarithm. This expression is numerically
well-conditioned around u = 0, which is seen from the Taylor
series expansion sinc(x) = sin x/x =1−x2/3! + x4/5! + · · ·

B. Dual Numbers

A dual number ã is given by ã = a + εa′, where a and
a′ are real numbers and ε is the dual unit defined by ε �= 0
and ε2 = 0 [21], [22]. Multiplication with a scalar λ is given
by λã = λa + ελa′. Addition and subtraction of two dual



2014 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 5, SEPTEMBER 2021

numbers ã1 = a1 + εa′
1 and ã2 = a2 + εa′

2 are componentwise
and given by ã1 ± ã2 = a1 ± a2 + ε(a′

1 ± a′
2). Multiplication

is done by regarding ã1 and ã2 as polynomials in ε and using
ε2 = 0. This gives ã1ã2 = a1a2 + ε(a1a′

2 + a′
1a2). The inverse

is ã−1 = 1/ã = (1/a)−εa′/a2. The real-valued function f (a)
of a is extended to a dual function f (ã) by a Taylor series
expansion about a, which in view of ε2 = 0 gives

f (ã) = f (a) + εa′ d f (a)

da
. (1)

Let θ be an angle and let d be a scalar distance. Then, the
dual number θ̃ = θ + εd is called a dual angle. It follows
from (1) that the sine and cosine of the dual angle are:

sin θ̃ = sin θ + εd cos θ

cos θ̃ = cos θ − εd sin θ.

It is straightforward to verify that sin2 θ̃ + cos2 θ̃ = 1 and that
the usual trigonometric identities sin θ̃ = 2 sin(θ̃/2) cos(θ̃/2)
and cos θ̃ = cos2(θ̃/2) sin2(θ̃/2) are satisfied. Moreover, the
Taylor series expansions about θ̃ = 0 are

sin θ̃ = θ̃ − θ̃3

3! + θ̃5

5! + · · ·

cos θ̃ = 1 − θ̃2

2! + θ̃4

4! + · · ·
It is noted that tan θ̃ = sin θ̃/ cos θ̃ = tan θ + ε(d/ cos2 θ).

A dual vector ũ is given by ũ = u+εu′, where u and u′ are
vectors. The scalar product of two dual vectors ũ1 = u1 + εu′

1
and ũ2 = u2 +εu′

2 is ũ1 ·ũ2 = u1 ·u2 +ε(u1 ·u′
2 +u′

1 ·u2), while
the cross product is ũ1 × ũ2 = u1 ×u2 + ε(u1 ×u′

2 + u′
1 ×u2).

A line can be written as a dual vector k̃ = k + εk′, where
k ∈ R

3 is a unit vector along the line, k′ = r×k is the moment
of the line with respect to a reference point, and r ∈ R

3 is
the vector from the reference point to a point on the line. It is
noted that k · k′ = 0. The elements k and k′ are the Plücker
coordinates [22] of the line.

C. Dual Quaternions

A dual quaternion is given by q̃ = q + εq′, where the real
part q = α + β and the dual part q′ = α′ + β ′ are quaternions
[18], [23]. The dual quaternion can also be represented by
q̃ = α̃+β̃, where α̃ = α+εα′ is a dual scalar and β̃ = β+εβ ′

is a dual vector. It follows that addition and subtraction of
dual quaternions are componentwise. Conjugation is given by
q̃∗ = q∗ + εq′∗ = α̃ − β̃. The quaternion product of two dual
quaternions is given by q̃1⊗q̃2 = q1⊗q2+ε(q1⊗q′

2+q′
1⊗q2).

A dual vector ũ = u + εu′ can be treated as a dual quaternion
with zero scalar parts. The dual magnitude of a dual quaternion
is

‖q̃‖2 = q̃ ⊗ q̃∗ = ‖q‖2 + 2ε(αα′ + β · β ′). (2)

Note that the dual magnitude is a dual number. It follows that
the inverse is q̃−1 = q̃∗/‖q̃‖2, which can be expressed as

(q + εq′)−1 = q−1 − εq−1 ⊗ q′ ⊗ q−1 (3)

and can be verified by direct calculation. A dual quaternion can
also be represented by the column vector [q̃] = [[q]�, [q′]�]�.

A dual quaternion q̃ = q + εq′ is a unit dual quaternion if
it has unit dual magnitude ‖q̃‖2 =1+ε0. From (2), it follows
that q̃ is a unit dual quaternion if and only if ‖q‖2 = 1 and
αα′+β·β ′ = 0. A unit dual quaternion can be used to represent
the displacement

T =
[

R t
0� 1

]
∈ SE(3)

of a rigid body [22]. The displacement T can be seen as
a composite displacement given by a translation t followed
by a rotation R. Let q̃R = q be a dual quaternion cor-
responding to a pure rotation, and let q̃t =1+ε(1/2)t be
the unit dual quaternion representing the translation t. Then,
the dual quaternion corresponding to T will be given by
q̃ = q̃t ⊗q̃R = q+ε(1/2)t⊗q. It follows from q′ = (1/2)t⊗q
that t = 2q′ ⊗ q∗, which gives

T(q̃) =
[

R(q) 2q′ ⊗ q∗
0� 1

]
.

An exponential function of the unit dual quaternion can be
defined if the translation and rotation commute. According to
Chasles’s theorem, a displacement T can be given as a rotation
by an angle θ about a line k̃ = k + εk′ and a translation d
along the same line [24], which means that the translation
and rotation commute. The dual angle of this displacement is
defined as θ̃ = θ + εd . The unit dual quaternion describing
the displacement is

q̃ = cos
θ̃

2
+ sin

θ̃

2
k̃ (4)

which gives

q̃=cos
θ

2
+k sin

θ

2
+ε

(
−d

2
sin

θ

2
+k

d

2
cos

θ

2
+k′ sin

θ

2

)
. (5)

It is seen that the real part q is the unit quaternion of the
rotation, whereas the dual part q′ is a quaternion, including
the parameters of both rotation and translation. Moreover, for
a pure rotation where d = 0, the unit dual quaternion is q̃R =
cos θ/2+k̃ sin θ/2, whereas for a pure translation where θ = 0,
the unit dual quaternion is q̃t =1+εk(d/2).

The unit dual quaternion can be expressed by the exponen-
tial function

q̃ = exp

(
θ̃ k̃
2

)
= 1 + θ̃ k̃

2
+ 1

2!
(

θ̃ k̃
2

)2

+ 1

3!
(

θ̃ k̃
2

)3

+ · · ·
The inverse function

log(q̃) = θ̃ k̃
2

= θk
2

+ ε

(
dk
2

+ θk′

2

)
is the dual vector logarithm of q̃. If the dual vector ũ = u+εu′
is given, the exponential function can be calculated from the
equivalent expression (5) using θ/2 = ‖u‖, k = u/‖u‖, d/2 =
u�u′/‖u‖, and k′ = −u×u×u′/‖u‖3. The expressions for d/2,
k, and k′ are not defined for u = 0, and still the exponential
can be calculated from [25]

exp(ũ) = cos(‖u‖) + sinc(‖u‖)u
+ ε

(
− sinc(‖u‖)u� + cos‖u‖I

+ ‖u‖ cos‖u‖ − sin‖u‖
‖u‖3 u×u×

)
u′. (6)



SVEIER AND EGELAND: DUAL QUATERNION PARTICLE FILTERING FOR POSE ESTIMATION 2015

It follows from the Taylor series expansion (x cos x −
sin x)/x3 = −1/3+x2/30+· · · at x = 0 that this expression is
numerically well conditioned for all ũ. It is noted that a similar
technique was used in [20] to calculate the homogeneous
transformation matrix from a logarithm.

