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Automatic and Flexible Robotic Drawing on
Complex Surfaces With an Industrial Robot
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Abstract— In industrial applications, planning and executing
robot motions are crucial steps for manufacturing processes.
Following the trend for customization, more flexible production
systems are needed to quickly adapt the planned robot motion
to new user inputs. In this work, a user-defined 2-D input
pattern has to be drawn by a robot on a given 3-D object in an
automated workflow. For this, two projection methods to map
the 2-D input pattern to the 3-D object are presented, and robot
trajectories are automatically generated based on the result of
the projection methods. Furthermore, two control concepts, i.e.,
a pure motion control and a hybrid force/motion control, are
investigated and validated by experimental results. In addition,
a precise force estimation is performed to guarantee a constant
normal contact force during the drawing process. The proposed
automated workflow is applicable to various industrial processes,
e.g., spray painting, cutting, and engraving, and provides an easy
way to plan and execute robot motions based on user inputs.

Index Terms— Force control concept, manufacturing process,
mapping, path planning, robotic application, user interaction.

I. INTRODUCTION

IN automated production lines, an increasing number of
industrial robots are put into operation every year [1]. The

main driver for this trend is the growing product diversity
in the industry, which goes up to full individualization [2].
In some production sectors, such as clothing, shoe, and apparel
industry, end consumers can customize and personalize prod-
ucts during ordering. Custom labels, logos, and symbols’ size,
appearance, and location can be specified. For automation,
this raises the demand for flexible production systems and
workflows.

In order to keep up with these trends, manual online
programming of robots becomes infeasible and Computer-
Aided Design (CAD)-based offline programming using fully
automated Computer-Aided Manufacturing (CAM)-based pro-
duction workflows is required [3]. In most manufacturing
processes, the workpiece geometry is already known, e.g.,
[4], or state-of-the-art 3-D scanners and algorithms can be
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Fig. 1. Experimental setup of the drawing process with a KUKA LBR
iiwa 14 R820.

employed to obtain the shape of the workpiece [5]. In this
way, a 2-D user-generated pattern could be projected on a 3-D
workpiece to automatically generate robot programs without
human intervention.

In the literature, automatic generation of robot programs
from a user input has been considered in several works,
as discussed in the following. In many publications, a draw-
ing process serves as a demonstration example to show the
capabilities of the proposed algorithms. Note that in most
cases, the considered task can be easily adapted to a differ-
ent manufacturing process, e.g., engraving, laser cutting, or
painting.

In [6] and [7], an edge detection algorithm is used to extract
features from portraits of humans, which are drawn on a flat
canvas by a humanoid robot. In order to perform this task,
a task-space path is generated first, for which a joint-space
path is computed using inverse kinematics, and then, it is
executed by the robot. Furthermore, Jean-Pierre and Said [8]
considered an industrial robot drawing on a flat whiteboard,
where robot programs are automatically generated for drawing
the edges and important features of ordinary photographs
and images. Similarly, in [9], [10], [11], and [12], robotic
drawing is presented with an emphasis on artistic and stylistic
algorithms for path generation. Drawing on 2.5-D (terrain-
like) objects is demonstrated in [13], where a KUKA LBR
iiwa 7 R800 is utilized. The drawing is interpolated with
Bézier curves and an impedance control is used to draw on
unknown nonplanar objects. In [14], a force/torque sensor
is mounted on the end-effector of the drawing robot. With
this information, the robot is able to draw on objects, whose
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relative position to the robot is unknown. Even on 3-D surfaces
with small curvature, drawing is successful because the pen
orientation is controlled to remain normal to the surface.
Because the force information is only available during the
drawing process and the geometry of the object is unknown,
the projection can cause distortions and is not predictable.
Most of the works discussed so far focus on the artistic aspects
of robotic drawing on planar surfaces, but the manufacturing
aspects on 3-D objects are not considered in detail.

Automatic path planning to directly work on 3-D work-
pieces is examined for processes such as spraying [15],
polishing [16], or draping [17]. In those works, algorithms
generate 3-D paths automatically based on the CAD data and
no user input is required.

Another way of planning and executing robot motions from
a user input is interactive teach-in methods. A state-of-the-
art concept based on an instrumented tool is developed by
Wandelbots [18]. With the so-called TracePen, robot motions
are demonstrated by the user and a robot program is generated
automatically. In [19], an instrumented tool is used to record
the position, orientation, and force of a rope winding task. This
demonstrated trajectory is then performed with an industrial
robot. Inspired by the gaming industry, a representation of a
robotic environment in a virtual reality could also be used
to teach-in an industrial task [20]. However, those teach-in
methods need a trained person to generate the robot program
and this is especially cumbersome for frequently changing user
inputs or small lot sizes.

A different way to customize the visual design of products
is to use inkjet printer heads mounted on the end-effector
of industrial robots to directly perform 2-D printing on 3-D
surfaces. Thereby, the printer head is used to print custom
designs on shoes [21] or cars [22] and provides an easy way for
customization. In this process, the robot motion is generated
for each product only once because the robot trajectory stays
the same if different 2-D inputs have to be printed on the
same surface area. The different designs result from different
print jobs. Note that the quality of the print on curved surfaces
increases for small 2-D inputs because the print head has to
be in constant distance from the product.

The goal of this work is to demonstrate the full customiza-
tion of products in an industrial manufacturing process. To this
end, a robotic drawing task for known arbitrary 3-D objects is
considered, see Fig. 1, which is the main contribution of this
work. This process has high demands on the robotic system
to achieve the required flexibility and replication accuracy on
the 3-D surface. A user specifies the drawing and its exact
location, size, and orientation on the object. Subsequently, the
robot trajectory is planned using a mapping and a drawing
procedure is executed. To improve the drawing quality, the
contact force of the pen is adjusted using a hybrid force/torque
controller, which is further extended to control the position and
orientation of the pen simultaneously.

