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Information-Based Search for an Atmospheric
Release Using a Mobile Robot:

Algorithm and Experiments
Michael Hutchinson, Cunjia Liu , Member, IEEE, and Wen-Hua Chen , Fellow, IEEE

Abstract— Finding the location and strength of an unknown
hazardous release is of paramount importance in emergency
response and environmental monitoring; thus, it has been an
active research area for several years known as source term
estimation (STE). This paper presents a joint Bayesian estimation
and planning algorithm to guide a mobile robot to collect
informative measurements, allowing the source parameters to be
estimated quickly and accurately. The estimation is performed
recursively using Bayes’ theorem, where uncertainties in the
meteorological and dispersion parameters are considered and the
intermittent readings from a low-cost gas sensor are addressed
by a novel likelihood function. The planning strategy is designed
to maximize the expected utility function based on the estimated
information gain of the source parameters. Subsequently, this
paper presents the first experimental result of such a system
in turbulent, diffusive conditions, in which a ground robot
equipped with the low-cost gas sensor responds to the hazardous
source simulated by incense sticks. The experimental results
demonstrate the effectiveness of the proposed estimation and
search algorithm for STE based on the mobile robot and the
low-cost sensor.

Index Terms— Informative path planning, mobile robot, par-
tially observable Markov decision process, source term estimation
(STE).

I. INTRODUCTION

RECENT events have induced a surge of interest in
the methods of response to the releases of hazardous

materials into the atmosphere [1], [2]. Examples include:
responding to events, such as volcanic eruptions [3], nuclear
power accidents [4] or chemical, biological, or radiological
accidents or attacks, and even exploring methane emissions
on the planet Mars [5]. In many cases, such as nuclear
accidents or volcanic eruptions, the location of the source is
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already known, or the hazardous material may be detected
visibly. It can be more challenging when the location of the
hazardous material is unknown and the material cannot be
detected using visual methods. In this paper, a joint estimation
and search planning algorithm is devised, which will simul-
taneously search for and estimate important parameters of a
release using point observations of concentration on a mobile
robot.

Potential responses to a harmful atmospheric release include
mapping, boundary tracking, source localization, or source
term estimation/reconstruction (STE) [6]. Mapping and
boundary tracking both aim to provide a spatial approximation
of the contaminated area. However, these approaches are
limited by the dynamics and size of the phenomena and would
either require many sensors or a lot of time to produce a map.
Regardless of the mapped area that is likely to have changed
by the time, a map is produced. Furthermore, difficulties
would be incurred with large amounts of noise, intermittent
sensing, or by the splitting up of contaminated regions. Source
localization is a more realistic approach [7]–[9], although this
provides neither the information about the spread of hazardous
material nor the quantity of the emission. Instead, STE meth-
ods will estimate the location of the release and the strength
of the source. With this information, an atmospheric transport
and dispersion (ATD) model can be used to approximate the
spread of contamination, and it will be possible to forecast
the future and long-term hazard, including the estimates of
deposition [10].

Estimation of the source term of an atmospheric release
is most popularly dealt with using a large network of static
concentration sensors and meteorological stations as reviewed
in [6] and [11]. On the other hand, the development of smaller
sensors and intelligent autonomous robots means that the
mobile platforms, such as unmanned ground or aerial vehicles
equipped with various sensors, are the modern approach to
perform sensing tasks. Applied to environmental monitoring
tasks (see [12], [13]), mobile platforms overcome the issues,
such as maintenance, powering, networking, positioning, and
costs of large static networks of sensors. For source estimation,
mobile sensors are preferred, because a single sensor has the
potential to solve the entire problem by searching more desir-
able measurement locations and collecting more informative,
spatial-temporal data.

Using mobile robots to search an area for objects of interest
has received considerable research in recent years, where
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many problems can be formulated as a probabilistic search
to account for uncertainties within the search environment.
For example, multiagent search of predefined land patches for
static targets has been investigated in [14] using the info-gap
approach to deal with the severe uncertainty associated with
the priori information. Cooperative search for multiple station-
ary ground targets using a group of unmanned aerial vehicles
has been investigated in [15], where a probability map is con-
structed and updated based on unmanned aerial vehicle mea-
surements. More recent works have endeavored to combine the
probabilistic search and target localization problem in a unified
framework. For example, in [16], the multirobot-multiobject
exploration and tracking problems are solved jointly with
probabilistic guarantees on the tracking performance. For
challenging dynamic target search and tracking, an adaptive
online cosearch approach has been proposed in [17] using a
distributed sampling model in Bayesian estimation.

The STE problem using a mobile robot can be considered
as a probabilistic search or a cognitive search according
to a pioneering work [18]. However, it differs from the
above-mentioned work that focuses on target search and
localization. The overarching goal is to collect more useful
information for STE of a release rather than deploying the
robots to locations where the targets are likely to be. In this
sense, the philosophy of this paper is more similar to the work
of searching unknown transient radio sources using mobile
robots [19], where a comprehensive sensing model is required
to bridge the sensor readings and the sources. The unique
challenges associated with an atmospheric release are the
uncertain parameters in the dispersion model and the unre-
liable readings from the sensor due to turbulence. Therefore,
the search planning needs to be considered jointly with STE.

In this paper, we develop the probabilistic search algo-
rithm for an atmospheric release using an information-based
approach. Bayes’ theorem is used to estimate the source
term parameters including the source location, where all the
parameters in the dispersion model are given probability distri-
butions to account for their uncertainties. The Bayesian estima-
tion is implemented using a sequential Monte Carlo algorithm.
In probabilistic search planning, the Kullback–Leibler diver-
gence between the current and future posterior distributions
is used as a measure of the expected information gained
by the robot maneuver. This was inspired by the literature
on an optimal experiment design [20], [21] and informative
path planning [22]. The value of the expected information is
approximated using importance sampling techniques associ-
ated with the STE process. The proposed algorithm is assessed
experimentally, using smoke from burning incense sticks as
a source, fans to create wind, and a robot equipped with a
metal–oxide (MOX) gas sensor.

