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Optimal Control Strategies for Seasonal Thermal
Energy Storage Systems With Market Interaction
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Abstract— Seasonal thermal energy storage systems (STESSs)
can shift the delivery of renewable energy sources and mitigate
their uncertainty problems. However, to maximize the operational
profit of STESSs and ensure their long-term profitability, control
strategies that allow them to trade on wholesale electricity
markets are required. While control strategies for STESSs have
been proposed before, none of them addressed electricity market
interaction and trading. In particular, due to the seasonal nature
of STESSs, accounting for the long-term uncertainty in electricity
prices has been very challenging. In this article, we develop
the first control algorithms to control STESSs when interacting
with different wholesale electricity markets. As different control
solutions have different merits, we propose solutions based on
model predictive control and solutions based on reinforcement
learning. We show that this is critical since different markets
require different control strategies: MPC strategies are better
for day-ahead markets due to the flexibility of MPC, whereas
reinforcement learning (RL) strategies are better for real-time
markets because of fast computation times and better risk
modeling. To study the proposed algorithms in a real-life setup,
we consider a real STESS interacting with the day-ahead and
imbalance markets in The Netherlands and Belgium. Based on
the obtained results, we show that: 1) the developed controllers
successfully maximize the profits of STESSs due to market
trading and 2) the developed control strategies make STESSs
important players in the energy transition: by optimally control-
ling STESSs and reacting to imbalances, STESSs help to reduce
grid imbalances.

Index Terms— Demand response, electricity markets, model
predictive control (MPC), optimal control, reinforcement learning
(RL), seasonal storage systems.
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I. INTRODUCTION

WHILE the energy transition [1] has the potential to
highly improve our society, e.g., by mitigating climate

change, it also poses some potential problems that need to
be tackled [2]. Especially, due to the weather dependence of
renewable sources, a large integration of renewables implies
more uncertain energy generation. In the case of electricity,
as generation and consumption have to be balanced at all
times, the more renewable sources are integrated, the more
imbalances between generation and consumption occur, and
the more complex the control and balance of the electrical grid
becomes [3]. In this context, energy storage systems offer a
promising solution for uncertain generation by providing flex-
ibility and ancillary services, leading to smooth and reliable
grid operation [4].

A. Energy Storage Systems

Depending on the type of technology, there are different
energy storage solutions [4], [5], e.g., lithium-ion batteries,
pumped hydrostorage, ultracapacitors, flywheels, molten-salt
batteries, thermal storage systems, compressed air storage,
or hydrogen storage. While most of these technologies can
ensure efficient short- and medium-term energy storage, effi-
cient long-term energy storage has traditionally been more
difficult to achieve: although some of these technologies can
store energy for long periods, they are not economically very
efficient [4]. However, long-term energy storage is arguably
one of the most important elements to ensure the success of
the energy transition. Particularly, as the share of wind and
solar energy by 2030 is expected to reach very high levels
(70%–80% in some countries), and as the generation of
renewables is seasonal dependent [5], seasonal energy storage
solutions [5] that can store energy across several weeks or
months are crucial in order to reduce seasonal fluctuations [4].

With regard to seasonal storage, there are primarily three
solutions available that can provide electricity back to the
grid: hydrogen storage, synthetic natural gas storage, and vana-
dium redox flow batteries [5], [6]. The first two approaches
are power-to-gas technologies that make use of renewable
sources to generate synthetic fuels, i.e., primarily hydrogen
and methane [7]. The third belongs to the next generation of
batteries that can potentially store electricity for long horizon
[6], [8]. In this context, besides vanadium redox flow batteries,
there is also undergoing research into the next generation of
post-lithium-ion technologies with capabilities of long-term
storage [9], [10]. Despite their potential, these technologies
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still have several problems that make them economically
nonviable: first, they are expensive technologies and in an
early stage of development [6]–[12]. Second, synthetic fuels
have very low energy efficiency due to conversion losses [7].
Third, vanadium redox flow batteries and other postlithium-ion
batteries are yet not profitable and face multiple challenges that
difficult their commercial deployment [6], [9], [10], [13].

Another option for storing energy over long horizons are
thermal energy storage (TES) systems [14]. While, in general,
these systems cannot provide electricity back to the grid, they
are a more mature technology, have the advantage of being
significantly less expensive than electrical energy storage [4],
and can be used to satisfy heating and cooling demands.

In the context of TES technologies, there are three main
categories: sensible heat storage, latent heat storage, and
chemical energy storage [14], [15]. While the last two have
higher energy densities, they are both more expensive and
less mature, i.e., sometimes at the laboratory testing stage and
with no large-scale seasonal project completed [14]. By con-
trast, sensible energy storage is the simplest, cheapest, most
widespread, and most mature technology [15]. As a result,
sensible heat storage systems are the focus of this article. Note
that, aligned with the literature [16]–[18], we use the name of
seasonal TES systems (STESSs) to refer to TES systems based
on sensible heat storage.

B. Control of Nonseasonal Storage Systems

The problem of controlling storage systems is a devel-
oped area of research that contains many approaches that
consider market interaction. However, within this context,
all the research has usually focused on short-term storage
systems, i.e., non-seasonal storage. The aim of this section
is to provide a brief overview of the different families of
approaches within the field, describe which markets the control
algorithms are designed for, and which control horizons are
usually considered. It is important to note that, since the
number of contributions to this field is numerous, this will
not be a thorough literature review but a brief summary of the
research field.

Optimization-based approaches have been employed in
numerous applications [19]–[27] and are arguably the most
widely used family. In order to interact with different mar-
kets, these approaches are formulated as sequential multistage
optimization problems. Another family of approaches is based
on dynamic programming and Markov processes [28]–[30].
While these approaches often provide global optimal solutions,
they do not scale for large systems [31]. The third family
is rule-based approaches [23], [32] that derive a set of log-
ical rules to control the storage systems. Finally, there are
game-theoretical models [33] that are based on competition
economic models.

In terms of markets, control approaches have been proposed
in many different cases. The most common of them are
trading in the day-ahead market together with the balancing
market [19]–[21], [27], [33] or with the real-time market
[24]–[26]. Other proposed strategies include frequency
regulation coupled with energy arbitrage markets [29];

day-ahead market [30]; primary frequency response market
[32]; real-time markets [22]; or day-ahead, intraday, and
balancing markets [23], [28]. To the best of our knowledge,
approaches that exploit the imbalance markets have not been
proposed.

In terms of the horizon, the majority of the approaches
perform price arbitrage between day-ahead and markets closer
to real-time considering optimization horizons of one day
[19]–[29]. In this context, no approaches provide solutions for
trading energy over long horizons, e.g., months.

C. Control of Seasonal Storage Systems

In the context of seasonal storage systems, several optimal
control strategies have been also proposed. However, none
of the proposed methods are designed for market interaction.
In [17] and [34], model predictive control (MPC)-based strate-
gies are proposed to control aquifer TES systems; however,
while the controller is designed to satisfy physical constraints
and stochastic heat demand, the STESS does not interact with
electricity markets. Similarly, in [35], a dynamic programming
approach is proposed to control borehole thermal storage
systems; however, the controller assumes a constant market
price and does not distinguish between different markets.
In [18] and [36], two control algorithms are proposed to
control solar communities with a borehole thermal storage
system; however, similar to other studies, price and markets
are not considered, and the controller is limited to satisfy the
system constraints and the heat demand. In [16], a data-driven
stochastic predictive control scheme to operate an energy hub
with seasonal storage capabilities is proposed; the goal of
the approach is to minimize the total energy consumption
and be cost-efficient; however, here also, the algorithm does
not consider real market prices nor market trading. Similarly,
in [37], an optimal charging strategy for borehole thermal stor-
age systems is proposed; however, the focus of the controller
is to maximize the renewable energy use and to reduce CO2

emissions, and also here, no prices nor market interaction are
considered.

D. Motivation of the Research

While the field of control for storage systems features
several approaches, they are either limited to approaches for
short-term storage with market interaction or seasonal storage
without market interaction.

Generic methods for storage systems, while they model
market interaction, cannot cope with long optimization hori-
zons. Particularly, all the existing methods [19]–[21], [23],
[27]–[29], [33] provide trading approaches where storage
systems trade energy with daily/weekly horizons and use price
differences to perform price arbitrage. This poses a challenge
for seasonal storage systems, such as STESSs, where the
optimization has to be performed over yearly horizons. The
reason why the existing methods cannot be applied to STESSs
is twofold:

1) STESSs require forecasts of electricity prices over yearly
horizons. While there are several forecasting methods
[3], [38], [39] for short-term horizons, i.e., days, there
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are no reliable methods to forecasts for long-term hori-
zons.