This automatic pipeline is applicable to different man-
ufacturing processes. Robot-assisted additive manufacturing
processes, such as material extrusion, fused deposition mod-
eling (FDM), material jetting, and directed energy deposition
as shown in [23], can also be performed using the proposed

automatic trajectory planning and robot execution pipeline.
Another example is automated milling or laser engraving,
where a user input pattern has to be engraved into large 3-D
objects. In subtractive processes such as laser or ultrasonic
cutting, this pipeline can also be employed as well as in spray
painting processes.

A preliminary version of this work is published in [24].
The main contributions beyond [24] are as follows. First,
the automatic planning pipeline utilizing a least-squares con-
formal mapping (LSCM) is evaluated and compared to a
standard parallel projection method. Second, both projection
methods are investigated in new experiments, where the robot
draws on challenging areas with more complex geometry and
significantly higher curvature, in contrast to the plane-like
area of [24]. Therefore, an adapted version of the hybrid
force/motion controller, including adaptions to the null-space
controller, was derived to be able to execute these challenging
experiments. Third, the previously used optical measurement
system to calibrate the experimental setup is replaced by an
inexpensive passive mechanical method. In order to keep this
work self-contained, parts of the preliminary work [24] are
summarized and some aspects are elaborated in more detail.

This article is organized as follows. In Section II, two
projection methods to transfer a 2-D path onto a 3-D object
are introduced. Subsequently, robot trajectories are generated
from the projected 3-D patterns. The control concept to control
the pose (i.e., the position and orientation) of the pen and the
contact force are explained in Section III. The experimental
results are presented and described in Section IV. Finally, this
work is concluded in Section V.

II. PATH PROJECTION AND TRAJECTORY GENERATION

In this section, two path projection methods to transfer
a user-provided 2-D input pattern onto a 3-D object are
presented and the robot trajectory generation is explained.
First, a LSCM is introduced and explained in detail. Next,
a simple parallel projection method is presented. Finally, the
robot trajectory is generated based on the result of the two
projection methods.

A. Path Projection Using LSCM [25], [26]

A flowchart illustrating the individual steps of the path
projection with the LSCM is shown in Fig. 2. In order to
handle meshes of high complexity, the mesh of the 3-D object
is first decomposed into multiple mesh segments, which is
explained in Section II-A1. This preparation step limits the
local distortions of the transferred 2-D input pattern in the
subsequent workflow. Next, the mesh segments are flattened
using a LSCM approach, introduced in Section II-A2. The 2-D
input pattern is projected on the flattened surface, and then,
an inverse mapping transfers the pattern back onto the 3-D
object, which is discussed in Section II-A3. The methods in
this section are summarized from [25] and [26] and are tightly
integrated in the path-planning workflow. Subsequently, these
methods are utilized to compare the two projection methods,
i.e., the LSCM and the parallel projection method.
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Fig. 2. Flowchart of the LSCM to project the 2-D input pattern.

Fig. 3. Segmentation of a 3-D object before flattening. (a) Mesh of the 3-D
object. (b) Result of the segmentation using [25].

1) Segmentation: As a first preparation step, the mesh
segmentation algorithm presented in [25] is applied to the
mesh of the 3-D object before flattening the individual mesh
segments. In this way, distortions in the projected 2-D paths
are minimized and the replication accuracy on the 3-D object
is improved.

The algorithm [25] first finds the boundaries between two
segments by computing the so-called sharpness criterion

wi, j = arccos

(
nT

i n j

∥ni∥2 ∥n j∥2

)
(1)

for each edge of the mesh, where ni and n j denote the normal
vectors of two adjacent triangles Ti and T j , respectively,
see [27], and ∥·∥2 is the Euclidean 2-norm. Edges for which
the angle wi, j in (1) is over a certain threshold value are
combined to feature curves. Next, the triangles with the
maximum geodesic distance to a feature curve are determined.
These triangles are subsequently used as seeds for a region
growing algorithm to obtain the individual mesh segments.
An example of a segmented 3-D object is shown in Fig. 3.

2) Least-Squares Conformal Mapping: The LSCM
approach [25] is used to flatten the mesh segments of the
3-D object into 2-D meshes. In general, a locally isotropic
conformal map X : (u, v) 7→ (x, y) preserves the local angles
and therefore the shape of small figures, but generally not
their size.

In this section, the considered mesh segment T consists of n
triangles Ti , i = 1, . . . , n, and n̂ vertices. Each triangle Ti has
a local orthonormal basis and the coordinates of the vertices
are given by (xi,1, yi,1), (xi,2, yi,2), and (xi,3, yi,3). Then, the

conformal mapping for a single triangle fulfills the condition
∂X
∂u

− i
∂X
∂v

= 0 (2)

with the complex number X = x + iy, where i denotes the
imaginary unit. The inverse conformal mapping U : (x, y) 7→

(u, v) reads as [28]
∂U
∂x

+ i
∂U
∂y

= 0 (3)

which is a formulation of the Cauchy–Riemann equations for
complex numbers U = u + iv. Since (3) cannot be satisfied
for all triangles Ti of the mesh segment T simultaneously, the
minimization problem

min
U

∑
Ti ∈T

C(Ti ) (4a)

C(Ti ) = 2
∫

Ti

∣∣∣∣∂U∂x
+ i

∂U
∂y

∣∣∣∣2 dAi (4b)

is formulated, where |·| denotes the magnitude of the complex
number · and Ai is the area of the triangle Ti , i = 1, . . . , n.

