
1410 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 4, JULY 2024

Passivity-Based Power Sharing and Voltage
Regulation in DC Microgrids
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Abstract— In this article, we propose a novel four-stage dis-
tributed controller for a dc microgrid that achieves proportional
power sharing and average voltage regulation for the voltages at
actuated and unactuated buses. The controller is presented for
a dc microgrid comprising multiple distributed generation units
(DGUs) with time-varying actuation states, dynamic RLC lines,
nonlinear constant impedance, current, and power (ZIP) loads,
and a time-varying network topology. The controller comprising
a nonlinear gain, proportional–integral (PI) controllers, and two
dynamic distributed averaging stages is designed for asymptotic
stability. This constitutes deriving passivity properties for the dc
microgrid, along with each of the controller subsystems. There-
after, design parameters are found through a passivity-based
optimization using the worst-case subsystem properties. The
resulting closed loop is robust against DGU actuation changes,
network topology changes, and microgrid parameter changes.
The stability and robustness of the proposed control are verified
via simulations.

Index Terms— DC microgrids, distributed control, passivity,
power sharing, voltage regulation.

I. INTRODUCTION

THE ADVENT of localized power generation and stor-
age increasingly challenges the prevailing centralized

power-generation structures. Originally proposed in [1], the
microgrids paradigm envisions networks that can oper-
ate autonomously through advanced control while meeting
consumer requirements. Although current electrical grids pre-
dominantly use ac, high- and low-voltage dc networks have
been made technically feasible due to the continual improve-
ments of power electronics. Indeed, dc microgrids exhibit
significant advantages over their ac counterparts, demonstrat-
ing a higher efficiency and power quality while simultaneously
being simpler to regulate [2], [3].
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In microgrids, power generation and storage units are typ-
ically grouped into distributed generation units (DGUs) that
connect to the microgrid through a single dc–dc converter
for higher efficiency [2]. This changes the traditionally cen-
tralized regulation problem in power grids into a problem of
coordinating the DGUs connected throughout the microgrid.
This coordination is generally realized as average or global
voltage regulation in combination with load sharing between
the DGUs (see [4], [5], [6]).

A. Literature Review
A vast number of approaches have been proposed for

the voltage regulation and load sharing of dc microgrids,
as detailed in the overview articles [3], [7], [8] along with the
sources therein. These approaches are broadly categorized as
either centralized, decentralized, or distributed in nature [3],
[7], [8]. While centralized controllers can optimally coordi-
nate the DGUs, they offer reduced scalability and flexibility
and have a single point of failure [8]. On the other hand,
decentralized controllers either only attempt to achieve voltage
stability [9], [10], [11] or achieve load sharing at the cost of
voltage regulation quality (e.g., the droop-based approaches
in [3]).

In response to these limitations, numerous controllers for
voltage regulation and load sharing that operate in a distributed
manner have been proposed [4], [5], [6], [12], [13], [14],
[15], [16], [17], [18], [19], [20]. In [4], distributed averaging
is employed to find a global voltage estimate with which
voltage regulation is achieved, but the microgrid dynamics
are neglected in the stability analysis. Distributed averaging
with dynamic microgrid models is used in [5] and [12]
although Tucci et al. [5] require linear matrix inequalities
(LMIs) to be solved before buses are allowed to connect and
Trip et al. [12] only consider constant current loads. Similarly,
a sliding-mode controller is proposed in [13] for a dynamic
microgrid with constant current loads. On the other hand, Sad-
abadi et al. [14] propose a cyberattack-resilient controller for a
microgrid with constant conductance loads and resistive lines.
A consensus-based distributed controller with event-triggered
communication is presented in [15]. Consensus-based con-
trollers are also utilized in [6], [16], and [17], where Zhao
and Dörfler [6] use a consensus-based integral layer on top
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of a droop-based controller. Finally, while many contributions
strive to achieve proportional current sharing [4], [5], [6], [12],
[13], [14], [15], [16], [17], [20], nonlinear controllers that
achieve proportional power sharing have also been proposed
in [18] and [19].

While the literature listed above differs greatly in their
approaches, we note a commonality in their omission of buses
without actuation. This omission is typically motivated either
by considering a microgrid comprising only actuated DGU
buses [4], [5], [16], [17], or by eliminating the unactuated
buses with the Kron-reduction [6], [12], [13], [14], [15],
[18], [19], [20]. However, considering a network compris-
ing only actuated buses severely limits the flexibility of a
microgrid since each bus must be able to supply or con-
sume enough power at all times. On the other hand, the
Kron-reduction requires loads to be described as positive
conductances (see [21]). While research into Kron-reduced
networks with negative loads is ongoing (see [22]), the gen-
eral inclusion of negative loads, e.g., noncontrollable power
sources, in Kron-reducible networks remains out of reach at
present. Furthermore, consider the case where a DGU can no
longer supply or consume the required amount of power, e.g., a
fully charged or discharged battery storage. Such a DGU then
loses the ability to regulate itself and fully support the grid.
In the approaches considered above [4], [5], [6], [12], [13],
[14], [15], [16], [17], [18], [19], [20], such a DGU is forced
to disconnect from the microgrid and its local measurements
are discarded. For DGUs with intermittent power sources, this
could result in significant swings in the number of controlled
and observed buses in the microgrid.

B. Main Contribution

In this article, we consider a dc microgrid as a physi-
cally interconnected multi-agent system. Extending our work
in [23], we propose a four-stage controller that achieves
voltage regulation and proportional power sharing in a dc
microgrid with actuated and unactuated buses in a distributed
manner. The four-stage controller comprises a nonlinear
weighting function, two dynamic distributed averaging (DDA)
stages and a proportional–integral (PI) controller. In detail, the
contributions comprise the following:

1) a four-stage distributed controller for dc microgrids that
achieves regulation of the weighted average voltage error
of actuated and unactuated buses and assures coordina-
tion through proportional power sharing at the actuated
buses;

2) a nonlinear weighting function that penalizes voltage
errors outside a given tolerance band more strongly than
those within;

3) passivity classifications for each of the constitutive
microgrid subsystems (DGUs, loads, and lines) and for
each of the controller stages (weighting function, DDA,
and PI);

4) a method for calculating the input-feedforward output-
feedback passive (IF-OFP) indices of the nonlinear
power-controlled DGUs through optimization.

5) An IF-OFP formulation for the dc microgrid with a
supply rate that is independent of the network topology,
the number of buses, and their states of actuation;

6) sufficient conditions for the asymptotic stability of the
equilibrium manifold of the controlled dc microgrid.

In addition to the contributions listed above, we also contribute
a theoretical result comprising a formalization of the obstacle
presented by cascaded input-feedforward passive (IFP) and
output-feedback passive (OFP) systems in the analysis of
dissipative systems. This theoretical contribution informs and
motivates parameter choices for the four-stage controller in
Contribution 1.