2) Because of the long optimization horizons, the number
of variables in the optimization problems grows very
large. In this context, the existing methods become com-
putationally intractable, e.g., many of them are based on
mixed-integer optimization.

In the context of control algorithms for seasonal storage,
while long horizons are sometimes considered, none of the
existing methods are able to model electricity market inter-
action. This interaction is of primary importance for several
reasons:

1) To maximize the profit of STESSs, they should be
allowed to interact with markets. In particular, while
controlling STESSs to satisfy heat demand and/or to
maximize renewable energy usage are important goals,
they do not necessarily optimize the economic cost of
STESSs. This is especially important to increase the
number of storage systems in the electrical grid: if the
time for return on investment of STESSs is too long,
STESSs might become unattractive investments.

2) As we will show in this article, the profits of the STESSs
are maximized when interacting with multiple markets.
Therefore, controlling STESSs based on a single price
or a single market is economically suboptimal.

3) To help reduce grid imbalances, STESSs need to be
able to arbitrage in more than one market. In partic-
ular, to provide up-regulation in the imbalance markets,
i.e., a real-time market, STESSs need to first buy that
electricity in a market with an earlier gate closure time.

E. Contributions

To fill the scientific gap described earlier, we present four
contributions in this article:

• We propose and develop different control strategies
for STESSs that can interact with multiple wholesale
electricity markets. In particular, considering that there
are several trading markets for STESSs, we propose
control approaches for two cases: interaction with the
day-ahead market alone and simultaneous interaction with
the day-ahead and imbalance markets. In addition, as dif-
ferent control approaches have different merits, for each
market interaction, we propose an MPC-based controller
and an RL-based controller.

• We propose the first control algorithms for storage sys-
tems that consider long optimization horizons. Particu-
larly, unlike the existing literature on seasonal storage
systems, the proposed methods quantify the price vari-
ations and uncertainty over a horizon of a year and
exploit these variations to maximize the profits of the
storage system. In the case of the MPC approaches, this
is obtained using a novel two-stage optimization problem,
a forecasting method for long horizons, and a variable
time grid formulation. In the case of the RL approaches,
the solution involves a new simulation framework for long
horizons and a collaborative RL strategy.

• We assess the merits of each control solution for the
different markets and show that, while MPC-based meth-
ods are most suitable for day-ahead markets, RL-based
methods perform better when trading in the imbalance
market.

• Finally, we empirically demonstrate that STESSs can play
an important role in the energy transition by helping
grid operators to reduce grid imbalances. We show that
the economic incentives of STESSs are aligned with the
regulatory duties of the grid operators and that STESSs
can help balancing the grid to allow further integration
of renewable sources. To the best of our knowledge, this
is the first time that trading on the imbalance market is
explicitly evaluated from the perspective of balancing the
grid and the regulatory duties of the TSO.

We also have two additional contributions: we propose a
simple scenario generation method for generating long-term
price scenarios and a novel method for imbalance price
forecasting. This contribution refers specifically to forecast-
ing imbalance prices and not real-time local marginal prices
(LMPs). Although, for the latter, there are already forecasting
methods [40], [41], imbalance prices have different properties
than real-time LMPs and are much harder to predict.

F. Organization of This Article

This article is organized as follows. Section III introduces
and defines the framework of a general STESS interacting with
electricity markets. Sections IV and V present, respectively,
the proposed MPC and RL approaches. Finally, Section VI
studies the performance of the proposed control approaches
under several case studies and considering a real STESS.
Appendix A in the Supplementary Material describes the
proposed scenario generation method, Appendix B in the Sup-
plementary Material explains the imbalance price forecasting
method, Appendix C in the Supplementary Material introduces
and defines wholesale electricity markets, and Appendix D in
the Supplementary Material presents the theoretical basis of
MPC and RL.

II. MOTIVATION FOR THE SELECTED METHODOLOGY

Designing controllers for STESSs that trade in multiple
electricity markets is a very challenging task as selecting the
right control algorithms or right markets is not straightforward.

A. Control Algorithms for STESSs With Market Trading

Considering the difficulty of market trading, state-of-the-art
control approaches, e.g., MPC [42] or reinforcement learning
(RL) [43], are highly desirable. However, in the case of MPC
[42], several problems appear:

• MPC requires realistic forecasts and/or scenarios of
electricity prices over yearly horizons. While there are
several forecasting methods [3], [38], [39] and scenario
generation methods [44]–[46] for short-term horizons,
i.e., days, there are no reliable methods, to the best of
our knowledge, to forecasts or generate scenarios for
long-term horizons.
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• In real-time electricity markets, e.g., imbalance markets,
an action has to be taken within seconds. As the MPC
works with a year horizon and the price resolution is typ-
ically 15 min, the number of variables in the optimization
problem grows very large. As a result, MPC suffers from
computational tractability problems to provide optimal
action within the available time frame.

While data-driven and RL techniques can mitigate or solve
these two issues, they also have problems of their own:

• While they do not require forecasts or scenarios of elec-
tricity prices, they need to generate artificial time series of
electricity prices to simulate the market conditions. Thus,
a method to generate realistic prices is still needed.

• As they are trained offline, they do not have the real-time
computation issues of MPC. However, that comes at the
cost of adaptability: if market conditions change or if the
STESS suffers from a problem, e.g., a heat exchanger
breaks, the controller has to be retrained again. As the
training can take several days, this limits the adaptabil-
ity of RL to changes in the environmental conditions.
In contrast, as MPC computes the solution online, any
change in the environment can be directly included as a
change in the optimization problem or by reestimating
the dynamical model with little impact on computation
cost.

• The solutions of RL are at best a good approximation
of the optimal solution, while MPC obtains an optimal
solution by explicitly solving the given control problem.

• Unlike MPC, RL cannot explicitly model hard constraints
(they can only be modeled as part of the reward). As such,
RL cannot guarantee that the provided solutions do not
violate constraints.

Based on these arguments, it becomes clear that the perfect
method does not exist and considering RL or MPC involves
several tradeoffs. As a result, for this research, we will propose
different methods based on the two families and analyze the
performance of each.

B. Electricity Markets for Trading With STESSs

Another important point to consider is that not all electricity
markets are the same. While, in theory, STESSs could trade
in any electricity market, there are two trading strategies that
are especially relevant: trading only in the day-ahead market
and trading in both the day-ahead and the imbalance market.
Trading only in the day-ahead market is arguably the safest
trading strategy for STESSs as the day-ahead market is the
electricity market with the largest volume of renewable energy
trading, i.e., with low but volatile prices, and players incur no
risks as they submit bidding curves.

While trading only in the day-ahead market is a low-risk
and cost-effective trading strategy, it might still not be the
most optimal economic strategy for STESSs. In particular,
while, on average, prices in the imbalance market are larger
than in the day-ahead market, since the imbalance prices are
much more volatile, there are periods of time where imbalance
prices are much lower (sometimes becoming even negative).
In addition, by participating in the imbalance market, STESSs

might be able to help reduce grid imbalances: as during periods
of positive imbalances, i.e., generation larger than consump-
tion, prices are low, STESSs could wait for these periods to
buy their energy; by doing so, they would not only reduce
grid imbalances but also increase their own profits. Similarly,
as prices are high during periods of negative imbalances,
STESSs can make use of their charging flexibility to first
buy energy in the day-ahead market and then sell it in the
imbalance market if imbalances are negative or use it if they
are positive. By doing so, STESSs could potentially increase
their profits while helping to reduce negative imbalances.

It is important to note that, despite all these potential
benefits, trading strategies for the imbalance market have much
higher risks: in the imbalance market, agents take an action
for the next time interval without knowing the imbalance
price. Particularly, as imbalance prices are based on the
grid imbalances during a period of time, the price is only
known after the period is over. Thus, trading strategies for the
imbalance market heavily rely on price forecasters and have
an associated risk.

In this article, we will explore both trading strategies,
i.e., trading in just the day-ahead market and trading in both
the day-ahead and imbalance markets, and study the benefits
of each.

