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Particle Filter for Fault Diagnosis and Robust Navigation of Underwater Robot
Bo Zhao, Roger Skjetne, Mogens Blanke, and Fredrik Dukan

Abstract— A particle filter (PF)-based robust navigation with
fault diagnosis (FD) is designed for an underwater robot, where
10 failure modes of sensors and thrusters are considered. The
nominal underwater robot and its anomaly are described by a
switching-mode hidden Markov model. By extensively running
a PF on the model, the FD and robust navigation are achieved.
Closed-loop full-scale experimental results show that the pro-
posed method is robust, can diagnose faults effectively, and can
provide good state estimation even in cases where multiple faults
occur. Comparing with other methods, the proposed method can
diagnose all faults within a single structure, it can diagnose
simultaneous faults, and it is easily implemented.

Index Terms— Fault diagnosis (FD), fault tolerance, particle
filter (PF), remotely operated underwater vehicle (ROV), switch-
mode hidden Markov model (HMM), underwater navigation.

I. INTRODUCTION

DUE TO the increasing requirements on safety, reliability,
and availability, fault tolerant control systems design

has drawn significant attention. This methodology aims to
prevent that a minor fault in a component leads to loss
of system functionality. Since fail-operational architectures
are costly, a fault tolerant architecture is a natural choice
for system design [1]. Toward realization of a fault tolerant
system, the first step is to diagnose faults, where the term
fault diagnosis (FD) includes fault detection, isolation, and
estimation.

Model-based analytical FD is discussed in detail in [1]–[3].
Residual signals in FD are functions of the inputs and mea-
surements of the system and a fault is detected whenever
the residual exceeds a predesigned threshold. This method is
practical and has many applications, such as a detailed fault
tolerant design for ship propulsion in [4] and fault tolerant
design for station-keeping in [5].

Classical techniques in combined state and parameter esti-
mation include the Kalman filter and the extended Kalman
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filter (see [6] for linear systems, and extended to a class
of nonlinear systems in [7]). FD based on combined state
and parameter estimation were discussed in [8]. Observers
for nonlinear systems in using estimated faults as states and
sliding mode techniques were suggested in [9]. An unscented
Kalman filter (UKF)-based method was developed in [10] to
detect and isolate both temperature sensor and valve faults.

Particle filters (PFs) [11], [12] inherited from the Bayesian
estimation and the Monte Carlo method, can also be used
for this purpose. In [13], the authors developed a method
that combined state estimation by a PF in a multiple model
environment and likelihood ratio approach to detect and isolate
faults in stochastic nonlinear systems.

Another approach using PFs for fault diagnosis was pre-
sented in [14], suggesting a hidden Markov model (HMM)
with variable transition probabilities that were estimated online
from data and applied to multisensor fusion for land vehicle
positioning. The underwater vehicle problem is quite different.
Artifacts in sensor signals, such as outliers and temporal
dropouts of signals occur frequently and are essential to con-
sider to obtain robust navigation. Another application of using
a PF in fault detection is [15]. In this brief, the fault detection
problem for a space rover was studied, and the so-called
risk sensitive PF and variable resolution PF were reported.
PFs have also been used for failure prognosis (see [16] that
dealt with crack growth prediction).

This brief employs a switching-mode HMM as system
description. Failure modes are included in the model, and a
method is suggested using a PF to solve the FD problem on
this model, hereafter called an FDPF design. The computa-
tional burden of the approach by [14] is eased significantly
by formulating a model with prior and fixed probabilities
of failure modes. This brief discusses how to design for a
tradeoff between false alarm and detection probabilities, and
it describes how this is implemented. The resulting algorithm
is shown to be compact, easy to implement, and resulting in
moderate computational complexity that makes the algorithm
run with ease in real-time. Having introduced the PF design,
this brief focus on the realization of a robust FDPF design
for a remotely operated underwater vehicle (ROV). A proto-
type implementation is described together with results from
experiments in full scale at sea where the algorithm was
used in closed loop control of the ROV Minerva belonging
to the Applied Underwater Robotics Laboratory (AUR-Lab)
at Norwegian University of Science and Technology.