D. Cayley Transform

The Cayley transform of the vector u ∈ R
3 is given by

cay(u)
	= (1 + u) ⊗ (1 − u)−1.

This expression can be calculated to be

cay(u) = (1 + u) ⊗ (1 + u)

1 + ‖u‖2
= 1−‖u‖2

1+‖u‖2
+ 2

1+‖u‖2
u (7)

which means that cay(u) is a quaternion. It is straightforward
to verify that ‖cay(u)‖ = 1, which means that cay(u) is a unit
quaternion.

Let μ = tan θ/4k be the MRP [2] of the rotation given by
θ and k. It follows from (7) that cay(μ) = q, where q =
cos θ/2 + sin θ/2k is the corresponding unit quaternion. The
inverse Cayley transform of q is given by

cay−1(q) = (q − 1) ⊗ (q + 1)−1

and corresponds to the MRP representation of q. This expres-
sion is undefined for q = −1, which is the case when θ = 2π ,
and is also the singularity of the MRP μ.

The Cayley transform of the dual vector ũ = u + εu′ is
given by

cay(ũ)
	= (1 + ũ) ⊗ (1 − ũ)−1. (8)

This expression can be expanded using (3), and insertion of
(1 − u)−1 = (1 + u)/(1 + u)2 gives

cay(ũ) = cay(u) + 2ε(1 + u) ⊗ u′ ⊗ (1 + u)

(1 + ‖u‖2)2
. (9)

It follows from (2) that cay(ũ) is a unit dual quaternion.
The dual vector

μ̃ = tan
θ̃

4
k̃ = tan

θ

4
k + ε

(
tan

θ

4
k′ + d

4 cos2 θ
4

k

)
(10)

is a dual MRP and is used to relate the Cayley transform to
the exponential function. Insertion of the real and dual parts
of μ̃ into (9) gives cay(μ̃) = q̃ where q̃ is given by (5). This
means that

cay

(
tan

θ̃

4
k̃
)

= exp

(
θ̃ k̃
2

)
. (11)

The inverse Cayley transform of the unit dual quaternion q̃ is
given as

cay−1(q̃) = (q̃ − 1) ⊗ (q̃ + 1)−1 (12)

and corresponds to the dual MRP representation of q̃. This
representation is called a twistor in [9]. The expression (12)
can be written as

cay−1(q̃) = cay−1(q) + 2ε(q + 1)−1 ⊗ q′ ⊗ (q + 1)−1

which is undefined for q = −1. This means that the inverse
Cayley transform of a unit dual quaternion is also undefined
for θ = 2π .

A detailed analysis of parameterizations of rigid body
motions and the Cayley transform is presented in [26] for
motors in conformal geometric algebra, which are isomorphic
to unit dual quaternions.

E. Dual Quaternion Kinematics

Consider a body frame B and a reference inertial frame I .
The displacement of B relative to I is described by the unit
dual quaternion q̃B/I . The angular and linear velocities of B
relative to I expressed in the coordinates of B are denoted
ωB

B/I and vB
B/I , respectively. The twist of the body frame

relative to the inertial frame described in the body frame is
given by the dual vector ω̃B

B/I = ωB
B/I + εvB

B/I . The kinematic
differential equation describing the displacement of the system
is given by

˙̃qB/I = 1

2
q̃B/I ⊗ ω̃B

B/I . (13)

For the remaining of this article, we will omit the subscripts
B/I and B . This means that relevant entities describe the
body B in relation to the inertial frame I expressed in the
coordinates of B , unless otherwise stated.

Suppose that a displacement is given by a constant twist
ω̃ in the time interval �t = tk+1 − tk . Then, the resulting
displacement corresponds to a screw motion with θ̃ k̃ = �tω̃
and is given by the unit dual quaternion

q̃ = exp

(
�tω̃k

2

)
.

This is used in the discrete-time integration of the unit dual
quaternion. Suppose that the unit dual quaternion at time tk is
q̃k and that the twist is constant and given by ω̃k in the time
interval �t . Then, the unit dual quaternion at time tk+1 is

q̃k+1 = q̃k ⊗ exp

(
�tω̃k

2

)
. (14)

Let θ̃ k̃ = �tω̃k . From (11), it can be seen that

cay

(
tan

θ̃

4
k̃
)

= exp

(
�tω̃k

2

)
.

Furthermore, from (10), it is seen that

tan
θ̃

4
k̃ ≈ θ

4
k + ε

(
θ

4
k′ + dk

4
k
)

= θ̃ k̃
4

when θ is small. This results in the approximation

cay

(
�tω̃k

4

)
≈ exp

(
�tω̃k

2

)
, θ is small. (15)

This means that the Cayley transform can be used for the
discrete-time integration in (14).



2016 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 5, SEPTEMBER 2021

F. Particle Filter

Consider the discrete nonlinear dynamic system

xk+1 = f (xk, wk), wk ∼ pwk (wk) (16)

zk = h(xk, vk), vk ∼ pvk (vk) (17)

where xk is the system state at time instance k and zk is the
measurement. The state transition model is described by the
nonlinear function f (·) and the observation model is described
by the nonlinear function h(·). The process noise wk and the
measurement noise vk are assumed to be zero-mean white-
noise sequences. The pdfs pwk (wk) and pvk (vk) are assumed
to be known and mutually independent. The initial pdf of the
state is also known and is given by px0(x0).

The filtering is performed by calculating the conditional
pdfs p(xk |z1:k−1) and p(xk |z1:k) recursively given the measure-
ment sequence z1:k = z1, . . . , zk . The prior pdf is given by

p(xk+1|z1:k) =
∫

p(xk+1|xk)p(xk|z1:k)dxk (18)

and the posterior pdf is given by

p(xk+1|z1:k+1) = p(zk+1|xk+1)p(xk+1|z1:k)∫
p(zk+1|xk+1)p(xk+1|z1:k)dxk+1

. (19)

Analytic solutions to (18) and (19) are only available for a
small and restrictive choice of systems and measurement mod-
els. A well-known solution is the Kalman filter, which assumes
linear models and Gaussian noise with known covariances. The
prior and posterior pdfs can then be represented by the mean
and covariance.

The particle filter, more specifically the Bayesian bootstrap
filter with roughening [11], approximates the pdfs by rep-
resenting the distributions through discrete samples that are
called particles. Each sample is a realization of the state vector
and is given a weight.

1) Prediction: Given a set of particles, {xi
k, w

i
k}N

i=1 at
timestep k, where i is the particle number, wi

k is the particle
weight, and N is the number of particles. The prediction is
performed by propagating each particle through (16)

xi
k+1 = f (xi

k, wi
k), wi

k ∼ pwk (wk)

where each sample of the process noise wi
k is drawn from

the pdf pwk (wk). This results in the set of predicted particles
{xi

k+1, w
i
k}N

i=1, where the weights are unchanged.
2) Update: The latest measurement zk+1 is accounted for

by evaluating the likelihood p(zk+1|xi
k+1) for each particle and

updating the weights with

w̄i
k+1 = wi

k p(zk+1|xi
k+1) (20)

and then normalizing

wi
k+1 = w̄i

k+1∑N
i=1 w̄i

k+1

. (21)

Note that an analytic expression for the likelihood
p(zk+1|xi

k+1) is required.
The estimates of a particle filter can be calculated from the

posterior particles and weights. Estimates, such as the mean

x̂k+1 and covariance P̂k+1, are found from

x̂k+1 ≈
N∑

i=1

wi
k+1xi

k+1 (22)

and

Pk+1 ≈
N∑

i=1

wi
k+1(x

i
k+1 − x̂k+1)(xi

k+1 − x̂k+1)
�. (23)

3) Resampling and Roughening: The prediction and update
step will cause the variance of the weights to increase, and
over time most of the weight will be distributed over only
a few particles [27]. The resampling step solves this problem
by replacing particles in less probable regions with particles in
probable regions, as first suggested in [11] and later justified
in [28]. This can be done with systematic resampling, where
samples are drawn (with replacement) N times from the
set {xi

k+1, w
i
k+1}N

i=1 to obtain the equally weighted particles
{xi

k+1, 1/N}N
i=1.