The contents of this paper can be summarized by several
technical contributions that complement and facilitate one
larger, more sincere, practical contribution. The latter is the
fact that, to the best of our knowledge, we have produced
the first online experimental STE results using robot cog-
nitive search in realistic conditions, which paves the way
for deploying this algorithm in response to an accidental
release or attack of chemical substances in the atmosphere

(e.g., see the scenario in [23]). Technical contributions that
facilitated this are as follows.

1) Inspired by the literature on STE [6], an information-
based search algorithm is developed to accommodate the
uncertainty in all dispersion parameters of the release,
with key ones being the wind speed, direction, and the
diffusivity.

2) The sensor model used in the algorithm is extended from
discrete particle encounter measurements (see [18]) to
the continuous space of a low-cost sensor. More impor-
tantly, a novel likelihood function is designed to accom-
modate the intermittent reading of the low-cost sensor.

3) A modified dispersion model is also used to cater for an
uncalibrated MOX sensor to reflect an expected voltage
reading instead of concentration. This is an important
step, as the calibration of MOX sensors is difficult and
affected by numerous factors [24].

4) This is arguably the first experimental study of an
information-based search that does not use a thermal
source or assume that the strength is of a known quantity,
such that the release is turbulent and the meteorological
conditions are inconsistent.

Finally, the overall experimental setup is simple but effec-
tive, using inexpensive sensors and a safe, easily accessible
source. We hope that it will benefit other STE researchers
enabling quick development and testing of algorithms outside
of simulations.

The remainder of this paper is organized as follows. First,
more relevant works are reviewed in Section II. A for-
mal description of the problem is given in Section III.
In Section IV, the methodology is described, including the
conceptual search solution, modeling required to implement
the conceptual solution, and the sequential Bayesian imple-
mentation. Section V outlines the experimental setup and
describes the robot searcher and the sensing environment.
An illustrative run and numerical results of the experiments
are presented in Section VI. Finally, conclusions and future
work are given in Section VII.

II. RELATED WORK

Autonomous search, with the goals of localizing chemical
leaks, sources of odor, or further understanding search
patterns observed in nature, has been a popular subject
of research for some time. Search is a quotidian task for
animals during foraging, hunting, or finding a mate. Due to
the large amount of applications in nature and the extremely
efficient and successful searches observed, many search
algorithms have been biologically inspired. In the absence of
sensory cues, evidence suggests that the searches in nature
are often random, for example, Brownian motion and Lévy
walks have been observed in marine predators [25] and
wandering albatrosses [26]. However, when sensing cues are
available, such as odor, the movement of the searcher is
adapted to proceed more efficiently toward the source. On a
microscopic scale, gradient-based approaches are used, for
example, Escherichia coli bacteria [27] use chemotaxis to
move toward the greatest supply of energy. On a larger scale,
sensing can be more sparse, caused by a weak source, greater
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distances, or insufficient mixing [28]. In these conditions,
chemotaxic strategies are abandoned as irregular gradients, and
intermittent sensing causes them to lose performance or fail.
Animals that search in these conditions adopt alternative meth-
ods, for example, the male silkworm moth uses wind and odor
information when searching for a female mate releasing sexual
pheromone [29]. The incredible efficiency and somewhat
systematic search path performed by the moth have inspired
search algorithms such as the surge and cast approach [30].

Most biologically inspired search strategies can be regarded
as reactive, where observations trigger predefined move-
ment sequences to localize a source [31], [32]. Alternatively,
approaches have been developed based on a fusion of proba-
bilistic and information theoretic principles, otherwise known
as cognitive strategies [18]. Recent cognitive search strategies
make decisions online, formulated as a partially observable
Markov decision process (POMDP) [33]. The POMDP frame-
work utilizes state, action, and reward. For our problem,
the state refers to the current knowledge about the source,
the actions are potential future measurement locations, and
the reward is a quantity to describe the gain in information
supplied by the corresponding action. Infotaxis is a cognitive
search strategy proposed to be effective in the sparse sensing
conditions where the gradient-based approaches would be
unsuitable [34]. Assuming that the environmental parameters
and the source strength were known, Bayes’ rule was applied
to update a probabilistic map of source location throughout
the search, in response to sparse sensory cues in the form of
particle encounters with a sensor [35]. Considering only one-
step-ahead maneuvers on a square lattice, the most informa-
tive actions were selected based on minimizing the expected
entropy of the posterior distribution, with an adaptive term to
bias the searcher’s movements toward the source, as levels of
uncertainty were reduced. The strategy showed robustness to
significantly sparse conditions and has thus inspired several
studies proposing modifications and extensions [36], [37].

A critical extension of the algorithm was its implementation
in the sequential Monte Carlo framework, using a particle
filter, alleviating its grid-based implementation and allowing
the source strength to be included in the parameter space [18].
This was essentially estimating the source term of the release.
In this paper, the focus was on removing the assumption that
the strength was known, so a few details on the performance
of the strength estimate were provided.

Other strategies to perform source estimation with a mobile
sensor include a genetic algorithm with an expert system for
sensor planning [38] and Markov chain Monte Carlo (MCMC)
sampling after a predefined sweeping path [39]. A pioneer-
ing work of using multiple robots for STE has been seen
in [40]. The information-based probabilistic approaches are
preferred in this paper, as they take into account the utility
of the next measurement when making maneuver decisions.
In simulations and on experimental data sets-based studies,
information-based search planning strategies have been shown
to outperform conventional approaches such as a uniform
sweep [41]. However, experimental results of STE performed
online using the mobile sensor are yet to be found. Besides the
simulated data, the previous work has used the experimental

data sets, whereby the artificial searcher could move to neigh-
boring locations to take a new measurement. This was done
on the data set collected in a turbulent water channel [41] and
for the radiological data set [18].

Note that there have been several source localization
experiments, rather than STE, that have been carried out
(see [9], [42]). These methods did not estimate important
parameters of the release, such as its strength, and the robots
were generally initiated downwind of the source within the
dispersion. Furthermore, the experiments would typically use
a constant and uniform wind flow, generated within a wind tun-
nel, creating a well-defined plume; conditions which are rare
in more realistic scenarios. There have been a few instances
where localization of the source has been demonstrated in
more turbulent conditions, for example, particle filter-based
algorithms have been used in outdoor environments to locate a
source of an airborne material using MOX sensors [43]–[45].
To date, cognitive- or information-based search experiments
are normally based on a thermal source with smooth dis-
persion, as opposed to turbulent airborne materials, and they
have assumed to be known dispersion parameters and source
strengths [32], [36], [46]. To this end, this paper should mark
the first online implementation of a cognitive search for STE
using a mobile sensor, where both the location and parameters
of the release are unknown.

