
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 1

Guaranteeing Control Requirements via Reward
Shaping in Reinforcement Learning

Francesco De Lellis , Member, IEEE, Marco Coraggio , Member, IEEE,
Giovanni Russo , Senior Member, IEEE, Mirco Musolesi , Member, IEEE,

and Mario di Bernardo , Fellow, IEEE

Abstract— In addressing control problems such as regulation
and tracking through reinforcement learning (RL), it is often
required to guarantee that the acquired policy meets essential
performance and stability criteria such as a desired settling
time and steady-state error before deployment. Motivated by
this, we present a set of results and a systematic reward-
shaping procedure that: 1) ensures the optimal policy generates
trajectories that align with specified control requirements and
2) allows to assess whether any given policy satisfies them.
We validate our approach through comprehensive numerical
experiments conducted in two representative environments from
OpenAI Gym: the Pendulum swing-up problem and the Lunar
Lander. Utilizing both tabular and deep RL methods, our experi-
ments consistently affirm the efficacy of our proposed framework,
highlighting its effectiveness in ensuring policy adherence to the
prescribed control requirements.

Index Terms— Computational control, deep reinforcement
learning (RL), learning-based control, policy validation, reward
shaping.

I. INTRODUCTION

THE paradigm of using reinforcement learning (RL) for
control system design has gained substantial traction due

to its ability to autonomously learn policies that effectively

Manuscript received 14 March 2024; accepted 19 April 2024. This work
was supported in part by the Research Project “SHARESPACE” funded by
the European Union (EU HORIZON-CL4-2022-HUMAN-01-14. SHARES-
PACE. GA 101092889—http://sharespace.eu) and in part by the Research
Project PRIN 2022 “Machine-learning based control of complex multiagent
systems for search and rescue operations in natural disasters (MENTOR)”
funded by the Italian Ministry of University and Research (2023–2025). The
work of Giovanni Russo was supported by the MOST–Sustainable Mobility
National Research Center and received funding from the European Union
Next-GenerationEU [PIANO NAZIONALE DI RIPRESA E RESILIENZA
(PNRR)–MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4–D.D. 1033
17/06/2022] under Grant CN00000023. Recommended by Associate Editor
M. Abbaszadeh. (Corresponding author: Mario di Bernardo.)

Francesco De Lellis is with the Department of Electrical Engineering and
Information Technology, University of Naples Federico II, 80125 Naples, Italy
(e-mail: francesco.delellis@unina.it).

Marco Coraggio is with the School for Advanced Studies, Scuola Superiore
Meridionale, 80138 Naples, Italy (e-mail: marco.coraggio@unina.it).

Giovanni Russo is with the Department of Computer and Electrical Engi-
neering and Applied Mathematics, DIEM, University of Salerno, 840484
Salerno, Italy (e-mail: giovarusso@unisa.it).

Mirco Musolesi is with the Department of Computer Science, University
College London, WC1E 6BT London, U.K., and also with the Department
of Informatics—Science and Engineering, University of Bologna, 40136
Bologna, Italy (e-mail: m.musolesi@ucl.ac.uk).

Mario di Bernardo is with the Department of Electrical Engineering and
Information Technology, University of Naples Federico II, 80125 Naples, Italy,
and also with the School for Advanced Studies, Scuola Superiore Meridionale,
80138 Naples, Italy (e-mail: mario.dibernardo@unina.it).

Digital Object Identifier 10.1109/TCST.2024.3393210

address complex control problems, relying solely on data and
employing a reward maximization process. This approach finds
diverse applications, spanning from attitude control [1] and
wind farm management [2] to autonomous car-driving [3] and
the regulation of plasma using high-fidelity simulators [4].
However, a significant challenge in this domain revolves
around ensuring that the learned control policy demonstrates
the desired closed-loop performance and steady-state error,
posing a crucial open question in control system design.

It is often argued that accurate knowledge of system
dynamics is necessary to provide analytical guarantees of
stability and performance, which is crucial for industrial
applications [5], [6]. In fact, in this article, we introduce a set
of analytical results and a constructive procedure for shaping
the reward function of approaches based on RL (tabular and
function approximation methods that rely on deep learning).
The goal is to derive a learned policy that is obtained without
the use of a mathematical model of the system dynamics, able
to verifiably meet predetermined control requirements in terms
of desired settling time and steady-state errors.

In the literature, reward shaping, consisting of modifying
the reward function to improve learning or control perfor-
mance, has mostly been used to increase sample efficiency [7],
[8], [9], rather than providing guarantees on the learned policy.
An early example was presented in [7], where an agent
was trained to ride a bicycle exploiting a reward-shaping
mechanism. More recently, reduced sample complexity was
demonstrated in [9] for a modified Upper Confidence Bound
algorithm using shaped rewards. In [8], it was shown that
adding a function of the state to the reward keeps the optimal
policy unchanged if and only if the function is potential-based.
A method to select potential-based functions is presented
and validated analytically in [10], requiring knowledge of an
appropriate Lyapunov function, to guarantee convergence to a
state under the optimal policy. While this result can be used
to solve regulation problems, it does not ensure a specific
settling time. Moreover, finding a Lyapunov function is often
cumbersome for many real-world problems.

When guarantees are given on RL control [6], they are
typically provided in terms of reachability of certain subsets
of the state space [11], [12], or in terms of safety during
learning and/or for the learned policy. Namely, in [11], RL is
used to select a control law among a set of candidates,
using Lyapunov functions to ensure a system enters a goal
region with unitary probability, under certain conditions on
the controllers. In [12], a partially known system model is

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-2997-543X
https://orcid.org/0000-0003-2784-1486
https://orcid.org/0000-0001-5001-3027
https://orcid.org/0000-0001-9712-4090
https://orcid.org/0000-0002-2171-4745

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

used to improve a safe starting policy through RL, avoiding
actions that bring the system out of the basin of attraction
of a desired equilibrium. Both approaches [11], [12] do not
provide guarantees on the time required to reach the desired
regions. Safety for RL control has been extensively explored
in the literature using various frameworks, such as constrained
Markov decision processes [13], “shields” [14], control barrier
functions [15], and a combination of model predictive control
and RL [16]. Although these techniques ensure the avoidance
of unsafe subsets of the state space, they generally do not
provide guarantees on reaching a specific goal region or on
control performance metrics, such as settling time.

The problem of synthesizing rewards for control tasks is
also the subject of inverse optimal control (IOC) [17], focusing
on estimating the rewards associated with given observations
of states and control inputs, assuming closed-loop stability
and/or policy optimality. Initially aimed at determining control
functions producing observed outputs [18], IOC has since
been connected to RL [19], applied in nonlinear, stochastic
environments [20], and its framework has been used to inves-
tigate the cost design problem [21]. However, to the best of
our knowledge, IOC has not been used specifically to design
reward functions that, when optimized, can guarantee specific
control performance.

Given a regulation or tracking problem with predetermined
stability and performance requirements on steady-state errors
and settling time, we advance the state of the art as follows.

1) We introduce a model-free sufficient condition on the
discounted return associated with a trajectory to deter-
mine if it is acceptable (i.e., it satisfies the control
requirements).

2) We give a sufficient condition to assess whether a
learned policy leads to an acceptable closed-loop tra-
jectory.

3) We provide a procedure to shape the reward function so
that the above conditions can be applied to a system of
interest and that the optimal policy is acceptable.

4) We successfully validate the approach through two rep-
resentative control problems from OpenAI Gym [22]:
the stabilization of a pendulum [23], and performing
landing in the Lunar Lander environment [24].

For reproducibility, the code is available on GitHub [25].
The rest of this article is organized as follows. In Section II,

we formalize the problem of constructing a reward function
for learning-based control. The main results of our approach
are then presented in Section III and validated via numerical
simulations on two representative application examples in
Section IV. Concluding remarks are given in Section V.

II. PROBLEM STATEMENT

A. Problem Setup

We consider a discrete-time dynamical system of the form

xk+1 = f (xk, uk), x0 = x̃0 (1)

where k ∈ N≥0 is the discrete time, xk ∈ X is the state at
time k, X is the state space, x̃0 ∈ X is an initial condition,

Fig. 1. (a) State-space sequence ξ , a trajectory φπ (x̃0), and a goal region G
(see Section II), while a state-space sequence is simply a sequence of points
in the state space X , a trajectory is generated by applying a policy to the
dynamics in (1). (b) Terms of the reward structure in Assumption III.1.

uk ∈ U is the control input (or action) at time k, U is the set of
feasible inputs, and f : X × U → X is the system dynamics.