Resampling can cause the number of distinct particles to
decrease, and therefore, a roughening step was suggested
in [11]. Random jitter ci

k+1 ∼ N (0, Jk+1) is added to the
resampled particles to increase the number of distinct particles
in the significant region of the filter pdf. The roughened
particles states {xi

r,k+1}N
i=1 replace the resampled particle states

and are calculated as

xi
r,k+1 = xi

k+1 + ci
k+1, ci

k+1 ∼ N (0, Jk+1).

Here, Jk+1 is a diagonal covariance matrix where the element
m on the diagonal is calculated as

Jk+1(m) = sM(m)N−1/nx

where nx is the dimension of the state space, M(m) is the
maximum difference between component m in the state vectors
xi

k+1 of the particles, and s is a tuning parameter.
The resampling and roughening steps are performed to

achieve acceptable performance of the particle filter with a
finite and practical number of particles. However, these steps
are not required to run the filter and do not need to be applied
at every cycle of the filter. To decide whether to resample and
roughen or not, the number of effective samples Neff [29] is
approximated by

Neff ≈ 1∑N
i=1(w

i
k+1)

2
. (24)

If a few particles have significant weights, then Neff ≈ 1 or if
all the particles have nearly equal weights, then Neff ≈ N .

III. DUAL QUATERNION PARTICLE FILTER

In this section, we develop a particle filer for pose estimation
of a body B with respect to the inertial frame I . The particle
filter is formulated with unit dual quaternions for global rep-
resentation, while dual MRPs are used for local representation
in the state. The discrete-time kinematics of the pose in terms
of the dual quaternion is given by (14).

The prediction step of the particle filter is formulated
to include angular and linear velocity measurements. This
same formulation is used for no velocity measurements.
This can be used if angular velocity measurements from a



SVEIER AND EGELAND: DUAL QUATERNION PARTICLE FILTERING FOR POSE ESTIMATION 2017

body-mounted gyroscope are available, while linear velocity
measurements are unavailable. The last formulation considers
a body-mounted inertial measurement unit (IMU), providing
angular velocity and specific force measurements.

In the update step, pose measurements in the form of unit
dual quaternions are considered. There are no sensors that
measure pose directly; however, a combination of sensors,
such as GPS and a vision system, can be used to calculate
equivalent dual quaternion measurements. More importantly,
we use this to generate pose measurements for simulation
and validation of the particle filter. In addition, point cloud
measurements of the body from a 3-D camera are considered.
We show how the state hypothesis of the particle filter can
be weighted when we have a point cloud model of the body
available.

Furthermore, we describe the special considerations in the
resampling and roughening step of the particle filter when
working with dual quaternions. A discussion is included on
the challenges of run-time implementation and computational
complexity of the algorithm.

A. Prediction

1) Angular and Linear Velocity Measurements: Angular
velocity measurements ωm,k and linear velocity measurements
vm,k at discrete time instances tk can be written on dual vector
form as the measurement

ω̃m,k = ωm,k + εvm,k .

If we assume that the velocity sensor is placed on the body
and aligned with the body frame, we can apply a general
measurement model on dual vector form [6] given by

ω̃m,k = ω̃k + b̃k + η̃ω,k (25)

where
[
η̃ω,k

] ∼ N (0, diag(Qω, Qv)). Here, η̃ω,k = ηω,k +εηv,k

is the dual vector measurement noise, while b̃k = bω,k +εbv,k

is the dual vector bias of the measurement. The actual dual
velocity ω̃k is then seen from (25) to be

ω̃k = ω̃m,k − b̃k − η̃ω,k . (26)

The model for the dual vector bias is given by the white noise
process

˙̃b = η̃b

where the noise input η̃b = ηbω
+ εηbv

is a dual vector. This
is discretized using the first-order Euler discretization

b̃k+1 = b̃k + �t η̃b,k (27)

where
[
η̃b,k

] ∼ N (
0, diag

(
Qbω

, Qbv

))
.

We now have a discrete system consisting of (14) and (27),
where the dual velocity ω̃k in (14) is calculated from (26). We
use the dual MRP as a local error representation of pose in
the particle filter state vector, while the dual quaternion is used
for global representation. The mapping between the local and
global representation is performed with the Cayley transform

δũk = cay−1
(
q̃k ⊗ ˆ̃q∗

k

)
(28)

where δũk is the dual MRP describing the deviation between
the estimated pose ˆ̃qk and the actual pose q̃k . This approach
can be seen as an extension of the method proposed in [10]
for quaternions and is also analogous to the approach in [8]
for dual quaternions. The particle filter state vector is given by

xk =
[
δũk

b̃k

]
(29)

giving a state dimension of nx = 12.
The particle filter is initialized by drawing a set of N

particle states xi
0 = [δũi�

0 , b̃i�
0 ]� from the initial distribution

of the state px0(x0). The initial posterior estimate of the pose
is given by ˆ̃q+

0 . It is then assumed that the initial posterior
pose deviation is [δ ˆ̃u+

0 ] = [0, 0, 0, 0, 0, 0]�. The initial
posterior estimate of the dual bias is given by b̂+

0 . The weights
are initialized to wi

0 = 1/N . It is seen from (28) that the
initial value of the unit dual quaternion q̃i

0 of particle i can be
obtained from

q̃i
0 = cay

(
δũi

0

) ⊗ ˆ̃q+
0 . (30)

In the prediction, the unit dual quaternion q̃i
k of particle i

is propagated forward in time through

q̃i
k+1 = q̃i

k ⊗ exp

(
�t

2
ω̃i

k

)
(31)

where the velocities are calculated as

ω̃i
k = ω̃m,k − b̃i

k − η̃i
ω,k .

The noise vectors
[
η̃i

ω,k

]
are drawn from its pdf for each i .

The bias states are propagated through

b̃i
k+1 = b̃i

k + �t η̃i
b,k (32)

where the noise vectors [η̃i
b,k] are drawn for every i .

It is also necessary to propagate the estimate of the pose
according to

ˆ̃q−
k+1 = ˆ̃q+

k ⊗ exp

(
�t

2
ˆ̃ω+

k

)
(33)

where

ˆ̃ω+
k = ω̃m,k − ˆ̃b+

k .

The propagated state vector of particle i is then found from
the inverse Cayley transform of the propagated unit dual
quaternion q̃i

k+1 of particle i relative to the propagated estimate
ˆ̃qk . This gives

xi
k+1 =

[
cay−1

(
q̃i

k+1 ⊗ ˆ̃q−∗
k+1

)
b̃i

k+1

]
=

[
δũi

k+1
b̃i

k+1

]
(34)

for i = 1, . . . , N . The weights wi
k are unchanged in the

prediction.
2) No Velocity Measurements: When no velocity measure-

ments are available, then ω̃m,k and η̃ω,k are set to zero, and
(26) is reduced to

ω̃k = −b̃k . (35)

Consequently, the variances Qω and Qv of η̃ω,k are set to zero
in the filter equations. It is then assumed that the velocities
of the system follow a random walk process. As suggested



2018 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 5, SEPTEMBER 2021

in [6], the bias state is used to describe the random walk
velocity dynamics by simply increasing the variance of the bias
η̃b,k in the filter equations. This means that the filter remains
exactly as in Section III-A1 when no velocity measurements
are available, and only the tuning of the filter is different.