III. PROBLEM FORMULATION

Consider a flat rectangular search area � ⊂ R
2 that is

expected to contain a hazardous release. A robot equipped with
the MOX gas sensor is to navigate within the area to estimate
the release parameters, otherwise known as the source term.
This will provide the necessary inputs to an ATD model to
produce a forecast of the hazard. For simplicity, it is assumed
that at time index k, the robot is aware of its own location
pk = [xk yk]T ∈ � within the area. In practice, this can be
achieved by using a GPS or a simultaneousness localization
and mapping system.

The hazardous sensor outputs a continuous reading z ∈ R
+

that can be related to the concentration of the hazardous
material in the air. This information can be used to predict
the parameters of the source, i.e., the source term. The source
term can include several parameters that depend on the type
of release and the models used to forecast the dispersion.
In this paper, the source term of the release is parameterized
by the following.

1) Cartesian coordinates of the source ps = [xs ys]T ∈ �
in meters (m).

2) Release rate/strength of the source qs ∈ R
+ in grams

per second (g/s).
3) The wind speed us ∈ R

+ in meters per second (m/s)
and direction φs ∈ R in radians (rad).

4) Diffusivity of the hazard in air ds ∈ R
+ in meters

squared per second (m2/s).
5) Lifetime of the emitted material τs ∈ R

+ in seconds (s).
Hence, the parameter vector of the source term can be
defined as

�k =
[
pT

s qs us φs ds τs
]T

. (1)



HUTCHINSON et al.: INFORMATION-BASED SEARCH FOR AN ATMOSPHERIC RELEASE USING A MOBILE ROBOT 2391

The robot is to autonomously search the environment,
collecting point observations z1:k = {z1, . . . , zk} from the
hazardous sensor at discrete time steps k = 1, . . . , k and at
known locations p1:k = {p1, . . . , pk}. At each time step k,
the robot updates its estimates of the source parameters �k

by drawing the inference on the probabilistic distribution
p(�k|z1:k) and then chooses the next location pk+1 to make
the next observation with the hazardous sensor by taking an
action ak , such that pk+1 = pk + ak .

IV. METHODOLOGY

To solve the formulated problem efficiently, the goal is to
navigate the robot to the most informative data collection
locations so that the estimation of the source term can be
performed more rapidly and accurately. The developed solu-
tion in this paper is twofold. First, Bayes’ theorem is used to
update posterior density estimates of the source parameters
and uncertain dispersion variables in response to the new
sensor data. Second, an information-based reward is derived
to choose the next position to collect the sensor data, which
is expected to provide the most information given the current
posterior results. In this section, the autonomous search and
estimation algorithm is described. The proposed solution is
outlined first, which explains further the framework of the
approach, followed by the descriptions of the models and
assumptions required to implement the solution and then its
algorithmic implementation.

A. Proposed Solution

This section describes the autonomous search and estima-
tion algorithm used to guide a robot to localize and reconstruct
a source of hazardous material characterized by the unknown
source term vector �k . The key variables of the source to be
identified are its location ps and release rate qs . The remaining
parameters include the wind speed us , wind direction φs ,
diffusivity ds , and the average lifetime of the hazardous
material τs . It is assumed that a good prior can be provided for
those parameters but they are still included in the state vector
to account for uncertainties. The robot, located at pk at time
step k and equipped with the gas sensor, is to navigate the
environment collecting measurements in the form of voltage
readings relative to the hazard (i.e., zk ∈ R0≤z≤5 in this
paper). At each time step, the robot will choose from the
admissible set of actions � = {↑,↓,←,→}, the move a∗k ∈ �
that is expected to yield the most information, derived as an
information-based reward.

1) Estimation: A probabilistic framework is used to esti-
mate the source parameters in response to large uncertain-
ties in the observed data in the form of a voltage reading
from an uncalibrated sensor. The current state of knowledge
regarding the source parameters is represented by a posterior
probability distribution p(�k |z1:k), where z1:k implies that the
measurement data are collected at locations p1:k , respectively.
The posterior distribution is subsequently updated according
to Bayes’ rule in response to the new sensor data zk+1, such
that

p(�k+1|z1:k+1) = p(zk+1|�k+1)p(�k+1|z1:k)
p(zk+1|z1:k)

(2)

where

p(zk+1|z1:k) =
∫

p(zk+1|�k+1)p(�k+1|z1:k)d�k+1. (3)

The initial prior distributions π(�0) ≡ p(�0) of the source
parameters are assumed to be given, and these can be pro-
vided autonomously through sensory data or by user input.
If information concerning the source term is available prior
to the search, it can be exploited through an appropriate
distribution to represent the prior knowledge known about the
release. However, in the absence of information, the prior
can be set to an uninformative distribution. For example,
the prior distribution for the location of the source is a uniform
distribution that is bounded by the domain �. In subsequent
iterations, the prior distributions are replaced by the posteriors
to reflect the information gained from the previous sequence.
In this Bayesian inference framework, it is also assumed that
the source term is constant, i.e., �k+1 = �k , which implies
that p(�k+1|z1:k) = p(�k|z1:k).