III. SEASONAL STORAGE SYSTEM FRAMEWORK

In order to introduce the control algorithms, we need to
define the framework of a general STESS interacting with the
electricity markets. For notational simplicity, concatenations of
several vectors, e.g., [x�, y�]�, will be shortened as (x, y).

A. Dynamical Model

An STESS can be defined as a general dynamical system
with an internal state x(t), controls u(t) = (Q̇in(t), Q̇out(t)),
nunits storage units, and external disturbances d(t). The internal
state x(t) represents the state of charge of the system. The con-
trols Q̇in(t) ∈ R

nin and Q̇out(t) ∈ R
nout , respectively, represent

the rate at which energy is injected and extracted into/from the
system. The disturbance represents any uncontrollable input,
e.g., the external temperature.

The dynamics of the system are defined by a partial differ-
ential equation (PDE). For a sensible heat storage device with
water stratification, the system can be divided into nunits layers
acting as individual storage units, and the dynamics of a layer
i are represented by the following PDE [47]:

∂xi

∂ t
= a1

∂2xi

∂z2
+ a2(d − xi) + a3

(
Q̇in

i − Q̇out
i

)
(1)

where z represents the direction of stratification.

B. Heat Demand and Purchased Energy

In general, an STESS is required to supply an uncertain
heat demand Q̇d(t). To do so, an STESS buys energy Q̇m(t)
from some market, stores it, and then delivers it to follow
Q̇d(t). To maximize the profits, it needs to consider the price
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of Q̇m(t), the storage efficiency, and an estimation of the future
heat demand Q̇d(t). Therefore, the following holds:

Q̇d(t) =
nout∑
i=1

Q̇out
i (t), Q̇m(t) =

nin∑
i=1

Q̇in
i (t) (2)

i.e., the heat demand should equal the sum of the energy
extracted from the STESS, and the energy bought in the market
should equal to sum of the energy introduced in the STESS.

C. Trading in the Day-Ahead Market

Given a day-ahead market with unknown daily hourly prices
(λdam

1 , . . . , . . . , λdam
24 ), the goal of any control algorithm for an

STESS is to build optimal bidding curves to maximize the
profit. In particular, the aim is to, one day in advance, build
24 optimal bidding curves Q̇b

1(·), . . . , Q̇b
24(·) such that, while

the STESS always has enough energy to satisfy the demand
Q̇d(t), the cost of the purchased power Q̇dam(t) is minimized.
In this market structure, the purchased power Q̇dam(t) at every
hour h is defined by

Q̇dam(t) = Q̇b
h

(
λdam

h

)
, ∀ t ∈ [h, h + 1]. (3)

D. Trading in the Imbalance Market

For the imbalance market, the imbalance price λimb is
always unknown when purchasing/selling power as the price
λimb is determined in real time by the reserves activated by
the TSO. In particular, at time step k, a market agent has
to decide whether to sell, buy, or not trade without knowing
the imbalance price λimb

k for the interval. As λimb
k is usually

known immediately at the next interval, the agent can take the
decision based on past imbalance prices λimb

k−1, λ
imb
k−2, . . . or any

other information available at time step k − 1.
Defining as Q̇imb(t) the energy traded in the imbalance

market, with positive and negative values, respectively, rep-
resenting energy that is bought and sold, it holds that

−Q̇imb(t) ≤ Q̇dam(t) (4)

i.e., the energy sold in the imbalance market by an STESS is
limited by the energy purchased on any previous market (the
day-ahead market in the case of the proposed control algo-
rithms). Particularly, because the STESS cannot effectively
convert heat back to electricity, any energy sold is limited by
the energy bought within the same day in other markets, and
the STESS cannot sell any energy that was previously stored.
Similarly, it holds that

Q̇m(t) = Q̇dam(t) + Q̇imb(t) (5)

i.e., the total energy purchased for the STESS is the sum of
the energy purchased in the day-ahead and imbalance markets.

Considering these definitions, a control algorithm for the
imbalance market has to select the value of Q̇imb(t) for each
time step k so that, while the STESS has enough energy to to
satisfy the demand Q̇d(t), the total cost of trading Q̇dam(t) and
Q̇imb(t) is minimized. To do so, the control algorithm receives
as an input the energy Q̇dam(t) purchased in the day-ahead and
selects the value of Q̇imb(t).

IV. MPC APPROACHES

In this section, we derive and explain the two proposed
MPC approaches: one to trade exclusively on the day-ahead
market and the other one to trade on both the day-ahead and
the imbalance market.

A. Bidding Functions

In the case of the day-ahead electricity market, the goal
of the MPC is to provide the 24 optimal bidding functions
Q̇b

h(·), for h = 1, 2, . . . , 24. Since standard MPC can only
provide the optimal market power Q̇dam

λ̃
for a fixed price λ̃,

an additional step is needed. For each hour h, we propose the
following approach:

1) Predefine np discrete prices {λ1, λ2, . . . , λnp } for the
price λdam at hour h.

2) Fix the remaining 23 day-ahead prices using their
expected value, e.g., a forecast.

3) Solve the MPC for each of these np prices
and obtain the associated optimal market powers
{Q̇dam

λ1 , Q̇dam
λ2 , . . . , Q̇dam

λnp } at hour h.
4) Build the bidding function as a piecewise constant

function based on the obtained solutions

Q̇b
h(λ

dam) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q̇dam
λ1 , λdam ≤ λ1

Q̇dam
λ2 , λ1 < λdam ≤ λ2

...

Q̇dam
λnp , λnp−1 < λdam ≤ λnp

0, λnp < λdam.

(6)

This approach for building bidding functions is obviously
only possible as long as the bidding functions within one day
are independent of each other. However, since STESSs are
very large storage devices, their internal state does not vary
much within one day. As a result, the choice of one bidding
function does not affect much the others, and the assumption
of independent bidding functions holds in practice.

Moreover, due to the market structure and the long opti-
mization horizons of STESS, the 24 bidding functions are very
similar. In detail, as the 24 daily bids are submitted at the same
time, all the bids are built based on the same information, e.g.,
the STESS state. Moreover, as the STESS is flexible, it does
not matter at which hour of the day it buys energy: because
of the large storage size of the STESS, the state of the STESS
barely changes with the action taken in a given hour. As such,
the STESS states between consecutive days never differ too
much and, as the optimal bidding functions only depend on
the STESS state, it follows that the optimal bidding functions
for every hour of a given day are similar. As a result, in a
given day, the difference in price distribution between hours
is not important, and the STESS reacts almost equally to a
market price independently of the hour, i.e.,

Q̇b
1(λ

dam) ≈ Q̇b
2(λ

dam) ≈ · · · ≈ Q̇b
24(λ

dam), ∀ λdam. (7)

Thus, to build the 24 bidding functions, it is only needed to
obtain the bidding function Q̇b

1(·) for the first hour.
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B. MPC for Day-Ahead Trading

As motivated in Section IV-A, we only need to estimate the
bidding function Q̇b

1(·) for the first hour of the day. However,
instead of solving a single OCP like in standard MPC, we need
to discretize the first price λdam

1 into a discrete set of prices {λ1,
λ2, . . . , λnp } and, for each of these prices, solve the relevant
OCP.

For the sake of simplicity, in this section, we will assume
that each OCP is optimized using a discrete time grid
t1, t2, . . . , tN+1, i.e., using an optimization horizon equal to
tN+1 − t1; the details of how the time grid is defined will
be covered in Section IV-D. Similarly, we will assume that
the expected day-ahead prices {λ̄dam

k }N
k=1, the expected heat

demand values { ¯̇Q
d

k}N
k=1, and the expected disturbances {d̄k}N

k=1
are also provided; the method to obtain these values is
explained in Appendix A in the Supplementary Material.

Considering the previous definitions, at every day and for
each price λ j , the MPC approach solves the following OCP.

OCP(λ j ):

min
x1,Q̇in

1 ,Q̇out
1 ,Q̇dam

1 ,x2,...,

Q̇in
N ,Q̇out

N ,Q̇dam
N ,xN+1

λ j Q̇dam
1 +

N∑
k=2

λ̄dam
k Q̇dam

k (8a)

s.t.

x1= x̃1 (8b)

xk+1= f
(
xk, Q̇in

k , Q̇out
k , d̄k

)
, for k = 1, . . . , N (8c)

Q̇dam
k ≤ Q̇m

max, for k = 1, . . . , N (8d)
nin∑
i=1

Q̇in
k,i = Q̇dam

k , for k = 1, . . . , N (8e)

nout∑
i=1

Q̇out
k,i = ¯̇Q

d

k, for k = 1, . . . , N (8f)

0 ≤ Q̇in
k ≤ gin(xk), for k = 1, . . . , N (8g)

0 ≤ Q̇out
k ≤ gout(xk), for k = 1, . . . , N (8h)

xmin ≤ xk≤ xmax, for k = 1, . . . , N (8i)

xN+1= x̃1 (8j)

where the following holds:
• The objective function represents the cost of purchasing

energy considering that the first price is fixed and given
by λ j and that the remaining prices on the horizon are
the expected prices in the market.