A similar approach can be used if only angular velocity
measurements or linear velocity measurements are available.
For example, if only angular velocity measurements from a
gyroscope are available, then Qω is set to the sensor noise
and Qbω

is the variance of the sensor bias, while Qv is set
to zero and Qbv

is the variance of the random walk linear
velocity.

3) Angular Velocity and Specific Force Measurements:
In this case where angular velocity and specific force are
measured, the real and dual parts of the velocity measurements
must be handled separately. The dual velocity (26), written in
terms of its real and dual parts, is reduced to

ω + εv = (
ωm − bω − ηω

) + ε(−bv ) (36)

as only angular velocity measurements are available. The dual
part is written as

v = −bv . (37)

The linear acceleration of the body aB
B/I = a relative to the

inertial frame can be related to the linear velocity by taking the
derivative referenced to the inertial frame on both sides of (37)

a = −ḃv + ω × v. (38)

Inserting (37) and the real part of (36) into (38) gives

a = −ḃv − ωm × bv + bω × bv + ηω × bv . (39)

A 3-D accelerometer measures the specific force f , which
is the acceleration minus the gravity acting on the sensor in
the three dimensions of the Euclidean space. By placing the
accelerometer in the body frame and aligning it with its axes,
the specific force f B

B/I = f can be measured directly. The
measurement model of the accelerometer is given by

fm = f + ba + ηa, ηa ∼ N (0, Qa) (40)

where fm is the measured specific force, ba is the bias of the
accelerometer, and ηa is a random component of zero-mean
Gaussian noise. The bias is driven by a zero-mean white-noise
process

ḃa = ηba

which is discretized using the first-order Euler discretization

ba,k+1 = ba,k + �tηba ,k, ηba ,k ∼ N (
0, Qba

)
. (41)

The constant gravitational acceleration gI is given in the
inertial frame and is acting on the body. The acceleration of
the body is then given as a sum of the specific force and the
gravitational acceleration

a = f + q∗ ⊗ gI ⊗ q. (42)

Inserting (40) into (42) gives

a = fm + q∗ ⊗ gI ⊗ q − ba − ηa . (43)

Finally, inserting (39) into (43) and solving for ḃv gives the
linear velocity bias dynamics

ḃv =−fm −ωm × bv +bω×bv +ηω×bv −q∗⊗gI ⊗ q+ba +ηa .

This is again discretized using the first-order Euler
discretization

bv,k+1 =bv,k +�t (−fm,k −ωm,k ×bv,k +bω,k ×bv,k

+ ηω,k × bv,k −q∗
k ⊗ gI ⊗ qk +ba,k +ηa,k).

(44)

We now expand the state vector to be

xk =
⎡
⎣δũk

b̃k

ba,k

⎤
⎦ =

⎡
⎢⎢⎣

δũk

bω,k

bv,k

ba,k

⎤
⎥⎥⎦. (45)

The initialization of the particle filter is similar to that
described in Section III-A1, except that the initial posterior
estimate b+

a,k is also given. The set of initial particle states
{xi

0}N
i=1 = {[δũi

0 b̃i
0 bi

a,0]�}N
i=1 is drawn from the initial

distribution of the state px0(x0).
The particle filter prediction is performed as described in

Section III-A1, except that the linear velocity bias bi
v,k is now

propagated through (44) as

bi
v,k+1 =bi

v,k + �t (−fm,k − ωm,k × bi
v,k + bi

ω,k × bi
v,k

+ ηi
ω,k × bi

v,k −qi∗
k ⊗gI ⊗qi

k +bi
a,k +ηi

a,k)

(46)

instead of the dual part of (32), while the angular velocity
bias bi

ω,k is still propagated through the real part of (32).
In addition, the acceleration bias bi

a,k is propagated through
(41) as

bi
a,k+1 = bi

a,k + �tηi
ba ,k, i = 1, . . . , N. (47)

B. Update

1) Dual Quaternion Measurements: The unit dual quater-
nion pose measurement q̃m,k+1 is now available. We use
the measurement relation proposed in [17], where the noise[
η̃q,k+1

] ∼ N (0, R) acting on the unit dual quaternion is
modeled as a screw displacement. This is mapped with the
Cayley transform to give the pose measurement model

q̃m,k+1 = q̃k+1 ⊗ cay

(
1

2
η̃q,k+1

)
. (48)

The likelihood at time t = k + 1 of the pose measurement
q̃m,k+1 given the particle pose q̃i

k+1 is denoted p(q̃m,k+1|q̃i
k+1).

This is calculated as

p(q̃m,k+1|q̃i
k+1) ∝ exp

(
−1

2
[η̃i

q,k+1]�R−1[η̃i
q,k+1]

)
where

η̃i
q,k+1 = 2cay−1

(
q̃i∗

k+1 ⊗ q̃m,k+1
)
.

The likelihoods {p(q̃m,k+1|q̃i
k+1)}N

i=1 are normalized before the
weights are updated and normalized through (20) and (21).



SVEIER AND EGELAND: DUAL QUATERNION PARTICLE FILTERING FOR POSE ESTIMATION 2019

2) Point Cloud Measurement: In this case, we want to
estimate the pose of an arbitrary rigid object visible in a 3-D
camera field of view. At each time step, a depth image is
obtained from the 3-D camera, which can be represented as a
set of measured points. More specifically, the set of measured
points is termed a point cloud and is denoted by

Pk+1 = {pl,k+1}Nm
l=1

where pl,k+1 ∈ R
3 and Nm is the number of points in Pk+1.

The rigid object is represented by a model point cloud,
which is denoted as

M = {m j }NM
j=1

where m j ∈ R
3 and NM is the number of points in M. The

model point cloud M can be obtained by sampling a CAD
model, by scanning a 3-D image of the object, or it can be
obtained by defining a cluster of points from an initial point
cloud measurement.

Given a model M of the object and a set of prior particles
{xi

k+1, wi
k}N

i=1 with the corresponding unit dual quaternions
{q̃i

k+1}N
i=1 describing the pose of the object, we wish to update

the particle weights given a measurement point cloud Pk+1.
The unit dual quaternion q̃i

k+1 of particle i is used to transform
the points of the model M to the predicted pose as

mi
j,k+1 = qi

k+1 ⊗ m j ⊗ qi∗
k+1 + 2q′i

k+1 ⊗ qi∗
k+1

for j = 1, . . . , NM. This is done for all the particles resulting
in a set of N models {Mi

k+1}N
i=1 = {{mi

j,k+1}NM
j=1 }N

i=1.
We use the point-to-point correspondence between the trans-

formed points of the model Mi
k+1 of particle i and the points

in the measurement Pk+1 to score how well particle i fits with
the measurement. Two corresponding points are identified by
calculating the nearest neighbors with replacement between
the points in the measurement Pk+1 and the points in Mi

k+1.
The nearest neighbors are obtained by calculating the Euclid-
ean distance between all points

d(pl,Mi
k+1) = arg min

mi
j,k+1∈Mi

k+1

∥∥mi
j,k+1 − pl,k+1

∥∥2

for l = 1, . . . , Nm . The set of correspondences is written as

Ci
k+1 = {(l, j) | pl,k+1 ∈ Pk+1, mi

j,k+1 ∈ Mi
k+1}.

When the nearest neighbor point correspondences between
the measurement Pk+1 and a model particle Mi

k+1 have been
established, a fitting score is calculated based on the Euclidean
distance between the correspondences. The fitting score is
calculated as

si
k+1 =

∑
Ci

k+1

∥∥mi
j,k+1 − pl,k+1

∥∥2
.