We highlight that the proposed controller can achieve exact
voltage regulation and proportional power sharing with the
stability verified with the eigenvalues of the linearized system.
Moreover, by employing leaky PI controllers and using a
passivity-based analysis, we derive sufficient conditions to
ensure that the controlled microgrid has an asymptotically
stable equilibrium manifold. These conditions, along with the
resulting asymptotic stability, are robust against changes in
the communication topology, changes in the electrical topol-
ogy, load changes, changes in the actuation status of DGUs,
uncertainties in component parameters, and buses connecting
or disconnecting. The main improvement over our work in [23]
comprises the flexibility afforded by this topology-independent
passivity-based stability analysis1 along with the addition of
a nonlinear weighting function that improves the steady-state
characteristics. Additionally, the analytically derived IF-OFP
supply rate for the dc microgrid represents an improvement
over the numerically derived static network representation
in [23].

C. Article’s Organization

The introduction concludes with some notation and prelim-
inaries on graph theory. In Section II, we recall and introduce
results relating to dissipativity theory. Next, in Section III,
the problem is modeled and objectives for the steady state
are formalized. In Section IV, a four-stage control structure is
introduced that fulfills objectives from Section III. Thereafter,
the passivity properties of the constituent subsystems are
investigated in Section V and the controller is designed for
asymptotic stability of the closed loop in Section VI. Finally,
in Section VII, a simulation is used to verify the asymp-
totic stability and robustness of the closed loop. Concluding
remarks are provided in Section VIII.

D. Notation and Preliminaries

Define as a vector a = (ak) and a matrix A = (akl).
The vector 1k is a k-dimensional vector of ones, and Ik is
the identity matrix of dimension k. Diag[·] creates a (block-)
diagonal matrix from the supplied vectors (or matrices). Let
A ≻ 0 (≽ 0) denote a positive-(semi)definite matrix. The
upper and lower limits of a value a are given by a and a. For
a variable x , we denote its unknown steady state as x̂ , its error

1In [23], the stability must be reevaluated whenever topology changes occur.
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state as x̃ := x − x̂ , and a desired setpoint as x∗. Whenever
clear from context, we omit the time dependence of variables.

We denote by G = (N, E) a finite, weighted, undirected
graph with vertices N and edges E ⊆ N × N. Let |N| be
the cardinality of the set N. Let L be the Laplacian matrix
of G. By arbitrarily assigning directions to each edge in E, the
incidence matrix E ∈ R|N|×|E| of G is defined by

ekl =

+1, if vertex k is the sink of edge l
−1, if vertex k is the source of edge l
0, otherwise.

(1)

II. DISSIPATIVITY PRELIMINARIES

We here recall and introduce preliminaries of dissipativity
theory for nonlinear systems. In Section II-A, we provide defi-
nitions relating to dissipativity and passivity theory. Thereafter,
in Section II-B, we investigate the passivity properties of static
functions. Finally, in Section II-C, we recall a result on the
interconnection of dissipative systems with quadratic supply
rates and formalize a new result on the limitations of such an
interconnection.

A. Dissipative Systems

Consider a nonlinear system{
ẋ = f (x , u)

y = h(x)
(2)

where x ∈ Rn , u ∈ Rm , and y ∈ Rm and where
f : Rn

× Rm
→ Rn and h : Rn

→ Rm are class C1

functions.
Definition 1 (Dissipative System, See [24], [25], [26]): A

system (2) with a class C1 storage function S : Rn
× Rm

→

R+ is dissipative with respect to a supply rate w(u, y) if
Ṡ ≤ w(u, y).

Definition 2 (Quadratic Supply Rates, See [24], [25],
[26]): A system (2) that is dissipative with respect to w(u, y)

is: 1) passive if w = uT y; 2) IFP if w = uT y − νuTu;
3) OFP if w = uT y−ρ yT y; 4) IF-OFP if w = (1 + νρ)uT y−

νuTu −ρ yT y; and 5) has an L2-gain of γL2 if w = γ 2
L2

uTu −

yT y, where γL2 > 0 and ν, ρ ∈ R.
Definition 3 (Zero-State Observable (ZSO) [24, p. 46]): A

system (2) is ZSO if u ≡ 0 and y ≡ 0 implies x ≡ 0.
For cases where the desired equilibrium of a system is not

at the origin but at some constant value, the shifted passivity
[24, p. 96] or equilibrium-independent passivity (EIP) [27] of
a system must be investigated. Naturally, this requires that
an equilibrium exists, i.e., there is a unique input û ∈ Rm

for every equilibrium x̂ ∈ X̂ ⊂ Rn such that (2) produces
f (x̂ , û) = 0 and ŷ = h(x̂ , û) [28, p. 24].

Definition 4 (EIP [28, p. 24]): A system (2) is EIP if there
exists a class C1 storage function S(x , x̂), S : Rn × X̂ → R+,
with S(x̂ , x̂) = 0, that is dissipative with respect to w(u −

û, y − ŷ) for any equilibrium (û, ŷ).

B. Passive Static Functions

Recall that a sector-bounded static nonlinear function is
dissipative to a supply rate defined by the sector bound

[26, Def. 6.2]. We now consider the arbitrarily shifted single-
input single-output function{

y = h(u), u , û ∈ U, y, ŷ ∈ Y, h : U → Y
ỹ = h̃(ũ) := h(u) − h(û) = y − ŷ, ũ := u − û

(3)

and show how its dissipativity properties may be derived.
Proposition 5 (EIP Static Functions): A static function (3)

of class C0 is IF-OFP(c, 1/c) with respect to the arbitrarily
shifted input–output pair (ũ , ỹ) if

c ≤
dh(u)

du
≤ c ∀u ∈ U (4)

and 0 < c < ∞.
Proof: Consider, for (3), the slope between an arbitrary

shift (û , ŷ) ∈ U × Y and a point (u , y), for which the upper
and lower bounds are given by

c ≤
y − ŷ
u − û

≤ c ∀(u , y), (û , ŷ) ∈ U × Y. (5)

Changing (5) to the shifted variables ũ and ỹ and multiplying
through by ũ2 yields

cũ2
≤ ũ ỹ ≤ cũ2

⇐⇒ (ỹ − cũ)(ỹ − cũ) ≤ 0
⇐⇒ (ỹ − cũ)(1/c ỹ − ũ) ≤ 0 (6)

for c > 0, which describes an IF-OFP function (see
[26, p. 231]). Finally, through the mean value theorem, the
bounds in (5) may be found from (4).

We note that the restrictions on c in Proposition 5 are needed
from a computational point of view (c < ∞) and to ensure that
the passivity indices correspond to the correct sector2 (c > 0).
However, this limits the passivity properties attainable through
Proposition 5 to ρ = 1/c > 0.

Remark 1 (Symmetrical Sectors): Placing the additional
restriction c = −c in (4) results in the Lipschitz continuity
of h(u). Moreover, this implies that the arbitrarily shifted
function h̃(ũ) has a finite L2-gain of c (see [28, p. 24], [29,
Lemma 4]).