2) Sensor Planning: The reward function for sensor plan-
ning is inspired by the literature on the optimal experiment
design [20], where it is referred to as the utility function
ϒ(zk+1(ak)). This is used to capture the information gain
on the estimate of �k , given the next sensor data zk+1 after
taking the action ak . Different utility functions can be adopted.
Since the future measurement zk+1 is generally unknown, it is
suggested that the optimal design of an experiment should be
the one that maximizes the expected utility of the subsequent
measurement E[ϒ(ẑk+1(ak))], where the expectation is calcu-
lated with respect to the hypothetical future measurement ẑk+1.
The experimental design problem is adapted to direct a mobile
sensor, where the choice of the next experiment is synonymous
with the movement of the sensor. The maximization problem
can be written as

a∗k = arg max
ak∈�

E[ϒ(ẑk+1(ak))]. (4)

The expected utility of maneuver ak can be further expressed
as an integral based on the probability of a future measurement
ẑk+1(ak) and its corresponding utility ϒ(ẑk+1(ak))

E[ϒ(ẑk+1(ak))]
=

∫
ẑk+1∈Z

p(ẑk+1(ak)|z1:k)ϒ(ẑk+1(ak))dẑk+1 (5)

where Z is the range of the possible future measurements at
the future sampling position. In this paper, the utility func-
tion is defined as the Kullback–Leibler divergence between
the predicted source term distributions before and after the
measurement ẑk+1(ak) is taken into account, i.e., between the
distributions p(�k+1|z1:k) and p(�k+1|z1:k, ẑk+1(ak)). Thus,
the utility function is defined as

ϒ(ak, ẑk+1) = DK L(p(�k+1|z1:k, ẑk+1(ak))||p(�k+1|z1:k))

=
∫

�k+1

p(�k+1|z1:k, ẑk+1(ak))

× ln
p(�k+1|z1:k, ẑk+1(ak))

p(�k+1|z1:k)
d�k+1. (6)
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Combining (5) and (6) leads to the following expression for
the reward function:
E[ϒ(ak, ẑk+1)]
=

∫
ẑk+1

p(ẑk+1(ak)|z1:k)
∫

�k+1

p(�k+1|z1:k, ẑk+1(ak))

× ln
p(�k+1|z1:k, ẑk+1(ak))

p(�k+1|z1:k)
d�k+1dẑk+1. (7)

The method applied to approximate (7) is described in the
sequential Bayesian implementation section.

The sensor planning strategy provides the full search algo-
rithm under a single framework, which provides balanced
exploration and exploitation by adapting to the state of the
posterior density estimates of the source parameters. This is
characterized by more explorative behavior when the posterior
distributions have a widespread and are uninformative and
exploitative behavior, directed toward the source, as the pos-
terior distributions become more informative. The approach
naturally moves toward the source location, as the posterior
estimate becomes more certain.

B. Modeling

One of the great benefits and influencing factors of using
Bayes’ theorem is the ability to approach the problem from a
probabilistic perspective, where variables and models can be
given distributions to represent their level of certainty. In this
section, the models used for the gas sensor measurement and
estimated observations from a dispersion model are derived
and then combined to form the likelihood function used in (2).

1) Dispersion Model: To construct the likelihood function
p(zk+1|�k+1) used in (2), there must be a method of linking
sensor measurements zk with the expected observations. To do
this, a model of dispersion is required, which will provide the
expected concentration at position pk produced from a hypoth-
esized source with parameters �k . Any relevant model can be
used; there exist highly complex models using computational
fluid dynamics or equations derived from analytical solutions
to the advection–diffusion equations such as the Gaussian
plume dispersion model. The model is interchangeable without
any other changes to the algorithm and should be chosen to
reflect the current scenario. In this paper, a particular solution
to the advection–diffusion equation is adopted from [34].
This is a simplified equation based on atmospheric statistics
assuming homogeneous diffusion and a constant mean wind
direction and speed. Although other approaches may be more
accurate, this model is chosen as it is very fast running and
expected to be useful in turbulent short-range conditions. The
expected concentration to be read by a sensor at position pk

from a source at position ps , releasing gas at a rate of qs

with average lifetime τs in an environment with mean wind
speed us , wind direction φs , and diffusivity ds , is given by

C (pk |�k) = qs

4πds ||pk − ps || exp

[−||pk − ps ||
λ

]

× exp

[−(xk − xs)us cos φs

2ds

]

× exp

[−(yk − ys)us sin φs

2ds

]
(8)

Fig. 1. Example plot of the expected observation zk of the robot in a
square area, produced from a source �k with parameters: xs = −1.2,
ys = −0.2, qs = 0.1, us = 1, φs = 90◦, ds = 0.1, and τs = 2.

where

λ =
√

dsτs

1+ (
u2

s τs
)/

(4ds)
. (9)

An example of the modeled plume is given in Fig. 1, where
the sensor model to be described in Section IV-B3 has been
applied. From (8), the state vector of the unknown source term
and meteorological parameters is �k = [xs ys qs us φs ds τs ]T
where key parameters are the source location and strength. The
remaining variables are included as uncertain parameters to
increase robustness, as these variables are rarely known with
absolute certainty.

2) Sensor Model: The focus of this paper is on validating
an STE framework and demonstrating how a low-cost setup
can be used for rapid prototyping and source estimation exper-
iments. Therefore, a low-cost MOX gas sensor is adopted. Its
output is a voltage reading, which will vary due to a change in
resistance of the sensor, caused by contact with atmospheric
contaminants [24].

Typically, MOX sensors can be calibrated to a known gas
so that meaningful concentration measurements, in physical
units such as parts per million, can be found. However,
the calibrations are sensitive to uncontrollable atmospheric
conditions, such as temperature, humidity, and pressure [24].
In many scenarios, the atmospheric conditions can change,
the equipment to measure them is not available, or the source
of interest may be unknown or has not yet been calibrated to
the sensor. To address this problem and make the proposed
STE framework more applicable, the sensor used in this
paper is not calibrated. For simplicity, it is assumed that
the expected voltage reading V from the contamination is
directly proportional to the concentration of the substance.
Based on the dispersion model defined in (8), the proportional
relationship from the expected concentration to the expected
voltage follows:

V (pk,�k) ∝ C(pk |�k)→ V (pk,�k) = C(pk |�k)

α
(10)
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where α is the calibration factor. This is a reasonable assump-
tion based on [24]. While the substance is unknown or the
sensor is not calibrated to the specific material, a scaled release
mass A0 = qs/α is estimated, thus resulting in the new model
for the expected voltage reading

V (pk,�k) = A0

4πds||pk − ps || exp

[−||pk − ps ||
λ

]

× exp

[−(xk − xs)us cos φs

2ds

]

× exp

[−(yk − ys)us sin φs

2ds

]
. (11)

With a slight abuse of notation, we continue to use �k to
represent the new source term where qs is replaced by A0.
Moreover, to account for the unmodeled chemical concentra-
tion, an additive measurement noise v̄ is assumed to associate
with the expected voltage reading V (pk,�k) due to the sensor
noise.