The gradients in (4b) for a single triangle Ti read as
∂ui

∂xi
∂ui

∂yi

 =
1

2Ai
B

ui,1
ui,2
ui,3

 ,


∂vi

∂xi
∂vi

∂yi

 =
1

2Ai
B

vi,1
vi,2
vi,3

 (5)

with

B =

[
yi,2 − yi,3 yi,3 − yi,1 yi,1 − yi,2
xi,3 − xi,2 xi,1 − xi,3 xi,2 − xi,1

]
(6)

and

2Ai =
(
xi,1 yi,2 − yi,1xi,2

)
+ (xi,2 yi,3 − yi,2xi,3) (7)

+(xi,3 yi,1 − yi,3xi,1) (8)

while satisfying the Cauchy–Riemann equations[
0 −1
1 0

]
∂ui

∂xi
∂ui

∂yi

 =


∂vi

∂xi
∂vi

∂yi

 (9)

see [29]. The compact formulation

∂U
∂x

+ i
∂U
∂y

=
i

2Ai

[
Wi,1 Wi,2 Wi,3

]Ui,1
Ui,2
Ui,3

 = 0 (10)

is found with Ui, j = ui, j + ivi, j using (5) and

Wi,1 = (xi,3 − xi,2) + i(yi,3 − yi,2) (11a)
Wi,2 = (xi,1 − xi,3) + i(yi,1 − yi,3) (11b)
Wi,3 = (xi,2 − xi,1) + i(yi,2 − yi,1). (11c)

Inserting (10) into the minimization problem (4), the optimiza-
tion problem for the whole mesh segment T with all triangles
Ti ∈ T is reformulated as

min
U

C(U) = min
U

∑
Ti ∈T

C(Ti ) (12a)

C(Ti ) =
1

2Ai

∣∣∣∣∣∣[Wi,1 Wi,2 Wi,3
]Ui,1

Ui,2
Ui,3

∣∣∣∣∣∣
2

(12b)
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with the coordinates of the vertices Ui,1–Ui,3 of the cor-
responding triangle Ti , i = 1, . . . , n. Finally, to formulate
the conformal mapping for the complete mesh segment T ,
all vertices UT

=
[
U1 · · · Un̂

]
of this segment have to be

considered. Note that a single vertex may be contained in
multiple triangles.

In order to solve the optimization problem (12), the cost
function C(U) is decomposed in the form

C(U) = U∗N∗NU (13)

with the sparse index matrix N ∈ Rn×n̂ and their Hermitian
conjugated matrix N∗. Thereby, the elements are calculated as

(N)i j =


Wi, j
√

2Ai
,

if vertex w j belongs to triangle Ti
(consisting of the vertices w j , wk, wl )

0, otherwise

(14)

with Wi, j = (xi,l − xi,k)+ i(yi,l − yi,k), cf. (11). Equation (13)
is rewritten in the quadratic form

C(U) = ∥NU∥
2
2 =

∥∥N f U f + NpUp
∥∥2

2 . (15)

The vector of mapped vertex coordinates U is decomposed
into UT

= [UT
f UT

p], where U f denotes the vector of free
(unknown) vertex coordinates and Up are the pinned (given)
vertex coordinates. As suggested in the original work [25],
the two vertices with the maximum distance to each other are
pinned for each mesh segment. In this way, (12) is reformu-
lated as a least-squares problem in the unknown variables

xT
=

[(
UR

f

)T (
UI

f

)T
]

(16)

and

C(x) = ∥Ax − b∥
2 (17)

with

A =

[
NR

f −NI
f

NI
f NR

f

]
, b = −

[
NR

p −NI
p

NI
p NR

p

] [
UR

p
UI

p

]
(18)

where N f and Np denote the sparse index matrices for the
free and pinned vertices, respectively, and the superscripts R

and I in (16) and (18) refer to the real and imaginary parts of
the complex-valued vectors and matrices, respectively.

Finally, the least-squares problem (17) is solved in MAT-
LAB using a numerical solver in order to find the coordinates
of the free vertices U f under the inverse conformal mapping
U . For a more detailed explanation of the mapping algorithm,
the reader is referred to [25].

3) 2-D Path Projection and Inverse Mapping: In this
section, the user-provided 2-D input pattern is transferred to
a user-specified location and size onto the 3-D object. To this
end, the 2-D input pattern is projected on the corresponding
flattened mesh segment and is subsequently mapped back
onto the 3-D object by the inverse conformal mapping U , see
Section II-A2, using barycentric coordinates [26].

The 2-D input pattern is created by the user with a
touchscreen, digitizer, or mouse interface and is given by

Fig. 4. Mapping from the triangle of the flattened object to the 3-D object,
compare [26]. (a) Triangle on the flattened object. (b) Triangle on the 3-D
object.

the discrete path points pT
d,k =

[
xd,k yd,k

]
, k = 1, . . . , K .

Furthermore, the user defines the location
[
1x 1y

]T, rotation
θ , and scale s of the desired pattern on the flattened mesh
segment. The resulting path points of the 2-D path pt,k ,
k = 1, . . . , K , are computed using the transformation

pt,k = s R(θ)pd,k +

[
1x
1y

]
(19)

with the rotation matrix

R(θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
. (20)

Note that if the 2-D path covers multiple mesh segments, those
segments are combined and flattened again.

Next, the correspondence between the flattened mesh seg-
ment and the 3-D mesh segment is established via the triangles
of both meshes. For each 2-D path point pt,k , k = 1, . . . , K ,

from the flattened mesh segment, the associated triangle Tk
is determined. This is performed using the efficient bin-based
algorithm published in [26].

Finally, the 2-D path points pt,k are mapped onto the 3-D
mesh segment using barycentric coordinates inside the corre-
sponding triangles Tk . In general, barycentric coordinates map
between two arbitrary triangles based on the corresponding
vertices, see, e.g., [30]. A given point pt is mapped from
one triangle (g1, g2, g3) to another triangle (w1, w2, w3) in
the form, see Fig. 4

po = Ã1w1 + Ã2w2 + Ã3w3 (21)

with

Ã1 =
S(pt , g2, g3)

S(g1, g2, g3)
(22a)

Ã2 =
S(g1, pt , g3)

S(g1, g2, g3)
(22b)

Ã3 =
S(g1, g2, pt )

S(g1, g2, g3)
. (22c)

In (22), the function S(·, ·, ·) calculates the area of the enclosed
triangle. In this way, all 3-D path points po,k , k = 1, . . . , K ,
are determined. The vertices (w1, w2, w3) are represented with
respect to an object frame O, e.g., located at the origin of
the 3-D object. Therefore, the points po,k are also described
with respect to this object frame O. For each 3-D path point,
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Fig. 5. Examples of parallel projections from a 3-D object to a 2-D plane,
compare [31].

a coordinate frame on the surface with the origin po,k and
the orientation Ro,k is constructed such that the z-axis, i.e.,
the pen, is parallel to the local surface normal vector. The
remaining orientation is derived from a suitable reference
orientation.