Furthermore, we let π : X → U be a control policy
and uk = π(xk). Let also X∞ := X × · · · × X , with the
Cartesian product being applied an infinite number of times.
We denote by φπ (x̃0) ∈ X∞ the trajectory obtained by
applying policy π to system (1) starting from x̃0 as initial
state.

We are interested in finding a policy such that the trajectory
generated by it (starting from a given x̃0) reaches a desired
goal region G ⊂ X before some desired settling time ks ∈ N>0
and remains in this region for at least a desired permanence
time kp ∈ N>0 (see Definition II.3 for the rigorous statements).
For example, G could be an arbitrarily small neighborhood of
a reference state, with a radius equal to the admitted steady-
state error. In our main results, we assume G, ks, kp are given;
nonetheless, in Section III (see Remark III.8), we will observe
that kp can be arbitrarily large, and in Proposition A.1 (in
the Appendix), we give a criterion to assess the feasibility of
the settling time constraint when limited knowledge about the
system to control is available.

B. Acceptable State-Space Sequences

We will now introduce concepts that will be used for the
formalization of the proposed approach.
Definition II.1 (State-Space Sequences). A state-space sequ-
ence is a sequence ξ = (xk)k∈[0,+∞) ∈ X∞.

Note that all trajectories are state-space sequences, but the
converse is not true. As a matter of fact, given a state-space
sequence ξ with x0 = x̃0 ∈ X , there is no guarantee that
there exists a policy π such that φπ (x̃0) = ξ . A graphical
representation of these concepts is reported in Fig. 1(a).
Definition II.2 (First Exit Instant). The first exit instant
kexit(ξ) ∈ N>0 of a state-space sequence ξ = (xk)k∈[0,+∞) is
the smallest time instant such that, in ξ , we have xkexit(ξ)−1 ∈ G
and xkexit(ξ) ̸∈ G; if this condition never occurs in ξ , we set
kexit(ξ) = ∞.

Next, we define the set of acceptable state-space sequences,
trajectories, and policies, that is, those that satisfy the perfor-
mance and steady-state specifications.
Definition II.3 (Acceptable State-Space Sequences, Trajec-
tories, and Policies). Given the desired goal region G, the
desired settling time ks, and the desired permanence time kp,
a state-space sequence ξ = (x0, x1, x2, . . .) or equivalently

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DE LELLIS et al.: GUARANTEEING CONTROL REQUIREMENTS VIA REWARD SHAPING IN RL 3

Fig. 2. Schematic representation of the main assumptions and results in Section III. Green blocks denote assumptions, blue blocks indicate analytical findings,
yellow blocks denote algorithms, and purple blocks refer to the problems being studied. Dashed arrows denote optional steps in the control design. “SSS”
means “state-space sequence”; the symbols in the figure are defined in Section III.

a trajectory φπ (x̃0) = (x̃0, x1, x2, . . .) is acceptable if the
following holds.

1) ∃ k ≤ ks : xk ∈ G (i.e., the state is in G not later than
time ks).

2) kexit(ξ) > kp (i.e., the state does not exit G before time
kp included).

A policy π is acceptable from x̃0 if φπ (x̃0) is acceptable.
It can be immediately verified that there exists at least one

acceptable state-space sequence provided that G ̸= ∅. Indeed,
this state-space sequence is ξ = (x0, x1, . . .) with xk ∈ G for
all k, which can be verified to be acceptable by checking the
two conditions in Definition II.3.

C. Using Reinforcement Learning to
Find Acceptable Control Policies

Following [26] and [27], we employ an RL solution to
automatically identify an acceptable policy for a given initial
condition x̃0 and to do so without the need of knowing the
dynamics f . Namely, let r : X × X × U → R be a reward
function, so that r(x ′, x, u) is the reward obtained by the agent
when taking action u in state x and arriving at the new state
x ′ at the next time instant. Let also Jπ

: X∞ → R be the
(discounted) return function defined as

Jπ (ξ) :=

∞∑
k=1

γ k−1r(xk, xk−1, uk−1) (2)

where ξ ∈ X∞ is a state-space sequence, uk = π(xk), and
γ ∈ [0, 1] is a given discount factor.1 To find an acceptable

1According to this formulation, it is possible to evaluate Jπ on a state-space
sequence that is not a trajectory (which is needed for the theoretical results
presented in Section III); in this case, even though the value of the states are
not generated following policy π , in general, it is still necessary to specify π

to obtain the values of the inputs uk used for the computation of the reward
r . When Jπ is evaluated on a trajectory, for example, Jπ1 (φπ2), we will only
consider the case in which π1 = π2.

policy, we set the following optimization problem and solve
it via RL:

max
π

Jπ (φπ (x̃0)) (3a)

s.t. xk+1 = f (xk, uk), k ∈ {0, 1, 2, . . .} (3b)
uk = π(xk), k ∈ {0, 1, 2, . . .} (3c)

x0 = x̃0 ∈ X . (3d)

Thus, the problem we aim to solve can be stated as follows.
Problem II.4. Shape the reward function r so that: 1) it is
possible to determine that a trajectory φπ (x̃0) is acceptable by
assessing the value of Jπ (φπ (x̃0)) and 2) an acceptable policy
from x̃0 (provided it exists) can be found by solving (3).

III. MAIN RESULTS

In Section III-A, we relate acceptable state-space sequences
and their return (solving point 1) in Problem II.4), in
Section III-C, we embed the theory in a constructive procedure
to shape rewards, in Section III-D, we give analogous results
for trajectories, and finally in Section III-E, we show that
acceptable policies can be found using RL algorithms. The
assumptions we make and how they are related are schemati-
cally summarized in Fig. 2.

A. Assessing Acceptable State-Space Sequences

We start by defining the structure of the shaped reward.
Assumption III.1 (Reward Structure). The reward function
can be written as

r(x ′, x, u) = rb(x ′, x, u)+ r c(x ′, x) (4)

where the following holds.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

1) rb
: X × X × U → R is a bounded reward term, that

is, such that there exist finite Uout, Uin, Lout, L in ∈ R
such that

sup
x ′∈X \G, x∈X , u∈U

rb(x ′, x, u) ≤ Uout (5a)

sup
x ′∈G, x∈X , u∈U

rb(x ′, x, u) ≤ Uin (5b)

inf
x ′∈X \G, x∈X , u∈U

rb(x ′, x, u) ≥ Lout (5c)

inf
x ′∈G, x∈X , u∈U

rb(x ′, x, u) ≥ L in. (5d)

2) r c
: X × X → R is a correction term given by

r c(x ′, x) =

r c

in, if x ′ ∈ G
r c

exit, if x ∈ G and x ′ ̸∈ G
0, otherwise

(6)

with r c
in, r c

exit ∈ R. Moreover, it holds that

r c
in ≥ Uout − L in. (7)

In practice, r c
in will typically be a positive reward for being

inside the goal region, while r c
exit will normally be a negative

reward for having left the goal region—refer to Fig. 1(b) for
a diagrammatic representation.
Remark III.2 (Generality of Assumption III.1). Assump-
tion III.1 is not too restrictive. Indeed, if one wants to use a
preexisting reward, it is only required it is bounded [see (5)].
It can then be shaped by adding the correction term r c to it.

We also define the differences

1in := Uin − L in ≥ 0 (8a)
1out := Uout − Lout ≥ 0. (8b)

To assess properties of state-space sequences, trajectories,
and policies from their associated return, we define the return
threshold σ ∈ R and introduce the following definition.
Definition III.3. (High-Return State-Space Sequences, Trajec-
tories, and Policies): A state-space sequence ξ is high-return
if Jπ (ξ) > σ for any policy π . A trajectory φπ (x̃0) is high-
return if Jπ (φπ (x̃0)) > σ . A policy π is high-return from x̃0 if
φπ (x̃0) is high-return.

Of the quantities introduced so far, those that we assume to
be given (i.e., fixed) are G, ks, kp, γ , Uin, Uout, L in, and Lout;
conversely, the quantities to be designed are σ , r c

in, and r c
exit.

Next, we introduce an assumption on the correction terms
in the reward.
Assumption III.4. Assume that

σ ≥
Uout

1− γ
(9)

and, given the desired settling time ks and the desired perma-
nence time kp, assume that

r c
in ≤ −Uin −Uout

1− γ ks

γ ks
+ σ

1− γ

γ ks
(10)

r c
exit ≤ −Uout −

1
γ kp−1

[(
Uin + r c

in

)1+ γ kp−1(γ − 1)

1− γ
− σ

]
.

