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Abstract— At present, wind farms control their power produc-
tion by using a closed-loop feedback control approach, which dis-
tributes the total power to the wind turbines. However, the total
power is distributed according to the turbines’ available power
only. The use of model-predictive control allows considering
multiple objectives, nonetheless, since it is open-loop, it can result
in poor tracking of the total power reference. This work is the
first to combine the standard, closed-loop feedback controller
with model-predictive optimization (MPO) in order to yield
the benefits of both approaches. As such, we developed an
optimization-based dispatch function employed in a closed-loop
feedback controller. The dispatch function uses model-predictive,
multi-objective optimization to determine the distribution of the
total power to the wind turbines. The model employed in the
developed dispatch function is the Dynamic Flow Predictor,
which uses Kalman-filter-driven feedback to correct the wind
farm flow model dynamically. The developed optimization-based
dispatch function is compared to dispatch functions commonly
employed in present wind farms in a secondary regulation
scenario in dynamic simulation. The comparison is carried out
on an 80-turbine, large-scale wind farm. The newly developed,
optimization-based dispatch function yields a reduction of the
mean error and the normalized root-mean-square (NRMS) error
by 43% and 36% with respect to the best-performing, commonly
used dispatch function. Furthermore, for the large-scale wind
farm, the duration of the MPO is only 0.21 s, which is two
orders of magnitude faster than comparable approaches in the
literature.

Index Terms— Available power, closed-loop feedback, compu-
tational cost, dispatch function, model predictive, power control,
wakes, wind energy.

I. INTRODUCTION

THE wind energy market has been growing rapidly at a rate
of 16% throughout the past decade reaching 539 123 MW

of global, installed capacity in 2017 [1]. The increasing share
of renewable power generation sources in the electricity mar-
ket is replacing conventional generation sources. This change
is putting pressure on the power system, as conventional
generators are used for providing grid balancing services,
historically. However, wind power plants could substitute the
existing conventional generation sources in providing such grid
services [2].
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To provide grid balancing services and as such to follow
a reference for the total power of the wind farm, power
controllers of wind farms typically use closed-loop feedback
control. The quality of the balancing service and as such
the reference tracking performance of the feedback controller
depends on its ability to handle the variable, available power
of wind turbines. For instance, in case the feedback controller
requests a larger power output from a turbine than its available
power, a steady-state error results in the turbine’s power
output. Such error on the turbine level can translate into a
steady-state error in the farm power output, and thus, a worse
quality of the ancillary service. At present, the power requested
from a wind turbine is set by the dispatch function of the power
controller of the wind farm. The simplest dispatch function
is to distribute the total power to the wind turbines using
a static distribution. Due to the variability of the available
power of wind turbines, this approach can result in insuffi-
ciently accurate tracking of the total power reference. In [3],
gain scheduling is proposed to mitigate the effect. Another
approach is to distribute the total power to the wind turbines
in proportion to the turbines’ available power [4]. Albeit the
approach improves the handling of the variable, available
power of wind turbines compared to the static dispatch, it does
not allow for the consideration of more objectives of the
operation.

An alternative approach, which is investigated in the litera-
ture on power control, is model-predictive control [5]–[7]. The
approach has three major advantages. First, it allows optimiz-
ing the operation according to multiple objectives. As a result,
the approach enables to not only follow a reference for the total
power of the wind farm but also to consider other objectives
such as the reduction of fatigue loads of wind turbines [5], [6].
Second, the use of models in control can result in more
informed control decisions, and hence potentially in improved
performance. Typically employed models are dynamic mod-
els of wind farm operation [7]–[9] and models of turbine
mechanical loads [5], [6]. Third, model-predictive control
allows deciding on the present control action considering
the potential, future trajectories of operation. In [7] it is
shown that accounting for the future dynamics of wind farm
flow improves the control performance. Despite these three
advantages, there are two impediments to model-predictive
control of wind farms. First, the accuracy of tracking a
demanding reference for the total power of a waked wind
farm is likely to be low, because model-predictive control is
open-loop [10]. Second, modeling the dynamics of flow in
a large-scale wind farm is computationally challenging with
many of the current approaches. Amongst these, engineering
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models typically result in a faster computational speed. Using
engineering models in [7] and [11] resulted in a duration of
the optimization in the order of minutes. Although remarkably
fast, such duration still results in a delay in introducing the
optimized control actions to the wind turbines.