B. Parallel Path Projection

The parallel projection method is explained in this section,
which is simple and serves as a comparison approach for the
performance evaluation of the experimental results. The paral-
lel projection method is mostly used to project 3-D objects on
2-D planes by projecting the points along parallel projection
rays, see Fig. 5. If the 2-D plane is perpendicular to the
projection rays, this projection method is called orthographic
parallel projection and otherwise oblique, see [31].

In this work, the inverse projection is needed, i.e., the 2-D
pattern of the user input has to be mapped to the 3-D object.
Therefore, the points of the user input pd,k are given in a 2-D
plane. This 2-D plane can be either defined in front of the 3-D
object by the user or it can be automatically computed based
on the mean value of the normal vectors of the corresponding
triangles. Then, parallel projection rays perpendicular to this
2-D plane are generated from each position pd,k . At the
intersection points of the parallel rays with the surface of
the 3-D object, the 3-D path points po,k of the 2-D input,
described in the object frame O, are found. The intersection
points can be computed with, e.g., the ray-triangle intersection
algorithm [32]. Analogous to Section II-A, local coordinate
frames Ro,k are generated for each 3-D path point po,k . The
direction of the parallel projection rays is used as the z-axis
of this frame. The remaining orientations are again computed
based on a reference orientation. Note that the orientations
of all path points po,k are equal since all projection rays are
parallel.

C. Cartesian Robot Trajectory

The projection result of Sections II-A and II-B is described
by the sequence of 3-D path points po,k , k = 1, . . . , K , which
is located on the surface of the 3-D object. Along this 3-D path,

Fig. 6. Flowchart of generating a robot trajectory based on the projection
result.

the robot has to draw the user-defined pattern. Furthermore,
also the corresponding orientations Ro,k are known from
the projection. Based on this pose sequence, the executable
robot trajectory is generated. A flowchart of the necessary
computation steps is shown in Fig. 6.

If a user-provided 2-D input pattern contains multiple dis-
connected path segments, additional transition points are added
to the sequence of 3-D path points. Between two segments, the
robot retracts the pen from the surface by performing a linear
motion. Subsequently, the robot moves to the starting point
of the next path segment and approaches the surface again.
The individual sequences of 3-D path points are interpolated
according to [33], where a 5th-order polynomial is used for
the time parametrization. In this way, the drawing process of
the robot starts and ends smoothly.

III. CONTROL CONCEPT

In order to realize the robotic drawing process with a pen
on the 3-D object, the generated trajectory is executed by the
robot using a suitable control concept, which is detailed in this
section. First, a standard task-space controller is described to
control the motion of the pen on the surface of the 3-D object.
Second, contact force estimation [34] is introduced. Third,
a hybrid force/motion controller is adapted from [35] and [36]
to control the contact force during the drawing process and
improve the robotic drawing task.

A. Motion Control

The dynamic robot model reads as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ + τ ext (23)

with the joint position q, the positive definite mass matrix
M(q), the Coriolis matrix C(q, q̇), and the vector of gravita-
tional forces g(q), see, e.g., [35]. The generalized torque τ is
considered as control input and the external torques acting on
the robot are denoted by τ ext. The forward kinematics of the
robot [

pCB
oCB

]
= hCB(q) (24)

computes the pose of the pen tip, i.e., the contact frame C with
respect to the robot base frame B, composed of the position
pCB and the unit quaternion oCB. In (24) and the remainder of
this work, the notation (·)YX refers to mathematical objects
describing the geometric relation of the frame Y with respect
to the frame X , expressed in X .
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Applying inverse dynamics control, see [35]

τ = M(q)vm + C(q, q̇)q̇ + g(q) (25)

to (23) and neglecting the external torques τ ext yields the new
linear system dynamics in the form

q̈ = vm (26)

with the new input vm . The relation between the task-space
velocities of the pen tip, ṗCB and ωCB, and the joint velocities
q̇ is given by the geometric Jacobian JCB(q) as[

ṗCB
ωCB

]
=

[
JCB,v

(q)

JCB,ω
(q)

]
q̇ = JCB(q)q̇. (27)

In (27), the geometric Jacobian JCB(q) consists of the Jaco-
bian related to the linear velocity JCB,v

(q) and the Jacobian
related to the angular velocity JCB,ω

(q). A standard task-space
controller is implemented by choosing the new input vm as

vm =

(
JCB(q)

)† (
vc − J̇CB(q)q̇

)
(28)

with the control input

vc =

[
p̈DB + KD ˙̃p + KP p̃ + KI

∫
p̃ dt

ω̇DB + Kω ω̃ + Ko eo

]
(29)

where A†
= AT(AAT)−1 is the right pseudoinverse of

the matrix A. In (29), the desired Cartesian trajectory
[(pDB (t))T (oDB (t))T

], with the desired frame D, is introduced
by transforming the robot trajectory from the object frame O,
see Section II-C, to the robot base frame B. The geometric
relation of the object frame O with respect to the robot
base frame B is determined using a calibration procedure
before the experiment, see, e.g., [37]. Hence, the position
error of the controller (29) is computed as p̃ = pDB − pCB,
the angular velocity error is computed as ω̃ = ωDB − ωCB, and
the quaternion error eo is the vector part of the quaternion
product oDB ⊗ (oCB)−1, see [35], [38]. The control matrix Kω

is diagonal and positive definite, the gain Ko > 0, and the
choice of the gain matrices KD , KP , and KI and the proof of
the asymptotic stability of (29) are given in [39].

B. Contact Force Estimation

In this work, no external force/torque sensor is available to
directly measure the interacting forces between the pen and
the 3-D object. Instead, the contact force estimation [34] is
employed and summarized in this section.

Based on the dynamic robot model (23), Magrini et al. [34]
showed that using the residual vector

r(t) = Kc

(
M(q)q̇ −

∫ t

0
τ + CT(q, q̇)q̇ − g(q) + r ds

)
(30)

leads to the residual dynamics

ṙ(t) = Kc(τ ext − r(t)) (31)

from which the external torques τ ext ≈ r are estimated with
a large positive definite gain matrix Kc.