(11)

In the following proposition, we state a key result that solves
point 1) in Problem II.4.
Proposition III.5. Let Assumptions III.1 and III.4 hold. Then,
high-return state-space sequences are acceptable.

Proof: We will show that, for any policy π , if a state-
space sequence ξ is not acceptable, then it is not high-return
(consequently, if ξ is high-return, then it is acceptable).

ξ can be not acceptable if and only if one of the following
three scenarios occurs (see Definition II.3).

1) ξ is never in the goal region G.
2) ξ is in G for the first time at a time later than ks.
3) ξ exits from G at time kexit(ξ) ≤ kp.

We now consider the three cases one by one and show that,
for any π , if any of them occurs then it must hold that ξ is
not high-return, that is, Jπ (ξ) ≤ σ .

Case 1: In this case, the state-space sequence is never in
the goal region, that is, ∀ k ∈ [0,∞), xk ̸∈ G. Therefore,
only the third case in (6) is fulfilled, for all k, and we obtain
r c(xk, xk−1) = 0 for all k. For any policy π , exploiting (2),
(4), (5a), and (9), we obtain2

Jπ (ξ) =

+∞∑
k=1

γ k−1rb(xk, xk−1, uk−1)

≤ Uout

+∞∑
k=1

γ k−1
=

Uout

1− γ
≤ σ. (12)

Note that, in (12) and in the rest of the proof, the dependency
of Jπ on the specific policy π is made irrelevant by using the
bounds in (5).

Case 2: Defining kenter := (min k s.t. xk ∈ G), we have
that kenter > ks. For the sake of simplicity and without loss of
generality, assume that the state is always in the region G after
kenter (i.e., xk ∈ G,∀ k ≥ kenter).3 For any policy π , from (2),
(4), and (6), we obtain

Jπ (ξ) =

kenter−1∑
k=1

γ k−1rb(xk, xk−1, uk−1)

+

+∞∑
k=kenter

γ k−1[rb(xk, xk−1, uk−1)+ r c
in

]
. (13)

Exploiting (7), and recalling that kenter > ks, from (13),
we obtain

Jπ (ξ) ≤

ks∑
k=1

γ k−1rb(xk, xk−1, uk−1)

+

+∞∑
k=ks+1

γ k−1[rb(xk, xk−1, uk−1)+ r c
in

]
. (14)

2Recall that, for |γ | < 1, the geometric series is
∑
+∞

k=0 γ k
= 1/(1− γ)

and the truncated geometric series is
∑n−1

k=0 γ k
= (1− γ n)/(1− γ).

3The reason why we do not lose generality is that we are interested in
upper bounding Jπ (ξ) with σ , and the simplifying assumption makes Jπ (ξ)

the largest possible, because the smallest reward obtainable inside G (i.e.,
r c

in + L in) is at least equal to the largest reward obtainable outside G (i.e.,
Uout), because of (7).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DE LELLIS et al.: GUARANTEEING CONTROL REQUIREMENTS VIA REWARD SHAPING IN RL 5

Then, from (14) and exploiting (5), we obtain

Jπ (ξ) ≤ Uout

ks∑
k=1

γ k−1
+ (Uin + r c

in)

∞∑
ks+1

γ k−1

= Uout

ks−1∑
k=0

γ k
+ (Uin + r c

in)γ
ks

+∞∑
k=0

γ k

= Uout
1− γ ks

1− γ
+ (Uin + r c

in)
γ ks

1− γ
.

Exploiting (10), it is immediate to see that Jπ (ξ) ≤ σ .
Case 3: From the definition of kexit (see Section II), we have

xkexit(ξ)−1 ∈ G and xkexit(ξ)
̸∈ G. From (7), the largest Jπ (ξ) is

obtained when the state-space sequence ξ is such that xk ∈ G,
∀k ∈ [1, kexit(ξ)), ξ then exits the region G at kexit(ξ) = kp, and
enters again at time kp + 1. Thus, without loss of generality,
we assume this is the case. Then, we have

Jπ (ξ) ≤

kp−1∑
k=1

γ k−1[rb(xk, xk−1, uk−1)+ r c
in

]
+ γ kp−1(rb(xkp , xkp−1, ukp−1) + r c

exit)

+

∞∑
k=kp+1

γ k−1[rb(xk, xk−1, uk−1)+ r c
in

]

≤ (Uin + r c
in)

kp−2∑
k=0

γ k
+ γ kp

∞∑
k=0

γ k

+ γ kp−1(Uout + r c

exit

)
= (Uin + r c

in)
1− γ kp−1

+ γ kp

1− γ
+ γ kp−1(Uout + r c

exit

)
.

Exploiting (11), we immediately verify that Jπ (ξ) ≤ σ .
Notably, Proposition III.5 does not guarantee the existence

of any high-return state-space sequence. The existence of the
latter is instead guaranteed by Corollary III.7.
Assumption III.6. Let

r c
in > σ(1− γ)− L in. (15)

Corollary III.7. Let Assumption III.1 hold. A sufficient con-
dition for the existence of high-return state-space sequences is
that Assumption III.6 holds. Moreover, a necessary condition
for the existence of high-return state-space sequences is that

r c
in > σ(1− γ)−Uin. (16)

Proof: Let P be the proposition “∃ξ ∈ X∞ : ∀π,

Jπ (ξ) > σ .”
Assumption III.6 ⇒ P: Consider a state-space sequence

ξ⋄ = (x0, x1, . . .) with all xk ∈ G. Then, for any π , from (2),
(6), and (7), it holds that Jπ (ξ⋄) ≥ (r c

in + L in)/(1− γ).
Exploiting Assumption III.6, we derive that Jπ (ξ⋄) > σ .

(16)⇐ P: To demonstrate this result, we show equivalently
that ¬(16)⇒ ¬P . Using again (2), (6), and (7), for any policy
π , we derive that Jπ (ξ) ≤ (r c

in +Uin)/(1− γ) for all the
state-space sequences ξ ∈ X∞. If (16) does not hold, we have
Jπ (ξ) ≤ σ,∀ξ ∈ X∞.

We remark that although Assumption III.6 is not a necessary
condition itself for the existence of high-return state-space
sequences, it implies (16) [because of (8a)], which is one.

Remark III.8 (Selection of kp). Equation (11) captures the
only assumption that depends on kp. Given this assump-
tion, it is possible to observe that kp can be set to any
arbitrarily large value, thus not limiting the variety of prob-
lems that can be addressed using the present theoretical
framework.

To summarize, we demonstrated that it is possible to check
if a state-space sequence is acceptable by verifying that it is
high-return. Conversely, there may exist acceptable state-space
sequences that are not high-return, for example, those that exit
(and reenter) G before ks, or those that enter G before ks but
not early enough to collect sufficient rewards to be high-return.
In some cases though, it is possible to prove that acceptable
state-space sequences are high-return, such as those that enter
the goal region not later than a certain time instant (kz) and
never exit it, as formalized by the next proposition.
Assumption III.9 (Dependent on the Choice of kz). Given
some kz ∈ N≥0, with kz ≤ ks, let

r c
in > −L in − Lout

1− γ kz−1

γ kz−1 + σ
1− γ

γ kz−1 . (17)

Proposition III.10. Let kz ∈ N≥0 such that kz ≤ ks.
If Assumptions III.1 and III.9 hold, then state-space sequences
that are in G for the first time at time kz or earlier and have
kexit = ∞ are high-return.

Proof: According to the hypothesis, let ξ = (x0, x1, . . .)

be a state-space sequence such that xk /∈ G for k < kz and
xk ∈ G for k ≥ kz. For all policies π , from (2), (4), and (6),
we obtain

Jπ (ξ) =

kz−1∑
k=1

γ k−1rb(xk, xk−1, uk−1)

+

+∞∑
k=kz

γ k−1[rb(xk, xk−1, uk−1)+ r c
in

]
.

Exploiting (5d) and (5c) yields

Jπ (ξ) ≥ Lout

kz−1∑
k=1

γ k−1
+

(
L in + r c

in

) +∞∑
k=kz

γ k−1

= Lout

kz−2∑
k=0

γ k
+

(
L in + r c

in

)
γ kz−1

+∞∑
k=0

γ k

= Lout
1− γ kz−1

1− γ
+

(
L in + r c

in

) γ kz−1

1− γ
.