Another challenge in using this low-cost sensor is that the
sensor is not specific to a particular material. There exists a
positive reading by the sensor in clean air, which in this paper,
is modeled as the background noise v . This also implies that
the chemical concentration from the source of interest may not
be picked up by the sensor when the concentration is relatively
low.

3) Measurement Likelihood: The likelihood function
p(zk |�k) needs to be constructed to provide the probabil-
ity of the sensor reading given a source term realization.
As described earlier, the observational data zk are deter-
mined by a number of factors, including the expected voltage
reading V (pk, θ) and different noises. In this paper, it is
assumed that both the additive measurement noise v̄k and the
background noise vk follow Gaussian distributions, such that
v̄k ∼ N (v̄k ; 0, σ̄k) and vk ∼ N (vk; 0, σ k). The standard
deviation of the background noise σ k can be obtained experi-
mentally which is set as a constant. In the contrast, σ̄k is more
difficult to quantify. Therefore, we follow common practice
in STE to set the errors as a percentage of the modeled
concentration reading.

While the noise distributions can be modeled, there still
exists a phenomenon to be accounted for in the sensing process
due to the complicated nature of chemical dispersion and the
low-cost sensor, which is the miss-detection of the sensor.
To solve this problem, we define an event D to describe
the case where the gas has been picked up by the sensor
(D = 1) and the case where the sensor did not respond to
the gas (D = 0). The probability of detection is defined as
Pd = Pr{D = 1}, which is a tuning parameter to be set in the
experiments. Therefore, the sensor model used in this paper
can be expressed as

zk =
{

V (pk,�k)+ v̄k, if D = 1

vk, if D = 0.
(12)

The corresponding likelihood function can be written as

p(zk |�k) = (1− Pd ) ·N (zk ; 0, σ k)

+ Pd ·N (zk − V (pk,�k); 0, σ̄k). (13)

C. Sequential Bayesian Implementation

The Bayesian estimation of source parameters is imple-
mented in the sequential Monte Carlo framework using a
particle filter. The output is an approximation of the posterior
distribution p(�k|z1:k), which represents the current state of
knowledge about the source parameters. Given the poste-
rior distribution in the form of a weighted random sample,
the integral in (7) is approximated so that the expected most
informative maneuver can be chosen.

1) Sequential Monte Carlo Estimation: The conceptual
solution derived to estimate the source parameters is imple-
mented using a particle filter. The posterior distribution
from (2) is approximated by a set of weighted random
samples {�(i)

k , w
(i)
k }Ni=1, where �

(i)
k = [x (i)

s,k y(i)
s,k A(i)

0,ku(i)
s,k

φ
(i)
s,k d(i)

s,k τ
(i)
s,k]T is a sample representing a potential source

term and w
(i)
k is the corresponding normalized weighting, such

that
∑N

i=1 w
(i)
k = 1. Given the weighted samples, the posterior

distribution is approximated as

p(�k|z1:k) ≈
N∑

i=1

w
(i)
k δ

(
�k −�

(i)
k

)
(14)

where δ(·) is the Dirac delta function. The sample weights
are updated in a recursive manner by sequential impor-
tance sampling [47]. At each time step, a set of new

samples {�(i)
k+1}Ni=1 can be drawn from a proposal dis-

tribution q(�
(i)
k+1), which should resemble the distribution

p(�k+1|z1:k+1). The corresponding unnormalized weights are
then updated according to

w̄
(i)
k+1 ∝ w

(i)
k ·

p
(
zk+1

∣∣�(i)
k+1

)
p
(
�

(i)
k+1

∣∣�(i)
k

)
q
(
�

(i)
k+1

∣∣�(i)
k , z1:k+1

) . (15)

The proposal distribution is typically used to update the
samples to the next time step for estimating dynamic states.
By assuming a time-invariant source term (i.e., the source
position is fixed and the release rate is constant), the pro-
posal distribution can be assumed to be identical to the
posterior at time k. This leads to a simple algorithm where
�

(i)
k+1 = �

(i)
k for i = 1, . . . , N [18]. Due to cancellation of

terms in (15), the unnormalized particle weights are updated
using the likelihood function and the previous weight as
follows:

w̄
(i)
k+1 = w

(i)
k · p

(
zk+1

∣∣�(i)
k+1

)
. (16)

The sample weights are then normalized as w
(i)
k+1 = w̄

(i)
k+1/∑N

i=1 w̄
(i)
k+1 to obtain the new approximation of the posterior.

Importance sampling is carried out sequentially at each
time step. This can eventually lead to only a few particles
with nonnegligible weights known as the degeneracy problem.
To avoid sample degeneracy, the number of effective samples
is estimated by

Ne f f = 1∑N
i=1

(
w

(i)
k

)2 . (17)

When the number of effective point estimates Ne f f falls below
a prespecified threshold η, the sample points are resampled.
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This can lead to another problem where highly weighted
particles will be multiplied many times, leading to a lack
of diversity. This problem is referred to as sample impov-
erishment. To improve the diversity of the random samples,
the resampled estimates are regularized by drawing new sam-
ples from a Gaussian kernel. The new samples undergo an
MCMC move step [47], where they will be accepted with a
probability proportional to their likelihood.

2) Sensor Planning: The reward in (7) must be integrated
over values of the future measurement zk+1. This value
is unknown until the maneuver has been made. Therefore,
the distribution of the hypothetical measurement ẑk+1 needs
to be generated based on the dispersion model and the current
estimate of the source term through the likelihood function.
Based on the current sample set {�(i)

k , ω
(i)
k }Ni=1 and using

the law of total probability, the likelihood function can be
approximated as a mixture model

p(ẑk+1(ak)|z1:k)

=
∫

�k+1

p(ẑk+1(ak),�k+1|z1:k)d�k+1

=
∫

�k+1

p(ẑk+1(ak)|�k+1)p(�k+1|z1:k)d�k+1

≈
N∑

i=1

w
(i)
k · p

(
ẑk+1(ak)

∣∣�(i)
k+1

)
(18)

where �
(i)
k+1 = �

(i)
k . To generate a set of samples from this

distribution, M particles {ẑ( j,i)
k+1 }Mj=1 can be drawn from each

p(ẑk+1(ak)|�(i)
k+1) based on (12), which yields a total of M N

samples.
To reduce the computational load, a small number of sam-

ples {�(l)
k , (1/Nz)}Nz

l=1 can be resampled from {�(i)
k , ω

(i)
k }Ni=1,

where Nz � N . Moreover, we set M = 1 in this paper, and
hence, only one sample of ẑ(l)

k+1 will be produced given a par-

ticular �
(l)
k value for l = 1, . . . , Nz . Therefore, the distribution

p(ẑk+1(ak)|z1:k) can be approximated by

p(ẑk+1(ak)|z1:k) ≈ 1

Nz

Nz∑
l=1

δ
(
ẑk+1 − ẑ(l)

k+1

)
. (19)

The detailed process of generating {ẑ(l)
k+1}Nz

l=1 is provided in
Algorithm 1.