C. Interconnected Quadratic Dissipative Systems

Building upon the results on the interconnection of dissi-
pative systems in [28] and [30], we now provide a method
for finding dissipativity properties for a subset of the inter-
connected subsystems such that interconnected stability is
guaranteed. Specifically, we look for the dissipative supply
rates that restrict the subset of subsystems as little as possible.
For a set S of subsystems, define u = [uT

1 , . . . , uT
|S|

]
T and

y = [ yT
1 , . . . , yT

|S|
]
T.

Theorem 6 (Minimally Restrictive Stabilizing Indices):
Consider |S| subsystems of the form (2) that are dissipative
with respect to the supply rates wi = 2σi uT

i yi − νi uT
i ui −

ρi yT
i yi and are linearly interconnected according to u = H y.

The stability of the interconnected system is guaranteed if

2Consider, e.g., the sector Proposition 5 would yield if c ≤ c < 0.
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Fig. 1. Circuit diagram of a bus comprising a dc–dc buck converter, a filter, and a current source representing a load, connected to a π -model line (blue);
the line capacitances are considered to be part of the respective buses.

there exists a D and ν j , ρ j ∈ R with j ∈ J such that a
solution to the optimization problem

min
D, ν j , ρ j ,

j∈J

∑
j∈J

(
ν j + ρ j

)
s.t. σ j = 1/2(1 + ν jρ j ), j ∈ J

Q ≺ 0, D2
≻ 0 (7)

exists, where the subsystems with configurable supply rates
are represented by the set J ⊂ S, and

Q :=

[
H
I

]T

DW D
[

H
I

]
(8)

D := Diag[dT, dT
], d = (

√
di ) (9)

W :=

[
− Diag[νi ] Diag[σi ]

Diag[σi ] − Diag[ρi ]

]
, i ∈ S. (10)

The proof for Theorem 6 follows analogously to the proof
of [29, Theorem 13] with the application of [29, Remark 5]
and thus is omitted for brevity. Note that if J = ∅ in (7),
Theorem 6 can be used to verify the stability of interconnected
dissipative systems.

Despite the design flexibility provided by Theorem 6, cer-
tain cascade configurations present obstacles to the application
of dissipativity theory. The following proposition formalizes
the problem presented by one such configuration, which arises
in the sequel and is used to inform the control design.

Proposition 7 (Nondissipativity of Cascaded IFP–OFP Sys-
tems): Consider |S| ≥ 2 subsystems (2) which are dissipative
with respect to wi = 2σi uT

i yi − νi uT
i ui − ρi yT

i yi and
linearly interconnected according to u = H y. Let i = 1
and i = 2 arbitrarily denote subsystems that are IFP and
OFP, respectively. If these systems are connected in exclusive
cascade and do not form a feedback connection, i.e.,

H =

0 0 ∗

1 0 0
0 ∗ ∗

 (11)

then investigating stability via separable storage functions as
in Theorem 6 fails.

Proof: Evaluating the stability criteria in (7) under the
imposed IFP and OFP conditions yields the Q (8) entries

q11 = d1ρ1 + d2ν2 = 0, q12 = q21 =
d2σ2

2
=

d2

2
. (12)

Since di > 0, Q constitutes an indefinite saddle point matrix
[31, Section 3.4], violating the requirement in (7).

Remark 2 (Nonseparable Storage Functions): The
obstacle in Proposition 7 arises due to the storage functions

being compartmentalized by the subsystem boundaries. While
the separability of storage functions is a central motivation
for the use of dissipativity theory, forgoing this allows for a
stability analysis through less conservative methods (e.g., the
Kalman–Yakubovich–Popov (KYP) lemma).

III. PROBLEM DESCRIPTION

In this section, the components comprising the dc micro-
grid are introduced in Section III-A. This is followed by
Section III-B, where controllers are added that regulate the
output power of actuated buses in order to facilitate power
sharing in the sequel. Finally, we formulate the coordination
and cooperation goals as a control problem in Section III-C.

A. DC Network

We consider a dc microgrid comprising N = |N| buses con-
nected by via π-model electrical lines, as depicted in Fig. 1.
Let the graph GP = (N, EP) describe the interconnection with
N as the set of buses and EP as the set of lines. Without loss
of generalization, we allow each node to inject power through
a dc–dc buck converter connected via a lossy LC-filter. Note
that a time-averaged model (see [9], [10], [12]) is used for the
buck converter and the energy source is assumed to be ideal
but finite.

Let the buses be split into an actuated set Nα and an unac-
tuated set Nβ , according to whether the buck converter can
freely regulate the amount of power injected at a given time.
Buses may freely switch between the sets Nα and Nβ , but
Nα ∩Nβ = ∅ and Nα ∪Nβ = N always hold. To characterize
this actuation state of a bus, define the piecewise-constant,
time-varying actuation parameter αk(t) as

αk(t) :=

{
1, k ∈ Nα

0, k ∈ Nβ .
(13)

Note that we omit the time dependence of αk in the sequel.
The dynamics for actuated buses with DGUs, where

αk = 1 with k ∈ Nα , are described by (see [9], [10], [12])[
Lk i̇k

Ceq,k v̇k

]
=

[
−Rk −1

1 0

] [
ik
vk

]
+

[
vs,k

−eT
P,r,k i t − IL,k(vk)

]
(14)

where Ceq,k = Ck + (1/2)eT
P,r,k Diag[C t]eP,r,k ; Ck, Lk > 0;

ik ∈ R; vk ∈ R+; and C t = (Ckl) is the vector of the line
capacitances, with Ckl > 0 for each kl ∈ EP. The line currents
i t connect to the capacitor voltages according to incidence
matrix ET

P = (eT
P,r,k) of GP.3 The dynamics of the unactuated

3eT
P,r,k selects the row from EP corresponding to bus k.
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load buses with αk = 0 correspond to the simplified system

Ceq,k v̇k = −eT
P,r,k i t − IL,k(vk), k ∈ Nβ . (15)

In both the actuated (14) and unactuated (15) cases, the
loads are considered static, nonlinear voltage-dependent cur-
rent sources, which are described by class C0 functions. In this
work, we utilize the standard impedance, current, and power
(ZIP)-model comprising constant impedance, constant current,
and constant power parts. Note that other continuous func-
tions may also be used without restriction.4 As described in
[33, pp. 110–112], we define a critical voltage vcrit, typically
set to 0.7vRef, below which the loads are purely resistive. Thus,

IL,k(vk) =

 Z−1
k vk + Ik +

Pk

vk
, vk ≥ vcrit

Z−1
crit,kvk, vk < vcrit

(16)

Z−1
crit,k :=

IL,k(vcrit)

vcrit
= Z−1

k +
Ik

vcrit
+

Pk

v2
crit

(17)

describe a static, nonlinear load that conforms to (3).
Lastly, the π -model transmission lines physically connect-

ing the nodes are governed by the dynamics

L t,kl i̇t,kl = −Rt,kl it,kl + eT
P,c,klv, kl ∈ EP (18)

where it,kl ∈ R, L t,kl , Rt,kl > 0, and (eP,c,kl) = EP.5

Note that the line capacitances are included in the equivalent
capacitances Ceq,k at the buses.