ROVs are widely used in various safety critical opera-
tions, where accurate positioning and control of the ROVs
are required. It is necessary to realize high precision and
fault tolerant ROV navigation. Applications of ROV inte-
grated navigation are reported in [17] and [18]. Sensor and
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Fig. 1. ROV Minerva with kinematics notations. It has one lateral
thruster, two longitudinal thrusters, and two vertical thrusters. Photo: Johanna
Jarnegren.

actuator faults are encountered frequently in practice [19];
hence, fault detection and fault handling are essential for ROV
reliability. For instance, the update intervals of ROV position
measurement are relatively long and uneven. This phenomenon
combined with frequent outliers makes the navigation problem
more complex. Detection of actuator faults and faults in
navigation sensors are considered as a combined problem
in this brief, and experimental data are used to assess the
occurrence of different fault types. Actuator reconfiguration
possibilities are rather limited on the vessel considered and
are not within the scope of this brief.

This brief is organized as follows. Section II describes the
model of the ROV used in the experiment and its failure
modes. Section III, presents the switched HMM, the PF and
the navigation system design. Results from ROV sea trials are
presented in Section IV.

II. PROBLEM DESCRIPTION

A. ROV and ROV Control System

The ROV Minerva [18], as shown in Fig. 1, is a SUB-fighter
7500 ROV. It is powered from and communicates with a sur-
face supply vessel through a 600-m umbilical cable. Minerva
is equipped with five thrusters and various navigation sensors.
A hydroacoustic positioning reference (HPR) system, is used
to measure the position of the ROV relative to a transducer on
the surface vessel. A Doppler velocity log (DVL) is installed
to measure the ROV velocity. An inertial measurement
unit (IMU) provides turn rate and heading measurements.
Depth is provided by the HPR and also by a pressure gauge.

1) Kinematics: Adopting the notations of [20], the kinemat-
ics is described by the degrees-of-freedom (DoF) in Table I.
The ROV is designed to be passive and stable in roll and pitch,
the dynamics in these DoF are ignored. The kinematic model
of the ROV is then given by the 4-DoF model

η̇ = R (ψ) ν (1)

where η = [NEDψ]� is the ROV position and heading in the
North–East–Down (NED) reference frame, ν = [u v w r ]� is
the body-fixed velocity and yaw rate vector, and R (ψ) is the
rotation matrix, which transforms a vector in the ROV body
frame to NED frame coordinates.

2) Kinetics: Following [20] and [18], the ROV dynamics is

M ν̇ = −C (ν) ν − D (νr ) νr − g (η)+ τ + wν (2)

ν̇c = −T−1
c νc + wc (3)

TABLE I

NOTATIONS FOR ROV MODEL

where M is the combined rigid body and added mass matrix,
C (ν) ν is the Coriolis and centripetal force, D (νr ) νr is
the nonlinear and linear hydrodynamic damping, g (η) is the
restoring force, τ = [X Y Z N]� is the control force and
moment, and wν is process noise. All the matrices are in R

4×4,
and vectors are in R

4. In addition, νr = ν − νc is the relative
velocity vector with respect to the current. The current velocity
νc can be modeled as (3), where T c is a diagonal matrix, and
wc is process noise.

B. Sensor Modeling and Anomaly Analysis

1) HPR System: The HPR system determines the position
of an underwater target. The HPR measurement is a vector
with North and East positions1 and follows a multivariate
Gaussian distribution:

p( pA,k |ηk) = N ([I2×2 02×2]ηk,�A,k) (4)

where N denotes the Gaussian distribution function and
�A,k is the covariance of the measurement noise.

When the ROV dives down to deeper water, the HPR
update rate becomes nonuniform and lower than nominal. This
phenomenon is named HPR dropout and is given the symbol
�HPR,1. In the HPR data logs, as shown in Fig. 2, the HPR
update intervals were uneven and larger than 1 s in general.
This is much lower than the sampling time of the control
system. The HPR dropout is modeled as

p( pA,k |ηk) = N ([0 0]�, σ 2
A,d I

)
(5)

where σ A,d is assigned to a very large positive number
representing that the current measurement is noninformative.
Fig. 2 also indicates that the HPR measurement frequently
suffers from outliers, which is given the symbol �HPR,2.