Given the hypothetical future measurement ẑ(l)
k+1, the utility

function ϒ(·) defend in (6) can be evaluated. First, based on
the set of samples {�(i)

k , ω
(i)
k }Ni=1 resembling p(�k|z1:k) and

the fact �
(i)
k+1 = �

(i)
k , the same set of samples can be used

to approximate the predicted distribution p(�k+1|z1:k). Then,

the posterior distribution p(�k+1|z1:k, ẑ(l)
k+1) can be approxi-

mated by the sample set {�(i,l)
k+1, ŵ

(i,l)
k+1}Ni=1, where �

(i,l)
k+1 = �

(i)
k

and the corresponding weight is updated based on the same
Bayesian law (15) and (16), such that ŵ

(i,l)
k+1 ∝ p(ẑ(l)

k+1|�(i)
k+1) ·

w
(i)
k and

∑N
i=1 ŵ

(i,l)
k+1 = 1. Thus, the utility function can be

approximated as

ϒ
(
ẑ(l)

k+1(ak)
) ≈ N∑

i=1

ŵ
(i,l)
k+1 ln

ŵ
(i,l)
k+1

w
(i)
k

. (20)

Algorithm 1 Drawing Samples for Hypothetical
Measurement ẑk+1

Algorithm 2 Select Optimal Control Action a∗k

At last, the expected utility function with respect to the
hypothetical future measurement ẑk+1 can be expressed as

E[ϒ(ẑk+1(ak))] ≈ 1

Nz

Nz∑
l=1

N∑
i=1

ŵ
(i,l)
k+1 ln

ŵ
(i,l)
k+1

w
(i)
k

. (21)

The expected utility is calculated for all the maneuvers in
the set �; then, the robot selects the move a∗k that has the
greatest expected utility. Following the maneuver, the robot
takes a new observation zk+1 and the estimation and sen-
sor control cycle are iterated until some stopping criteria
are reached. The action selection algorithm is summarized
in Algorithm 2.

This concludes Section IV. The estimation and sensor plan-
ning implementations describe the entire algorithm required
for decision making of the robot to search for and estimate
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Fig. 2. (a) Incense stick used as a smoke source during experiments. (b) Snapshot of the burning incense during an experiment to illustrate the turbulence.

the source term of a hazardous source. All that remains is a
system to take the output of the algorithm, a new position
coordinate, and the robot maneuver to the desired location
to take the following measurement. The robotic system and
the experimental setup are described in Section V, and then,
the experimental results are presented.

V. EXPERIMENT SETUP

In this section, the experimental setup used to validate the
proposed algorithm using a mobile robot is described. Carrying
out experiments is very challenging in this area [48]. In our
experiment, a robot equipped with a gas sensor moves around
autonomously to estimate the location and strength of a source
releasing hazardous material into the atmosphere. The smoke
produced from burning incense sticks is used to simulate a
hazardous release, and electric fans are used to create a wind
field. The robot navigates the environment to the most infor-
mative measurement locations to make sensor observations,
which are point measurements of the smoke concentration. The
measurements are used to estimate the source term recursively,
using the probabilistic algorithm described in Section IV-C1.
At each time step, the robot moves to the position dictated by
the information-based reward described in Section IV-C2 to
take a new measurement.

A. Environment

The smoke produced from burning incense sticks, as shown
in Fig. 2(a), is used as the simulated, hazardous material during
the experiments. Incense sticks, otherwise known as joss
sticks, are a popular item used by the public for aesthetic rea-
sons, therapy, deodorizer, or for meditation. Such an accessible
source enabled simple, safe, and easily repeated experiments
that could be conducted in an indoor environment. An example
of the highly turbulent smoke plume generated by the burning
incense during the experiments is shown in Fig. 2(b). Multiple
experiments are conducted with a varying number of burning
sticks to analyze the response of the algorithm in different
sensing conditions and to assess the accuracy of the scaled
release rate estimates A0.

Fig. 3. Experimental setup used for the illustrative runs and experimental
results. (a) Diagram of the environment displaying the starting position of
the robot, the wind direction, and the location of the incense sticks. The red
shaded area indicated the bounds where the robot can move. (b) Photograph
of the experimental setup with a down facing projector for data visualization.

An illustration of the search environment is shown
in Fig. 3(a), and the axis limits indicate the domain area �
that is used to define the limits of the uniform prior on the
source position. The red shaded area represents the area within
which the robot can move, bounded by the field-of-view of the
indoor positioning system. The location of the incense sticks
(−2.4,−0.8) during the experiments and the starting position
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Fig. 4. Gas sensing system. (a) Turtlebot robotic platform. (b) MQ135 MOX
gas sensor. (c) Fan and inlet cone used to draw air into the sensor.

of the robot (1.8, 1.2) are indicated in Fig. 3(a). A wind field
is generated, roughly along the positive x-direction, using fans
to the left and to the right of the search area. A photograph of
the experimental setup during an experimental run is shown
in Fig. 3(b), displaying the position of the robot during a search
and the source location at the bottom left. The localization of
the robot is provided by an indoor positioning system (Vicon).
The image on the floor is produced by a downward-facing
projector that is used for visualization during the experiments
and the videos provided in [49]. The setup was inside a large
ventilated building, large enough for there to be little effect
caused by trapped smoke or wall reflectance.