• Equation (8b) fixes the initial state, which is assumed to
be known and given by x̃1.

• Equation (8c) ensures that the dynamics of the system are
ensured at every time step. To discretize the continuous
PDE, i.e., (1), we consider an explicit Euler integration
scheme [47] as it provides a good tradeoff between speed
and accuracy for long optimization horizons

• To model the discrete dynamics, a multiple shooting [48]
scheme is used. Unlike single shooting, multiple shooting
explicitly includes the state x in the optimization problem.
This is done to obtain a sparse Hessian and an easier to
optimize problem.

• The maximum power purchased from the market is lim-
ited by (8d).

• Equation (8e) ensures that the input power equals the
power purchased from the market.

• Through (8f), it is ensured that the heat demand is met.
• Equations (8g) and (8h) ensure the individual charging

and discharging limits of each individual storage device.
The upper limit is usually a function of the state as the
maximum power that can be charged/discharged usually
depends on the state of charge.

• The limits on the STESS state are defined by (8i).
• The OCP should avoid depleting the STESS at the end

of the horizon. To do so, as the optimization horizon is
usually a seasonal periodic cycle (see Section IV-D for
details), (8j) constrains the STESS to have the same state
of charge at the beginning and at the end.

• The objective function is simplified to leave out some
costs, e.g., maintenance costs, startup costs, or utility
costs. Simplifying the objective function to only include
the market cost is a design choice motivated by two
reasons: first, some of these costs are orders of magnitude
lower than the market cost.1 Second, some costs simply
offset the profitability by a constant or a scaling factor
and are not relevant for the control algorithm.

After solving an OCP for each discrete price λj, the optimal
bidding function Q̇b

1(·) can be estimated using (6), where the
optimal market power Q̇dam

λj equals Q̇dam
1 .

C. MPC for Day-Ahead and Imbalance Trading

The MPC-based approach to trade in both the day-ahead and
the imbalance market consists of two separate MPC algorithms
that run one after the other:

• A first MPC algorithm that trades in the day-ahead
market, but, unlike the MPC algorithm defined in
Section IV-B, it considers that there is also a possible
future interaction with the imbalance market.

• A second MPC algorithm that trades in the imbalance
market and that considers that there are also possible
future interactions with the day-ahead market. However,
unlike the MPC algorithm for the day-ahead market,
it runs in real time, and it does not build bidding func-
tions. Instead, at time step k − 1, it considers a forecast
λ̂imb

k of the next imbalance price and then solves a single
OCP to obtain the optimal power Q̇imb

k to trade in the
imbalance market.

It is important to note that, as with the day-ahead market,
both algorithms are based on deterministic MPC. Given the
uncertainty in electricity prices, one could argue that a more
optimal approach would be to employ stochastic MPC. How-
ever, due to the long horizons involved, the computation time
required for stochastic MPC makes the approach infeasible for
real-time applications (especially for the imbalance market).
Particularly, for trading in the imbalance market, the MPC
approach already requires (in the deterministic setting) to
approximate the one-year horizon to one month, i.e., the

1This information was obtained from the case study site company.
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obtained optimal solution is approximated and no longer
optimal with respect to the yearly seasonal period. A sto-
chastic setting would only make this approximation worse.
While larger computation capabilities could perhaps mitigate
the issue, there are is another problem: as MPC solves a
nonconvex problem, there is no guarantee on the maximum
computation time, and more computational power might not
help much.

C.1 MPC for the Day-Ahead Market

To define the OCP of the first MPC algorithm, we will
again consider that the discrete time grid t1, t2, . . . , tN+1,
the expected day-ahead prices {λ̄dam

k }N
k=1, imbalance prices

{λ̄imb
k }N

k=1, heat demand values { ¯̇Q
d

k}N
k=1, and disturbances

{d̄k}N
k=1 are given. In addition, we will simplify the vector of

input controls by uk = (Q̇in
k , Q̇out

k , Q̇dam
k , Q̇imb

k ). Then, at every
day and for each discrete price in {λ1, λ2, . . . , λnp}, the MPC
solves the following OCP.

OCP(λ j ):

min
x1,u1,x2,...,

uN ,xN+1

λ j Q̇dam
1 +

N∑
k=2

λ̄dam
k Q̇dam

k +
N∑

k=1

λ̄imb
k Q̇imb

k (9a)

s.t.

x1= x̃1 (9b)

xk+1= f
(
xk, Q̇in

k , Q̇out
k , d̄k

)
, for k = 1, . . . , N (9c)

Q̇dam
k + Q̇imb

k ≤ Q̇m
max, for k = 1, . . . , N (9d)

nin∑
i=1

Q̇in
k,i = Q̇dam

k + Q̇imb
k , for k = 1, . . . , N (9e)

nout∑
i=1

Q̇out
k,i = ¯̇Q

d

k , for k = 1, . . . , N (9f)

0 ≤ Q̇in
k ≤ gin(xk), for k = 1, . . . , N (9g)

0 ≤ Q̇out
k ≤ gout(xk), for k = 1, . . . , N (9h)

xmin ≤ xk≤ xmax, for k = 1, . . . , N (9i)

Q̇dam
k ≥ 0, for k = 1, . . . , N (9j)

−Q̇dam
k ≤ Q̇imb

k , for k =1, . . . , N (9k)

xN+1= x̃1. (9l)

While the main structure is very similar to (8a), there are some
important differences:

• The algorithm minimizes the cost of purchasing energy as
in (8a) but includes future transactions in the imbalance
market.

• The constraints that contain the power purchased from
the market, i.e., (9d) and (9e), consider now the sum of
the power purchased in both markets.

• Unlike the case of trading only in the day-ahead market,
the STESS can now sell energy on the imbalance market
if it has previously bought it in the day-ahead market. This
is modeled by (9j) and (9k), which respectively guarantee
that in the day-ahead market energy can only be bought
and that the energy sold in the imbalance market is limited
to the energy bought in the day-ahead market.

• The amount of energy traded is not limited by the system
demand. In particular, the total energy traded is limited

by Q̇m
max, which represents a safety upper bound that can

be much larger than the heat demand Q̇d and that simply
models how risk-averse the STESS is to price arbitration.

C.2 MPC for the Imbalance Market

To define the second MPC algorithm, let us first make the
following assumptions and definitions:

• The MPC algorithm for the imbalance market considers
a new time grid t ′

1, t ′
2, . . . , t ′

N1+1 with t ′
N1+1 ≤ tN+1, i.e., a

shorter horizon and a different discretization. The details
on this discretization are provided in Section IV-D.

• The expected day-ahead prices {λ̄dam
k }N1

k=1, imbalance

prices {λ̄imb
k }N1

k=1, heat demand values { ¯̇Q
d

k}N1
k=1, and dis-

turbances {d̄k}N1
k=1 are again provided (see Appendix A in

the Supplementary Material for details).
• The optimal state at time tN1+1 is defined by x�

N1+1 and
obtained from the solution of the MPC for the day-ahead
market. In particular, this value can be obtained from the
optimal solution of any of the np OCPs solved in the
latest day-ahead market.

• An accurate forecast λ̂imb
1 of the next price in the imbal-

ance market is available. The details of this forecast are
explained in Appendix B in the Supplementary Material.

Based on these definitions, before each imbalance market
clearance, MPC solves the following OCP and trades the
optimal solution Q̇imb

1 in the imbalance market:

min
x1,u1,x2,...,
uN1 ,xN1+1

λ̂imb
1 Q̇imb

1 +
N1∑

k=1

λ̄dam
k Q̇dam

k +
N1∑

k=2

λ̄imb
k Q̇imb

k (10a)

s.t.