The outliers are seen as samples from

p( pA,k |ηk) = N ([
I2×2 02×2

]
ηk, σ

2
A,o I

)
(6)

where σ 2
A,o I is the covariance of the distribution of the

outliers, conceptually chosen as
∥
∥σ 2

A,o I
∥
∥ � ∥

∥�A
∥
∥.

2) Doppler Velocity Log: The DVL is used to measure
the velocity of the ROV in 3-D space with respect to sea
bottom. We used only the two horizontal components in its
measurement. The DVL measurement is transformed into the
ROV body frame according to

vD = RROV
DVL

(
vDVL

D + r bROV
DVL

)
(7)

1The pressure gauge depth sensor gives more reliable measurements than the
HPR measurement in depth, so the depth component in the HPR measurement
was not used.
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Fig. 2. (a) Segment of the HPR measurement with the measurement index
along the horizontal axis. (b) Histogram of the update intervals of the HPR
measurement.

where vDVL
D is the velocity measurement in the DVL instru-

ment frame, RROV
DVL is the rotation matrix from the instrument

frame to the body frame, bROV
DVL is the lever arm between the

two frames expressed in body frame, and vD is the resulting
ROV velocity measurement in the body frame.

The DVL measurement is simply expressed as
vD = [u D vD]�. Assuming the DVL measurement noise
in each direction is independently identically normally
distributed, the resulting DVL measurement vD,k is

p(vD,k|νk) = N ([I2×2 02×2]νk, σ 2
D I

)
. (8)

The DVL dropout problem, which is given the symbol
�DVL,1, happens when the DVL looses sea bottom tracking.
It reports a sentinel max velocity that indicates a lost velocity
measurement. The DVL dropout is

p(vD,k|νk) = N ([0 0]�, σ 2
D,d I

)
(9)

where σ 2
D,d is a large positive number. The DVL measurement

may suffer from a bias. For instance, an alignment error in the
instrument frame can cause a bearing and offset error of the
measured velocity. This failure is given the symbol �DVL,2.

The size of this error is unknown and time-varying, and a
first-order Markov process is used to model DVL bias

ḃDVL = −T−1
DVLbDVL + wDVL (10)

where bDVL ∈ R
2 is the bias, TDVL is a diagonal time constant

matrix, and wDVL ∈ R
2 is the driving noise. It follows that

vD is biased from the ROV velocity according to:
p(vD,k|νk, bDVL) = N ([I2×2 02×2]νk + bDVL, σ 2

D I
)
. (11)

3) IMU and Depth Sensors: The ROV is also equipped with
an IMU as heading sensor and a depth sensor, such that

ψM,k = [0 0 0 1] ηk (12)
DP,k = [0 0 1 0] ηk . (13)

C. Thruster Control and Thruster Faults

1) Thruster Control: The Minerva ROV has five thrusters,
lateral (l), vertical port (vp), vertical starboard (vs), longi-
tudinal port (p), and longitudinal starboard (s). The thruster
control, described in [18], models the achieved thrust by

τ = T K u (14)

where T ∈ R
4×5 is a thrust allocation matrix that reflects

thruster position and orientation, K ∈ R
5×5 is a diagonal

gain matrix, and u ∈ R
5 is the thrust rotational speed

command from the controller. Since the thruster speed control
is open-loop due to lacking rotational speed sensors, an
unknown error between the commanded and actual speed of
each thruster could be present. We categorize the thruster
anomalies into the following failure modes.

1) The actual rotational speed is slightly lower than com-
manded. Such a fault is typically negligible, as it is
handled by integral action.

2) The actual speed is much lower than the commanded
value. We assign it mode �THR,t,1, where t ∈
{l, vp, vs, p, s} is the thruster index.

3) The actual speed is zero, e.g., due to blocking the
propeller. We name this failure mode zero thrust and
assign it mode �THR,t,2.