B. Search Robot

A “Turtlebot” robot is adapted for gas sensing experiments
shown in Fig. 4(a). An MOX gas sensor is used to sense
the smoke. There are a range of sensors available, each with
different sensitivities toward materials. The MQ135 gas sensor
shown in Fig. 4(b) was chosen for the experiments due to its
reported sensitivity to smoke. In order to improve the response
of the sensor during the experiments, a CPU cooling fan was
added to suck air into the sensor as is shown in Fig. 4(c). The
sensor information is sent via a serial connection to a laptop
on-board the Turtlebot, which sends it to a ground station,
together with the associated location stamp. The ground station
(Intel core i7 desktop PC) runs the sequential estimation of the
source term parameters and outputs the new position command
based on the online optimization.

VI. EXPERIMENTAL RESULTS

Multiple experiments are conducted to validate the algo-
rithm and assess its behavior in response to varying source
strengths. Illustrative runs are presented to show the char-
acteristics of the cognitive search and source reconstruction
with a strong and weak source. Examples of the output are
shown in the form of marginal posterior density curves for
all the estimated parameters in the source term vector �k .

TABLE I

ILLUSTRATIVE RUN PARAMETERS AND PRIORS

Table II is provided which summarizes the results of three
trials each for experiments with two, four, and six burning
incense sticks. Table II indicates the accuracy of the location
estimate of the algorithm and the time taken to complete the
search. Finally, averaged marginal posterior densities of the
release strength are included to demonstrate the performance
of the release rate estimate.

A. Illustrative Runs

The illustrative runs and experiments are conducted using
the environment and the robot that have been described. The
starting position of the robot during the runs is p0 = (1.8, 1.2).
The number of random samples used in the particle filter is
N = 10 000, and the number of samples used to approximate
the expected utility from (21) is Nz = 100. The probability of
detection during the runs was set to Pd = 0.7, and the standard
deviation of the background noise was fixed at σ k = 0.005.

To initiate the experiments, prior distributions for the source
parameters must be input to the algorithm. As discussed
briefly in Section IV-A, the prior distributions should reflect
information known about the release. To assess the algorithm
in realistic conditions, it is assumed that there is a little
information known about the release beforehand. The prior
distributions used to initiate the illustrative runs and the
experimental results were set to the values shown in Table I,
where the true values are indicated if they were known. This
is followed by a short discussion on the choice of the prior
distributions.

1) The prior distributions for the location of the source
(p0(xs), p0(ys)) were set to uniform within the domain.
This would be equivalent to someone drawing a large
rectangle to indicate “we think that the source is within
here.”

2) The scaled release strength prior p0(A0) was given a
gamma distribution. This was used to indicate to the
algorithm that the release is likely to be weak. This
prior was fixed for every test, regardless of the real
strength or the number of burning incense sticks.

3) The meteorological variables (p0(φs), p0(us)) and dif-
fusivity p0(ds) were assigned uniform distributions.
Operationally, these should be set using meteorological
sensors and information about the hazardous material.

4) The average lifetime prior p0(τs), which in this case,
refers to the average time taken for the smoke particles
to cool and fall to the ground (in other cases, it may
be a result of chemical reactions), was set to a uniform
distribution as this parameter was unknown. In some
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Fig. 5. Illustrative run using two burning incense sticks at time steps (a) k = 7, (b) k = 32, (c) k = 58, and (d) k = 65. The green dot represents the current
position of the robot that has followed the blue line trajectory and taken observations at positions indicated by the blue dots. The location of the source is
indicated by a black dot, and the small pink dots represent the random samples of the estimation algorithm. (e) Voltage reading of the sensor throughout the
experiment. (f) Mean and standard deviation of the release rate estimate over time.

circumstances, it could be given a more informative dis-
tribution based on information known about the hazard.

An illustrative run using two burning incense sticks is shown
in Fig. 5. Fig. 5(a)–(d) shows the path of the robot and the
measurement positions, at various time steps, represented by
the blue line and the blue dots. At each time step, the robot
stops at the blue dot to sample, updates the estimates of the
source term, and then decides where to move next. The current
position of the robot is indicated by a larger, green circle, and
the true position of the source is at the black circle. The large
amount of small pink dots represents the N random samples
that are used to approximate the posterior estimates of the
source location parameters, as described in Section IV-C1.

Fig. 5 demonstrates how the robot begins the search by moving
in a crosswind direction. In response to a very little or no
readings of smoke, the robot moves slightly upwind while
proceeding to travel crosswind in the other direction. By time
step 32, shown in Fig. 5(b), the pink dots have moved away
from the visited locations of the robot where no smoke was
seen; however, due to the large amount of uncertainty expected
during the search, some dots still remain in this area in case the
low or zero reading could have been caused by either sensor
noise or atmospheric turbulence. By time step k = 58, shown
in Fig. 5(c), the robot has narrowed down the source position,
and the pink dots begin to converge into the true source
location. At the end of the search, shown in Fig. 5(d), the robot
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Fig. 6. Outputs of the STE algorithm after an illustrative run with two sticks. Posterior density estimates of the location in (a) x- and (b) y-coordinates.
The blue curve indicates the posterior estimate, and the red vertical line is the truth. The green dashed lines represent the mean and standard deviation of
the estimate. (c) Posterior density of the scaled release rate A0. The blue curve indicates the posterior estimate, and the red dashed curve represents the prior
distribution.

Fig. 7. Remaining source parameter estimates at the end of the experiment. The red dashed line indicates the prior, and the blue curve is the estimate.
(a) Wind direction φs . (b) Wind speed us . (c) Diffusivity ds . (d) Lifetime τs .

has narrowed down the source estimate to within 10 cm of the
true source location. The sensor output (in units of volts) over
time is shown in Fig. 5(e), and the estimate of the source
strength over time is given in Fig. 5(f), with shaded regions
indicating confidence intervals of a single standard deviation.

Posterior density estimates of the location of the source
are shown in Fig. 6(a) and (b). The blue curve represents
the estimate, the red vertical line is the true location, the tall
green dashed vertical line is the mean, and the shorter lines are
standard deviations. It is clear how the red line, representing
the mean, is close to the peak of the density curve for the
estimates in the x- and y-coordinates. The posterior estimate
of the source release rate is shown in Fig. 6(c), where the
red dashed curve indicates the inverse gamma prior and the
blue line is the estimate. The performance of the release rate
estimate is analyzed in Section VI-B, where the output is
compared for different amounts of sticks. Posterior densities of
the remaining parameters are shown in Fig. 7, and these para-
meters are mainly included to add robustness to the algorithm
in the presence of uncertain meteorological conditions.