B. DGU Power Regulator
To allow for power sharing between the actuated buses (14)

in the sequel, we equip each DGU with a controller that can
regulate the injected power to a desired power setpoint p∗

k .
This regulator has the form

ėd,k = αk
(

p∗

k − pk
)

vs,k = k P
d
(

p∗

k − pk
)
+ k I

d ed,k + R̃ik + vRef (19)

where ed ∈ R, pk = vk ik is the actual power injected, R̃ ∈ R
is the damping added to the system, and k P

d , k I
d > 0 are the

control parameters. Since the DGU power ratings may differ,
we define the normalized power setpoint φ∗

k as

ηkφ
∗

k := p∗

k (20)

where ηk ∈ [η; η] ⊂ R+ is a constant dimensionless gain with
a lower bound η > 0. Combining (19) and (20) with (14)
yields the nonlinear system for the actuated agents ėd,k

Lk i̇k
Ceq,k v̇k

 =

 0 −vk 0
k I

d R̃ − Rk − k P
d vk −1

0 1 0

ed,k
ik
vk


+

 ηkφ
∗

k
k P

d ηkφ
∗

k + vRef

−eT
P,r,k i t − IL,k(vk)

 , k ∈ Nα. (21)

Remark 3 (Regulating Current or Voltage): Without inval-
idating the stability analysis in the sequel, the regulator in (19)
can be exchanged for simpler, purely linear current or voltage
regulators (see [9], [10], [11]).

4This includes exponential loads (see [32]).
5eP,c,kl selects the column from EP corresponding to line kl.

Remark 4 (Constrained DGU Operation): If an actuated
DGU cannot provide the desired power p∗

k , e.g., due to current,
storage, or temperature limitations, the DGU may simply set
its actuation state αk = 0 to disable its control.

C. Control Problem

A central requirement for dc microgrids is voltage stability,
which requires the bus voltages to remain within a given
tolerance band around the reference vRef. Specifically, this
requirement should be met throughout the network, and not
only at the actuated buses. Due to the presence of lossy
lines, power flows are associated with voltage differences
between buses, meaning that vk → vRef, ∀k ∈ N is not
practical. Ideally, the voltages at all buses should be arrayed
in a tolerance band around vRef and be as close to vRef as
possible.6 The manipulated variables used to achieve this are
the normalized power setpoints φ∗

k supplied to the actuated
DGUs (19). This leads to the first objective for the control of
the dc microgrid, which involves finding the setpoints φ∗

k that
ensure the weighted average voltage equals vRef at steady state.

Objective 1 (Weighted Voltage Consensus):

Find φ∗

k , s.t. lim
t→∞

1
N

∑
k∈N

h(vk(t)) = vRef (22)

for a strictly increasing weighting function h : R → R.
By choosing a nonlinear h , large voltage errors may be

weighed more strongly. This allows for better utilization of
the tolerance band since bus voltages can be further from vRef
before registering as a significant error.

In addition to Objective 1, proportional power sharing is
typically desired so that the loads are not supplied only by
small subset of the actuated DGUs. By spreading out the
injection of power across all actuated DGUs, the DGUs are
stressed equally, which reduces the likelihood of stress-related
hardware failures. We, thus, formulate the second objective as
requiring uniform setpoints for the DGUs in steady state.

Objective 2 (Cooperative Proportional Power Sharing):

lim
t→∞

(φ∗

k (t) − φ∗

l (t)) = 0 ∀k, l ∈ N. (23)

Achieving Objectives 1 and 2, thus, yields a controlled
microgrid where the average weighted voltage error of all
buses tends to zero through the coordinated proportional
action of the actuated buses in a distributed fashion. These
objectives also allow DGUs to transition seamlessly between
actuated and unactuated states and ensure no measurement
information is discarded because a bus is not regulated. Notice
that disregarding the unactuated buses in Objectives 1 and 2
yields the objectives typically used in the literature [4], [6],
[12], [13], [14], [16], [17], [20].

To achieve these objectives, we make the following assump-
tions related to appropriate network design.

Assumption 1 (Feasible Network): The available power
sources can feasibly supply the loads with power over the
given electrical network, i.e., a suitable equilibrium for the
microgrid exists.

6The magnitude of the errors vRef − vk strongly depend on the loads and
line resistance. Therefore, small errors presuppose adequate network design.
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Fig. 2. Distributed four-stage control connected in feedback to the micro-
grid and with indicated communication links between the local control
structures.

Assumption 2 (Number of Actuated DGUs): At least one
DGU is actuated at any given time, i.e., Nα ̸= ∅.

Assumption 3 (Connected Topologies): Objectives 1 and 2
only apply to a subset of buses electrically connected as
per GP. Moreover, for a distributed control, a connected com-
munication graph exclusively interconnects the same subset of
buses.

Note that Assumption 1 is typically made implicitly or
explicitly in the literature (see the discussion in [16]). Assump-
tions 2 and 3 further specify requirements that allow a
distributed control to achieve the feasible state in Assump-
tion 1, i.e., by ensuring that at least one source of stabilization
is present in the network (Assumption 2) and by ensuring that
the coordination corresponds to the network to be controlled
(Assumption 3).

IV. CONTROL STRUCTURE

To meet Objectives 1 and 2, we propose the four-stage
control structure depicted in Fig. 2. This control structure
comprises two DDA implementations separated by agent PI
controllers local to the buses as in [23]. This is prepended
by a nonlinear weighting function hw. In Sections IV-A–IV-C,
we successively introduce these respective subsystems. Finally,
in Section IV-D, we show that the control structure meets the
objectives.

A. DDA Controller
Consider the communication graph GC = (N, EC) linking

the buses of the dc microgrid. The communication graph
comprises the same vertices as the physical interconnection
graph GP but possibly with a different topology. Let LC
denote the Laplacian of GC. For Stages 2 and 4 of the control
structure, each agent implements an instance of the DDA7

described in [34]. The instances of the respective stages may
be combined into the vector form as

DDAs



[
ẋa,s

ża,s

]
=

[
−γa I N − LC,P LT

C,I
−LC,I 0

][
xa,s

za,s

]

+

[
γa I N

0

]
ua,s

ya,s = xa,s

(24)

where s ∈ {2, 4} denotes the stage in Fig. 2, and xa,s, za,s ∈

RN are the consensus and integral states, respectively. Fur-
thermore, γa > 0 is a global estimator parameter (see [34]),
and LC,I = k I

a LC and LC,P = k P
a LC are the Laplacian

7We implement the PI-DDA variant proposed in [34] and use the same
communication graph for the proportional and integral terms.

matrices weighted for the integral and proportional responses,
respectively. Recall from [34] that a constant input ua,s yields

lim
t→∞

ya,s,k =
uT

a,s1N

N
∀k. (25)