We augment the state space with the vector α =
[al avp avs ap as] ∈ [0, 1]5 to model the thrust loss,
whose entries represent the ratio between the desired thrust
and the actual thrust for the five thrusters. It follows for the
fault-free case that all entries of αk are 1. Inserting this into
the thruster model (14) yields

τ = diag {α} T K u. (15)

D. Resulting ROV Model

Collecting the ROV kinematics (1), kinetics (2), current (3),
the measurements (4), (8), (12), and (13), and thruster control
(14), (15), we obtain the ROV model as

η̇ = R(ψ)ν (16a)

M ν̇ = −C(ν)ν− D(νr )νr − g(η)+diag{α}T K u+wν

(16b)

ν̇c = −T−1
c νc + wc (16c)

ḃDVL = −T−1
bDVL

bDVL + wbDVL (16d)

p(at,k) =
⎧
⎨

⎩

ρ(at,k − 1), [�THR,t,1�THR,t,2] = [00]
U(0, 1), [�THR,t,1�THR,t,2] = [10]
ρ

(
at,k

)
, [�THR,t,1�THR,t,2] = [01]

(16e)

p( pA |η ) =

⎧
⎪⎨

⎪⎩

N ([I 0]η,�A), [�HPR,1�HPR,2] = [00]
N ([0 0]η, σ 2

A,d I), [�HPR,1�HPR,2] = [10]
N ([I 0]η, σ 2

A,o I), [�HPR,1�HPR,2] = [01]
(16f)

p(vD |ν ) =
{
N ([I 0]ν + bDVL, σ

2
D I), �DVL,1 =0

N ([0 0]η, σ 2
D,d I), �DVL,1 =1

(16g)

where ρ(·) is the Dirac delta function.

III. PF-BASED ROV ROBUST NAVIGATION

A FDPF-based ROV robust navigation system is outlined
in this section, introducing first some elements of the theory
of FD of switching-mode hidden Markov chain models, and
then focusing on the particular implementation for navigation
filter design, which has some novel elements.
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A. Generalized Model for the System With Possible Faults

We describe a system with possible failure modes by
a switching-mode HMM. This is a combined model of a
first-order Markov chain representing the mode transitions,
and a bank of HMMs representing the fault-free system
model and the models associated with different failure modes,
that is

Pr(�k+1 = δ j |�k = δi ) = pi j,k (17a)

Xk+1 |(Xk = xk, uk,�k = δk) ∼ p (xk+1 |xk, uk, δk )

= fk (xk, uk, δk) (17b)

Y k |(Xk = xk, uk,�k = δk) ∼ p
(

yk |xk, uk, δk
)

= hk (xk, uk, δk) . (17c)

Equation (17a) is the mode transition Markov chain to
transfer the system between system modes, where � =
[� f (1) � f (2) · · · � f (Nm ) ]� is a discrete random variable
defining the system mode. The components � f (p) ∈ {0, 1}
(p ∈ {1, . . . , Nm }) denote whether the fault f (p) occurs in
the system, (17b) is the process equation, and X ∈ R

Nx is the
state vector. Its realization is x.

u ∈ R
Nu is the input, p (·) is a probability density function

(PDF) on R
Nx , and fk (·) : R

Nx × R
Nu × {0, 1}Nm �→ R

+ is
the state transition mapping from the states, input, and system
mode at time k to the PDF of the states for time k + 1.
Equation (17c) is called the measurement equation, where Y ∈
R

Ny is a random vector representing the measurement and y
is its realization. p (·) is a PDF on R

Ny and hk (·) : R
Nx ×

R
Nu × {0, 1}Nm �→ R

+ is the measurement mapping, which
maps the states, input, and system mode at current time to the
PDF of the measurement.

Define an augmented system state vector to consist of the
system state and system mode by2 ξ k = [

δ�
k x�

k

]�
. Then, the

system can be written as

p(ξ k+1|ξ k, uk) = Pr(�k+1 = δi |�k = δ j )

p(xk+1|ξ k, uk) = p j i,k · fk(ξ k, uk) (18)

p(yk |ξ k, uk) = hk(ξ k, uk). (19)

B. PF Algorithm of the Switching-Mode HMM

Solving the FD problem in (18) and (19) includes to
estimate the system mode sequence δ. Assuming for instance

the sequence δ has already been estimated and that � f (p)

i is 1
for i = k−l, . . . , k, then it can be concluded that the fault f (p)

happened at time k − l. The advantage of this approach is that
the state estimation problem and the FD problem are solved
at the same time within a single structure. We employ a PF to
solve this estimation problem. The proposed PF algorithm, as
shown in Fig. 3, is adapted from the sampling importance
resample PF (SIR-PF) in [11]. SIR-PF is employed in this
brief because of its ease of implementation. However, other
PF algorithms could also be employed.