Following [13], the likelihood for each particle is then calcu-
lated from the fitting scores as

p(Pk+1|Mi
k+1) ∝ exp

(
−λ

(
1 − si

k+1 − smax,k+1

smin,k+1 − smax,k+1

))
(49)

where smin,k+1 and smax,k+1 are the minimal and maximal
fitting score values for all model particles, respectively, and

λ is a tuning scalar controlling the preference between higher
and lower scoring particles. Evaluation of the exponential
function in (49) will result in values, which lies in the interval
(0, 1], where 1 corresponds to a perfect match. The likelihoods
{p(Pk+1|Mi

k+1)}N
i=1 are normalized before the weights are

updated and normalized according to (20) and (21).

C. Resampling and Roughening

The number of effective particles Neff is computed from (24)
to decide whether to resample and roughen or not. These steps
are performed exactly as described in II-F3. After resampling
and roughening, we are left with a new set of particles
{xi

k+1, 1/N}N
i=1 representing the pose errors {δũi

k+1}N
i=1 and the

sensor biases. The predicted unit dual quaternions {q̃i
k+1}N

i=1
then needs to be recalculated so that the resampling and
roughening are accounted for. From (34), it can be seen that
this can be done by displacing the propagated pose estimate
with the resampled particle states as

q̃i
k+1 = cay

(
δũi

k+1

) ⊗ ˆ̃q−
k+1. (50)

The mean estimate x̂+
k+1 = [δ ˆ̃u+

k+1
ˆ̃b+

k+1]� (or alternatively

x̂+
k+1 = [δ ˆ̃u+

k+1
ˆ̃b+

k+1 b̂+
a,k+1]�) and covariance estimate P+

k+1
are calculated before the resampling and roughening through
(22) and (23), respectively. The resulting unit dual quaternion
pose estimate is then obtained as

ˆ̃q+
k+1 = cay

(
δ ˆ̃u+

k+1

) ⊗ ˆ̃q−
k+1. (51)

Velocity estimates may be required in a control application
and is found as the expectation of (26)

ˆ̃ω+
k+1 = ω̃m,k+1 − ˆ̃b+

k+1. (52)

Similarly, if the linear acceleration is required, it is found by
taking the expectation of (43)

â+
k+1 = fm,k+1 + q̂+∗

k+1 ⊗ gI ⊗ q̂+
k+1 − b̂+

a,k+1. (53)

Note that the predicted mean x̂−
k+1, covariance P−

k+1, and
estimates ˆ̃q−

k+1, ˆ̃ω−
k+1, â−

k+1 can be obtained in a similar manner
after the prediction step.

D. Implementation Considerations

The particle filter algorithm with N particles has a com-
putational complexity of O(N). In addition, when consider-
ing point cloud measurements, the computational complexity
increases depending on the number of model points NM and
the number of measured points Nm . The nearest neighbor
search described in Section III-B2 will in a brute-force imple-
mentation result in a problem with O(Nm NMN) complexity
that has to be computed for every iteration of the filter.
A standard consumer-grade 3-D camera such as the Kinect
v2 has a resolution of 424 × 512 pixels, which results in
Nm = 217 088 points in each measurement. In addition,
we may want to run the filter with thousands of particles,
making it impossible to meet any real-time requirements on
the existing sequential hardware.

To accelerate the computation, we approximate the nearest
neighbor search. This can be done by exploiting the structure



2020 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 5, SEPTEMBER 2021

of the point clouds. However, only the measured point clouds
from the 3-D camera inherit structure, whereas the model point
cloud may be unstructured. Since we assume that the object
is always in the field of view of the 3-D camera, we can
expect that states with high likelihood will result in model
point clouds Mi

k+1 that are in the field of view. We can then
project the model point clouds to the camera image plane,
using the intrinsic camera calibration matrix K , and perform
the NN-search in the depth image of the measured point cloud,
similar to our previous work [30]. The NN-search is performed
with a radius r around the pixel position of a point mi

j,k+1 ∈
Mi

k+1. The complexity now reduces to O(Nr NMN), where
Nr < Nm is the number of points that fall inside the radius r
on the image plane.

Further acceleration of the computation can be achieved
by exploiting the parallel structure of the particle filter. The
prediction and update step for each particle can be performed
in parallel on a graphical processing unit (GPU) such that
the run-time complexity of the computation is reduced. GPU
implementations of particle filters have lately become common
practice to facilitate real-time estimation, and an example
is [13]. A GPU consists of multiple processing cores, where
the idea is to assign a particle to each processing core, which
can be programmed using programming languages such as
CUDA [31]. The parallelism we can achieve with GPUs
strongly depends on the type of GPU, the number of particles,
and the complexity of the calculations required for the particle
filter. Generally, we can say that the run-time complexity
of running a particle filter on a GPU is O(NG), where
NG = 1 if the GPU is sufficiently powerful. In our case,
a GPU implementation would result in a run-time complexity
of O(Nr NMNG). If limited resources are available or low
run-time is required, both N and NM can be tuned to achieve
the tradeoff between run time and accuracy.

In our implementation of the particle filter, the prediction
step, update step, and roughening step are performed on the
GPU. The steps are programmed in CUDA C++ as modules
with Python bindings. Python is used as a glue language
controlling the execution sequence of the modules and loading
and storing the data. In the prediction and roughening steps,
random numbers are generated on the GPU using the cuRAND
function in CUDA.

IV. SIMULATIONS

In this section, a simulation study is presented for the parti-
cle filter with unit dual quaternion measurements, as described
in Section III-B1. Three different cases were simulated. In the
first case, the filtering was performed solely based on pose
measurements of a moving body. In the second case, angular
velocity measurements from a body-mounted gyroscope were
included. Here, the structure of the filter was the same as for
the first case, and only the tuning of the process noise was
changed. In the last case, both angular velocity and specific
force measurements from a body-mounted IMU were used.
The results of the particle filter were compared to the results
of the twistor-based UKF (TUKF) [8] for all three simulation
cases. The observation equation in the TUKF was replaced

TABLE I

INITIAL STATES AND COVARIANCES FOR THE SIMULATION WITH NO
ANGULAR VELOCITY OR SPECIFIC FORCE MEASUREMENTS

with (48) so that the observation equation was the same for
both filters.

Ground-truth motion of a body B following random walk
processes in linear and angular velocities was generated using
the Python programming language and the NumPy module.
The ground-truth velocities were generated with

ω̃k+1 = ω̃k + �t η̃w,k, [η̃w,k] ∼ N (0, diag(Wω, Wv ))

where Wω = 10−2I3(rad/s2)2, Wv = 10−2I3(m/s2)2, ω0 =
[0, 0, 0]�rad/s, v0 = [0, 0, 0]�m/s, and �t = 0.01 s.
The ground-truth pose of the body was obtained from (14)
using the ground-truth velocities and the initial pose [q̃0] =
[0.6549, 0.6634, −0.2048, −0.2986, 0, 0, 0, 0]�, where
the initial attitude was selected randomly. The dual quaternion
pose measurements were then generated from (48) using R =
diag

(
10−3I3(rad/s)2, 8 × 10−3I3(m/s)2

)
.

For all simulations cases, the prediction step of both the
particle filter and TUKF was performed at a rate of 100 Hz,
while the measurement update was at a rate of 5 Hz. A measure
of the error in attitude between the true pose q̃k and the filter
estimate ˆ̃qk was calculated as 2 arccos(ηδ,k), where q̃δ,k =
ˆ̃q∗

k⊗q̃k = ηδ,k+σ δ,k+ε(η′
δ,k+σ ′

δ,k). The magnitude of the error
in position was calculated as ‖rk − r̂k‖, where rk = 2q′

k ⊗ q∗
k

and r̂k = 2q̂′
k ⊗ q̂∗

k .
1) No Angular Velocity or Specific Force Measurements:

Since only dual quaternion pose measurements were available,
the prediction step of the particle filter was implemented as
described in Section III-A2, giving a state dimension of nx =
12. The tuning parameters Qω and Qv were set to a small value
since no velocity measurements were available. The bias state
of the filters had to account for the random walk velocity of
the body, and therefore, Qbω

and Qbv
were set to the values of

Wω and Wv used in the data generation of the ground-truth
motion. The measurement noise R and initial states were set
to the true values. The TUKF were tuned with the same values
as the particle filter and the initial states and covariances for
the filters are summarized in Table I.