In general, the relation between the contact forces and
moments hT

= [fT mT
] and the external torques τ ext is

established with the geometric Jacobian JCB(q) of the contact
frame C as

τ ext =

(
JCB (q)

)T
h. (32)

Assuming a point contact of the pen with the object’s surface,
the moment m in the contact frame C vanishes and the
estimated force f̂ results from[

f̂
m̂

]
=

(
(JCB(q))

T)†
r. (33)

C. Hybrid Force/Motion Control

In this section, the hybrid force/motion controller proposed
in [35] and [36] is extended for the robotic drawing task.
To this end, the lateral position and the orientation of the
pen are controlled simultaneously, while the estimated contact
force f̂ at the pen tip along the surface normal vector is
regulated to the desired value.

Since a point contact is assumed, m = 0 holds for (32), and
the inverse dynamics control law for (23) reads as

τ 1 = M (q) a + C (q, q̇) q̇ + g (q) −

(
JCB,v (q)

)T
f̂ (34)

with a new control input a. Note that the external torque τ ext
is assumed to be compensated with the last term in (34). The
new control input a is chosen as

a =

(
JCB (q)

)†
TCB (q)Yv v̆c + M−1

(
JCB (q)

)T
TCB (q) Y f v f

−

(
JCB (q)

)†
J̇CB (q) q̇ (35)

with the motion control input v̆c and the force control input
v f to be defined later. In order to apply the control concept
with respect to the contact frame C, the transformation matrix
given by

TCB(q) =

[
RCB(q) 0

0 I

]
(36)

is utilized in (35). Moreover, the constant selection matrices

Y f =


0 0 0
0 0 0
0 0 1
0 0 0
0 0 0
0 0 0

 , Yv =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(37)

are introduced and v̆c from (35) is similar to vc from (29) by
replacing p̃, eo, ˙̃p, and ω̃ with[

p̆
ĕo

]
=

(
TCB(q)

)T
[

p̃
eo

]
,

[
˙̆p
ω̆

]
=

(
TCB(q)

)T
[

˙̃p
ω̃

]
. (38)

Furthermore, also the feedforward terms p̈DB and ω̇DB have
to be transformed into the contact frame C with (36) and ṘCB
is neglected in (35) and (38), see [36]. The force control input
v f is chosen as

v f = fd + KP f

(
fd −

(
RCB(q)

)T
f̂
)

+KI f

∫
fd −

(
RCB(q)

)T
f̂ dt (39)
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with the desired force fT
d =

[
0 0 fd,z

]
and suitable positive

definite diagonal gain matrices KP f and KI f . The contact
force f̂ is assumed to appear only in the z-direction of the
contact frame of the pen tip C, i.e., f̂C,z , cf., (37). Because
the selection matrices Y f and Yv are complementary, the force
and motion control loops are decoupled, see [35], [40]. A proof
of the asymptotic stability of (34) and (35) is given in [35].

Kinematically redundant robots exhibit an additional null
space, which is stabilized using the null-space control law

τ 2 = M(q)P
(
−b(q) − Kdn q̇ − Kpn(q − q)

)
(40)

with the projection matrix P = I − (JCB(q))
†
(JCB(q)),

see [41], and the positive definite diagonal gain matri-
ces Kdn and Kpn . In (40), the barrier function b(q) =[
b1(q1) b2(q2) · · · bm(qm)

]T is defined by

bh(qh) =
bmax

(qh − qh,max)2 −
bmin

(qh,min − qh)2 , h = 1, . . . , m

(41)

to prevent a robot with m degrees of freedom from
reaching joint positions near the mechanical axis lim-
its qT

max = [q1,max q2,max . . . qm,max] and qT
min =

[q1,min q2,min . . . qm,min]. The parameters bmax and bmin are
used to tune the barrier functions and q denotes the middle
angle between the axis limits

q =
1
2

[
q1,max + q1,min q2,max + q2,min . . . qm,max + qm,min

]
.

(42)

The control torque of the null-space control law τ 2 is added
to (34), resulting in the final control input τ = τ 1 + τ 2.

IV. EXPERIMENTAL RESULTS

In this section, the experimental setup and the results for
the robotic drawing process are presented and discussed. First,
the parallel path projection and the proposed path projection
using a LSCM from Section II are evaluated in simulation with
a user-provided 2-D input pattern. Second, the properties of
these projection methods are compared. Third, drawing trajec-
tories are generated and executed experimentally on the robot
using the motion controller from Section III-A, and fourth, the
hybrid force/motion controller from Section III-C is evaluated
experimentally. Finally, the drawing results and measurements
are compared directly. A video of the experimental drawing
process is provided at www.acin.tuwien.ac.at/c1eb.

A. Experimental Setup

The experimental setup for the drawing process is shown
in Fig. 1. In this setup, the ceiling-mounted industrial robot
KUKA LBR iiwa 14 R820 is equipped with a pen tool attached
to the end-effector. The tool comprises a passive compliance
mechanism to account for absolute positioning errors and
model uncertainties of the robot and its environment. The
workpiece in the drawing process is a 3-D-printed rabbit
model. The optimal robot base placement relative to the
3-D object is computed offline using the optimization-based

Fig. 7. Calibration method of the experimental setup with the KUKA LBR
iiwa 14 R820.

Fig. 8. User-provided 2-D input pattern for the experimental drawing process
with the disconnected segments T1⃝– T4⃝.

algorithm proposed in [42]. The actual robot base placement
in the experimental setup is determined using a calibration
procedure before the experiment can start, see Fig. 7. During
this calibration procedure, the robot is equipped with calibra-
tion pins at the end-effector (red rectangles in Fig. 7), which
tightly fit into holes at the base of the 3-D-printed rabbit (red
circles in Fig. 7). The actual robot base placement is obtained
from the measurement of the robot configuration q and the
forward kinematics (24), which accurately calibrates the pose
of the robot base for subsequent path planning and trajectory
execution.