2From now on we do not distinguish a random variable from its realization.
Both of them will be denoted by lowercase letters.

Fig. 3. One cycle of the PF, divided into three steps by chain lines. These
steps corresponding to the inherit, time update, and measurement update,
respectively. In the inherit step of this figure, the particles are conceptually
ordered 1–Ns from left to right, for the purpose to show the replacement of
the particles in the time update steps.

In the following, x(i) and δ(i) denote the state vector and
system mode of the i th particle, w(i) is the corresponding
weight, and Ns is the number of particles.

1) Inheriting from the Last Cycle: The PF works in a
recursive manner. At time k it inherits the posteriori estimation
p(ξk−1| y1:k−1). The posterior density should be understood as
a combination of 2Nm scaled distributions subjected to differ-
ent system modes. For instance, the posteriori distribution of
xk−1 in mode δm(q)

is

p
(
xk−1|�k−1 = δm(q)

, y1:k−1
)

≈

Ns∑

i=1
w
(i)
k−1 · ρ(

xk−1 − x(i)k−1

) · ρ
δm(q) ,δ

(i)
k−1

2Nm −1∑

q=0
w
(i)
k−1 · ρ

δm(q) ,δ
(i)
k−1

(20)

where ρ (·) again is the Dirac delta function, ρs,t is the
Kronecker delta function, and the denominator in (20) should
be nonzero as long as there is at least one particle in this
mode.

2) Time Update: The time update process is to obtain
the a priori estimation of the states as q(ξk |ξ0:k−1, y1:k).
In the PF context, this is done by drawing samples from
an importance density. The SIR-PF uses the most conve-
nient distribution p

(
ξ k |ξ (i)k−1, uk

)
as the importance density.

We determine the new system state by drawing samples
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from

p
(
ξ k |ξ (i)k−1, uk

) = p
(
xk |

[
x(i)k−1, δ

(i)
k−1

]�
, uk

)

· Pr
(
δk

∣
∣δ(i)k−1

)
. (21)

At the end of the time update process, the new positions ξ
(i)
k

of the particles are obtained.
3) Measurement Update: At this step the weights of the par-

ticles are updated according to the observation yk . Given the
current observation yk and the importance density p(ξk |ξ (i)k−1),
this yields

w
(i)
k ∝ w

(i)
k−1 · p

(
yk |ξ (i)k , uk

)
(22)

where p(yk |ξ (i)k , uk) is defined by (19).
4) Resampling: To counteract the degeneracy problem,

resampling is applied following [21].

C. FD Using a PF

It is concluded that the system is in mode δm(q)
when �k =

δm(q)
, termed the significant mode, has the largest marginal

probability mass. This is given by

max
i

Pr
(
�k = δm(i) | y1:k

) = q, i ∈ {
0, . . . , 2Nm − 1

}

where the probability mass is obtained by marginalizing the
distribution p(ξ k | y1:k), according to

Pr
(
�k = δm(q) | y1:k

) ≈
Ns∑

i=1

w
( j )
k ρ

δm(q) ,δ
(i)
k
. (23)

When the significant mode is other than fault free, a fault is
detected. The particular failure is determined by the estimated
system mode, meaning that the fault is isolated, and its size
is obtained from the PF state estimate.

An alternative method is motivated by the CUSUM algo-
rithm [1]. The time cumulation of the marginal masses
of the modes are used as indicators, and the detection
of faults is done by assessing the behavior of these indi-
cators. This is applied to diagnose the thruster fault in
Section IV-F.

D. ROV Robust Navigation System

The heave DoF can be controlled and observed separately
from other DoF, since they are not coupled [20]. In addition,
the corresponding sensor are reliable, so they are not included
in our robust navigation design. Consequently, the failure
modes regarding the two vertical thrusters are not considered
in this design for simplicity.