(9b) − (9k) (10b)

xN1+1= x�
N1+1. (10c)

The new MPC scheme is very similar to the previous MPC
for the day-ahead market but with some differences:

• As a bidding function is not needed, instead of solving
the OCP multiple times for different possible prices, this
MPC algorithm solves a single OCP considering the most
likely imbalance price λ̂imb

1 in the next market clearance.
Then, it trades directly the optimal solution Q̇imb

1 in the
imbalance market.

• A distinction is made between the future expected imbal-
ance prices {λ̄imb

k }N1
k=2 and the forecast price λ̂imb

1 in the
next time step. This distinction is made because the
accuracy of the forecast is better than that of the method
used to generate the expected future values.

• As this MPC algorithm runs in real time, the computation
time should be as small as possible. To reduce the compu-
tation time, a smaller horizon t ′

N1+1 < tN+1 is considered.
• As the optimization horizon t ′

N1+1 is now smaller than
a periodical seasonal cycle, it is suboptimal to constrain
the final state to be equal to the initial state. However,
not constraining the final state leads to an OCP that does
not account for what happens after t ′

N1+1. To solve this
problem, (10c) constrains the final state to be equal to
the optimal state x�

N1+1 at time t ′
N1+1, which is obtained

from the solution of the latest day-ahead MPC algorithm.
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D. Time Grid and Optimization Horizon

In Sections IV-B and C, we assumed that the discrete time
grids where the OCPs were defined were given. In this section,
we explain the methodology to define these time grids.

In general, to define a discrete time grid, we also need
to define the optimization horizon T and the discrete time
step �t . Then, based on T and �t , the number of time
intervals N is also defined. For an STESS, T represents
its seasonal horizon, which is typically a year. While most
applications consider a constant �t along the optimization
horizon, we argue that, for an STESS, this is not necessary
and should in fact be avoided:

• As day-ahead markets have a different price every hour,
the largest possible time step at the beginning of the hori-
zon is �t = 1 h. However, due to the long optimization
horizons, it is not possible to accurately estimate with
hourly resolutions the price and demand distributions at
the end of the horizon. Instead, it is better to estimate
the distributions over larger intervals, e.g., several hours,
where due to noise averaging the uncertainty can be better
quantified.

• Another reason to consider a variable �t is the com-
putational cost: by increasing �t toward the end of the
horizon we reduce the number of optimization points N
and the computational complexity of the OCP.

• As MPC only needs the optimal control at the first time
point, it can be argued that lowering the time resolution
at the end of the horizon has little impact on the first
optimal control.

D.1 Day-Head Market

Considering that the day-ahead electricity market is cleared
every day, the hourly resolution should only be needed
for the first day. Based on this and the arguments above,
for the day-ahead market MPC, we consider a time grid
t1, t2, . . . , tN+1 with a year horizon, using four different �t ,
and containing N = 1233 time intervals:

D.2 Imbalance Market

For the case of the imbalance market, the minimum �t
is 15 min. Moreover, considering the large uncertainty in
imbalances prices, we argue that the 15-min resolution is only
needed for the first hour. Finally, as the MPC algorithm for
the imbalance market runs in real time, the computation time
should be as small as possible. Based on these arguments,
we consider a time grid t ′

1, t ′
2, . . . , t ′

N1+1 for the imbalance
market with a horizon of four weeks, using four different �t ,
and containing N1 = 225 time intervals:

It could be argued that considering a horizon of four
weeks instead of a year (the standard seasonal cycle) leads to
suboptimal solutions, i.e., the MPC cannot account for what
happens during a full seasonal cycle. However, as explained
in Section IV-C, MPC avoids this by constraining the state at
the end of the four weeks to be equal to the optimal state x�

226
at that time point.

V. RL APPROACHES

In this section, we present the two proposed RL approaches:
one to trade in the day-ahead market and the other one to trade
in both the day-ahead and the imbalance markets.

A. RL for Day-Ahead Trading

As with MPC, any RL control algorithm for the day-ahead
market needs to estimate the bidding functions Q̇b

h(·) for
h = 1, 2, . . . , 24. While in the case of MPC that required
discretizing prices and solving multiple OCPs, for RL, the bid-
ding functions can be directly obtained from the optimal policy
π�(sk). In detail, if the RL agent is set up, the following holds:

• The reward represents the cost of purchasing energy.
• The RL state s contains the day-ahead price λdam.
• The action u includes the power Q̇dam purchased from the

market.

Then, by definition, the bidding function Q̇b(λdam) is implic-
itly defined by the optimal policy u� = π�(s) = π�(λdam, . . .).
In the following, we provide further details on the proposed
RL algorithm.

A.1 State and Control Spaces

The first step to define the RL algorithm is to define its
state and control spaces. For the proposed algorithm, the state
s = (x, τ, λdam) is defined by three different features:

1) the state x of the STESS.
2) the time position τ within the periodic seasonal cycle,

e.g., the day of the year.
3) the market price λdam.

The reason for selecting these three features is twofold:

• The optimal action u� = π�(s) can be selected based on
both the state of the STESS and the environment.

• As we will show in Section V-A, given a fixed time point
τ̃ and STESS state x̃, the bidding function Q̇b(λdam) is
by definition given by the optimal policy π̃ �(x̃, τ̃ , λdam).

To define the action space U, we consider that a single
action u ∈ R

nin+1 has the following format:
u = (u1, u2, . . . , unin , j). (11)

In detail, we consider that each input control ui can take
ndis + 1 discrete values uniformly separated between 0 and 1
and that the real power Q̇in

i into the storage i is obtained
by multiplying ui by the maximum power Q̇max

i , i.e., Q̇in
i =

ui Q̇max
i . This scaling is done because Q̇max

i might depend
on the system state and can change throughout time. For the
output control, a single storage unit j is selected to provide
the demand Q̇d, i.e., Q̇d = Q̇out

j . The action space is then
defined by the possible combinations of all these values.
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A.2 Reward Function

The reward rk at time step k is defined as the negative
of the cost of the energy purchased. Thus, assuming that the
agent is at state sk = (xk, τk, λ

dam
k ) and takes an action uk =

(u1,k, . . . , unin,k, j), rk is defined as −λdam
k

∑nin
i=1(ui,k · Q̇max

i,k ).
In addition, if the agent depletes the system and the demand
Q̇d

k cannot be satisfied, the reward penalizes this situation with
a cost of ten times larger than the cost of instantaneously
buying Q̇d

k in the market.2 Finally, as with standard RL
algorithms, the reward at the last point in an episode is 0

rk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, If k = Te

−λdam
k

(∑nin
i=1(ui,k Q̇max

i,k ) + 10 Q̇d
k

)
, If the system

is depleted

−λdam
k

∑nin
i=1(ui,k · Q̇max

i,k ), Otherwise.
(12)

A.3 Episode Length and Time Grid

Another critical point when designing an RL algorithm is to
select the episode length Te. For STESS, it can be argued that,
to avoid optimal policies that deplete the STESS, the minimum
Te should be two seasonal periodic cycles. In particular, if the
episode length equals the cycle length, the agent would know
the time position within an episode as the agent knows the time
position τ within a seasonal cycle. Using that information,
the agent could potentially deplete the STESS at the end of
the episode/cycle to reduce the cost. This behavior would be
undesirable as the STESS needs to provide energy for more
than a seasonal periodical cycle.

For the size of the discrete time grid, we consider that a
time transition k → k + 1 spans a day. In particular, as with
MPC, it is assumed that the state of charge does not change
dramatically from one day to another and that the optimal
bidding curves within a day are very similar. It is important to
note that selecting this time step size is just a design choice
and that it is equally possible to consider time steps of 1 h at
the expense of increasing the computation load.

A.4 Simulation Environment

To train an RL agent to control STESSs, we use a simulation
environment that recreates the world an STESS lives in.
In detail, this environment consists of two modules:

• STESS Simulator: A simulator of the dynamical model of
the STESS: xk+1= f (xk, Q̇in

k , Q̇out
k , d̄k).

• Environment Simulator: A simulator that produces realis-
tic day-ahead market prices λdam, heat demand values Q̇d,
and disturbances d. To obtain a simulator that generates
realistic time series, the method for scenario generation
explained in Appendix A in the Supplementary Material
is considered.