Given (17), it follows that Jπ (ξ) > σ . Moreover, say ξ ′ a
state-space sequence that is in G for the first time at some
time k ′z < kz, that is, with xk /∈ G for k < k ′z and xk ∈ G
for k ≥ k ′z. For all policies π , exploiting (7) and the fact that
Jπ (ξ) > σ , we have

Jπ (ξ ′) ≥ Lout

k ′z−1∑
k=1

γ k−1
+ (L in + r c

in)

+∞∑
k=k ′z

γ k−1

≥ Lout

kz−1∑
k=1

γ k−1
+ (L in + r c

in)

+∞∑
k=kz

γ k−1 > σ.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

From (17), we notice that the larger r c
in is, the later

state-space sequences are required to be in G to be high-return.
Moreover, it is again important to remark that while state-space
sequences that enter G within kz time steps always exist, the
same is not necessarily true for trajectories: this depends on
the dynamics of the system being controlled.
Remark III.11 (Tracking). In the results in Section III-A,
it was never assumed that G is a fixed region in the state
space. Indeed, it is possible to carry out the same analysis
by considering a time-dependent goal region Gk and, for
simplicity of computation, the quantities

U := sup
x ′∈X , x∈X , u∈U

rb(x ′, x, u)

L := inf
x ′∈X , x∈X , u∈U

rb(x ′, x, u)

rather than Uout, Uin, and Lout, L in should be used in (5),
respectively. This reformulation can be used to address track-
ing control problems.

Reviewing the findings derived so far, a shaped reward r
needs to satisfy Assumptions III.1, III.4, and III.6 (to exploits
Proposition III.5 and Corollary III.7) and optionally Assump-
tion III.9 (with some chosen kz, to exploit Proposition III.10);
see also Fig. 2. Next, we characterize the relation between
these assumptions and show that they can hold simultaneously.

B. Compatibility of the Assumptions

First, we give the following lemma to aid the selection of r c
in.

Lemma III.12. Given some kz ≤ ks, if Assumption III.9 holds,
Assumption III.6 also holds.

Proof: See the Appendix.
We say that two or more assumptions are compatible if they

can hold simultaneously. To guarantee that high-return state-
space sequences are acceptable (see Proposition III.5) and that
such state-space sequences exist (see Corollary III.7), we need
Assumptions III.1, III.4, and III.6, whose compatibility is
ensured by the following lemma.
Lemma III.13. Assumptions III.1, III.4, and III.6 are com-
patible if

σ >
Uout

1− γ
+

1inγ
ks

(1− γ)(1− γ ks)
. (18)

Proof: See the Appendix.
To guarantee that a class of acceptable state-space sequences

are high-return, we need Assumption III.9 (see Proposi-
tion III.10), whose compatibility with previous ones is ensured
by the following lemma.
Lemma III.14. Given some kz ≤ ks, Assumptions III.1, III.4,
III.6, and III.9 are compatible if

σ >
γ ks

(1− γ)(1− γ ks)
1in +

Uout

1− γ

+
γ ks(1− γ kz−1)

(1− γ)(γ kz−1 − γ ks)

(
γ ks1in

(1− γ ks)
+1out

)
. (19)

Proof: See the Appendix.

C. Constructive Procedure for Reward Shaping

In Algorithm 1, we propose a constructive procedure
that can be applied to shape the reward functions used in

Algorithm 1 Reward Shaping
Input: A goal region G, a desired settling time ks, and a

desired permanence time kp; a bounded reward
function rb, and discount factor γ .

Output: A reward function r satisfying to
Assumptions III.1, III.4, III.6.

1 Uout ← supx ′∈X \G,x∈X ,u∈U rb(x ′, x, u) ; ▷ c.f. Eq. (5a)
2 Uin ← supx ′∈G,x∈X ,u∈U rb(x ′, x, u) ; ▷ c.f. Eq. (5b)
3 L in ← infx ′∈G,x∈X ,u∈U rb(x ′, x, u) ; ▷ c.f. Eq. (5d)
4 σ ← rand

(
Uout
1−γ
+

(Uin−L in)γ
ks

(1−γ)(1−γ ks)
, ∞

)
; ▷ from

Lemma III.13
5 I ←

(
σ(1− γ)− L in, −Uin −Uout

1−γ ks

γ ks + σ
1−γ

γ ks

]
;

▷ c.f. Eqs. (7), (10), (15)
6 r c

in ← rand(I);

7 r c
exit ← rand

(
−∞, ↪→

−Uout −
1

γ kp−1

[
(Uin + r c

in)
1+γ kp−1(γ−1)

1−γ
− σ

])
;

▷ c.f. Eq. (11)
8 build r c as in (6);
9 r ← rb

+ c;

Section III. To provide more flexibility, the procedure takes a
preexisting reward rb as input, bounded according to (5). If no
rb is available, it is possible to set rb

= 0. As Lemma III.13
ensures set I in the algorithm is not empty, the latter always
terminates successfully. Once Algorithm 1 has been used to
obtain a shaped reward r (thus fixing r c

in, r c
in, σ , which remain

constant), it is possible to run an RL algorithm to learn a
suitable control policy, as explained below in Section III-E.

It is to be noted that in some cases the values of r c
in

and r c
exit resulting from Algorithm 1 might be significantly

larger in absolute value when compared to those in rb. This
can lead to a relatively sparse reward function r , that is,
one where relatively large values (in absolute value) are
present but infrequent in the state-action space. Notoriously,
this lack of frequent feedback information can make learning
more difficult, especially when deep RL algorithms are used
(see [28], [29] and references therein). To mitigate this issue,
it is possible to select r c

in and r c
exit as small in absolute value

as possible, while still complying with Assumptions III.1,
III.4, and III.6. Reward-shaping methods that do not make
the reward sparse will be the subject of future work.
Remark III.15 (Advanced Reward-Shaping Algorithm). For
simplicity, in Algorithm 1, we did not include the requirement
captured by (17) on r c

in (used to ensure that a family of
acceptable state-space sequences are high-return, according to
Proposition III.10), as it depends on the time instant kz, which
would be a further parameter to select. This constraint can be
incorporated in Algorithm 1 by first selecting kz ≤ ks (possibly
exploiting knowledge of the system to control), enforcing (19)
at line 4 (Lemma III.14 ensures I is not empty), and using
the right-hand side of (17) as lower bound of I at line 5.

D. Assessing Acceptable Trajectories

In Section III-A, we showed how the value of the return
Jπ (ξ) can be used to assess whether ξ is an acceptable

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DE LELLIS et al.: GUARANTEEING CONTROL REQUIREMENTS VIA REWARD SHAPING IN RL 7

state-space sequence. The same theory applies to trajectories
(which, by definition, are state-space sequences).

It is important to remark that, while the existence of high-
return state-space sequences is ensured by Proposition III.7,
it can be much more difficult to establish if there actually exist
policies that generate high-return trajectories. This depends
on the dynamics of the system at hand and the performance
required and is tightly related to the problem of reachabil-
ity [30], with the addition of requirements on the settling time
and the permanence time.

E. Assessing Acceptable Policies in Value-Based
Reinforcement Learning

First, we provide a simple result stating that an acceptable
policy (see Definition II.3) can be found by achieving the
optimum in (3), thus solving point 2) in Problem II.4.
Lemma III.16. Let Assumptions III.1 and III.4 hold. If there
exists a high-return policy π⋄ from x̃0 ∈ X , then the optimal
policy π ⋆ solving the problem objective defined in (3) is
acceptable from x̃0.

Proof: As π ⋆ maximizes the return in (3), then
Jπ⋆

(φπ⋆

(x0)) ≥ Jπ⋄(φπ⋄(x0)) > σ , exploiting Proposi-
tion III.5 (applicable, as Assumptions III.1 and III.4 hold).

Proposition III.5 allows to detect acceptable state-space
sequences by evaluating their return Jπ . However, this is
not normally known in an RL setting, but it is instead
approximated through a value function. In particular, let Q :
X × U → R be the state-action value function associated
with the greedy policy

πg(x) = arg max
u∈U

Q(x, u). (20)

Q is normally updated iteratively with the Bellman operator
so that it converges to the value of Jπg , in the sense that
Q(x, u) ≈ r(f (x, u), x, u)+ γ Jπg(φπg(f (x, u)) [31, Sec. 3].