Since the failure modes are induced by different mech-
anisms, it is reasonable to assume that their occurrence
are independent from each other. Hence, the mode transi-
tion Markov chain can also be designed independently for
each equipment and then assembled. Table II shows the
mode transition probabilities for the HPR failure modes,
using

Pr
([

�HPR,1
k+1 �HPR,2

k+1

]�=δ(n)
∣
∣[�HPR,1

k �
HPR,2
k

]�= δ(m)
)
= pδ(m)δ(n) .

(24)

TABLE II

MARKOV CHAIN FOR THE TRANSITION OF MODES �HPR,1 AND �HPR,2

TABLE III

MARKOV CHAIN FOR THE TRANSITION OF MODES

�THR,t,1 AND �THR,t,2, t ∈ {l, p, s}

The transition probabilities for
[
�HPR,1 �HPR,2

] = [1 0] is
not considered in this Markov chain since the system adopts
the HPR dropout mode whenever the HPR measurement is not
available in the last sampling interval.

The DVL dropout is handled as the HPR dropout, that is,
the DVL measurement adopts (9), whenever its measurement
is not available. The DVL bias, on the other hand, has been
modeled as an additional state of the system. Hence, there is
no probabilistic mode switching for the DVL.

The mode transition probabilities for the thruster modes are
given in Table III, using

Pr
( [

�
THR,1
k+1 �

THR,2
k+1

]�=δ(n)
∣
∣[�THR,1

k �
THR,2
k

]�= δ(m)
)

= p
δ(m)δ(n)

. (25)

We then construct the system mode vector � =
[�HPR,1 �HPR,2 �DVL,1 �THR,1 �THR,2 ]�. The mode transition
Markov chain subjects to the combination of (24) and (25) is

Pr
(
�k+1 = δ j

∣
∣�k+1 = δi ) = pi j . (26)

The total switching-mode HMM for the ROV is obtained by
combining (26) and the ROV model (16).

There are three modes for the HPR, three modes for the
DVL, and we consider the three modes for the three thrusters
in the horizontal plane, resulting in 3 × 3 × 33 = 243 modes
for the PF.

IV. FULL-SCALE TEST CAMPAIGN

The full-scale test was performed on October 17–18, 2012,
in the Trondheimsfjord, Norway. The test was focused on
the performance of the proposed FDPF-based navigation filter
in a real environment, real sensor measurements, and its
cooperation with the ROV control system. In addition to
the FDPF-based navigation filter, a Kalman-based navigation
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Fig. 4. Block diagram of the control system. Note that functionality has
been implemented to trigger the thruster and sensors failure modes to make
the failure testing more predictable and practical.

TABLE IV

PF PARAMETERS IN THE EXPERIMENT

filter [18] was running in parallel and open loop for compar-
ison. Functionality has been implemented to manually set the
relevant thruster and sensor failure modes according to Fig. 4
and the following.

1) HPR outliers: a random number taken from a
2-D multivariate normal distribution with zero mean
and tunable variance is added to the current HPR
measurement.

2) HPR dropout is triggered by blocking the measurement.
3) DVL dropout is triggered by blocking the measurement.
4) DVL bias: a tunable constant bias is added to the DVL

measurement.
5) Loss of thrust: the thruster failure modes are activated

by setting the gain αk .

In the test trial 200 particles were used in the PF. The
mode transition Markov chain probabilities are shown in
Tables II and III. Other parameters were set according to
Table IV. Figs. 5–9 show results from the ROV sea trial.
The annotation refers to Table V. In the design, system
noise is exaggerated to attenuate effects of uncertainties in
hydrodynamic parameters that constitute the C(ν) and D(νr )
terms in the kinetics. This is common practice when designing
observers for marine systems. Uncertainties are also attenuated
by the measurement update in the PF.

A. Basic Navigation

The results of using the FDPF for state estimation of
the ROV are shown in Fig. 5(a). In this test the ROV was
controlled to move along a triangular path with heading
along the path. It is seen that the HPR measurement suffers
from outliers and low update rate. The state estimate by
the FDPF is generally good, and this verifies its success
as a state observer exposed to a nonuniform measurement
update rate and measurement outliers. The state estimation

performance of the PF was close to the Kalman filter,
but a small high-frequency oscillation was observed due to
tuning.