A.5 Training Algorithm

The last step before training the agent is to select the
specific RL algorithm to estimate the optimal policy π�(s).
For the case of STESSs, we propose using fitted-Q-iteration
[43], [49] with boosting trees [50]. The reason for selecting
this algorithm is that we empirically observed (using the real

2Selecting a factor of 10 is a design choice. The agent just needs a large
penalty cost whenever it depletes the STESS.

system presented in Section VI) that this algorithm performed
as good as more advanced RL algorithms but without the
additional computational complexity. Unlike the deterministic
MPC approach, price uncertainty is implicitly included in this
approach as the RL agent is trained with a probabilistic reward.
Therefore, the RL agent can learn some notion of risk that
quantifies the distribution of a reward for a given state.

A.6 Building Bidding Functions

After the RL agent is trained, the optimal bidding functions
Q̇b(·) are directly obtained. In particular, given a fixed time
point τ̃ and STESS state x̃, we have an optimal policy
u� = π�(x̃, τ̃ , λdam) = π̃ �(λdam) that selects the power
purchased from the market as function of the market prices;
thus, by definition, Q̇b(λdam) is directly defined by π̃ �(λdam).

B. RL for Day-Ahead and Imbalance Trading

As with MPC, the RL-based approach to trade in both
markets consists of two separate RL algorithms:

• The first RL algorithm that trades with the day-ahead
market. This is the algorithm proposed in Section V-A,
and it is agnostic of what happens in the imbalance
market.

• The second RL algorithm that trades in the imbal-
ance market and that considers the interaction with the
day-ahead market. This algorithm runs in real time and
it does not build bidding functions.

B.1 Training Multiple RL Agents

As each electricity market has its own rules and working
principles, it is clear that a different RL agent for each market
is needed. As an example, an RL agent for the imbalance
market has a different state s as it knows more information
than the agent for the day-ahead market, e.g., it knows the
prices and allocations of the day-ahead market.

Based on this premise, when using RL to trade in two
electricity markets, the problem becomes a multiagent RL
problem [51]. More specifically, as both agents are trying
to minimize the economic cost, it becomes a collaborative
multiagent RL problem [52], [53].

While the literature has several methods for collaborative
RL, e.g., join-action learners [52], we argue that the available
methods might not be very suitable for the case of STESS.
In particular, when training several agents at the same time,
the environment becomes nonstationary [51], i.e., as each
agent improves and changes its own policy the environment
that the other agents perceive changes as well. This nonstation-
ary condition invalidates the convergence properties of most
single-agent RL algorithms [51]. While there are methods that
address this by allowing every agent to observe the state and
actions of the other agents, these are not applicable to STESSs.
In particular, due to the sequential decision-making nature of
electricity markets, while the imbalance agent can know the
state of the day-ahead agent, the opposite is not true, i.e., the
information of the imbalance market is unknown at the time
when bids need to be submitted to the day-ahead market.

Based on the previous argument, we propose an RL
approach for trading in the two markets where agents are
not trained simultaneously. Instead, the day-ahead agent is
trained first using the algorithm proposed in Section V-A, and
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the imbalance agent is trained afterward including in its state
information from the day-ahead market. This scheme has two
benefits:

• Convergence: As the two RL agents are independently
trained in two stationary environments, standard RL algo-
rithms have guarantees of convergence.

• Flexibility: As the imbalance market is highly volatile,
STESSs owners could potentially want to stop trading in
the imbalance market during periods of high volatility.
As the agent for the day-ahead market is independent,
STESSs could simply use the controls of this agent and
be optimal in the more stable day-ahead market.

B.2 RL for the Imbalance Market

As the RL agent for the day-ahead market is the same as the
one described in Section V-A, we only need to define the RL
agent that uses the information from the day-ahead and trades
in the imbalance market. For the state space, besides the three
values included in the state of the day-ahead agent, the new
state includes past imbalance prices, past imbalance volumes,
and the day-ahead price and energy allocation. In detail,
at step k

sk =(
xk, τk, λ

dam
k , Q̇dam

k , λimb
k−1, V imb

k−1, . . . , λ
imb
k−nhrl

, V imb
k−nhrl

)
(13)

where V imb represents the overall grid imbalance and the
number of historical past values nhrl is defined by the last lag
uncorrelated to the imbalance price λimb

k . As an example, for
The Netherlands, we observed nhrl = 3 to be a good choice.

To define the action space U, a single action u ∈ R
nin has

a similar format as before

u = (u1, u2, . . . , unin). (14)

In detail, we consider that each input control ui can take
ndis+1 discrete values uniformly separated between −1 and 1.
In particular, defining by Q̇in,dam

i the energy purchased for
storage device i in the day-ahead market, a value of ui = −1
represents selling all the energy Q̇in,dam

i in the imbalance
market, i.e., Q̇in

i = 0. By contrast, a value of ui = 1 represents
buying all the energy that is still possible, i.e., Q̇max

i − Q̇in,dam
i ,

for storage device i , i.e., Q̇in
i = Q̇max

i . The selection of the
output power is not considered as it is already selected by the
day-ahead agent.

Besides the reward r that also includes now the cost/income
obtained in the imbalance market and the simulation environ-
ment that also generates imbalance prices, the other parts of
the RL agent remain the same.

B.3 Market Interaction

In terms of the interaction with the agent for the day-ahead
market, the STESS is controlled with both agents acting
sequentially. First, one day-ahead, the day-ahead agent builds
the bidding functions for the next day’s day-ahead market.
Next, the day-ahead market is cleared, and the energy is
allocated. Then, in real time, the imbalance agent uses the
existing information of the day-ahead and imbalance markets
to select the optimal power to buy/sell.

Unlike the agent for the day-ahead market, the imbalance
agent does not build bidding functions as the imbalance market

Fig. 1. Schematic representation of the STESS. Left: technical scheme rep-
resenting the five heat buffers in the real system. Right: scheme representing
the underground installation of the STESS.

requires direct selection of the power Q̇imb to buy/sell. As a
result, the optimal policy π�(sk) at time k directly selects the
power to be traded based on available data sk at that time step
k but not on the imbalance market price λimb

k .

VI. CASE STUDY

To study the quality of the proposed control strategies and
in order to analyze the merits and disadvantages of each one of
them, we consider the Ecovat vessel [54], a real SSTES. The
system will be evaluated in eight case studies. First, the STESS
will need to satisfy an uncertain heat demand for one year
while minimizing the cost through the day-ahead market.
Second, the STESS will need to supply the same heat demand
but interacting with both the day-ahead and the imbalance
market. For each of the two scenarios, we will consider two
different heat demand profiles and two different countries.

A. Real STESS

The considered STESS is a large subterranean thermal
stratified storage vessel with the ability to store heat for
seasonal periods and to supply heat demand to a cluster of
buildings. The system is divided into different segments or
heat buffers that can be charged and discharged separately; the
system has five thermal buffers with the top four buffers (see
Fig. 1) being able to be charged and discharged independently.
Fig. 1 shows a schematic of the vessel, and Fig. 2 illustrates
the real system when it was under construction. For further
details on the system, we refer to [47].

B. System Dynamics

The state of the STESS at time step k is defined by xk =
(T1,k, T2,k, T3,k, T4,k, T5,k), i.e., by the temperature stored in
each of the five buffers as it is proportional to the stored
energy. Similarly, as the top four buffers can be charged
and discharged independently, the input and output power
are, respectively, defined by Q̇in

k = (Q̇in
1,k, . . . , Q̇in

4,k) and
Q̇out

k = (Q̇out
1,k, . . . , Q̇out

4,k). Finally, using the dynamical model
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Fig. 2. Construction of the STESS. Left: installation of the last heat buffer.
Right: STESS almost completely sealed.

for thermal stratified vessels proposed in [47], the dynamics
of each heat buffer i at time k can be defined by

Ti,k+1 = Ti,k + a1 (Ti+1,k + Ti−1,k − 2 Ti,k)

+a2 (T∞ − Ti,k) + a3
(
Q̇in

i,k − Q̇out
i,k

)
(15)

where T∞ represents the ambient temperature and is the only
disturbance d. For further details on the model, we refer to
[47]. Note that this is the dynamical model used for the RL
simulator and for defining the dynamics constraint in the MPC.

C. Data

To set up the study, we consider the day-ahead and imbal-
ance prices between 2015–2017 in The Netherlands,3 and the
heat demand of a cluster of five buildings with a yearly average
heat demand of 220 MWh during the same time period.4

As a second case study, we consider the day-ahead and the
imbalance markets in Belgium during the same time period
and the same heat demand.