In the next theorem, we conclude the analysis by showing
how the acceptability of a policy can be evaluated by assessing
the value of Q.
Theorem III.17. Consider a state xk ∈ X at time k. Let
Assumptions III.1 and III.4 hold and assume that

sign
(

max
u∈U

Q(xk, u)− σ

)
= sign(Jπg(φπg(xk))− σ). (21)

If maxu∈U Q(xk, u) > σ , then πg is an acceptable policy from
xk .

Proof: Exploiting (21), maxu∈U Q(xk, u) > σ implies
that Jπg(φπg(xk)) > σ . Thus, it is immediate to apply
Proposition III.5 (using Assumptions III.1 and III.4) to obtain
that φπg(xk) is acceptable.

It is important to clarify that φπg(xk) being an acceptable tra-
jectory means that, by following policy πg: 1) the state-space
sequence will be in G before ks time instants have passed (i.e.,
∃ k ′ ∈ [k, k + ks] : xk ′ ∈ G) and 2) the state will not exit from
G before kp + 1 time instants have passed, (i.e., ∄ k ′′ ∈ [k +
1, k + kp] : xk ′′−1 ∈ G, xk ′′ ̸∈ G). Moreover, we note that (21)
is satisfied if Q is well approximating Jπg , in the sense that∣∣∣∣max

u∈U
Q(xk, u)− Jπg(φπg(xk))

∣∣∣∣ < |Jπg(φπg(xk))− σ |. (22)

Fig. 3. Sketch representation of the environments used in the numerical
validation in Section IV. (a) Pendulum. (b) Lunar Lander. Both the pendulum
and the lander are depicted in their initial states.

Indeed, (22) implies (21) through Lemma A.2 in the
Appendix.4 Equation (22) is fulfilled after a finite number
of iterations if the algorithm used to update the value of Q
is converging asymptotically to Jπg , which has been proved
formally for RL algorithms like state action reward state
action (SARSA) and Q-learning [31]. In the latter, the greedy
policy and the function Q are guaranteed to converge to
the optimal policy and its discounted return J , respectively;
hence, if high-return policies exist, Lemma III.16 guarantees
that the learned policy is acceptable.

IV. NUMERICAL RESULTS

We validate the theory presented in Section III by means
of two representative case studies (and corresponding RL
environments, from OpenAI Gym [22]): Pendulum [23] and
Lunar Lander [24]. The former is a classic nonlinear bench-
mark problem in control theory, whereas the latter is a more
sophisticated control problem with multiple inputs and outputs.
In particular, we first validate Theorem III.17 using Q-learning
to learn a policy that stabilizes a pendulum within a predefined
time; then, we show that the theory also holds when using a
deep RL algorithm, such as Double deep Q network (DQN),
to learn a policy able to land a spacecraft fulfilling desired
time constraints.

In each scenario, the learning phase and deployment phase
are repeated in S ∈ N>0 independent sessions, which are
composed of E ∈ N>0 episodes. Each episode is a simulation
lasting N ∈ N>0 time steps. Moreover, we always use the
ϵ-greedy policy [31] during learning.

For reproducibility, the code is available on GitHub [25].

A. Pendulum

1) Description of the Pendulum Environment: In this envi-
ronment, the objective is to stabilize a rigid pendulum affected
by gravity to the upward position in a certain time, by exploit-
ing a torque applied at the joint. In particular, the pendulum
is a rigid rod, having length l = 1 m, mass m = 1 kg and
moment of inertia I = 1/3 ml2; the gravitational acceleration
is taken equal to g = 10 m/s2. A graphical depiction of the
scenario is given in Fig. 3(a).

4Assuming Jπg (φπg (xk)) ̸= σ . The case that Jπg (φπg (xk)) = σ is,
however, not of interest, as the trajectory φπg (xk) would not be high return.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

a) State: The state at time k is xk := [xk,1 xk,2]
T,

where xk,1 and xk,2 are the angular position and angular
velocity of the pendulum, respectively. To apply Q-learning,
which is a tabular RL method, we discretize the state space
(and the set of acceptable inputs). Namely, the position xk,1
takes values in [−π, π] rad, with [−π,−π/9] discretized into
eight equally spaced values, (−π/9,−π/36] into seven values,
and (−π/36, 0] into five values (analogously for [0, π]). The
velocity xk,2 takes values in [−8, 8] rad/s, with [−8,−1]
discretized into ten values, and (−1, 0] into nine values
(analogously for [0, 8]). xk,1 = 0 and xk,1 = π correspond
to the upward and downward positions, respectively. In each
simulation, the initial condition is chosen as x0 = [π 0]T.

b) Control inputs: The control input uk is a torque
applied at the pendulum’s rotating joint, with values chosen in
[−2, 2] Nm, with the interval [−2,−0.2] discretized into nine
values, and (−0.2, 0] into four values (analogously for [0, 2]).

c) Control problem: Let x ref := [0 0]T denote the
unstable vertical position. The goal region is G := {x ∈
X |

∥∥x − x ref
∥∥ < θ} (∥·∥ being the Euclidean norm), with

θ = 0.42 amounting to 5% of the maximum distance from
the origin, in the state space. We select the desired settling
time as ks = 500 time steps and the desired permanence time
as kp = 1000 time steps (see Section II).

d) Reward: To guarantee the required performance and
steady-state specifications, the reward function is chosen as
in (4), with rb being the standard Gym reward, given by

rb(xk, xk−1, uk−1) = −x2
1,k − 0.1 x2

2,k − 0.001 u2
k−1. (23)

Following Algorithm 1, from (23), we compute that

Uout = max
xk /∈G,xk−1∈X ,uk−1∈U

rb
= −0.1θ2

≈ −0.018

Lout = min
xk /∈G,xk−1∈X ,uk−1∈U

rb

= −π2
− 0.1 · 82

− 0.001 · 22
≈ −16.27

Uin = max
xk∈G,xk−1∈X ,uk−1∈U

rb
= 0

L in = min
xk∈G,xk−1∈X ,uk−1∈U

rb
= −θ2

− 0.001 · 22
≈ −0, 18.

Then, given γ = 0.99 [see (2)], we select σ = 10 000 [see (9)],
and the correction terms in (6) as

r c
in = −Uin −Uout

1− γ ks

γ ks
+ σ

1− γ

γ ks
≈ 1.52 · 104

r c
exit = −Uout −

1
γ kp−1

[
(Uin + r c

in)
1+ γ kp−1(γ − 1)

1− γ
− σ

]
≈ −3.50 · 1010.

e) Parameters: We take S = 5 sessions, E =

10 000 episodes, and N = 1000 time steps. We set the learning
rate to 0.8. For the ϵ-greedy policy, we select ϵ = 0.05.

2) Results of Q-Learning in the Pendulum Environment:
After training is completed for all sessions, we test the
capability of the learned policies to swing up and stabilize
the pendulum within the desired settling time. The results are
portrayed in Fig. 4, showing the distance of the trajectories
from x ref, position, and velocity in time. We observe that the
control problem is solved in all sessions, suggesting that the

Fig. 4. Average (blue line) plus/minus standard deviation (shaded area) of∥∥xk − x ref
∥∥ (top), angular position xk,1 (middle), and angular velocity xk,2

(bottom), obtained by S policies trained with Q-learning in the pendulum
environment. The green solid line (top) indicates the goal region G; the green
dashed line (middle and bottom) indicates neighborhoods of width 2θ centered
in x1,k = x ref

1 = 0 (middle) and in x2,k = x ref
2 = 0 (bottom). The red line

indicates the time instant when the (averaged) trajectory enters the goal region.

optimal policy (which would be an acceptable one, according
to Lemma III.16) has been found. Interestingly, this might
be difficult to detect by looking only at the returns obtained
during training, plotted in Fig. 5. Indeed, the discounted
returns per episode appear to decrease as training progresses.
This happens because, as the agent progressively learns to
enter the goal region and to do so earlier in later episodes,
the chance of it incurring the penalty r c

exit for existing the goal
region increases as the result of random explorative actions,
taken by the ϵ-greedy policy used during learning. Although
this does not prevent learning from converging to the optimal
policy, in practical implementations, this can be avoided by
letting the exploration rate ϵ decay in later episodes. However,
tuning the decay rate is highly problem-dependent and no
general rule can therefore be given here.

In our experiments, learning ended after the planned
episodes. An alternative heuristic method to determine when
to terminate the learning stage is to pause training at regular
intervals, and simulate using the greedy policy in (20). If the
return obtained exceeds σ , the greedy policy is deemed
acceptable (see Proposition III.5), ending learning; otherwise,
training continues.