The particle filter was tested with 100 Monte Carlo sim-
ulations for N = 10 000 and N = 50 000. The resampling
threshold was set to Neff = 0.5 N, and the roughening tuning
parameter was set to s = 1 × 10−5. The mean errors of the
Monte Carlo simulations are plotted for N = 50 000 in Fig. 1
with the corresponding errors for the TUKF. The root-mean-
square (rms) errors after 60 s are shown in Table II. The results



SVEIER AND EGELAND: DUAL QUATERNION PARTICLE FILTERING FOR POSE ESTIMATION 2021

Fig. 1. Errors for the filters with no angular velocity or specific force
measurements.

TABLE II

RMS ERRORS AFTER 60 s FOR THE SIMULATION WITH NO ANGULAR

VELOCITY OR SPECIFIC FORCE MEASUREMENTS

show that particle filter estimated the pose of the body with
approximately the same accuracy as the TUKF. The particle
filter approximates the true pdfs, where the approximation
becomes more accurate when the number of particles N
is increased. This is in agreement with the results of the
simulations, where the rms error for N = 50 000 was lower
than for N = 10 000.

2) Angular Velocity Measurements: In this case,
we included angular velocity measurements in the prediction
step of the particle filter and the TUKF. The angular velocity
measurements were generated from the real part of (25) with
Qω = 10−4I3(rad/s)2, where the gyroscope bias was generated
from the real part of (27) with Qbω

= 5 × 10−5I3(rad/s2)2

and bω,0 = [0, 0, 0]�rad/s.
In the filters, the covariance of the angular velocity mea-

surement noise was set to the true covariance used in the data
generation, Qω = 10−4I3(rad/s)2. The covariance of the bias
was decreased to the true value Qbω

= 5 × 10−5I3(rad/s2)2,
as the change in angular velocity was directly measured and
no longer compensated for in the bias state. The rest of the
filter parameters were the same as the parameters used in
Section IV-1, as seen in Table I.

The 100 Monte Carlo simulations of the particle filter were
tested for N = 10 000 and N = 50 000, with Neff = 0.5N and
s = 1 × 10−5. The mean errors for N = 50 000 are plotted
in Fig. 2, along with the errors for the TUKF, and the rms
errors after 60 s are shown in Table III. The particle filter and
the TUKF estimated the pose of the body with comparable
accuracy. Compared with the results in Section IV-1, the
particle filter estimated the attitude with increased accuracy,
while there was little difference in position accuracy.

3) Angular Velocity and Specific Force Measurements: In
this case, both angular velocity measurements and specific

Fig. 2. Errors for the filters with angular velocity measurements.

TABLE III

RMS ERRORS AFTER 60 s FOR THE SIMULATION WITH ANGULAR

VELOCITY MEASUREMENTS

TABLE IV

INITIAL STATES AND COVARIANCES FOR THE SIMULATION WITH

ANGULAR VELOCITY AND SPECIFIC FORCE MEASUREMENTS

force measurements were included in the prediction. To gen-
erate the specific force measurements, the acceleration of the
body was obtained from the ground-truth motion as

ak = vk+1 − vk

�t
+ ωk × vk .

The specific force measurements from the accelerometer were
then generated with Qa = 2 × 10−5I3(m/s2)2 from (43)
by solving for fm and setting gI = [0, 0, −9.81]�m/s2.
The accelerometer bias was generated from (41) with Qba =
1.6 × 10−8I3(m/s3)2 and ba,0 = [0, 0, 0]�m/s2.

The prediction of the particle filter was performed as
described in Section III-A3 and the state vector was expanded
according to (45), resulting in a state dimension of nx =
15. The TUKF was implemented accordingly with angular
velocity and specific force measurements. In this case, the
tuning parameters of the process noise could be set to the
true values used in the data generation. The initial states and
covariances of the filters are summarized in Table IV. The
number of effective particles was set to Neff = 0.5N , and



2022 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 5, SEPTEMBER 2021

Fig. 3. Errors for the filters with angular velocity and specific force
measurements.

TABLE V

RMS ERRORS AFTER 60 S FOR THE SIMULATION WITH ANGULAR VELOC-
ITY AND SPECIFIC FORCE MEASUREMENTS

the roughening tuning parameter was set to s =1×10−4 for
N = 10 000 and s =5×10−5 for N = 50 000.

The mean errors of the 100 Monte Carlo simulations for
N = 50 000 are plotted in Fig. 3 together with the errors
for the TUKF, and the rms errors after 60 s are shown in
Table V. The particle filter estimated the pose of the body
with no divergence runs for N = 50 000. The accuracy of the
TUKF was 22% better in attitude and 10% better in position.
The 100 Monte Carlo simulations for N = 10 000 resulted in
31 divergence runs.

A known limitation of particle filters is that the performance
is strongly correlated with the dimension of the state [32].
As the dimension of the state space increases, the number of
particles required to cover the state space quickly becomes
unfeasible for particle applications. In this case, the high
dimension of the state space in combination with small process
noise resulted in many divergence runs for N = 10 000.
No divergence runs were observed when the number of
particles was increased to N = 50 000; however, the particle
filter did not achieve the same accuracy as the TUKF.
Marginalization [33], also known as Rao–Blackwellization,
has been suggested to solve the problem of particle filtering
in high-dimensional state spaces. The method utilizes the
structure of the state-space model, where the particle filter is
only used to filter the nonlinear states, while a KF is used
to filter the linear states. Another approach is the feedback
particle filter [34], where a feedback gain is used to adjust each
particle according to the measurement, instead of calculating
weights and resampling. Implementation of these methods is
out of the scope of this article, and is left for future work.

V. EXPERIMENT

An experimental study was performed using the parti-
cle filter with point cloud measurements, as described in

TABLE VI

PARTICLE FILTER PARAMETERS FOR THE SWINGING
PAYLOAD EXPERIMENT

TABLE VII

INITIAL STATES AND COVARIANCES FOR THE SWINGING

PAYLOAD EXPERIMENT

Section III-B2. In the experiment, the motion of a swinging
payload hanging from a crane was estimated. Measurements
of angular velocity or specific force were not available and the
prediction step of the particle filter was calculated, as described
in Section III-A2. This gave a state dimension of nx = 12.
The dynamics of the swinging payload could be modeled by
the equations of motion of a spherical pendulum; however, the
particle filter was modeled with a random walk velocity model
and gave acceptable estimates of the motion by increasing the
process noise.

Note that in this experiment, the likelihood of the particles
(49) has an exponential distribution, which would have to be
approximated by the Gaussian distribution in a Kalman filter,
while the particle filter handles this optimally. In addition,
the payload has to be detected from its surroundings in
the point cloud measurements, in which the particle filter
achieves by giving high weights to the best fitting hypothesis
of the payload pose. The particle filter is also suited for this
application as temporary occlusions and ambiguities in the
point cloud measurements would result in multimodal pdfs.
This was not studied in this experiment.

A. Experimental Setup

A Kinect v2 3-D camera was placed so that the swinging
payload was visible in its field of view. The 3-D camera
measured point clouds with a frequency of 30 Hz over an
interval of 30 s. The model point cloud of the payload was
identified from the first point cloud in the sequence by
manually selecting points that represented the payload. The
parameters of the particle filter for the experiment are given
in Table VI, and the initial estimates and covariances are given
in Table VII.