To address these challenges, this work introduces a model-
predictive, closed-loop feedback controller including a com-
putationally fast model. The controller is a synthesis of the
investigated approaches for power control in the literature,
that is model-predictive control and closed-loop feedback
control. The outer control loop is the closed-loop feedback
controller that is commonly employed in present wind farms
as introduced above. It ensures the accurate tracking of the
reference for the total power of the wind farm, allowing it
to operate in a mode that ensures available active power
reserve to be used in ancillary services. In order to provide
the advantages of model-predictive control described above,
model-predictive optimization (MPO) is used in the dispatch
function of the closed-loop feedback controller. To reduce
the computation time of the MPO, a linear model is used,
the Dynamic Flow Predictor [8].

The structure of the article is as follows. In Section II,
the methodology is detailed. Section III presents tests of the
optimization-based dispatch function on a large-scale wind
farm. This brief concludes with a summary of the key findings
in Section IV.

II. METHODS

First, the closed-loop feedback controller is introduced;
second, the static and proportional dispatch functions are
described for reference; and finally, the MPO-based dispatch
function is presented.

A. Closed-Loop Feedback Controller

Fig. 1 shows the system structure of the closed-loop, feed-
back wind farm controller. The wind farm controller consists
of a proportional–integral (PI) controller and a dispatch func-
tion, which is used to distribute the total power demanded by
the PI-controller to the wind turbines.

1) PI-Controller: The aim of the PI-controller is to track
the total power reference signal. The transfer function C(s) of
the PI-controller is defined as

C(s) = k p

(
1 + 1

sTi

)
(1)

where k p is the proportional gain and Ti is the time constant of
the integrator. An Antiwindup-Reset setup is used to limit the
integrator with the upper limit set to the wind farm available
power.

2) Total Power Dispatch: The output of the PI-controller is
the demanded total wind farm power, which is distributed to
the wind turbines in the wind farm using the dispatch function.
The approach used in the dispatch function for the distribution
of the demanded total power Pdem,tot depends on the objectives
of the wind farm operator. Generally, the demanded total
power is distributed to the wind turbines as

Pset, j = f j Pdem,tot (2)

Fig. 1. System structure of closed-loop power controller for wind farms,
comprising PI-controller and dispatch function.

where f j is the fraction of the total demanded wind farm
power dispatched to turbine j and Pset, j is the power setpoint
of turbine j . f j is subject to

1 =
J∑

j=1

f j (3)

where J is the number of wind turbines in the wind farm.
Three different dispatch functions are considered in this work,
the newly developed MPO-based dispatch, and, for reference,
the static dispatch and the proportional dispatch. More details
on these are discussed in Sections II-B and II-C.

3) Controller Tuning: The tuning of the feedback controller
is conducted in three steps: 1) system identification; 2) system
analysis; and 3) system control.

a) System identification: The transfer function from the
power set-points of the turbines to the total power output of
the wind farm can be described as

Ptot(s) =
J∑

j=1

G j (s)Pset,j(s) (4)

where Pset, j (s) and Ptot(s) are the Laplace-transformed signals
of turbine power setpoint and of the total power output of the
wind farm, respectively. G j (s) is the transfer function, which
models the dynamics between turbine power setpoint and
turbine power output, i.e., the turbine operation. The transfer
function G(s) was identified from the frequency response
of the simulated wind turbine to be well represented as a
second-order system

G(s) = kGω2
0

s2 + 2δω0s + ω2
0

(5)

where ω0 is the bandwidth of the closed-loop turbine control
system, δ is the damping factor, and kG is the steady-state
gain of the system. For the conditions used in the case study
of this work (see Section III-A2), ω0 and δ are identified
to be 18.3 rad/s and 1.05, respectively. When the turbine
power setpoint is less than or equal to the turbine’s available
power, the steady-state gain kG is 1. However, a power
setpoint larger than the available power of a turbine results
in a steady-state gain below 1. As shown in [3], the result
is a reduced speed of the closed-loop wind farm system and
potentially a steady-state error from the total power reference.
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Therefore, an objective of the dispatch function can be to
ensure that the turbine power set-points are not higher than
the turbines’ available power.