The data of 2015 and 2016 is used as training data for the
RL agents and as the historical data for generating scenarios.
The data of 2017 are used as out-of-sample data to evaluate
the performance of the different algorithms.

D. Experimental Setup

To compare and study the control approaches, we evaluate
their performance in terms of the economic cost that they incur
when controlling the STESS for the full 2017 year in both
The Netherlands and Belgium. As a baseline, we consider
the economic cost of directly buying the instantaneous heat
demand Q̇d at the day-ahead market price. This baseline serves
us to establish whether a control approach learns to trade
energy, i.e., to study whether a control approach can use
the STESS to reduce the energy cost. Moreover, to compare
the algorithm in different conditions, the demand data are
multiplied by 2 and used to evaluate the algorithms in the
case of having ten buildings, i.e., a yearly average demand
of 440 MWh.

The MPC algorithm is modeled using Casadi [55] and
python and then solved using Ipopt [56]. For the RL
approach, the fitted-Q-iteration algorithm is implemented in
python using the Xgboost [50] library. The forecaster of
imbalance prices is also done via the Xgboost library.

3Collected from https://transparency.entsoe.eu/
4Obtained from one of our research partners.

It is important to note that although both methods are based
on completely different concepts, i.e., RL largely depends on
the training data while MPC on the underlying optimization
problem, the comparison between the methods is fair as the
available data and dynamical model for both methods is
exactly the same. In particular, MPC uses historical data to
build price forecasts, and RL uses the same historical data
to build the simulation framework. Moreover, both methods
consider the same dynamical model: MPC does it explicitly
in the optimization problems, while RL uses it in the simu-
lation framework. While their solvers are different, this is the
standard scenario in any comparison as different approaches
have tailored solvers to the specific optimization problem, e.g.,
when comparing convex and nonconvex models, the convex
models are estimated using a convex solver even though the
nonconvex models cannot make use of it.

E. MPC Approaches

To use the MPC approaches proposed in Section IV, a dis-
crete set of prices has to be defined to build the bidding func-
tions. To do so, we selected 15 discrete prices equally spaced
between 0 and 70 e/MWh. This selection was done based
on the price distribution in 2015–2016 and considering the
computation time of solving a single OCP; however, a coarser
or finer discretization could be used to, respectively, decrease
the computation time or to increase the accuracy of the bidding
functions. For prices above 70 e/MWh, the bidding function
was set to 0 considering the seldom occurrence of prices above
this threshold. For negative prices, the bidding function was
defined as the solution at 0 e/MWh.

The OCPs are defined by (8)–(10), where:

• The dynamical constraint is represented by (15).
• The maximum power Q̇in

max to be traded in the market is
defined by the electrical installation to charge the STESS.
In our case, Q̇in

max = 300 MW.
• The individual upper limits of charging and discharging,

i.e., gin(xk) and gout(xk), are defined by the maximum
heat transfer of the heat exchangers, which, in turn,
is proportional to the temperature difference between the
tank temperature and the temperature of the fluid in the
heat exchangers.

• The limits on the STESS state are given by xmax = 286 K
and xmin = 263 K, where the lower limit is defined by the
outer soil temperature and the upper limit by the safety
margin to prevent water boiling in the tank.

F. RL Approaches

The RL control algorithms proposed in Section V can be
directly applied to the current case study:

• The time position τ is simply the day of the year.
• As the STESS has a seasonal cycle of a year, an RL

episode length is defined as two years.
• The time-dependent constraints on the maximum power

are implicitly enforced within the action space as the
actions are normalized with respect to the maximum
power.
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TABLE I

MPC AND RL COMPARISON IN TERMS OF THEIR ECONOMIC COST WHEN
ONLY TRADING IN THE DAY-AHEAD MARKET. THE SAVINGS ARE

COMPUTED WITH RESPECT TO THE COST OF NOT HAVING AN

STESS. FOR EACH CASE STUDY, THE BEST METHOD IS

INDICATED IN BOLD

TABLE II

MPC AND RL COMPARISON IN TERMS OF THEIR COMPUTATION TIME
WHEN TRADING IN THE DAY-AHEAD MARKET. THE COMPARISON IS

DONE IN TERMS OF ONLINE AND OFFLINE COMPUTATION TIMES

G. Day-Ahead Market Trading

The main results of the first study, i.e., the comparison of
MPC and RL when only trading in the day-ahead market, are
listed in Tables I and II. Table I displays the yearly economic
cost when using both algorithms and the cost of not having
an STESS, i.e., the cost of buying directly the heat demand
in the day-ahead market; it also lists the economic savings
of both algorithms with respect to the case of not having an
STESS. Table II lists the offline costs, i.e., one-time compu-
tations, and online costs, i.e., real-time computations, of both
algorithms.

Independently of the country or heat demand level consid-
ered, the following observations can be made:

• Both algorithms can trade energy and make use of the
STESS to reduce the economic cost. In particular, using
the STESS and trading optimally, the algorithms can
reduce the economic cost by 20%–40%.

• The performance of both algorithms is similar, but MPC
can obtain slightly lower costs and larger profits.

• While RL requires a long offline computation time, its
cost online is almost negligible. In particular, as the
optimal bidding functions are estimated offline, the com-
putation cost in real time is almost 0.

• By contrast, while MPC does not require offline com-
putations, it needs 10–15 min in real time to build the
bidding functions. However, as the bidding functions are
submitted once per day and one day in advance, this
large real-time computation cost does not represent a real
problem/disadvantage.

Finally, to illustrate the generated bidding curves of both
methods, Fig. 3 displays the generated bidding curves the first
day of the five-building case study for the day-ahead market in

Fig. 3. Generated bidding curves by the MPC and RL algorithms on
January 1, 2017, in The Netherlands when supplying heat for five buildings.

TABLE III

MPC AND RL COMPARISON IN TERMS OF THEIR ECONOMIC COST WHEN

TRADING IN THE DAY-AHEAD AND IMBALANCE MARKETS. THE
SAVINGS ARE COMPUTED WITH RESPECT TO THE COST OF

NOT HAVING AN STESS. FOR EACH CASE STUDY, THE

BEST METHOD IS INDICATED IN BOLD

TABLE IV

COMPUTATION COST OF THE MPC AND RL APPROACHES WHEN TRADING

IN THE IMBALANCE MARKET. THE COMPARISON IS DONE IN TERMS
OF ONLINE AND OFFLINE COMPUTATION TIMES

TABLE V

MPC AND RL COMPARISON IN TERMS OF % OF TIMES THAT THEY

CORRECTLY UPREGULATE OR DOWNREGULATE THE GRID,
I.E., % OF TIMES THAT THEY SELL/BUY ENERGY

IN THE IMBALANCE MARKET WHEN THE TSO
UPREGULATES/DOWNREGULATES. FOR EACH

CASE STUDY, THE BEST METHOD

IS INDICATED IN BOLD

The Netherlands. As it could be expected based on the results
in Table I, both bidding curves are very similar.

H. Day-Ahead and Imbalance Market Trading

The main results of the second study, i.e., the comparison
between MPC and RL when trading in both the day-ahead and
imbalance markets, are listed in Tables III–V. Table III dis-
plays the yearly economical cost and economic savings of both
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algorithms. Table IV lists their offline and online computation
costs when trading in the imbalance market (the computation
cost for trading in the day-ahead is the same as in Table II).
As an extra comparison, Table V summarizes the percentage of
times that each algorithm correctly upregulates and downreg-
ulates the grid, i.e., the percentage of times that the algorithm
sells (buys) energy in the imbalance market, while the TSO
tries to up-regulate and down-regulate the system.

As before, independently of the case study considered,
the following observations can be made:

• As for day-ahead trading, both algorithms perform very
similarly to each other. However, unlike in the case of
only day-ahead trading, MPC no longer performs slightly
better. Instead, RL performs slightly better for lower
heat demand profiles (five buildings), and MPC performs
better for higher heat demand profiles (ten buildings).

• Trading in both markets is much more beneficial than
trading only in the day-ahead market as the costs are
halved with respect to day-ahead trading. In particular,
while day-ahead trading reduces the economic cost by
20%–40%, trading in the two markets reduces the cost
up to 60%–70%.

• As before, RL requires large offline computation costs but
negligible online computation costs. By contrast, MPC
has no offline computation costs but requires 30–45 s
to obtain the optimal trading strategy for the imbalance
market. Since the imbalance market is cleared every
15 min and optimal decisions are made within seconds,
it can be argued that the online computation cost of MPC
might now represent a problem.