B. Outliers

Outliers mislead the state estimation, for instance the esti-
mation of the offline observer in Fig. 5(b) jumps after some
outliers. Therefore, they have to be detected. The principle of
detecting outliers embedded in the PF is just as the following
hypothesis testing. Define

{
H0,k : HPR measurement at time k is fault free

H1,k : HPR measurement at time k is an outlier.

It can be derived

Pr
(
H0,k | pA,k , η̂k

)

Pr
(
H1,k | pA,k , η̂k

) = Pr
(

pA,k |H0,k, η̂k

)
Pr

(
H0,k

)

Pr
(

pA,k |H1,k, η̂k
)

Pr
(
H1,k

) (27)

where η̂k is the prior estimation, Pr
(
H0,k

)
and Pr

(
H1,k

)
are

the transition probabilities defined in the Markov chain, and
Pr

(
pA,k |H0,k, η̂k

)
and Pr

(
pA,k |H1,k, η̂k

)
are determined by

the measurement relation (16f). In the PF the same process
is implicitly done by the importance sampling (21) and the
measurement update (22). This hypothesis testing is influenced
by the variance of the prior estimation. Table VI shows the
detectability of an outlier based on the size of the outlier
and the dropout time before the outlier measurement is made.
Naturally, it is more difficult to detect an outlier the longer the
dropout time is, and outliers with large amplitude are more
easily detected.

To test outlier detection, outliers of known amplitudes were
injected during an position-keeping test. The statistics of
the outlier detection is presented in Fig. 5, which coincides
compares with Table VI.

C. HPR Dropout

Fig. 6(a) shows the performance of the FDPF when the
HPR drops out for about 30 s while the ROV was moving
straight in an Eastern direction. As discussed earlier, the HPR
dropout does not have to be diagnosed since it is handled
within the nonuniform sampling interval mechanism, even for
such a long interval, all the while the FDPF outputs a steady
stream of position estimates. In state-of-the-art observers this
is typically achieved by entering a dead-reckoning mode [22],
such that the position is estimated open-loop based on the
thrust force and, possibly, velocity measurement. However,
such an observer may fail to estimate the ROV position
correctly when then HPR drops out for too long time, as
seen in the large deviation between the ROV position and
the offline filter estimation in Fig. 6(a). When the position
measurement drops out here, the variance of the estimation
cannot be reduced by new position information and the uncer-
tainty of the estimation grows due to system noise. This is
observed by the increasing distance between the upper and
lower 1σ bounds. The estimated position during the dropout
is shown to be close to the original fault-free measurement,
and this confirms the good dead-reckoning capability of
the FDPF.
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Fig. 5. (a) Measurements and state estimation when the ROV was moving along a triangular path. (b) Measurements and state estimation using HPR even
during dropout. (c) State estimation after detection and removal of outliers.

Fig. 6. (a) Measurements and state estimation subject to HPR dropouts. (b) Measurements and state estimation subject to DVL dropout. (c) Measurements
and state estimation subject to DVL bias.

D. DVL Dropout

When the DVL drops out, the state estimation is based
on the thrust force command and the HPR measurement.
The performance of the FDPF is for this case shown in
Fig. 6(b), showing that the estimated velocity is satisfactorily
close to the original fault-free measured velocity during the
DVL dropout. Similar to the HPR dropout case, the variance
of the velocity estimation increases during the DVL dropout.
However, this increase only lasts for about 3 s until it settles
at a stationary value. This can be explained by the Bayesian
properties of the PF. The particles with estimated velocity that
are significantly different from the actual velocity will not be
supported by the observations since these will also yield a large
difference between the estimated position and the measured
position. This is an information back propagation feature
of PFs.

E. DVL Bias

In the sea trial, a DVL bias was injected in the ROV surge
direction while the ROV was in position-keeping operation.
The bias was first increased slowly in steps before decreased
back to 0. The corresponding experimental responses are
shown in Fig. 6(c). The bias estimate is close to the value of
the manually triggered fault, especially if taking the variances
of the DVL measurement noise and the system noise into
account. This indicates that the DVL bias is well diagnosed
by the algorithm.