The 2-D input pattern is provided by the user either simply
using a computer mouse, a touchscreen, or drawing patterns
with a digitizer on a tablet device. Furthermore, a path may
also be generated from parametric equations. In the following
experimental drawing process, the 2-D input pattern with four
disconnected segments T1⃝– T4⃝ shown in Fig. 8 is used, i.e.,
a smiley symbol.

B. Path Projection

In the following, the user-provided 2-D input pattern in
Fig. 8 is projected at a user-specified location on the 3-D
object, which is the face of the 3-D-printed rabbit, see Fig. 9.
Both projection methods introduced in Section II, i.e., the
parallel projection method and the proposed projection method
based on the LSCM, are used. Subsequently, the projection
results are compared and robot trajectories for the process
execution are generated.
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Fig. 9. 2-D input path projected on the 3-D object with (a) parallel projection
method and (b) LSCM.

1) Parallel Projection Method: For the simple parallel
projection method from Section II-B, parallel green rays are
generated originating at each path point pt,k, k = 1, . . . , K ,
from the blue 2-D input pattern, see Fig. 9(a). Then, the
path points po,k, k = 1, . . . , K , on the 3-D object are found
at the intersection points of the green rays with the 3-D
object’s mesh using the implementation of the ray-triangle
intersection from [43]. At each path point po,k, k = 1, . . . , K ,
a desired end-effector orientation is generated from path
planning. Thereby, the z-axis of the end-effector is aligned
with the green ray and the x- and y-axes are chosen according
to a reference orientation. Note that the orientation is equal
for every path point. Finally, transition paths are added and a
spline interpolation is computed based on the 3-D path points
with a suitable time parametrization, see Section II-C.

Examining the parallel projection result in Fig. 9(a), a large
distortion can be seen at point P1⃝ due to the high curvature of
the 3-D object. In comparison, the eyes of the smiley at P3⃝ are
less distorted because of the smaller curvature. Nevertheless,
the eyes are in an elliptic shape and not properly placed.
If the parallel projection method is used to project a 2-D
input pattern to areas with a small curvature, e.g., P4⃝ or P5⃝ in
Fig. 9(a), the drawing result of the whole 2-D input would be
significantly better without notable distortions.

Due to the simplicity of the projection method, the compu-
tation is finished after approximately 50 ms on an Intel Core
i7-8700K at 3.70 GHz.

2) Path Projection Using LSCM: The path projection on the
rabbit according to Section II-A is computed by segmenting
the object first, see Fig. 3, and then flattening the individual
segments using the conformal mapping. In the next step,
the 2-D input pattern is projected on the flattened segments,
i.e., the face of the rabbit, see Fig. 10. Note that the two
segments located at the face of the rabbit in Fig. 3(b) have
to be combined to be able to apply the LSCM for the whole
face area. The 2-D input pattern is transferred back to the

Fig. 10. Projection of the 2-D input pattern on the flattened segments of the
3-D object.

3-D object using the barycentric coordinates introduced in
Section II-A3. The result of the 2-D input pattern on the 3-D
surface of the workpiece is shown in Fig. 9(b). As explained
in Section II-C, the robot trajectory is computed by inserting
transition points and interpolating the sequence of 3-D path
points using a spline with suitable time parametrization. The
orientation of the z-direction, i.e., the pen, is chosen based on
the normal vector of the surface and the remaining directions
are derived from a reference orientation.

Note that the shape of the pattern, in particular the outer
circle of the smiley at P1⃝ and the circular eyes at P3⃝ in
Fig. 9(b), is projected on the 3-D object with minimum
distortions.

The path projection using conformal mapping is performed
on the 3-D-printed rabbit object, which comprises approxi-
mately 13 000 faces and 6500 vertices. The computation is
executed on an Intel Core i7-8700K with 3.70 GHz base
clock frequency. The most time-consuming computation of
this offline planning is the segmentation from Section II-A1
taking around 5 s and the LSCM from Section II-A2 can be
calculated in 0.3 s. Note that those steps have to be executed
only once for each 3-D object, see Fig. 2.

C. Properties of Projection Methods

In this section, further simulations to compare the parallel
projection method with the LSCM are conducted, see Fig. 11.
The 2-D input pattern from Fig. 8 is projected on the ear
of the 3-D-printed rabbit. Due to the high curvature of the
area around the ear, projections are challenging and local
distortions can occur.

In the first experiment, the parallel projection method is
employed. In this experiment, large distortions due to the
high curvature occur, see Fig. 11(a). Note that if the 2-D
pattern would be larger than the 3-D object, the green rays
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Fig. 11. 2-D input path projected on the ear of the 3-D-printed rabbit with
(a) parallel projection method and (b) LSCM.

would not intersect with the 3-D object at all, and therefore,
the projection could not be fully computed and the trajectory
generation fails.

The second experiment shows the projection of the 2-D
input pattern from Fig. 8 on the ear area of the 3-D-printed
rabbit with the LSCM, see Fig. 11(b). Using this mapping,
the 2-D input pattern is projected visually proper on the 3-D
workpiece. Note that due to flattening the segments of the
3-D object into a 2-D form, the 2-D input pattern is wrapped
around the ear area at the 3-D object, see also Fig. 10.
Using this method, the projection result contains the complete
user-provided pattern and the trajectory for the robotic drawing
process can be calculated.

D. Drawing Process With Motion Control

In this section, the drawing process using the two presented
path projection results from Section IV-B is executed with
the pure motion control as introduced in Section III-A. In the
following, the planning and measurement results are discussed
in terms of the pen motions as 3-D paths, the position control
errors, and the joint-space paths.

1) Planned and Executed 3-D Paths: The drawing process
is planned with both projection methods and executed on the
KUKA LBR iiwa 14 R820 using pure motion control. The
resulting 3-D paths are shown in Fig. 12 for the parallel
projection and in Fig. 13 for the LSCM projection. Figs. 12
and 13 show the desired trajectory pDB of the contact frame
C, i.e., the pen tip, the corresponding pen orientations nDB ,
and the actual trajectory pCB, computed using the forward
kinematics (24), for the respective projection method. The
automatically generated transition paths are also visible.