B. Lunar Lander

1) Description of the Lunar Lander Environment: In a
2-D space, a stylized spaceship must land at a small speed
in a specific area in a predetermined time, in the presence of
gravity, and the absence of friction. The spacecraft has three
thrusters to guide its descent and two supporting legs at the
bottom, as depicted in Fig. 3(b).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DE LELLIS et al.: GUARANTEEING CONTROL REQUIREMENTS VIA REWARD SHAPING IN RL 9

Fig. 5. Average (green line) plus/minus standard deviation (shaded area)
of the discounted returns per episode obtained in S training sessions with
Q-learning in the pendulum environment. The red line indicates the threshold
value σ (see Section III-A). The returns are averaged backward across
episodes using a moving window of 50 samples.

a) State: The state at time k is xk = [pT
k vT

k θk ωk l l
k lr

k]
T,

where pk ∈ R2 is the horizontal and vertical position of the
center of mass (arbitrary units; a.u.), vk ∈ R2 is its horizontal
and vertical velocity (a.u./s), θk ∈ [0, 2π) rad is the orientation
of the lander (with 0 corresponding to the orientation of
a correctly landed spacecraft), ωk is the rate of change of
the orientation (rad/s), l l

k ∈ {0, 1} (resp. lr
k) is 1 if the left

(resp. right) leg is touching the ground. The initial conditions
are given by p0 = [0 1.4]T (consequently, l1

0 = l2
0 = 0),

v0 = [0 0]T, θ0 = 0, and ω0 = 0. The landing area is the
region [−0.2 0.2] × [−0.001 0.001] (horizontal and vertical
intervals, respectively). The terrain topography (beyond the
landing pad) is random in each simulation.

b) Control inputs: At each time step k, the lander can
use at most one of its three thrusters. In particular, we let
um

k ∈ {0, 1} be 1 if at time k the main engine on the bottom of
the spacecraft is used at full power or 0 if it is OFF, and define
ul

k, ur
k ∈ {0, 1} analogously for the left and right thrusters,

respectively. Then, the control input at time k is the vector
uk = [um

k ul
k ur

k]
T, which has four possible values, depending

on which thruster, if any, is used.
c) Control problem: The goal region G is the set of states

where pk is in the landing pad, vk = 0, θk = ωk = 0, and
l l
k = lr

k = 1. Additionally, we select the desired settling time
as ks = 500 time steps and the desired permanence time as
kp = 1000 time steps (see Section II). We also remark that
the simulation stops if the lander touches the ground beyond
the landing pad, or if it lands on the pad at a speed that is too
high. During training only, the simulation is also halted if the
spacecraft lands correctly. Further detail can be found in [24].

d) Reward: The reward function is in the form intro-
duced in (4), with rb generated according to the standard
environment definition [24]. Namely, let r̂ : X × X × U →
R be a function given by

r̂(xk, xk−1, uk−1) := 100(∥pk∥ − ∥pk−1∥)

+ 100(∥vk∥ − ∥vk−1∥)

+ 100(|θk | − |θk−1|)

Fig. 6. Average (blue line) plus/minus standard deviation (shaded area) of
the trajectory obtained by S policies trained with Double DQN in the Lunar
Lander environment. From top to bottom: position on the horizontal axis,
position on the vertical axis, velocity on the horizontal axis, velocity on the
vertical axis. The green lines define the goal region. The red line indicates
when the (averaged) trajectory enters the goal region.

+ 10(l l
k − l l

k−1)+ 10(lr
k − lr

k−1)

+ 0.3 um
k−1 + 0.03 ul

k−1 + 0.03ur
k−1. (24)

Then, rb is given by

rb(xk, xk−1, uk−1) =

100, if β1 is true
−100, β2 is true
r̂ , otherwise

(25)

where β1 and β1 are two mutually exclusive Boolean condi-
tions, namely β1 is true if the spacecraft lands on the ground
and stops, and β2 becomes true if the lander touches any point
of the map with a speed that is too high (i.e., it crashes),
or goes beyond the operating area of the environment, that is,
[−1.5, 1.5] × [−1.5, 1.5]. Following Algorithm 1, from (25),
we derive that Uout = 100, Lout = −100, Uin = 100,
L in = 100. Given γ = 0.99 [see (2)], we select σ = 12 000
[see (9)], and the correction terms in (6) as

r c
in = −Uin −Uout

1− γ ks

γ ks
+ σ

1− γ

γ ks
≈ 3.04 · 103

r c
exit = −Uout −

1
γ kp−1

[
(Uin + r c

in)
1+ γ kp−1(γ − 1)

1− γ
− σ

]
≈ −6.93 · 109.

e) Parameters: We take S = 5 sessions, E =

1000 episodes, and N = 1000 time steps. For the ϵ-greedy
policy, we select ϵ = 0.1. To better stabilize the values of Q
and help prevent overestimation, we use a standard Double
DQN algorithm (a variation of DQN [32]; see [33] for a
detailed description), implemented in TensorFlow 2. For the
neural networks, we used an input layer with eight nodes, two
hidden layers each composed of 128 nodes with rectified linear
unit (ReLU) activation functions, and an output layer with
three nodes and linear activation functions. The networks were
trained using the Adam optimizer [34], with a learning rate of
0.001. Samples collected during training are stored in a replay
buffer and at each training update a batch of 128 samples is
used.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 7. Average (green line) plus/minus standard deviation (shaded area)
of the discounted returns per episode obtained in S training sessions with
Double DQN in the Lunar Lander environment. The red line indicates the
threshold value σ (see Section III-A). The returns are averaged backward
across episodes using a moving window of 50 samples.

2) Results of Double DQN in the Lunar Lander Environ-
ment: In this environment, in all sessions, the policies learned
with Double DQN can solve the given control problem,
fulfilling the given control requirements, as shown in Fig. 6.
In Fig. 7, we also report the returns obtained by the learning
algorithm. It is possible to observe that we obtain (averaged)
returns that are over the threshold value σ . In this case, the
large negative returns, which were visible in Fig. 5 for the
Pendulum environment, are not present. The reason is that,
in the Lunar Lander simulation environment, during training
(but not on validation), once the lander stops, the simulation is
halted; therefore, in this case, during training the lander never
exits the goal region once it has entered it.

V. CONCLUSION

One of the most significant challenges holding back the
use of RL for control applications is the lack of guarantees
concerning the performance of the learned policies. In this
work, we have presented analytical results that show how
a specific shaping of the reward function can ensure that a
control problem, such as a regulation problem, is solved with
arbitrary precision, within a given settling time. We have vali-
dated the proposed theoretical approach on two representative
experimental scenarios: the stabilization of a pendulum and
the landing of a simplified spacecraft.

One drawback of the present methodology is that the
shaped reward might be relatively sparse (as discussed in
Section III-C), which could possibly hamper learning when
using deep RL algorithms. Future work will focus on inte-
grating existing techniques [35] (and developing new ones)
for reward shaping, which can deal with the potential sparse
reward problem, on extending the current results to the case
of stochastic system dynamics, and on deriving conditions to
ensure feasibility of a set of control requirements (G, ks, kp)
for a given system, which is highly problem-dependent.

APPENDIX

Let δG(x) := miny∈G∥x − y∥ be the distance between x and
G; let h(x, u) := f (x, u)− x and H := supx∈X ,u∈U∥g(x, u)∥.

Proposition A.1. Consider the system defined in (1), and let H
be finite. If ks < δG(x̃0)/H, there does not exist an acceptable
policy π from x̃0.