When the power setpoints of all turbines are less or equal to
the available power of these turbines, G j (s) can be assumed
to be the same for all turbines. Furthermore, using (2) and (4)
can be written as

Ptot(s) = G(s)Pdem,tot(s)
J∑

j=1

f j . (6)

Using (3) and (6), the system controlled by the PI-controller
is thus modeled as

Ptot(s) = G(s)Pdem,tot(s). (7)

The PI-controller is, therefore, designed for the system
transfer function G(s).

b) System analysis: The system G(s) has two poles with
real part smaller than zero and is thus asymptotically stable,
as expected. In this simulation framework, the wind farm
controller obtains measurements from the wind turbines at
a frequency of 1 Hz. Due to the slow sampling frequency,
a discrete time controller synthesis is required.

c) System control: The system G(s) and the PI-controller
C(s) are, thus, converted to discrete time. G(s) is converted
using a zero-order hold and C(s) is converted using the Tustin
method. The resulting controller transfer function C(z) is

C(z) = k p

(
1 + Ts

2Ti

z + 1

z − 1

)
(8)

where Ts is the sampling time. The poles and zeros of the
closed-loop system are tuned with the time-domain objective
to achieve a fast rise time and no overshoot. The Nyquist
diagram shows that the open-loop transfer function L(z) =
G(z)C(z) does not enclose the critical point −1. Since
the poles of the open-loop transfer function are located at
π(L(z)) = {1; 1.8e − 6; 8.4e − 12}, the closed-loop system
is stable according to the Nyquist criterion. Furthermore,
the large minimum distance of 0.7 from the critical point
−1 shows the robustness of the closed-loop system.

B. Static and Proportional Dispatch

The developed MPO-based dispatch is benchmarked with
the two standard dispatch approaches, that is the static dispatch
and the proportional dispatch. The static dispatch distributes
the demanded total power to the turbines according to a con-
stant distribution. The proportional dispatch [4] distributes the
total demanded power according to the available aerodynamic
power at wind turbines.

C. Model-Predictive Optimized Dispatch

The advantages of using a dispatch function based on MPO
are, as described in Section I, predictive control and the use of
multiple objectives and models of operation. This work aims to
introduce the MPO-based dispatch and, therefore, only focuses
on the most important objective, i.e., reference tracking used
for wind farm ancillary services.

1) Objective Function: The objectives of the MPO cost
function J are to: 1) follow the total power reference and
2) to penalize the variation of the turbine power. The cost
function is, thus, defined as

J (v) =
N∑

k=0

⎧⎨
⎩(PMPO,tot[n + k] − Pref [n + k])2 +

J∑
j=1

ρrate

× (PMPO, j [n + k] − PMPO, j [n − 1 + k])2

}
(9)

where PMPO,tot[n] is the sum power output of all turbines in
the wind farm at time step n and Pref [n] is the total power
reference. ρrate is the weighting factor for the rate of turbine
power change. It was tuned by simulation prior to the case
study with the objective to improve the accuracy in tracking
the reference for the total power of the wind farm. PMPO, j [n]
is the power setpoint and equally the power output of turbine
j at time step n. The decision variable v ∈ R

N∗J is the power
setpoints of all turbines over the control horizon N . Generally,
in this work, the underline denotes that the quantity or matrix
spans over the entire prediction horizon.

The power setpoints derived in the MPO are used in the
dispatch function of the closed-loop feedback controller as

Pset, j = PMPO, j∑J
j=1 PMPO, j

Pdem,tot. (10)

2) Constraints: The turbine power setpoints v are con-
strained by the availability of aerodynamic power at the wind
turbines. Such constraint is of importance since requesting
more power than available from a turbine can result in a
steady state error from the reference for the total power of
the wind farm. In this work, the turbines’ available power is
estimated using a newly developed, dynamic, linear model.
The model predicts the turbine available power based on
wind farm aerodynamics and turbine power setpoints. The
aerodynamic interaction of wind turbines in the wind farm
is modeled using the Dynamic Flow Predictor [8]. The future
aerodynamic power Pavail of all wind turbines is calculated as

Pavail(v) = Pavail,0 + BdP(u(v) − u0). (11)

The matrix BdP is a diagonal matrix defined as

BdP = diag(BdP[n], BdP[n + 1], . . . , BdP[n + N]) (12)

where BdP is a diagonal matrix defined as

BdP = diag

(
∂P1

∂u1

∣∣∣∣
x0

,
∂P2

∂u2

∣∣∣∣
x0

, . . . ,
∂PJ

∂uJ

∣∣∣∣
x0

)
(13)

where (∂ P/∂u)|x0 is the derivative of turbine power P to
wind speed u at the operation point of that time step. The
derivative of wind turbine power to wind speed is calculated
using the turbine’s power curve. The operation point of a wind
turbine is estimated using the Dynamic Flow Predictor for each
prediction step.