Fig. 12. Desired and executed 3-D path pDB and pCB , respectively, and the
corresponding surface normal vectors nDB using the parallel projection method
with pure motion control.

Fig. 13. Desired and executed 3-D path pDB and pCB , respectively, and the
corresponding surface normal vectors nDB using the LSCM method with pure
motion control.

For the parallel projection, the pen orientation nDB is con-
stant and aligned with the projection direction, while it remains
aligned with the surface normal vector using the LSCM
projection. Consequently, for the parallel projection, a high
position deviation between the desired and the actual trajectory
becomes clearly visible around P2⃝. In this area, the local
curvature of the 3-D object is very high, see also Fig. 9(a). Due
to the constant orientation nDB , the angle between the surface
normal vector and the pen at the contact point C becomes
large. Due to this large approach angle, the pen slips on the
object’s surface, which significantly deviates the pen tip from
the desired trajectory pDB and results in a large position error.
In comparison, the approach angle around the eyes at point P3⃝

is much smaller, and therefore, this effect is less pronounced,
see Fig. 9.

For the LSCM projection, see Fig. 13, the pure motion
control exhibits a good closed-loop control performance when
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following the desired trajectory in the experimental setup.
Even at the points P1⃝ and P2⃝ with high curvature, compare
Fig. 12, the actual trajectory pCB visually does not deviate
from the desired trajectory pDB . Because the pen axis nDB is
aligned with the surface normal vector, the pen does not slip
on the surface due to the perpendicular approach angle. Thus,
no position errors appear at areas with high curvature.

2) Position Control Error: In Fig. 14, the position control
errors p̆ in the contact frame C for both experiments are
presented, see (38). The topmost graph shows the contact state
of the pen, where intervals with the value 1 indicate that the
pen is in contact with the 3-D object. The variable l denotes
the progress of the path from 0 % to 100 %. During the first
interval T1⃝, where the pen is in contact with the 3-D object,
the outer circle of the smiley, at T2⃝ and T3⃝ the eyes and during
T4⃝ the mouth is drawn, cf. Fig. 8. In between those intervals,
the robot’s end-effector moves from the end of the previous
pattern to the starting point of the new pattern.

Examining the position control errors p̆ during the intervals
T1⃝ and T4⃝ for the parallel projection experiment, the position
deviation due to the large approach angle of the pen on the
object can be clearly seen for l = 5 % − 20 % and l =

80 % − 90 % in Fig. 14. Small position errors emerge during
the intervals T2⃝ and T3⃝ due to the small local curvature and the
small approach angle. Note that due to the passive compliance
of the pen holder in the z-direction, the position error in this
direction is small. In contrast, the position control errors p̆
of the LSCM experiment in Fig. 14 (red lines) remain small
during the entire execution time. Quantitatively, the position
control error p̆ with respect to the contact frame C remains
below 1 mm for all Cartesian position coordinates.

Note that the lengths of the intervals T1⃝– T4⃝ for the two
projection methods differ. This is due to the fact that the range
of the axis motion during the drawing process depends on
the planned trajectory. Using the LSCM, the pen orientation
is always normal to the surface; therefore, the robot has to
perform wide joint motions and, consequently, the time inter-
vals are longer. Note that the positive definite diagonal gain
matrices Kω, Kpn, Kdn , and Ko > 0 are chosen empirically
and the gain matrices KD , KP , and KI are found by pole
placement.

3) Joint-Space Paths: The joint-space paths q̄T(l) =[
q̄1 q̄2 · · · q̄7

]
for the process execution with both projections

are shown in Fig. 15, where the individual joint angles q̄h are
normalized to their axes limits qh,min and qh,max in the form

q̄h =
2qh − (qh,max + qh,min)

qh,max − qh,min
, h = 1, . . . , 7. (43)

As the orientation of the pen during the parallel projection
experiment remains constant, only small changes in the joint
angles are required to follow the corresponding desired path,
see the blue lines in Fig. 15. The joint-space path q̄(l) for the
LSCM experiment (red lines in Fig. 15) shows that in this case,
significantly larger robot movements are performed. Most of
the joints come close to the respective mechanical axis limit at
one point during process execution. Therefore, it is necessary
to use the advanced null-space control law (40) and (41) to
be able to execute this process. Consequently, this shows that

Fig. 14. Evolution of the pen/surface contact (top) and position control errors
p̆ using the parallel projection method and the LSCM using pure motion
control.

the execution of the planned trajectory is more challenging for
the LSCM, but it yields more accurate results for the drawing
process, compare Figs. 12 and 13.

E. Drawing Process With Hybrid Force/Motion Control

In this experiment, the hybrid force/motion controller from
Section III-C is employed to perform the robotic drawing
process based on the planned trajectory with the LSCM. The
results are discussed in terms of the planned and executed 3-D
paths, the position control error, and the contact force.

1) Planned and Executed 3-D Paths: The desired and actual
trajectories of the pen tip pDB and pCB, respectively, are shown
in Fig. 16. It can be clearly seen that the actual trajectory
pCB deviates in the z-direction from the desired trajectory pDB
because the force control law (39) is applied in this direction.
Therefore, the position in the z-direction deviates from the
planned trajectory to guarantee a constant contact force. Note
that during the transition phase from the end of one pattern to
the starting point of the next pattern, the pure motion controller
as in Section IV-D is used. To achieve a smooth transition
between the hybrid force/motion control and the pure motion
control, slightly smaller diagonal entries of the positive definite
gain matrix Kω and Ko > 0 and smaller diagonal entries of
the matrices KD , KP , and KI compared to the experiment
with pure motion control in Section IV-D were chosen. In the
force control law (39), the first term, i.e., the feedforward
term fd , is neglected and the term −KD f

(
RCB(q)

)T ṗCB(q) is
added with the positive definite diagonal matrix KD f to damp
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Fig. 15. Joint-space path q̄(l) using the parallel projection method and
the LSCM with pure motion control. The paths of the individual joints are
normalized to their respective axes limits qmin and qmax.