B. Agent PI Controller

In Stage 3, we equip each bus k ∈ N with a leaky agent PI
controller similar to the approach in [35]

PIk

{
ẋu,k = −ζuxu,k + uu,k

yu,k = k I
u xu,k + k P

u uu,k
(26)

where xu,k ∈ R, ζu ≥ 0, and k P
u , k I

u > 0. Note that
ζu = 0 reduces (26) to an ideal PI controller. The combined
form of the N agent controllers is

ẋu = −ζuxu + uu

yu = k I
u xu + k P

u uu. (27)

Remark 5 (Nonideal Integrators): As shown in the sequel,
ideal PI controllers only exhibit an IFP property, whereas
the DDA controller is OFP. The interconnection in Fig. 2,
thus, yields a cascaded IFP–OFP structure that obstructs the
dissipativity analysis (see Proposition 7). The use of leaky
integrators (ζu > 0) overcomes this obstacle at the cost
of negatively affecting the steady-state properties since (26)
forces the equilibrium

uu = ζuxu (28)

instead of uu = 0. In the context of Fig. 2, this corresponds
to an unwanted steady-state offset for the average weighted
voltage error.

Remark 6 (Agent PI Controller Antiwindup): To prevent
controller windup, the input to the PI control in (26) should
be zeroed for any unactuated agents that are disconnected
from the communication network.

Remark 7 (Nonparticipating Agents): Implementing (26)
at each bus k ∈ N allows for a faster reaction to disturbances
at the cost of controller redundancy. By setting ua,4,m := ya,4,m
at the Stage-4 DDA of the control structure for some agents
m ∈ M ⊂ N, the PI control (26) can be omitted at the agents
in M without affecting the steady state. Nevertheless, the
measurements of the buses in k ∈ M are still included in the
Stage-2 DDA. Note that at least one participating agent PI
controller is required (see [23, Remark 8]).

C. Weighting Function

To allow for a better utilization of the tolerance band
around vRef, we desire a weighting function that assigns a
low gain for errors within the tolerance band and a high gain
for larger errors. We, therefore, define the class C1 function
yw,k = hw(uw,k) conforming to (3), where

hw(u) := awu + bwgw(u) − bw tanh(gw(u)) (29)

gw(u) :=


u + cw, u < −cw

0, −cw ≤ u ≤ cw

u − cw, cw < u
(30)
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Fig. 3. Example of the weighting function hw (29) and its derivative (60)
on a unit grid, with aw = 0.5, bw = 1.5, and cw = 2.

and where (30) describes a dead-zone parametrized by cw.
An example of (29) is depicted in Fig. 3 along with its
derivative. For a strictly increasing function as per Objective 1,
set aw > 0 and bw > −aw.

D. Equilibrium Analysis

In a first step toward analyzing the closed loop, we analyze
the assumed equilibrium of the interconnected microgrid and
four-stage controller (see Assumption 1). Specifically, we ver-
ify that the proposed control yields an equilibrium that satisfies
Objectives 1 and 2.

Proposition 8 (Controller Equilibrium Analysis): Consider
the dc microgrid comprising (15), (18), and (21) which
is connected in feedback with the four-stage controller
comprising (24), (27), and (29) as in Fig. 2. Let
Assumptions 1, 2, and 3 hold. Then, Objective 2 is
met for the equilibrium imposed by the control structure.
Moreover, Objective 1 is achieved exactly for ideal integrators
ζu = 0 in (27). For lossy integrators with ζu > 0, the remaining
error for Objective 1 is be described by the steady-state value
of ya,2, where

ya,2 =
ζu

k I
u
(
1 + ζuk P

u
) ya,4. (31)

The proof of Proposition 8 can be found in Appendix A.
Through Proposition 8, we, thus, confirm that the proposed
controller yields an equilibrium which meets the require-
ments even though the requirements are not perfectly met
when leaky agent PI controllers are used. We also note that
Proposition 8 only considers the controlled microgrid already
in equilibrium and does not consider the convergence to the
equilibrium.

Remark 8 (Compensating Leaky Integral Errors): As indi-
cated by (31) in Proposition 8, the leaky agent PI controllers
result in a constant steady-state error for the average voltage
regulation (Objective 1). Since a positive ya,2 corresponds to
voltages below the desired vRef, it follows that setting vRef
above the actual desired voltage reference will result in higher
bus voltages. Changing vRef, thus, allows the steady-state
effects of the leaky integrators to be compensated. Moreover,
notice that ya,4 is the controller output, i.e., the normalized
setpoint φ∗ used for the DGUs (see Fig. 2). Thus, the error
measure in (31), which is only dependent on the controller
output, can be used to determine the offset to vRef for exact
voltage regulation. Note, however, that modifying vRef based
on φ∗ results in a new loop, which requires an additional
stability analysis.

V. SUBSYSTEM PASSIVITY ANALYSIS

Having verified whether the desirable steady state is
achieved by the controller, we now set about analyzing the
convergence to this steady state. With the aim of applying
Theorem 6 for the closed-loop stability, we first analyze
the passivity properties of the individual subsystems. Since
the steady-state bus voltages v̂k are unknown and nonzero,
we investigate the passivity properties shifted to any plausible
point of operation using EIP. To this end, we construct an EIP
formulation for the dc microgrid from its constitutive elements
in Section V-A. This is followed by the respective analyses of
the various controller stages in Section V-B. Note that we omit
the bus indices k and l in this section where clear from context.

A. DC Microgrid Passivity

For the stability of the microgrid at the equilibrium v̂ ,
we desire an EIP property relating the shifted input setpoints
φ̃

∗
= φ∗

− φ̂
∗

to the output voltage errors ṽ = v − v̂ of
all nodes since this port (φ̃

∗
, ṽ) is used by the controller in

Fig. 2. To this end, we derive EIP properties for the load,
DGU, and line subsystems of the microgrid, making sure to
shift the subsystem dynamics to the assumed equilibrium in
each case (see Assumption 1). Thereafter, we combine the
results of these subsystems to construct an EIP property for
the microgrid as a whole. Where applicable, an analysis of
the zero-state dynamics is performed to ensure the eventual
stability of the controlled microgrid.

1) Load Passivity: Let the unactuated bus dynamics in (15)
for the buses in Nβ be shifted to the equilibrium (î t, v̂),
yielding

Ceq ˙̃v = −eT
P,r ĩ t − ĨL(ṽ) −

(
eT

P,r î t + IL(v̂)
)

(32)

for the static load function shifted according to (3). In (32),
eT

P,r î t = −IL(v̂) since the load is fully supplied by the
cumulative line currents in steady state.

Proposition 9 (Load EIP): The shifted load dynamics
in (32) are OFP(ρL) with respect to the input–output pair
(−eT

P,r ĩ t, ṽ) with ρL = cL the smallest gradient of the static
load function IL(v).