Pavail,0 is the baseline, available power of the wind turbines
over the prediction horizon. It is calculated assuming that
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the turbines continue operating at the same current power
setpoints, that is v0. Pavail,0 is calculated as

Pavail,0 = 1

2
ρ AcP,maxu0(v0)

3 (14)

where ρ is the density of the air, A is the rotor area, and
cP,max is the maximum power coefficient of a turbine. The
wind speed predictions u0 are obtained using the Dynamic
Flow Predictor as

u0(v0) = Cux(v0) (15)

= Cu(A�x + Bv0) (16)

where matrix Cu is used to obtain the wind speed estimate at
wind turbines from the state vector x of the Dynamic Flow
Predictor state space system. The matrices A and B are defined
based on the principles of model predictive control [12] as

A =

⎡
⎢⎢⎢⎢⎣

I
A
A2

. . .

AN

⎤
⎥⎥⎥⎥⎦ (17)

B =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0
B 0 . . . 0

AB B . . . 0
...

...
. . .

...

AN−1B AN−2B . . . 0

⎤
⎥⎥⎥⎥⎥⎦ (18)

where A and B are the matrices of the Dynamic Flow
Predictor state space system, as shown in (19). The wind speed
predictions u(v) are obtained equivalently to (15).

Finally, using the above derivations, the dynamic, linear
available power constraint (11) is reformulated to a system of
linear constraints that is used for the quadratic programming
problem of the MPO (9).

3) Dynamic Flow Predictor: The Dynamic Flow
Predictor [8] is used to model the effect of wind turbine
operation on the dynamics of wind speed at the wind
turbines. The input to the Dynamic Flow Predictor is the
power setpoints of the wind turbines. A dynamic flow model
and a turbine model are used to calculate the outputs of the
Dynamic Flow Predictor, i.e., turbine power output and the
wind speed at wind turbines.

The flow model estimates wind turbine aerodynamic inter-
action using a delay process and a linearized engineering wake
model, i.e., in this work, the Frandsen wake model [13]. The
flow model is built as a dynamic, discrete-time state-space
model as[�udel,all

�u0

]
︸ ︷︷ ︸

�x

[n + 1] =
[

A1,1 A1,2
0 I

]
︸ ︷︷ ︸

A

[�udel,all
�u0

]
︸ ︷︷ ︸

�x

[n]

+
[

B�P,all
0

]
︸ ︷︷ ︸

B

� �P︸︷︷︸
�v

[n] (19)

�u[n] = [
Cu,1,1 0

]︸ ︷︷ ︸
Cu

[�udel,all
�u0

]
︸ ︷︷ ︸

�x

[n] (20)

where �udel,all is the wind speed delay states of all wind turbines
and �u0 is the wind speed linearization point. The output of
the flow model is the current rotor effective wind speed �u
at the turbines in the wind farm. � �P is the deviation of the
turbine power setpoints from the power linearization point.
The matrices A1,1 and A1,2 model the aerodynamic interaction
of wind turbines. Matrix Cu relates the wind speed states
�udel,all to the current rotor effective wind speed �u at the
turbines in the wind farm. The turbine model uses a direct
feed-through to model power output, and as such the turbine
power output is modeled as equal to the turbine power setpoint.
To improve the prediction accuracy of the Dynamic Flow
Predictor, a Kalman filter [14] and a dynamic system update
are employed. Tests of the Dynamic Flow Predictor show that
it can accurately capture the dynamics of wind speed modeled
by a higher fidelity simulation model. More information on the
Dynamic Flow Predictor model can be found in [8].