Proof: We will show that there does not exist a policy
π such that in φπ (x̃0) there exist some k ′ ≤ ks such that
xk ′ ∈ G. Namely, consider some policy π and the trajectory
φπ (x̃0); note that

δG(x̃0) = min
y∈G

∥∥x̃0 − y
∥∥ = min

y∈G

∥∥x̃0 − xk + xk − y
∥∥

≤ min
y∈G

(∥∥x̃0 − xk
∥∥+ ∥xk − y∥

)
=

∥∥x̃0 − xk
∥∥+min

y∈G
∥xk − y∥. (26)

Rewrite (26) as

min
y∈G
∥xk − y∥ = δG(xk) ≥ δG(x̃0)−

∥∥x̃0 − xk
∥∥. (27)

A necessary condition for obtaining xk ∈ G is that δG(xk) = 0,
which is possible only if∥∥x̃0 − xk

∥∥ ≥ δG(x̃0). (28)

At the same time, it holds that

∥∥x̃0 − xk
∥∥ =

∥∥∥∥∥∥x̃0 −

x̃0 +

k−1∑
j=0

g(x j , u j)

∥∥∥∥∥∥ ≤ k H. (29)

Thus, to satisfy (28), it is required that k H ≥ δG(x̃0). Hence,
if ks < δG(x̃0)/H , then surely xk ̸∈ G for all k ≤ ks, and thus
φπ (x̃0) is not acceptable.
Proof of Lemma III.12: We rewrite (17) as

r c
in > −L in +

1− γ kz−1

γ kz−1 [(1− γ)σ − Lout] + (1− γ)σ. (30)

Exploiting (8b) and (9), we have (1−γ)σ ≥ Uout ≥ Lout, that
is, (1− γ)σ − Lout ≥ 0. Thus, (30) implies (15).
Proof of Lemma III.13: Assumptions III.1, III.4, and III.6 are
compatible if it is possible to select the constants σ , r c

in, r c
exit

in accordance with (9), (7), (10), (11), and (15). It is always
possible to select some r c

exit that satisfies to (11); differently,
to have (9), (7), (10), and (15) be compatible, the following
must hold: 1) (9); 2) Uout−L in ≤ −Uin−Uout(1− γ ks)/(γ ks)+

σ(1− γ)/(γ ks) [from (7) and (10)]; and 3) σ(1 − γ) −

L in < −Uin−Uout(1− γ ks)/(γ ks)+σ(1− γ)/(γ ks) [from (10)
and (15)].

Note that 1) holds if σ ≥ Uout/(1− γ), 2) holds if σ ≥

Uout/(1− γ) + 1inγ
ks/(1− γ), and 3) holds if (18) holds,

which is the most restrictive of the three.
Proof of Lemma III.14: From (10) and (17), Assumptions III.4
and III.9 are compatible if

−L in − Lout
1− γ kz−1

γ kz−1 + σ
1− γ

γ kz−1

< −Uin −Uout
1− γ ks

γ ks
+ σ

1− γ

γ ks
. (31)

We will show that (31) can be rewritten as (19). Then, recalling
that γ ∈ [0, 1], 1in, 1out ≥ 0, and kz ≤ ks, it is clear that (19)
is stricter than (18) in Lemma III.13 (and thus implies it),
hence proving the thesis that all Assumptions III.1, III.4, III.6,
and III.9 are compatible.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DE LELLIS et al.: GUARANTEEING CONTROL REQUIREMENTS VIA REWARD SHAPING IN RL 11

To show that (31) can be rewritten as (19), rewrite (31) as

σ >
γ ksγ kz−11in

(1− γ)(γ kz−1 − γ ks)
+

γ kz−1(1− γ ks)Uout

(1− γ)(γ kz−1 − γ ks)

−
γ ks(1− γ kz−1)Lout

(1− γ)(γ kz−1 − γ ks)
. (32)

Note that γ kz−1(1 − γ ks) = (γ kz−1
− γ ks) + γ ks(1 − γ kz−1).

Hence, we have

γ kz−1(1− γ ks)Uout

(1− γ)(γ kz−1 − γ ks)
=

Uout

1− γ
+

γ ks(1− γ kz−1)Uout

(1− γ)(γ kz−1 − γ ks)

and we rewrite (32) as

σ >
γ ksγ kz−11in

(1− γ)(γ kz−1 − γ ks)
+

Uout

1− γ
−

γ ks(1− γ kz−1)1out

(1− γ)(γ kz−1 − γ ks)
.

(33)

Now, note that

γ kz−1

γ kz−1 − γ ks
=

γ kz−1(1− γ ks)− (γ kz−1
− γ ks)

(γ kz−1 − γ ks)(1− γ ks)
+

1
1− γ ks

=
γ ks(1− γ kz−1)

(γ kz−1 − γ ks)(1− γ ks)
+

1
1− γ ks

and rewrite (33) as

σ >
γ ks

(1− γ)(1− γ ks)
1in +

Uout

1− γ

+
γ 2ks(1− γ kz−1)1in

(1− γ)(γ kz−1 − γ ks)(1− γ ks)
+

γ ks(1− γ kz−1)1out

(1− γ)(γ kz−1 − γ ks)

which is immediate to rewrite as (19).
Lemma A.2. Given two scalars a, b ∈ R, with b ̸= 0,
if |a − b| < |b|, then sign(a) = sign(b).

Proof: We analyze separately the cases given by the
combinations of the signs on a − b and b.

1) Let b > 0, a−b ≥ 0; we have a ≥ b > 0, that is, a > 0.
2) Let b > 0, a−b < 0; we have −(a − b) < b, which

simplifies to a > 0.
3) Let b < 0, a−b ≥ 0; we have a−b < −b and thus

a < 0.
4) Let b < 0, a−b < 0; we have a < b < 0, that is, a < 0.

ACKNOWLEDGMENT

This manuscript reflects only the authors’ views and
opinions, neither the European Union nor the European Com-
mission can be considered responsible for them.

REFERENCES

[1] H. Dong, X. Zhao, and H. Yang, “Reinforcement learning-based approx-
imate optimal control for attitude reorientation under state constraints,”
IEEE Trans. Control Syst. Technol., vol. 29, no. 4, pp. 1664–1673,
Jul. 2021.

[2] H. Dong and X. Zhao, “Data-driven wind farm control via multi-
player deep reinforcement learning,” IEEE Trans. Control Syst. Technol.,
vol. 31, no. 3, pp. 1468–1475, May 2023.

[3] B. R. Kiran et al., “Deep reinforcement learning for autonomous
driving: A survey,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 6,
pp. 4909–4926, Jun. 2022.

[4] J. Degrave et al., “Magnetic control of tokamak plasmas through
deep reinforcement learning,” Nature, vol. 602, no. 7897, pp. 414–419,
Feb. 2022.

[5] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits Syst. Mag.,
vol. 9, no. 3, pp. 32–50, Aug. 2009.

[6] P. Osinenko, D. Dobriborsci, and W. Aumer, “Reinforcement learn-
ing with guarantees: A review,” IFAC-PapersOnLine, vol. 55, no. 15,
pp. 123–128, 2022.

[7] J. Randløv and P. Alstrøm, “Learning to drive a bicycle using reinforce-
ment learning and shaping,” in Proc. 15th Int. Conf. Mach. Learn., 1998,
pp. 463–471.

[8] AY. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Proc.
Int. Conf. Mach. Learn., 1999, pp. 278–287.

[9] A. Gupta, A. Pacchiano, Y. Zhai, S. Kakade, and S. Levine, “Unpacking
reward shaping: Understanding the benefits of reward engineering on
sample complexity,” in Proc. Adv. Neural Inf. Process. Syst., vol. 35,
2022, pp. 15281–15295.

[10] Y. Dong, X. Tang, and Y. Yuan, “Principled reward shaping for reinforce-
ment learning via Lyapunov stability theory,” Neurocomputing, vol. 393,
pp. 83–90, Jun. 2020.

[11] T. J. Perkins and A. G. Barto, “Lyapunov design for safe reinforcement
learning,” J. Mach. Learn. Res., vol. 3, nos. 4–5, pp. 803–832, 2002.

[12] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 1–9.

[13] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh,
“A Lyapunov-based approach to safe reinforcement learning,” in Proc.
Adv. Neural Inf. Process. Syst., 2018, pp. 1–10.

[14] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Proc. 32nd
AAAI Conf. Artif. Intell., 2018, pp. 2669–2678.

[15] Z. Marvi and B. Kiumarsi, “Safe reinforcement learning: A control bar-
rier function optimization approach,” Int. J. Robust Nonlinear Control,
vol. 31, no. 6, pp. 1923–1940, 2021.

[16] L. Beckenbach, P. Osinenko, and S. Streif, “A Q-learning predictive
control scheme with guaranteed stability,” Eur. J. Control, vol. 56,
pp. 167–178, Nov. 2020.

[17] R. E. Kalman, “When is a linear control system optimal?” J. Basic Eng.,
vol. 86, no. 1, pp. 51–60, Mar. 1964.

[18] A. E. Bryson, “Optimal control-1950 to 1985,” IEEE Control Syst.,
vol. 16, no. 3, pp. 26–33, Jun. 1996.