Fig. 16. Desired and executed 3-D path pDB and pCB , respectively, and
the corresponding surface normal vectors nDB using the LSCM method with
hybrid force/motion control.

the motion along the z-direction of the contact frame C and
generate smooth robot motions during the experiment. Note
that the direct force feedback from the last term of (34) is
omitted due to noise in the contact force estimation f̂ and a
disturbance observer is added for friction compensation in the
robot joints.

Fig. 17. Evolution of the pen/surface contact state (top) and the estimated
contact forces f̂C,z in the z-direction (bottom) during the drawing process
with the pure motion control and the hybrid force/motion control.

2) Contact Force: The estimated contact forces f̂ are shown
in Fig. 17 for the process execution of the LSCM trajectory
with the hybrid force/motion control and the pure motion
control of Section IV-D. Clearly, the contact force parallel
to the surface normal f̂C,z is controlled to the desired value
of −3 N by the hybrid force/motion controller (red line).
At every change of the pen/surface contact state, the controller
is switched from the hybrid force/motion controller to the
pure motion controller and vice versa. The small contact force
peaks in f̂C,z , see Fig. 17, originate from these controller
switching operations. In contrast, the contact force f̂C,z is not
controlled by the pure motion controller, and hence, it varies
between −4 N and nearly zero for this experiment (blue
line). In addition, a loss of the pen/surface contact can occur
due to misalignment of the workpiece and/or inaccuracies
of the robot. For both controllers, the estimated forces are
approximately zero in phases without contact. The stick-slip
effect is observed between the pen tip and the surface if
the normal contact force becomes too high. Other friction
effects are not perceivable in the estimation because the pen
is controlled to be always normal to the surface, and only the
normal contact force is estimated.

Remark 1: Note that the contact force estimation [34]
requires a precisely calibrated dynamic robot model (23).
Otherwise, significant estimation errors may occur, even if no
pen/surface contact is present. Alternatively, the contact force
estimation can be calibrated for a specific robot trajectory by
performing the experiment without any pen/surface contact as
a reference motion with f̂ = 0.

3) Position Control Error: In order to evaluate the perfor-
mance of the hybrid force/motion control, the position control
error p̆ of the drawing process is shown in Fig. 18. Overall,
small control errors are observed for x̆ and y̆, whereas the
small peaks originate from the controller switching, compare
Fig. 17. During the intervals with pen/surface contact, the
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Fig. 18. Evolution of the pen/surface contact (top) and position control error
p̆ using the LSCM with the hybrid force/motion control.

position control error p̆ in z-direction is higher because the
force controller adapts the position in the z-direction to control
the contact force f̂C,z .

F. Comparison of the Drawing Results

In this section, the experimental drawing results of both
projection methods introduced in Section II and the two
control concepts from Section III are shown and compared.
The resulting drawing pattern on the 3-D-printed rabbit using
the parallel projection method with pure motion control is
shown in Fig. 19(a). For comparison, the LSCM pattern is
drawn on top of the drawing pattern for the parallel projection.
Comparing the two projection methods, distortions from the
parallel projection method are seen, especially at areas with
high curvature, e.g., at point P1⃝. The robot is not able to
accurately follow the desired trajectory at areas with a large
approach angle using the parallel projection method with pure
motion control, e.g., P2⃝, compare Figs. 12 and 13.

Next, the drawing results with the two presented control
concepts are compared for the LSCM trajectory, see Fig. 20.
In the drawing result using the pure motion controller in
Fig. 20(a), a fluctuating line thickness is observed. In par-
ticular, at point P6⃝, nearly no pen/surface contact is present,
emerging from inaccuracies of the robot kinematics. This thin
line results from a low contact force of the pen tip, which can
also be seen in the estimated contact force f̂C,z in Fig. 17 at
l ≈ 10%. A uniform line thickness is achieved with the hybrid
force/motion control in Fig. 20(b). Note that the experiments
for this drawing process are executed without an absolute

Fig. 19. Resulting patterns on the 3-D object with pure motion control
(a) using the parallel projection and (b) together with the LSCM.

Fig. 20. Resulting patterns on the 3-D object with the LSCM using (a) motion
control and (b) hybrid force/motion control.

calibration of the robot and without optical measurement of
the actual Cartesian end-effector pose.

V. CONCLUSION

In this work, an automated workflow for full customization
of products using robotic manufacturing is presented on the
basis of a drawing process on a complex surface of a 3-D
object. In this process, a 2-D input pattern is provided by a
user together with the desired size, location, and rotation on
the 3-D object and then drawn on the 3-D object using an
industrial robot.

The workflow starts with a mapping procedure of the
2-D input pattern to the 3-D object, for which two different
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mapping methods are presented and explained, i.e., a confor-
mal mapping and a simple parallel projection approach. The
conformal mapping procedure comprises a segmentation step,
a LSCM to flatten the segments, and an inverse map using
barycentric coordinates. In this way, distortions of the 2-D
input pattern are minimized and a 3-D path on the 3-D object is
obtained. Although the parallel projection method can be used
in areas with small curvature and low complexity, only with
the more advanced conformal mapping procedure, a visually
proper projection is achieved. Based on the result of the two
presented projection methods, robot trajectories are planned to
be executed in an experimental setup with an industrial robot.
For the planned trajectories, two different control concepts,
i.e., pure motion control and hybrid force/motion control, are
presented and employed in the experiments. In addition, the
contact force during the drawing process is estimated. The
pure motion controller is able to execute the trajectory with
small errors, however, only the hybrid force/motion controller
is able to maintain the desired contact force normal to the
surface during the whole task execution, which is necessary
for achieving a high production quality. This is demonstrated
in this work by visually comparing the drawing process results
using both mapping procedures and the two control concepts.

In industry, this approach can be used to automatically
map 2-D manufacturing paths to different 3-D objects while
maintaining the required accuracy in position and contact force
during the whole process. This automated workflow is directly
applicable to many other manufacturing processes such as
automated laser engraving, milling, or ultrasonic cutting.
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