III. LARGE-SCALE WIND FARM CASE STUDY

The performance of the MPO-based dispatch is compared
to the other dispatch functions in a simulation case study
of a large-scale wind farm. The objective is to demonstrate
the performance of the MPO-based dispatch in a demanding
scenario. As such, the use of a large-scale wind farm results
in larger computational costs, and increased complexity in
the wind farm modeling and the MPO. In addition, the wind
farm is requested to operate in delta-control mode [2], [15],
which results in a demanding reference for the total power.
More information on the delta-control mode can be found in
Section III-A3.

The case study is structured into the simulation setup,
i.e., the wind farm, the simulation environment, and the wind
farm operation mode, and the simulation results, i.e., the
performance of the Dynamic Flow Predictor and the dispatch
functions, and the computation time of the MPO.

A. Simulation Setup

1) Wind Farm: The investigated, large-scale wind farm is
generic, in order to avoid the association of the presented
results with the operation of a particular, real wind farm.
Nonetheless, the chosen layout and turbine model shall repre-
sent the operation of typical offshore wind farms [16]. Fig. 2
shows the layout of the wind farm. The spacing of the wind
turbines is five rotor diameters between both rows and columns
of the square-grid wind farm layout. The wind farm comprises
80 NREL 5-MW wind turbines [17] with a rotor diameter
of 126 m and a rated wind speed of 11.4 m/s.

2) Simulation Environment: SimWindFarm: The investi-
gated, large-scale wind farm is simulated using the dynamic
simulation framework SimWindFarm [18]. SimWindFarm per-
forms simultaneous, dynamic simulations of the wind turbines
in the wind farm, the wind farm control, the aerodynamic
interaction of the wind turbines and the actions by the
transmission system operator. The NREL5MW virtual turbine
model [17] is used to model wind turbine operation. The wind
turbines are controlled using a standard wind turbine control
approach [19]. The operation of the wind turbines is coordi-
nated using the feedback controller presented in Section II-A,
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Fig. 2. Layout of simulated, generic 80 turbine wind farm used to compare
dispatch functions of power controller.

which is embedded in the DTU Wind Farm Controller [20].
The DTU Wind Farm Controller is linked to the SimWindFarm
simulation tool and replaces the basic, standard wind farm
controller in SimWindFarm. In SimWindFarm, wind turbine
aerodynamics is modeled using the turbine power coefficient
and thrust coefficient. Up to third-order dynamic models are
employed to simulate the drive train, generator, and pitch
actuator. The aerodynamic model of the wind flow in the
wind farm is structured into an ambient field model and a
turbine wake model [13]. The ambient wind field is modeled
as the hub height, turbulent wind flow advected with the
mean wind speed under the assumption of Taylor’s frozen
turbulence. In [21], it is shown that in large-scale wind farms
the power output of adjacent wind turbines can be strongly
correlated with a coefficient of correlation of up to 0.8 out
of 1. Thus, in the conditions of this work, Taylor’s hypothesis
is considered a reasonable approximation. Wake flow modeling
includes wake wind speed deficit, wake width expansion, wake
meandering, and wake merging. More information on the
aerodynamics of wakes in wind farms can be found in [16].

All simulations use the same wind conditions, i.e., a mean
wind speed of 8 m/s and a turbulence intensity of 6%. The
wind direction is aligned with the turbine rows as indicated
in Fig. 2. The simulation duration is 5000 s, while the
discussion of simulation results focuses on the operation from
1000 s onward. In the first 1000 s, the wake flow is building
up, and thus, this time span is not considered in the analysis.

3) Wind Farm Operation Mode: In order to provide sec-
ondary regulation services, the wind farm is operated in the
delta-control mode [2], [15], i.e., downregulation of the total
wind farm power by a certain percentage. Therefore, the wind
farm can provide secondary regulation by increasing the farm
power output from the downregulated power level to the
maximum power output. The total power reference signal
Pref (t), as shown in Fig. 3, is thus defined as

Pref(t) = [1 − γ ]Pavail,avg (21)

where γ is the amount of derating and Pavail,avg is the
backward-averaged total available power prior to the initiation
of the control at time t . The averaging durations used in this
work are 1 and 5 min. The longer averaging duration results in
less high-frequency content in the reference signal, but a larger
time shift of the reference signal into the future as compared
to the available power. The derating γ is set to 4%.

Fig. 3. Total wind farm power references used in case study on large-scale
wind farm. Reference signals are set as 4% derating from 1 min (blue) and
5 min (yellow) average total available power of wind farm (gray) prior to
initiation of control.