Proof: Consider the storage function SL along with its
time derivative

SL =
Ceq

2
ṽ2 (33)

ṠL = −ṽeT
P,r ĩ t − ṽ ĨL(ṽ). (34)

Since the static load function IL(v) is IF-OFP according to
Proposition 5, it is bounded from below by cLṽ2

≤ ṽ ĨL(ṽ)

[see (6)]. Incorporate this lower bound into (34) to obtain

ṠL ≤ wL := −ṽeT
P,r ĩ t − cLṽ2 (35)

which yields the OFP property from Definition 2.
Remark 9 (ZIP Load Passivity): Proposition 9 and (4)

demonstrate that the passivity properties of the unactuated
buses are directly linked to the smallest gradient of the load
function. For the ZIP load in (16), this yields

cL = min

(
Z−1, Z−1

−
P

v2
crit

, Z−1
crit

)
. (36)
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Considering the strictly passive case (cL = 0) along with
I, P ≥ 0 yields the passivity condition Z−1v2

crit ≥ P frequently
used in the literature [10], [16], [18], [19], [20].

2) DGU Passivity: Shift the states (e, i, v) and inputs
(φ∗, eT

P,r i t) of the DGU dynamics in (21) for the buses in
Nα to the respective error variables (ẽ, ĩ, ṽ) and (φ̃∗, eT

P,r ĩ t)

to obtain (37), as shown at the bottom of the page, where
the static load function is incorporated into the matrix Ad.
Furthermore, the measured power p = vi = v(ĩ + î) in (19)
is left partially in unshifted variables such that Ad is also
dependent on the unshifted voltage v and the steady-state
current î .

Note that the constant χd in (37) is found by setting the
error variables (φ̃∗, eT

P,r ĩ t, ẽd, ĩ, ṽ) and their time derivatives
to zero. As such, the constant χd ≡ 0 can be disregarded in
the passivity analysis. We now analyze the shifted nonlinear
system in (37) for EIP.

Theorem 10 (EIP DGUs): The shifted DGU dynamics
in (37) are simultaneously IF-OFP(νd,1, ρd) with respect to
the input–output pair (φ̃∗, ṽ) and IFP(νd,2) with respect to the
input–output pair (−eT

P,r ĩ t, ṽ), if a feasible solution can be
found for

max
Pd, νd,1, νd,2, ρd

νd,1 + νd,2 + ρd

s.t. (39) holds ∀v ∈ V ⊆ R+ ∀î ∈ Î ⊆ R (38)

where Qd(v, î, cL) := Pd Ad(v, î, cL) + AT
d (v, î, cL)Pd

Ad(v, î, cL) =

 0 −v −î
k I

d R̃ − R − k P
d v −1 − k P

u î
0 1 −cL

 (40)

and with νd,1, νd,2, ρd ∈ R, cL as in (4) and cd = [0, 0, 1]
T.

Proof: Consider, for (37), the storage function

Sd =

ẽd
ĩ
ṽ

T

Pd

 ẽd
L ĩ

Ceqṽ

 (41)

with Pd ≻ 0. The time derivative of (41) is

Ṡd =

 x̃d
φ̃∗

eT
P,r ĩ t

T


Qd

(
v, î,

ĨL(ṽ)

ṽ

)
Pdbd,1(η) Pdbd,2

bT
d,1(η)Pd 0 0
bT

d,2 Pd 0 0


·

 x̃d
φ̃∗

eT
P,r ĩ t

 (42)

with x̃d as in (37). Since it follows from (6) that −ṽ ĨL(ṽ) ≤

−cLṽ2, this bound can be incorporated into the inequality:

Ṡd ≤

 x̃d
φ̃∗

eT
P,r ĩ t

TQd(v, î, cL) Pdbd,1(η) Pdbd,2
bT

d,1(η)Pd 0 0
bT

d,2 Pd 0 0

 x̃d
φ̃∗

eT
P,r ĩ t

.

(43)

The desired IF-OFP and IFP properties for the DGU are
described by the supply rate

wd = (1 + νd,1ρd)φ̃
∗ṽ − νd,1(φ̃

∗)2
− ρdṽ

2

− ṽeT
P,r ĩ t − νd,2

(
eT

P,r ĩ t

)2
. (44)

These properties are guaranteed, if Ṡd − wd < 0 for all valid
inputs and outputs and for v ∈ V and î ∈ Î. Combining (43)
and (44) in this manner directly leads to constraint (39), as
shown at the bottom of the page, in (38). Finally, the objective
function in (38) seeks to find the largest indices for which the
constraints are satisfied in a similar manner to Theorem 6.

Although Theorem 10 demonstrates the EIP of the actuated
buses, notice that the ẽd and î of (37) are not included in the
supply rate wd in (44). As such, an investigation of the zero
state dynamics of the DGU is required.

Proposition 11 (ZSO DGUs): The shifted DGU dynamics
in (37) are ZSO.

Proof: In (37), set the inputs φ̃∗
≡ 0 and ĩ t ≡ 0 and the

output ṽ ≡ 0. Since χd = 0 and ĨL(0) = 0,8 verify from the

8This is a direct consequence of the shift according to (3).

 ˙̃ed

L ˙̃i
Ceq ˙̃v

=


0 −v −î
k I

d R̃−R−k P
d v −1 − k P

u î

0 1 −
ĨL(ṽ)

ṽ


︸ ︷︷ ︸

Ad(v, î, ĨL(ṽ)
ṽ

)

ẽd
ĩ
ṽ


︸ ︷︷ ︸

x̃d

+

 1
k P

d η

0


︸ ︷︷ ︸
bd,1(η)

φ̃∗
−

0
0
1


︸︷︷︸
bd,2

eT
P,r ĩ t+

 ηφ̂∗
− v̂ î

k I
u êd + (R̃ − R)î − v̂ + vRef − k P

u (ηφ̂∗
− v̂ î)

î − eT
P,r î t − IL(v̂)


︸ ︷︷ ︸

χd

(37)


Qd(v, î, cL) + ρdcdcT

d Pdbd,1(η) −
1 + νd,1ρd

2
cd Pdbd,2 −

1
2

cd

bT
d,1(η)Pd −

1 + νd,1ρd

2
cT

d νd,1 0

bT
d,2 Pd −

1
2

cT
d 0 νd,2

 ≺ 0, Pd ≻ 0 (39)
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equation for ˙̃v that ĩ ≡ 0. From the equation for ˙̃i , it then
follows that ẽd ≡ 0, which concludes this proof.

Remark 10 (Compensating Nonpassive Loads): As demon-
strated in [11], adding a term dependent on v̇k to the regulator
output vs,k in (19) allows for damping to be added to the
unactuated state vk . This, in turn, allows for regulation in the
presence of nonpassive loads and can yield more favorable
passivity indices when applying Theorem 10.