F. Insufficient Thrust and Zero Thrust

The reduced thrust failure mode was tested by decreasing
the thrust from the two surge-directed thrusters, as shown in
the third graph in Fig. 9(a), in such a way as to avoid spin
of the ROV.
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Fig. 7. Probabilities of detection PD and false alarm PF versus value of
threshold. The difference PD − PF is an indicator for the tradeoff between
PD and PF .

Fig. 8. Measurements and state estimate when injecting thruster faults.

The Kalman filter estimates rapidly diverged from the true
state when the fault was triggered. In contrast, the FDPF
provides good state estimates during presence of these failures.

When the thrust failure is present, the FDPF shows more
frequent confirmation of zero thrust and insufficient thrust
modes than in fault-free conditions. Table VII shows the
thruster mode and estimated thruster mode during the period
in Fig. 9(a), where the thruster modes are referring to the two
thrusters in the surge direction.

Thus, we obtain the probabilities Pr{δ̂k = �THR,i |δk =
�THR, j }, (i, j ∈ {0, 1, 2}). Defining two statistics Di

k =∑k
j=k−n ρ(δ̂ j ,�

THR,i ) (i = 1, 2) as the time cumulations of
the estimated system modes, where n is a moving window
length, we can calculate the probabilities of detection P{Di

k >
h|{δk−n, · · · , δk}}, where h is a threshold to be decided by
examining the false-alarm-rate and time-to-detection. As an
example, Fig. 7 shows the probability of detection and false
alarm against the threshold when the window size is 100
(which is 15 s). This suggests to use the thresholds 12 for
�THR,1 and 10 for �THR,2 to restrain the false alarms. To this
end, the fourth graph in Fig. 9(a) shows the D1

k , D2
k with

moving window size 100, and the threshold. The statistic
D1

k exceeds the corresponding threshold in 16 s after the
fault happens. Fig. 8 shows the result when applying this
method and thresholds to another set of experiments, where a
thruster fault was injected. The result validates the proposed

TABLE V

NOTATIONS IN THE EXPERIMENTAL RESULTS FIGURES

TABLE VI

HPR OUTLIERS DETECTION

TABLE VII

ANALYSIS OF THRUSTER FAULT DETECTION RESULT

diagnosis method where the two statistics helps to make the
fault detection robust to model uncertainty.

G. Multiple Failure Modes

Two combinations of simultaneous failures were tested.
Fig. 9(b) shows the state estimation for a DVL drop-out during
a HPR dropout. At the end of the 30 s HPR dropout, the posi-
tion estimate has deviated about 1m from the measurement,
while the velocity estimate is intact.

The other multiple failure mode test was assessing the
system response to HPR outliers during a DVL dropout period,
and the results are shown in Fig. 9(c). When HPR outliers
occur during a DVL dropout, the variance of the position
estimate becomes large, and this makes detection of outliers
increasingly difficult.

The position and velocity estimation is again good. In this
case one should also notice that the variance of the velocity
estimation did not increase as much as in the previous multiple
failure case (but more than the fault-free case) since the
information from the HPR is back propagated to the velocity
estimation through the system model.

3 “X” means a outlier is determined to be fault-free, and “©” means
a outlier is determined to be outlier.
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Fig. 9. (a) Measurements and state estimate when thruster faults are injected. (b) Measurements and state estimate subject to HPR dropout and DVL dropout.
(c) Measurements and state estimate subjected to HPR outliers and DVL dropout.

V. CONCLUSION

In this brief, we have proposed a PF-based algorithm
for FDPF built on a switching-mode HMM. The algorithm
was applied to robustify the navigation of an ROV, where
the navigation sensors and thrusters are vulnerable and fault
diagnosis is essential. The design was tested in a full-scale
ROV sea trial, for which the design process and the test
responses have been presented and discussed in detail. The
experimental results confirm that the performance of the fault
diagnosis was generally good and that the proposed algorithm
provided robust and efficient state estimation for the ROV
under different combinations of failure modes, signal artifacts,
and disturbances.
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