Fig. 4. Accuracy of wind speed estimates of Dynamic Flow Predictor in terms
of mean, normalized error (square), and NRMS error (error bar). Reference
is simulation environment SimWindFarm.

B. Results

The analysis of the case study results is focused on the
accuracy of the Dynamic Flow Predictor, the effect of the
dispatch function on the total power reference tracking, and
the computation time of the MPO.

1) Dynamic Flow Predictor Performance: The performance
of the MPO-based dispatch relies on the accuracy of the
employed model, i.e., the Dynamic Flow Predictor. The accu-
racy of the Dynamic Flow Predictor is, therefore, investigated
during the operation of the large-scale wind farm with the
MPO-based dispatch, in the same conditions as used in the
comparison with the other dispatch functions. Fig. 4 shows
the mean and normalized root-mean-square (NRMS) error of
wind speed estimates. The error is the difference between the
estimate by the Dynamic Flow Predictor and SimWindFarm.
It can be observed that the mean error increases with down-
stream turbines from no error to a maximum of 3.6% from
the most upstream turbine to the most downstream turbine.
It can be observed that the trend is the same for all turbine
rows. The positive bias in the wind speed estimate results
in an overestimation of the available turbine power. Since
the estimate of available power is used as a constraint in
the MPO-based dispatch, the derived power set-points are
more likely to exceed the available power at further down-
stream turbines. The NRMS error of wind speed estimates
increases with downstream turbines from 1.6% to a maximum
of 5.4%. The persistence-based prediction at upstream turbines
ranges between 5.4% and 6.6%. The model-based estimate
at downstream turbines is, thus, more accurate than the
persistence-based estimate at upstream turbines. More details
on this phenomenon can be found in [8].
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Fig. 5. Effect of dispatch function on tracking of total power reference in simulation of 80-turbine wind farm. Wind farm controller distributes demanded
total power using (a) and (b) MPO-based dispatch function, (c) and (d) proportional dispatch function, and (e) and (f) static dispatch function. The reference
signal is obtained based on 1-min averaged total available power (left) or 5-min averaged total available power (right).

2) Performance of MPO: The use of the MPO-based dis-
patch is observed to improve the reference track during the
operation in delta-control mode. The approach could, there-
fore, be used to enhance the quality of secondary regulation
services.

The effect of the dispatch function on the tracking of
the total power reference of the delta-control mode is dis-
cussed in more detail in the following. Fig. 5 shows the
effect of the dispatch function on the time-resolved tracking
of the total power reference. Overall, it can be observed
that the tracking performance is the most accurate with the
MPO-based dispatch, and the static dispatch performs worst.
Fig. 5(a) and (b) shows the time series of the total power
of the wind farm for operation with the MPO-based dispatch
function. It can be observed that the reference is followed
well, overall, and the farm power output tends to be below
the reference signal. The use of the reference signal based on
the 5-min averaged available power results in a worse tracking
performance as compared to the reference based on the 1-min
averaged available power. The worse tracking performance is
observed in periods when the reference is decreasing, such as,
for example, from 2000 to 2500 s. In such periods, the larger,
negative phase shift in the reference signal introduced by
the longer, 5-min backward-averaging of the available power
results in a more demanding reference signal, as can be seen
in Fig. 3.

Fig. 5(c) and (d) shows the time series of the total power of
the wind farm for operation with the proportional dispatch
function. The reference tracking behavior is similar to the
operation with the MPO-based dispatch function. However,
a larger variation of the total power and a lower mean total

Fig. 6. Effect of dispatch function on mean error from total power reference
in simulation of 80 turbine wind farm.

power is observed. Fig. 5(e) and (f) shows the time series
of the total power of the wind farm for operation with the
static dispatch function. It can be observed that the tracking
is worse than with the other two dispatch functions. With
the static dispatch, the wind farm is only able to deliver the
power requested by the reference at few time instances. This
is because the demanded total power is distributed equally to
the wind turbines, and thus some wind turbines are requested
to produce more power than their available power. As a result,
there is a steady state error from the total power reference as
discussed in Section II-A3 on controller tuning.