[19] L. Rodrigues, “Inverse optimal control with discount factor for con-
tinuous and discrete-time control-affine systems and reinforcement
learning,” in Proc. IEEE 61st Conf. Decis. Control (CDC), Dec. 2022,
pp. 5783–5788.

[20] É. Garrabé, H. Jesawada, C. Del Vecchio, and G. Russo, “On a
probabilistic approach for inverse data-driven optimal control,” in Proc.
62nd IEEE Conf. Decis. Control (CDC), Dec. 2023, pp. 4411–4416.

[21] T. Jouini and A. Rantzer, “On cost design in applications of optimal
control,” IEEE Control Syst. Lett., vol. 6, pp. 452–457, 2022.

[22] G. Brockman et al., “OpenAI gym,” 2016, arXiv:1606.01540.
[23] OpenAI. (2022). OpenAI Gym Pendulum Online Documentation.

[Online]. Available: https://www.gymlibrary.dev/environments/classic_
control/pendulum/

[24] OpenAI. (2022). OpenAI Gym Lunar Lander Online Documen-
tation. [Online]. Available: https://www.gymlibrary.dev/environments/
box2d/lunar_lander/

[25] F. De Lellis. (2023). Reward Shaping for RL Based Con-
trol. [Online]. Available: https://github.com/FrancescoDeLellis/Reward-
shaping-for-RL-based-control

[26] F. De Lellis, M. Coraggio, G. Russo, M. Musolesi, and M. di Bernardo,
“CT-DQN: Control-tutored deep reinforcement learning,” in Proc. 5th
Annu. Learn. Dyn. Control Conf., vol. 211, 2023, pp. 941–953.

[27] F. De Lellis, M. Coraggio, G. Russo, M. Musolesi, and M. di Bernardo,
“Control-tutored reinforcement learning: Towards the integration of data-
driven and model-based control,” in Proc. 4th Annu. Learn. Dyn. Control
Conf., vol. 168, 2022, pp. 1048–1059.

[28] M. Riedmiller et al., “Learning by playing solving sparse reward tasks
from scratch,” in Proc. 35th Int. Conf. Mach. Learn., vol. 80, 2018,
pp. 4344–4353.

[29] D. Rengarajan, G. Vaidya, A. Sarvesh, D. Kalathil, and S. Shakkottai,
“Reinforcement learning with sparse rewards using guidance from
offline demonstration,” in Proc. Int. Conf. Learn. Represent., 2022,
pp. 1–21.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

[30] K. J. Åström and R. M. Murray, Feedback Systems: An Introduction for
Scientists and Engineers, 2nd ed. Princeton, NJ, USA: Princeton Univ.
Press, 2021.

[31] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[32] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, 2015.

[33] H. V. Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double Q-learning,” in Proc. 30th Conf. Artif. Intell. (AAAI), Mar. 2016,
pp. 2094–2100.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[35] F. Memarian, W. Goo, R. Lioutikov, S. Niekum, and U. Topcu, “Self-
supervised online reward shaping in sparse-reward environments,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2021,
pp. 2369–2375.

Francesco De Lellis (Member, IEEE) received the
Ph.D. degree in information technology and elec-
trical engineering from the University of Naples
Federico II, Naples, Italy, in May 2023.

He was a Visiting Researcher at University College
Dublin, Dublin, Ireland, in 2020, and University
College London, London, U.K., in 2022. He is cur-
rently a Post-Doctoral Fellow with the University of
Naples Federico II. His research interests include the
application of control theory, reinforcement learning,
and supervised learning for the development of new

methodologies for the control of multiagent complex systems.

Marco Coraggio (Member, IEEE) received the
Ph.D. degree in information technology and elec-
trical engineering from the University of Naples
Federico II, Naples, Italy, in 2020.

He was a Post-Doctoral Fellow with the University
of Naples Federico II from 2020 to 2021. He has
been a Post-Doctoral Fellow with the Scuola Supe-
riore Meridionale, School for Advanced Studies,
Naples, since 2021. He was a Visiting Student with
the University of Bristol, Bristol, U.K., in 2016, and
a Visiting Scholar at the University of California at

Santa Barbara, Santa Barbara, CA, USA, in 2019, and Linköping University,
Linköping, Sweden, in 2023. His current research interests include complex
networks and applications, data-driven control, and piecewise smooth and
hybrid dynamical systems.

Dr. Coraggio was the finalist, in 2022, and a recipient, in 2023, of the IEEE
CSS Italy Young Author Best Paper Award.

Giovanni Russo (Senior Member, IEEE) received
the Ph.D. degree from the University of Naples
Federico II, Naples, Italy, in 2010.

He was a System Engineer/Integrator of the
Honolulu Rail Transit Project with Ansaldo STS,
Genova, Italy, from 2012 to 2015; a Research Staff
Member in Optimization, Control and Decision Sci-
ence with IBM Research Ireland, Dublin, Ireland,
from 2015 to 2018; and with University College
Dublin, Dublin, from 2018 to 2020. He is currently
an Associate Professor of automatic control at the

University of Salerno, Salerno, Italy. His research interests include contrac-
tion theory, analysis/control of nonlinear and complex systems, data-driven
sequential decision-making under uncertainty, and control in the space of
densities.

Dr. Russo has served as an Associate Editor for the IEEE TRANSAC-
TIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS from 2016 to
2019 and the IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS
from 2017 to 2023. Since January 2024, he has been serving as a Senior
Editor for the IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS.
Personal page: https://tinyurl.com/2p8zfpme.

Mirco Musolesi (Member, IEEE) held research
and teaching positions at Dartmouth College,
Hanover, NH, USA; the University of Cam-
bridge, Cambridge, U.K.; the University of St
Andrews, St Andrews, U.K.; and the University
of Birmingham, Birmingham, U.K. He is cur-
rently a Full Professor of computer science at
the Department of Computer Science, University
College London, London, U.K., where he leads
the Machine Intelligence Laboratory, as part of
the Autonomous Systems Research Group. He is

also a Full Professor of computer science at the University of Bologna,
Bologna, Italy. He has broad research interests spanning several tra-
ditional and emerging areas of computer science and beyond. The
focus of his laboratory is on machine learning/artificial intelligence
and their applications to a variety of theoretical and practical prob-
lems and domains. More information about his profile can be found at
https://www.mircomusolesi.org.

Mario di Bernardo (Fellow, IEEE) is currently a
Professor of automatic control at the University of
Naples Federico II, Naples, Italy, and a Visiting
Professor of nonlinear systems and control at the
University of Bristol, Bristol, U.K. He also serves
as a Rector’s Delegate for Internationalization at the
University of Naples Federico II and coordinates
the research area and Ph.D. program on Model-
ing and Engineering Risk and Complexity of the
Scuola Superiore Meridionale, Naples. He authored
or coauthored more than 220 international scientific

publications, including more than 150 articles in scientific journals, a research
monograph, and two edited books.

Dr. di Bernardo was elevated to the grade of fellow of the IEEE in
January 2012 for his contributions to the analysis, control, and applications
of nonlinear systems and complex networks. In 2017, he received the IEEE
George N. Saridis Best Transactions Paper Award for Outstanding Research.
On 28th February 2007, he was bestowed the title of Cavaliere of the Order
of Merit of the Italian Republic for scientific merits from the President of
Italy. He was the President of the Italian Society for Chaos and Complexity
from 2010 to 2017, a member of the Board of Governors from 2006 to 2011,
and the Vice President for Financial Activities of the IEEE Circuits and
Systems Society from 2011 to 2014. In 2015, he was appointed to the Board
of Governors of the IEEE Control Systems Society, where he was elected
as a member for the term 2023–2025. He was a Distinguished Lecturer of
the IEEE Circuits and Systems Society from 2016 to 2017. He is regularly
invited as a Plenary Speaker in Italy and abroad. He has been an organizer
and a co-organizer for several scientific initiatives and events and received
funding from several funding agencies and industries, including the European
Union, the U.K. research councils’ and the Italian Ministry of Research
and University. According to the international database SCOPUS (September
2023), his H-index is 53 and his publications received over 12 000 citations
by other authors. He was the Deputy Editor-in-Chief of the IEEE TRANS-
ACTIONS ON CIRCUITS AND SYSTEMS: REGULAR PAPERS, a Senior Editor
of the IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, and
an Associate Editor of the IEEE CONTROL SYSTEMS LETTERS, Nonlinear
Analysis: Hybrid Systems, the IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS I, and the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II.

Open Access funding provided by ‘Università degli Studi di Napoli "Federico II"’ within the CRUI CARE Agreement

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