In Fig. 8, another illustrative run is shown using snapshots,
where four burning incense sticks were used as the smoke
source. In this run, smoke was detected by the detector much
earlier in the search, causing the robot to proceed toward the
source earlier on, as more information was available. Posterior
densities at the end of the run for the location and strength
estimates are given in Fig. 9. The sensor readings throughout
the search are given in Fig. 8. The difference in the sensing

conditions caused by changing the number of burning incense
sticks can be seen by comparing Figs. 5(e) and 8(e).

B. Numerical Results

The illustrative runs were repeated three times each for
two, four, and six burning incense sticks. The autonomous
stopping criteria were created based on the spread of
the estimate. At each time step during the experiments,
the spread of the posterior distribution was estimated as
Sk = (ζk(1, 1)+ ζk(2, 2))1/2, where ζk is the covariance
of the source position particles. The results are summarized
in Table II, where the mean estimates of the source location
and strength are given with details about the search time.

For all runs, the location estimate was very accurate, typ-
ically within 10 cm of the true source position. In the STE
literature using static networks, it is common for there to be
greater error along the downwind x-direction and then the
crosswind y-direction. However, in several of the experimental
runs, a more significant error was seen in the crosswind
direction. This was caused by the slow recovery time of
the MOX gas sensor. When the robot moved from an area
of very high concentration to very low, it was not reflected
by the sensor, as it would still be recovering from its high
reading. This is a negative property of MOX sensors reported
previously in source localization experiments [9] and is a
current topic of research focused on reducing and modeling
the response time [50].
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Fig. 8. Illustrative run using four burning incense sticks. (a)–(d) Snapshots of the experiment at different time steps k. (e) Plot of the path at the end of the
search. The path followed by the robot is indicated by the blue line. The location of the source is indicated by a black dot, and the small pink dots represent
the random samples of the estimation algorithm. (f) Voltage reading of the sensor throughout the experiment. (g) Mean and standard deviation of the release
rate estimate over time.

In response to more sticks, the robot could estimate the
source term more quickly. This is due to higher, more informa-
tive concentration readings earlier on in the search. The differ-
ence in search time between four and six sticks is quite small;
this is from the robot still moving crosswind, even though the
posterior estimate clearly showed that the source is upwind
of the robots position. This behavior can be expected, as the
goal of the decision making is not to move directly toward
the source but also to follow an informative path that collects
information about the source location, strength, and the mete-
orological parameters. Furthermore, by moving crosswind,
the robot could gain an accurate crosswind position estimate
of the source earlier on in the search from a standoff position.

To assess the strength estimate of the algorithm, one would
usually compare the strength estimate directly with the true

value. In these experiments, the true release strength of the
incense sticks was unknown, and the sensor did not output
a concentration reading. Smoke itself can be a mixture of
several materials, so the composition of the material that the
sensor was reading was unknown. The sensor was uncalibrated
to the smoke, and the output was a voltage not a reading
of concentration, meaning that only a scaled release strength
A0 could be estimated as described in Section IV-B. Upon
calibration of the sensor, this can easily be adjusted to a
true physical value. To assess the strength estimate of the
algorithm, the outputs relative to one another using the varying
amounts of sticks were compared.

The averaged marginal posterior densities of the release
strength are shown in Fig. 10, using all the runs from Table II.
The curves show the averaged posteriors for two sticks in
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Fig. 9. Outputs of the STE algorithm after an illustrative run with four sticks. Posterior density estimates of the location in (a) x- and (b) y-coordinates.
The blue curve indicates the posterior estimate, and the red vertical line is the truth. The green dashed lines represent the mean and standard deviation of
the estimate. (c) Posterior density of the scaled release rate A0. The blue curve indicates the posterior estimate, and the red dashed curve represents the prior
distribution.

TABLE II

RESULTS FOR THREE TRIALS USING TWO,
FOUR, AND SIX INCENSE STICKS

Fig. 10. Averaged marginal estimates of the release rate A0 of the source at
the end of the experiments. The red solid line indicates the prior distribution.
The blue curve is the average release rate estimate after three runs with two
burning incense sticks. The cyan dotted curve is the average for four sticks,
and the green dashed line is for six.

blue, four in cyan dotted, and six in green dashed. The
red curve indicates the prior distribution. It is clear from
Fig. 10 that the scaled strength estimate is proportional to the
number of incense sticks, increasing by approximately 0.09 per
stick.

There are a number of reasons for the increased spread of
the posterior for the larger release rate estimates: 1) modeled
variance was increased with sensed value and the sensed value
was larger with higher release rates; 2) a larger release rate
leads to the possibility of a stronger source further away
causing the increased spread of several posterior parameters;
and 3) the final result was further from the prior distrib-
ution resulting in more spread. The strength estimate can
be dependent on several of the unknown parameters due to
coupling. It is beneficial for these parameters to be entered
into the algorithm accurately, and however, it has been shown
that the algorithm is robust to quite uninformative prior
information.

VII. CONCLUSION AND FUTURE WORK

An autonomous search algorithm has been developed to
navigate a robot to the expected most informative locations
to estimate the source term of an atmospheric release. The
output of the system can provide important details about a
release or leak of an airborne material into the atmosphere,
such as its location or the rate of emission. Such information
permits a model to forecast the spread and deposition of
the material into the surrounding area. To make the algo-
rithm work in realistic conditions, a new likelihood function
was designed to accommodate intermittent readings from the
low-cost sensor, where the sporadicity was a consequence of a
weak source, insufficient mixing of the airborne material, and
the small size and low sensitivity of the sensor. An experimen-
tal setup was devised, which is easily repeatable and effective
for early testing of STE techniques. Illustrative runs demon-
strated the search behavior of the algorithm and its accuracy in
location estimation. Numerical results showed the consistency
of the algorithm and the effect of a stronger or weaker source.
Finally, it was shown how the algorithm is able to predict
the relatively scaled release strength of the source. The results
mark a first for an STE algorithm running online to guide a
mobile sensor. In the future, a similar configuration will be
developed for outdoor tests using an aerial vehicle instead of
a ground-based robot.
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