3) Line Passivity: The dynamics of the line subsystem (18)
shifted to the equilibrium (ît, v̂) yield

L t
˙̃it = −Rt ĩt + eT

P,cṽ (45)

which can now be analyzed for passivity.
Proposition 12 (OFP Lines): The shifted line dynamics

in (45) are OFP(ρt), with ρt = Rt, with respect to the
input–output pair (eT

P,cṽ, ĩt) with the storage function

St =
L t

2
ĩ2
t . (46)

Proof: The proof follows trivially by verifying that:

Ṡt = ĩteT
P,cṽ − Rt ĩ2

t =: wt (47)

where wt in an OFP supply rate as per Definition 2.
4) Interconnected Microgrid Dissipativity: Having sepa-

rately analyzed the subsystems comprising the microgrid,
we now combine the results to formulate the dissipativity of
the full microgrid with respect to the input–output pair (φ̃

∗
, ṽ).

For simplicity, we group the buses according to their actuation
states (13). Thus, φ̃

∗
= [φ̃

∗

α

T
, φ̃

∗

β

T
]
T and ṽ = [ṽT

α, ṽT
β ]

T have
the same dimensions. Note that we include the inputs φ̃

∗

β for
the unactuated buses in Nβ as provided by the four-stage
controller (see Fig. 2) even though these inputs are not used.

Proposition 13 (Microgrid Dissipativity): A dc microgrid
comprising DGUs (21), lines (18), and loads (15) with an
interconnection topology described by a connected graph GP
is dissipative with respect to the supply rate

wM,αβ = (1 + νd,1ρd)φ̃
∗

α

T
ṽα − νd,1φ̃

∗

α

T
φ̃

∗

α

− ρdṽ
T
α ṽα − ρLṽT

β ṽβ (48)

if νd,2 + ρt ≥ 0 for the worst-case indices of the buses and
lines calculated in Proposition 9 (ρL), Proposition 12 (ρt),
and Theorem 10 (νd,1, νd,2, ρd), i.e.,

νd,1 = min
k∈Nα

νd,1,k, νd,2 = min
k∈Nα

νd,2,k, ρd = min
k∈Nα

ρd,k

ρL = min
k∈Nβ

ρL,k, ρt = min
kl∈EP

ρt,k . (49)

Proof: Define, for the interconnected microgrid, the stor-
age function

SM =

∑
k∈Nα

Sd,k +

∑
k∈Nβ

SL,k +

∑
kl∈EP

St,kl . (50)

An upper bound for time derivative of (50) may then be found
by combining the supply rates in (35), (44), and (47)

ṠM ≤ (1 + νd,1ρd)φ̃
∗

α

T
ṽα − νd,1φ̃

∗

α

T
φ̃

∗

α − ρdṽ
T
α ṽα

+ ĩ
T
t ETṽ − ṽT

α Eα ĩ t − ṽT
β Eβ ĩ t

− ρLṽT
β ṽβ − (νd,2 + ρt)ĩ

T
t ĩ t. (51)

The interconnection of the nodes and lines results in ĩ
T
t ETṽ =

ṽT
α Eα ĩ t + ṽT

β Eβ ĩ t. Furthermore with νd,2 + ρt ≥ 0, we can

drop the unnecessary strictly negative ĩ
T
t ĩ t term and verify

that ṠM ≤ wM,αβ .
Through Proposition 13, the dissipativity of the entire

microgrid is formulated using the desired input and output
vectors. However, the supply rate in (48) is dependent on the
actuation states of the buses. We now remove this dependence
by finding a supply rate for a specific bus that encompasses
both its actuated and unactuated states. By considering a
quadratic supply rate as a sector condition (see [26], [29]),
a combined supply rate is found through the union of the
sectors for the actuated and unactuated cases.

Theorem 14 (Actuation-Independent Passivity): A dc
microgrid for which Proposition 13 holds is IF-OFP(νd,1, ρd)

with respect to the supply rate

wM = (1 + νd,1ρd)φ̃
∗T

ṽ − νd,1φ̃
∗T

φ̃
∗

− ρdṽ
Tṽ (52)

if the following conditions hold:

0 ≤ νd,2 + ρt (53)
0 < ρL < 1 (54)
0 > νd,1. (55)

The proof of Theorem 14 can be found in Appendix A.
Through (52), we, thus, show that a single IF-OFP supply rate
describes the input–output passivity of the entire microgrid,
irrespective of the states of actuation of the buses. This supply
rate is derived from the properties of the DGUs in Theorem 10
and accounts for the worst case loads.

Remark 11 (Nonpassive Loads at DGUs): While (54) in
Theorem 14 requires strictly passive loads at unactuated buses,
this is not required for the loads at actuated buses. Indeed, the
loads at DGUs may exhibit a lack of passivity with cL < 0.
However, this would be reflected by the indices obtained in
Theorem 10 and the supply rate in (52).

Remark 12 (Nonstatic Loads): Due to the use of passivity
in this section, the analysis presented here effortlessly extends
to the case of dynamic loads. Such dynamic loads simply need
to exhibit equivalent IFP properties (see Proposition 9) and
must be ZSO.

Remark 13 (Analytical Microgrid Supply Rate): The ana-
lytically derived dc microgrid supply rate in Theorem 14,
based on the worst-case numerically derived DGU supply
rate (see Theorem 10), is scalable and topology-independent.
Furthermore, other controllers using the same port (ṽ, φ̃

∗
)

can directly use the supply rate in (52) for a stability anal-
ysis. Examples include controllers using interconnection and
damping assignment passivity-based control [24, p. 190] or
passivity-based model predictive control (see [36]).

B. Controller EIP

Having analyzed the passivity of the microgrid subsystems
and their interconnection, we now investigate the passivity
properties of the control structure in Section IV. This is done
successively for each part of the controller: the DDA stages,
the PI stage, and the weighting function.
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1) DDA EIP: Consider the DDA stages in Fig. 2 shifted to
their equilibria, i.e., with ũa,s , x̃a,s , z̃a,s , and ỹa,s . As shown
in [34], each DDA has an unobservable and uncontrollable
mode ~a,s with zero dynamics, such that

z̃a,s =
[
τ a T a

] [~̃a,s

ξ̃ a,s

]
(56)

where τ a is the left unit eigenvector of LC such that LT
Cτ a = 0

and where T a are the remaining N − 1 left unit eigenvectors.
Proposition 15 (DDA EIP): The DDA controller in (24)

shifted to its equilibrium with the storage function

Sa,s =
1

2γa

(
x̃T

a,s x̃a,s + z̃T
a,s z̃a,s

)
(57)

is OFP(ρa), ρa = 1, with respect to (ũa,s, ỹa,s). Moreover, the
reduced DDA, obtained by dropping mode ~̃a,s , is ZSO.

Proof: The time derivative of (57) is

Ṡa,s = −x̃T
a,s x̃a,s −

1
γa

x̃T
a,sLC,P x̃a,s + x̃T

a,s ũa,s

≤ wa,s := x̃T
a,s ũa,s − x̃T

a,s x̃a,s (58)

since LC,P ≽ 0 and γa > 0, thus verifying the OFP property
for ỹa,s = x̃a,s . To show ZSO of the reduced DDA, set ũa,s ≡

ỹa,s ≡ 0. From (24), we see that x̃a,s ≡ 0 and LT
C,I z̃a,s = 0.