Fig. 4 shows snapshots from the pose estimation sequence
after 10 s. In Fig. 4(a), the pose estimate of the particle filter
is used to visualize the pose of the model point cloud for
different time steps in the experiment. It can be seen that the
model point cloud is projected onto the swinging payload,
giving a visual indication of successful pose estimation.

B. Validation With Aruco Marker

To further validate the particle filter estimates, we used
a separate pose estimation system consisting of an Aruco



SVEIER AND EGELAND: DUAL QUATERNION PARTICLE FILTERING FOR POSE ESTIMATION 2023

Fig. 4. Snapshots taken at t = 10.0 s, t = 10.4 s, t = 10.8 s, and t = 11.2 s from the payload pose estimation experiment. (a) Depth images (gray) from
the Kinect v2 with the projected point cloud model M (red). (b) Corresponding 2-D images from the Kinect v2 RGB sensor showing the crane and payload
with the Aruco marker.

Fig. 5. Experimental setup of a payload hanging from a crane. The relevant
frames and displacements are showing the kinematic chain described by (55).

marker [35] and 2-D images from the Kinect v2 RGB sensor.
The Aruco marker was attached to the payload [see Fig. 4(b)],
and the 2-D images were obtained simultaneously with the 3-D
point clouds during the pose estimation sequence. The pose
of the Aruco marker was acquired using the Aruco module in
OpenCV [36], which calculates the pose of the Aruco marker
from the pixel positions of the detected corners using the
intrinsic camera calibration matrix and the physical lengths
of the sides of the Aruco marker.

The poses from the Aruco marker system described the
displacement of the Aruco marker A relative to the 2-D
camera frame and are denoted q̃A/2D,k . The particle filter pose
estimates described the displacement of the payload relative to
its initial pose. Thus, the poses from the Aruco marker system
could not be directly compared with the particle filter pose

Fig. 6. Particle filter pose estimates of the swinging payload compared
with the calibrated Aruco marker poses. Data for the first 10 s were used for
calibration.

estimates. To find the estimated motion of the payload relative
to the 3-D camera frame, a frame E on the payload was
manually selected from the first point cloud in the sequence
and displaced with the particle filter pose estimates as

q̃E/3D,k = ˆ̃q+
k ⊗ q̃E/3D ∀k (54)

where q̃E/3D describes the pose of the frame E relative to the
3-D camera frame for k = 1. This results in the kinematic
chain shown in Fig. 5, where q̃2D/3D is the displacement of
the 2-D camera frame relative to the 3-D camera frame and
q̃A/E is the displacement of the Aruco frame relative to the E
frame. From Fig. 5, it can be seen that the particle filter pose



2024 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 29, NO. 5, SEPTEMBER 2021

Fig. 7. Particle filter angular and linear velocity estimates of the swinging
payload. The velocity estimates are extracted from the bias state of the particle
filter through (52).

estimates are accurate if

q̃E/3D,k ≈ q̃2D/3D ⊗ q̃A/2D,k ⊗ q̃∗
A/E ∀k. (55)

The displacements q̃2D/3D and q̃A/E were obtained using the
calibration procedure described in [24]. We experienced that
it was imperative for the method that the displacement q̃A/E

was small, hence the necessity of (54).
The calibrated Aruco marker poses [right-hand side of (55)]

are plotted in Fig. 6 together with the displaced particle
filter pose estimates [left-hand side of (55)]. The positional
components of the dual quaternions are converted into the
Euclidean position for physical interpretation. Data from the
first 10 s of the experiment were used for the calibration.
The rms deviations after 30 s in attitude and position between
the Aruco marker system and the particle filter were found
to be 0.036 rad and 10.08 mm, respectively. The sinusoidal
shapes of the curves in Fig. 6 clearly reflect the pendulum
motion of the payload and the small deviations between the
Aruco marker system and the particle filter indicate accurate
pose estimation. The velocity estimates from the bias state of
the particle filter are plotted in Fig. 7. It can be seen that the
particle filter is able to estimate the oscillating velocities of the
pendulum motion, even though the dynamics of the particle
filter are modeled as random walk velocity.

VI. CONCLUSION

This article has presented a dual quaternion particle filter for
pose estimation of a moving rigid body. The dual quaternion
formulation can be seen as an extension of the previously
proposed quaternion particle filter for attitude estimation. Two
additional distinctions are the use of dual MRPs for pose
representation instead of MRPs for attitude representation in
the state vector and the use of an IMU for state propagation
instead of a gyroscope only.

Previous publications have demonstrated the use of dual
quaternions in Kalman filters, which require linearizations
and Gaussian assumptions. Contrary to the Kalman filter
approaches, the dual quaternion particle filter presented in this

article can estimate the underlying probability distributions of
nonlinear and non-Gaussian systems using multiple samples.
As an example, we demonstrated how an exponential distrib-
ution could be used with the dual quaternion particle filter to
estimate the pose of a swinging payload using a 3-D camera.
From a theoretical point of view, a particle filter should also
handle occlusions and multimodal distributions, even though
this was not demonstrated in this article. The main limitation
of the dual quaternion particle filter was the computational
complexity caused by the high number of particles required
to cover the state space.

The Cayley transform was used to perform a mapping
between a unit dual quaternion and a dual MRP. This enabled
propagation of the particles using the dual quaternion kine-
matic equation, while the dual MRPs were used in the state
vector such that summation and weighting of the particle states
could be performed without violating the algebraic constraints
of the unit dual quaternion. This also reduced the dimension of
the state vector since the dual quaternion has eight parameters,
whereas the dual MRP has six.

The proposed particle filter was validated through Monte
Carlo simulations using pose measurements in the form of
unit dual quaternions with Gaussian noise. The particle filter
estimated the pose of a moving body with similar accuracy as
a UKF with dual quaternions when the state dimension was
nx = 12. This corresponded to the cases with and without
angular velocity measurements in the prediction step. When
specific force measurements were included in the prediction,
the state dimension was increased to nx = 15, resulting in
decreased accuracy and robustness for the number of particles
considered. Solutions to this problem were discussed.

Particle filters are suited for nonlinear systems with
non-Gaussian noise. Therefore, visual measurements in the
form of point clouds from a 3-D camera were also considered.
An experimental study of the particle filter was performed,
where the motion of a swinging payload was estimated using
a 3-D camera. Fitting scores between a model point cloud
of the payload and the point cloud measurement from the
3-D camera was calculated. The particle filter states were
weighted with the likelihood of the fitting scores, which
had an exponential probability distribution. The particle fil-
ter estimates were validated with a separate Aruco marker
system that showed that the particle filter gave accurate
results.

ACKNOWLEDGMENT

The authors would like to thank Dr. Torstein A. Myhre for
proofreading this paper and sharing his CUDA C++ software
implementation of the particle filter, which they extended and
altered to fit their own algorithms.

REFERENCES

[1] E. J. Leffens, F. L. Markley, and M. D. Shuster, “Kalman filtering for
spacecraft attitude estimation,” J. Guid., Control, Dyn., vol. 5, no. 5,
pp. 417–429, Sep. 1982.

[2] M. D. Shuster, “A survey of attitude representations,” Navigation, vol. 8,
no. 9, pp. 439–517, 1993.

[3] J. L. Crassidis, F. L. Markley, and Y. Cheng, “Survey of nonlinear
attitude estimation methods,” J. Guid., Control, Dyn., vol. 30, no. 1,
pp. 12–28, Jan. 2007.



SVEIER AND EGELAND: DUAL QUATERNION PARTICLE FILTERING FOR POSE ESTIMATION 2025

[4] E. Bayro-Corrochano and Y. Zhang, “The motor extended Kalman filter:
A geometric approach for rigid motion estimation,” J. Math. Imag. Vis.,
vol. 13, no. 3, pp. 205–228, 2000.