The tracking error from the total power reference is quanti-
fied in Figs. 6 and 7 in terms of the mean error and the NRMS
error, respectively. It can be observed that operation with the
reference based on shorter averaging of 1 min reduces the
errors of the MPO-based dispatch and proportional dispatch
by 30% and 14%, respectively. There is no effect observed
for the static dispatch since the total power reference is
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Fig. 7. Effect of dispatch function on NRMS error of total power reference
in simulation of 80 turbine wind farm.

above the farm power output independent of the averaging
duration used for the generation of the reference signal. The
results, therefore, show that a shorter averaging duration,
employed for the generation of the reference signal used in the
delta-control mode, can result in a lower reference following
error. The following discussion, thus, focuses on the results
for the reference based on 1 min average. The lowest error
is observed with the MPO dispatch function, which shows a
mean error of −0.8 MW and an NRMS error of 1.5%. The
reduction of the mean error with respect to the proportional
dispatch and the static dispatch is 43% and 77%, respectively.
The reduction of the NRMS error with respect to the pro-
portional dispatch and the static dispatch is 36% and 71%,
respectively.

The improvement in the tracking of the reference for
the total power of the wind farm is mainly due to three
reasons. First, the Dynamic Flow Predictor provides a more
accurate prediction of the available power at wind turbines
than the persistence-based prediction used in the proportional
dispatch. The performance improvement achieved with the
MPO dispatch is likely to be lower in the real wind farm,
because of a lower accuracy of the Dynamic Flow Predictor.
On the other hand, advances of the Dynamic Flow Predictor
such as the automatic correction of the mean prediction error
could improve the performance of the MPO dispatch further.
Second and third, in the tuning of the MPO dispatch, it was
observed that the use of a prediction horizon and the penaliza-
tion of turbine power variation increases the power tracking
accuracy.

3) MPO Computation Time: The computation time of the
MPO is two orders of magnitude faster than comparable model
predictive controllers in the literature. Smaller computation
time is beneficial as it results in a reduced delay in applying the
optimized turbine power distribution to the wind turbines. The
computation time of the MPO dispatch is on average 0.68 s,
which is composed of 0.27 s for the optimization and 0.41 s
for the model update. The computation time is calculated
on a standard personal computer for the current MATLAB
implementation of the MPO dispatch. Optimizing the imple-
mentation in terms of employed hardware and software can
further reduce the computation time. In [7], a comparable,
however, nonlinear model-predictive controller is applied to an
80-turbine wind farm for active power control. The computa-
tion time of the nonlinear optimization is quantified as 60 s,

i.e., two orders of magnitude larger than the computation time
of this work.

IV. CONCLUSION

The brief proposes an optimization-based dispatch function
for power control of wind farms during ancillary services.
The commonly employed proportional dispatch is simple and
robust, but only considers the availability of aerodynamic
power at wind turbines for distributing the total, requested
power to the wind turbines. The use of an optimization-based
dispatch function allows deciding on the distribution of total
power based on multiple objectives, models of the wind
farm operation and possible, future trajectories of opera-
tion. The proposed optimization-based dispatch function uses
model-predictive, multi-objective optimization. The optimiza-
tion objectives are to follow a reference for the total power
of the wind farm and to penalize variations of turbine power.
The employed model is the Dynamic Flow Predictor, which
uses a Kalman filter-driven feedback to correct the wind farm
flow model dynamically.

The developed, optimization-based dispatch function is
compared in dynamic simulation to dispatch functions com-
monly employed in present wind farms in a secondary
regulation scenario. The comparison is carried out on an
80-turbine, large-scale wind farm. This work, hence, shows
that the developed dispatch function is scalable to large
wind farms. The newly developed dispatch function yields a
reduction of the mean error and the normalized-root-mean-
square error of 43% and 36% with respect to the propor-
tional dispatch function. Another achievement is the speed
of the optimization of only 0.21 s for a large-scale wind
farm, i.e., two orders of magnitude faster than comparable
approaches in the literature. Response time within 1 s pro-
vides enough bandwidth to execute other required services of
secondary power system regulation like voltage and frequency
control.

The future work aims at extending the objectives of the
optimization-based dispatch to include the mitigation of tur-
bine fatigue loads. Next, the enhancement of the Dynamic
Flow Predictor could further improve the performance of
the optimization-based dispatch. Third, it is of interest to
compare the use of linear and nonlinear models in the
optimization-based dispatch.
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