• When buying energy in the imbalance market, the RL
algorithm helps the TSO to down-regulate the grid. In par-
ticular, approximately 80% of the times the RL algorithm
buys energy, the TSO simultaneously tries to reduce
the grid generation or to increase the grid consumption.
While the MPC algorithm also helps, this contribution is
worse as it only helps to down-regulate 55%–70% of the
time.

• By contrast, when selling energy in the imbalance market,
none of the algorithms help much to up-regulate: only
45%–55% of the times, an algorithm sells energy the TSO
is simultaneously trying to up-regulate.

VII. DISCUSSION

In this section, based on the obtained results, we discuss the
merits and disadvantages of the proposed control approaches,
the benefits of using STESSs for energy trading, how to
optimally operate STESSs to maximize their profits, and the
generality and optimality of the proposed methods.

A. Merits of Each Control Approach

We start the discussion by analyzing the merits of the
different proposed approaches in the two trading contexts.

A.1 Day-Ahead Trading

When trading only in the day-ahead market, both
approaches can trade energy with a similar performance

despite their underlying differences. Therefore, while MPC
obtains slightly lower economic costs than RL, it is necessary
to consider other metrics in order to make a meaningful
comparison.

When considering the online computation time, both algo-
rithms are feasible for real-life applications. Thus, the largest
difference between both approaches is the offline computation
time. While this metric does not play a role most of the
time, i.e., it usually represents one-time computation costs,
it might be important when the system regularly goes under
maintenance, something breaks down, or the market has a
big change. In particular, if any of these events happen,
MPC can easily adapt itself by a change in the OCP or
by reestimating the dynamical model (which does not take
more than some minutes). By contrast, RL requires one to
two days to reestimate the optimal policy under the new
conditions, which hinders the day-ahead trading. Thus, MPC
has, in general, better adaptability to environmental conditions.

Based on this analysis, it becomes clear that MPC is a
better approach when trading only in the day-ahead market.
Particularly, slightly better optimal solutions together with bet-
ter adaptability to environmental changes make the proposed
MPC approach a better solution in this case.

A.2 Day-Ahead and Imbalance Trading

Similar to the case of only day-ahead trading, when trading
in the day-ahead and imbalance market, the two proposed
approaches obtain good solutions. In particular, while RL
performs slightly better for lower heat demand profiles (five
buildings), and MPC performs better for higher heat demand
profiles (ten buildings), these differences are not very large,
and as before, other metrics need to be considered.

While the online computation time for day-ahead trading
was not an issue, for the case of imbalance trading, it becomes
one. In detail, due to the real-time nature of the imbalance
market, optimal decisions should be made in seconds. As the
proposed MPC approach requires 30–45 s to compute an
optimal solution, it can potentially fail to provide an optimal
trading strategy.

As a result, while the proposed MPC approach still has
better adaptability to environmental changes, one could
argue that it is a less appropriate control strategy than
the proposed RL approach. The latter, with its negligible
real-time computation cost, equal quality solutions, and better
regulatory capabilities, is a better choice when it comes to
trading in the imbalance market.

B. Importance of Market Trading for STESSs

Based on the obtained results, it is clear that optimal control
approaches, either MPC or RL, are key to maximize the profits
of STESSs and ensure their widespread use as optimal control
strategies and can reduce the energy cost by 60%–70%. In
this context, the largest profits are obtained when the STESS
trades in multiple markets. In particular, while a traditional
STESS would restrict its trading to the day-ahead market to
avoid unnecessary risks, in this article, we show that STESSs
can dramatically reduce their costs by using optimal control
strategies and trading also in the imbalance market.
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C. STESSs as Regulation Tools

Looking at the results of Table V, it can be argued that
the economic goal of STESSs is (partially) aligned with the
regulatory duties of the TSO. In particular, in the case of RL,
80% of the times the STESS buys energy in the imbalance
market, it helps the TSO to down-regulate the system. This
behavior is seen for the various case studies considered,
which included different imbalance markets and different heat
demands. In the case of MPC, this effect is not so pronounced;
nevertheless, it still helps the TSO 55%–70% of the times.

While the same cannot be said about up-regulation, i.e., only
50% of the times the STESS sells energy in the imbalance mar-
ket it is actually helping upregulate the grid, it can be argued
that wrongly up-regulating is less critical than wrongly down-
regulating. In particular, if the STESS wrongly sells energy in
the imbalance market, the TSO can always request somebody
to reduce their generation, i.e., down-regulate. However, if the
STESS wrongly buys energy in the imbalance market, the TSO
has to request somebody to increase their generation; as the
generation is limited, there might not be an available agent
that can provide that service.

As an additional remark, to further improve the regulatory
services of STESSs, communication between the TSO and the
STESS could be established. In particular, in the current setup,
the STESS simply optimizes its profit without considering the
TSO. Thus, to improve this, the TSO could simply indicate the
STESS whether it is allowed to buy or sell energy, i.e., whether
the TSO plans to down or up-regulate, and the STESS could
take its optimal action if it helps the TSO and its own profit.

D. Generality of the Methods

While the case study focused on a specific STESS,
i.e., latent heat storage via water stratification, the proposed
methods are general and can be applied to any STESS.
Indeed, with the proposed methods, the several challenges
that prevent the development of efficient control solutions for
STESS trading can be tackled, namely: scenario generation
and quantification of price uncertainty for long horizons, small
computation costs for real-time control, and adaptability to
market changes.

E. Optimality of the Methods

The optimality property of the proposed methods is affected
by the following elements: 1) the optimization problems are
nonconvex; 2) the quality of the solutions depends on the
accuracy of the forecasting method; and 3) in a multistage
optimization problem, the decision taken at the first stage will
have an effect in future stages. In this context, it is important
to remark that the methods are nonetheless optimal from the
perspective that they take a local optimal solution at every
state with the information that is known.

1) The first optimization problem takes an optimal decision,
considering that, at the moment of the decision, it only
knows a forecast of future prices.

2) The second optimization problem takes an optimal deci-
sion with updated information and considering that mar-
ket conditions have been changed. While this decision

may differ from the first optimal solution, the solution
is, nonetheless, a local optimum at the time when the
decision is made.

Within the same context of optimality, to evaluate the
proposed methods, the obtained solutions should ideally be
compared with the real optimal solutions considering perfect
knowledge of the future. However, this is neither possible nor
fair for two reasons:

1) The optimization problem that provides the optimal
solution is nonconvex. Therefore, such an analysis would
involve comparing two local minima, and it would not
involve a real optimal baseline.

2) The proposed approaches need to rely on forecasting
methods, while the baseline solution has perfect knowl-
edge of the future. In this context, the quality of the
proposed methods depends on an external factor (fore-
casts) that the baseline solution does not.

VIII. CONCLUSION

We have proposed several optimal control strategies for
seasonal thermal storage systems (STESSs) when interacting
with electricity markets. Particularly, while in the literature
there are control strategies for STESSs and there are optimal
trading strategies for traditional storage systems, the former
does not allow STESSs to trade in the markets and the
latter is not suitable for STESSs. To fill that gap, we have
proposed a MPC and a RL approach for the case of having an
STESS trading in the day-ahead electricity market. In addition,
we argued that trading in one market is not optimal and
proposed another MPC and another RL approach for the case
of having an STESS trading in both the day-ahead and the
imbalance markets.

Based on a case study involving a real STESS, it was shown
that, despite the similarity in the optimal solutions of the
proposed algorithms, MPC is a better trading strategy for the
day-ahead market due to its larger adaptability. In contrast, for
trading in the imbalance market, the proposed RL approach is
a more suitable control strategy as it has negligible real-time
computation costs, leads to similar economic costs as MPC,
and has better regulatory capabilities.

It was also shown that STESSs are potential tools for
grid regulation and that the economic incentive of STESSs is
aligned with the regulatory duties of TSOs. Similarly, it was
demonstrated that optimal control strategies are needed to
optimize the profit of STESSs and to ensure their widespread
use.

In future research, we intend to further explore the use
of STESSs as regulation devices. Moreover, as stochastic
approaches can further improve the performance of the control
algorithms in the context of long horizons, we will analyze the
advantages of using stochastic MPC approaches for seasonal
storage systems. Finally, we will also study the tradeoffs
between MPC and RL to obtain a set of generalizable tradeoffs
that are independent of the case study.
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