[5] Y. Zu, U. Lee, and R. Dai, “Distributed motion estimation of space
objects using dual quaternions,” in Proc. AIAA/AAS Astrodyn. Specialist
Conf., Aug. 2014, p. 4296.

[6] N. Filipe, M. Kontitsis, and P. Tsiotras, “Extended Kalman filter for
spacecraft pose estimation using dual quaternions,” J. Guid., Control,
Dyn., vol. 38, no. 9, pp. 1625–1641, Sep. 2015.

[7] J. L. Crassidis and F. L. Markley, “Unscented filtering for spacecraft
attitude estimation,” J. Guid., Control, Dyn., vol. 26, no. 4, pp. 536–542,
Jul. 2003.

[8] Y. Deng, Z. Wang, and L. Liu, “Unscented Kalman filter for spacecraft
pose estimation using twistors,” J. Guid., Control, Dyn., vol. 39, no. 8,
pp. 1844–1856, Aug. 2016.

[9] Y. Deng and Z. Wang, “Modeling and control for spacecraft relative
pose motion by using Twistor representation,” J. Guid., Control, Dyn.,
vol. 39, no. 5, pp. 1147–1154, May 2016.

[10] Y. Cheng and J. L. Crassidis, “Particle filtering for attitude estimation
using a minimal local-error representation,” J. Guid., Control, Dyn.,
vol. 33, no. 4, pp. 1305–1310, Jul. 2010.

[11] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” IEE Proc. F, Radar
Signal Process., vol. 140, no. 2, pp. 107–113, Apr. 1993.

[12] C. Choi and H. I. Christensen, “Robust 3D visual tracking using
particle filtering on the special Euclidean group: A combined approach
of keypoint and edge features,” Int. J. Robot. Res., vol. 31, no. 4,
pp. 498–519, Apr. 2012.

[13] S. Li, S. Koo, and D. Lee, “Real-time and model-free object
tracking using particle filter with joint color-spatial descriptor,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2015,
pp. 6079–6085.

[14] A. Blake and M. Isard, “The condensation algorithm-conditional density
propagation and applications to visual tracking,” in Proc. Adv. Neural
Inf. Process. Syst., 1997, pp. 361–367.

[15] D. Titterton, J. L. Weston, and J. Weston, Strapdown Inertial Navigation
Technology, vol. 17. Edison, NJ, USA: IET, 2004.

[16] J. M. Selig, “Exponential and Cayley maps for dual quaternions,” Adv.
Appl. Clifford Algebras, vol. 20, nos. 3–4, pp. 923–936, Oct. 2010.

[17] A. Sveier and O. Egeland, “Pose estimation using dual quaternions
and moving horizon estimation,” IFAC-PapersOnLine, vol. 51, no. 13,
pp. 186–191, 2018.

[18] W. Blaschke, Kinematics Quaternions. Berlin, Germany: VEB Deutscher
Verlag der Wissenshcaften, 1960.

[19] O. Egeland and J. T. Gravdahl, Modeling and Simulation for Automatic
Control. Trondheim, Norway: Marine Cybernetics, 2002.

[20] F. C. Park, “Distance metrics on the rigid-body motions with applications
to mechanism design,” J. Mech. Des., vol. 117, no. 1, pp. 48–54,
Mar. 1995.

[21] G. R. Veldkamp, “On the use of dual numbers, vectors and matrices in
instantaneous, spatial kinematics,” Mechanism Mach. Theory, vol. 11,
no. 2, pp. 141–156, Jan. 1976.

[22] J. M. McCarthy and G. S. Soh, Geometric Design Linkages, vol. 11.
New York, NY, USA: Springer, 2010, ch. 12.2, pp. 281–306.

[23] Y. Wu, X. Hu, D. Hu, T. Li, and J. Lian, “Strapdown inertial navigation
system algorithms based on dual quaternions,” IEEE Trans. Aerosp.
Electron. Syst., vol. 41, no. 1, pp. 110–132, Jan. 2005.

[24] K. Daniilidis, “Hand-eye calibration using dual quaternions,” Int. J.
Robot. Res., vol. 18, no. 3, pp. 286–298, Mar. 1999.

[25] A. M. Sjoberg and O. Egeland, “Kinematic feedback control using
dual quaternions,” in Proc. 26th Medit. Conf. Control Autom. (MED),
Jun. 2018, pp. 1–6.

[26] L. Tingelstad and O. Egeland, “Motor parameterization,” Adv. Appl.
Clifford Algebras, vol. 28, no. 2, p. 34, May 2018.

[27] A. Doucet, N. De Freitas, and N. Gordon, “An introduction to sequential
monte carlo methods,” in Sequential Monte Carlo Methods in Practice.
New York, NY, USA: Springer, 2001, pp. 3–14.

[28] A. F. M. Smith and A. E. Gelfand, “Bayesian statistics without tears:
A sampling–resampling perspective,” Amer. Statist., vol. 46, no. 2,
pp. 84–88, May 1992.

[29] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, 2002.

[30] A. Sveier, T. A. Myhre, and O. Egeland, “Pose estimation with dual
quaternions and iterative closest point,” in Proc. Annu. Amer. Control
Conf. (ACC), Jun. 2018, pp. 1913–1920.

[31] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” in Proc. ACM SIGGRAPH Classes, 2008,
p. 16.

[32] P. Bickel et al., “Sharp failure rates for the bootstrap particle filter in
high dimensions,” in Pushing the Limits of Contemporary Statistics:
Contributions in Honor of Jayanta K. Ghosh. Institute of Mathematical
Statistics, 2008, pp. 318–329.

[33] T. Schön, F. Gustafsson, and P.-J. Nordlund, Marginalized Particle
Filters for Nonlinear State-Space Models. Linköping, Sweden: Univ.
Electronic Press, 2003.

[34] K. Berntorp, “Feedback particle filter: Application and evaluation,” in
Proc. 18th Int. Conf. Inf. Fusion (Fusion), Jul. 2015, pp. 1633–1640.

[35] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
Marín-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognit., vol. 47, no. 6,
pp. 2280–2292, Jun. 2014.

[36] OpenCV, “Open source computer vision library,” 2018.

Aksel Sveier (Member, IEEE) received the M.Sc.
and Ph.D. degrees in mechanical engineering from
the Department of Mechanical and Industrial Engi-
neering, Norwegian University of Science and Tech-
nology, Trondheim, Norway, in 2016 and 2020,
respectively.

He is currently employed as a Research and Devel-
opment Flight Control and Autonomy Engineer with
FLIR Unmanned Aerial Systems, Hvalstad, Norway.
His research interests include state estimation, nav-
igation systems, computer vision, and modeling
and control of robotic systems.

Olav Egeland (Senior Member, IEEE) received the
M.Sc. and Ph.D. degrees in automatic control from
the Norwegian University of Science and Tech-
nology (NTNU), Trondheim, Norway, in 1984 and
1987, respectively.

He was a Professor of robotics within electrical
engineering at NTNU from 1989 to 2004. He was
a co-founder of a start-up from 2004 to 2011.
He is currently a Professor of production automation
with the Department of Mechanical and Industrial
Engineering, NTNU.

Dr. Egeland received the Automatica Prize Paper Award in 1996 and the
IEEE TRANSACTIONS ON CONTROL SYSTEM TECHNOLOGY Outstanding
Paper Award in 2000. He was an Associate Editor of the IEEE TRANSAC-
TIONS ON AUTOMATIC CONTROL from 1996 to 1999 and European Journal
of Control from 1998 to 2000. His research interest includes modeling and
control for robotic and offshore applications.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