Through (56) and since rank[LT
C,I T a] = N −1 and LT

C,I τ a =

0, we find that ξ̃ a,s = 0 but the mode with zero dynamics ~̃a,s
is free. Thus, by dropping the unobservable and uncontrollable
mode with zero dynamics, we obtain a reduced DDA that
is ZSO.

The OFP result in Proposition 15 also means that (24) has
an L2-gain of 1 [28, p. 3].

Remark 14 (DDA Convergence): The result in Proposi-
tion 15 guarantees that limt→∞ x̃a,s = 0 and limt→∞ ξ̃ a,s = 0
if the DDA input–output port is connected in a passivity
preserving way. Even though the ZSO property does not
include the mode ~̃a,s , we know that ˙̃~a,s = 0 and ~̃a,s does
not influence the states x̃a,s and ξ̃ a,s (see [34]). The full DDA,
therefore, has an asymptotically stable equilibrium manifold
X̂a,s = {x̃a,s = 0, ξ̃ a,s = 0, ~̃a,s ∈ R}.

2) PI EIP: Consider the PI controller in (27) shifted to its
equilibrium, i.e., with ũu, x̃u, and ỹu. The ideal case with ζu =

0 can trivially be shown to be IFP(k P
u ) for the storage function

Su = k I
u x̃T

u x̃u/2. The leaky PI control with ζu > 0 exhibits the
following properties.

Proposition 16 (Leaky PI EIP): The leaky PI control
in (27) shifted to its equilibrium with the storage function
Su = k I

u x̃T
u x̃u/2 is dissipative with respect to

wu =

(
1+

2ζuk P
u

k I
u

)
︸ ︷︷ ︸

2σu

ũT
u ỹu −

(
k P

u +
ζuk P

u
2

k I
u

)
︸ ︷︷ ︸

νu

ũT
u ũu

−
ζu

k I
u︸︷︷︸

ρu

ỹT
u ỹu. (59)

Proof: Calculate the time derivative of Su as Ṡu =

k I
u x̃T

u ũu − ζuk I
u x̃T

u x̃u. Substitute in k I
u x̃u = ỹu − k P

u ũu from
the output in (27) and simplify to verify that Ṡu = wu.

Note that while wu in (59) has a quadratic form, it does
not directly match the IF-OFP form in Definition 2. However,
by appropriately weighing the storage function Su, the form in
Definition 2 is easily obtained. Furthermore, since the supply
rate is weighted by the free parameter d3 in the sequel (see also
Theorem 6), we omit this step for simplicity without affecting
the results in the sequel.

3) Weighting Function EIP: The derivative of the weighting
function in (29) is described by (see Fig. 3)

dyw

duw
= aw + bw tanh2(gw(uw)). (60)

By setting bw > −aw and applying Proposition 5, (29) is
found to be IF-OFP(νw, ρw) with

νw = aw, ρw =
1

aw + bw
. (61)

VI. INTERCONNECTED STABILITY

Using the passivity properties of the microgrid and con-
troller subsystems obtained in Section V, we now investigate
the stability of the microgrid and controller interconnected as
in Fig. 2. However, we note that the agent PI controller and the
Stage-4 DDA controller exhibit a cascaded IFP–OFP obstacle
(see Proposition 7) if the PI controller is ideal (ζu = 0),
which prevents a closed-loop analysis with dissipativity. Thus,
in Section VI-A, we derive stability conditions using leaky
agent PI controllers with ζu > 0.

A. Leaky PI-Controlled Stability

Consider the case where the passivity properties of all
subsystems in Fig. 2 except for the weighting function (29)
are fixed. Combining the results in Section V with Theorem 6,
we now determine the weighting function parameters that
guarantee closed-loop stability for the equilibrium manifold
(see Remark 14).

Theorem 17 (Designed Closed-Loop Stability): The closed
loop in Fig. 2 is guaranteed to be asymptotically stable for the
weighting function parameters aw = νw, bw = 1/ρw − aw if
a feasible solution is found for

min
νw, ρw, di

νw + ρw

s.t. Q ≺ 0, di > 0, i = 1, . . . , 5 (62)

where σw = (1/2)(1 + νwρw), σd = (1/2)(1 + νd,1ρd), and

Q =



−ρwd1
d2
2

0 0 −σwd1
d2
2

−ρad2−νud3 σud3 0 0

0 σud3 −ρud3
d4
2

0

0 0
d4
2

−ρad4−νd,1d5 σdd5

−σwd1 0 0 σdd5 −ρdd5−νwd1


.

(63)

Proof: Use the supply rates for the dc microgrid in (52),
the two DDA controllers in (58), the agent PI controller in (59),
and the IF-OFP supply rate for the weighting function (61)
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Fig. 4. Two different states for a ten-bus dc microgrid along with electrical and communication connections. The loads at the buses are omitted for clarity.

to construct W in (10). The five subsystems in Fig. 2 are
interconnected by u = H y, where

H =


0 0 0 0 −1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 . (64)

Apply Theorem 6, with D as in (9) and simplify Q in (8)
to obtain (63). This yields the optimization problem (62),
where the indices of the weighting function (νw, ρw) are
configurable. Asymptotic stability is ensured by ensuring that
any states not present in y are asymptotically stable. The
latter condition is ensured through the zero-state analyses in
Proposition 11, Proposition 15, and Remark 14, and through
the condition in Proposition 13. Finally, the parameters aw and
bw are calculated from (61).

Through the application of Theorem 17, the parameters for
the weighting function can, thus, be designed to ensure stabil-
ity. We highlight that the results in Section V and Theorem 17
hold irrespective of the physical or communication topologies
and are independent of the actuation states of the nodes,
as long as Assumptions 2 and 3 hold. Therefore, verifying
Theorem 17 ensures robustness against any changes, which
do not alter the worst-case passivity indices of the respective
subsystems [see (49)]. Note that the optimization problem in
Theorem 17 is complex and nonlinear, but is easy to verify.
Additionally, Q ∈ R5×5 in (63) has a fixed size that is
independent of the size of the network.

VII. SIMULATION

In this section, we demonstrate the coordination and
robustness of the proposed control structure by means of a
MATLAB/Simulink simulation using Simscape components.
We consider the network comprising ten buses depicted in
Fig. 4. In Section VII-A, we describe the setup of the
simulation along with the various changes that the network
is subjected to. Next, in Section VII-B, simulation results
are presented for the case where Theorem 17 holds, i.e.,
with strictly passive loads and leaky agent PI controllers.
Finally, in Section VII-C, we show the robust stability of the
proposed control structure for passive loads and ideal agent
PI controllers.

TABLE I
SIMULATION PARAMETER VALUES

A. Simulation Setup

The dc microgrid in Fig. 4 is simulated with the parameters
in Table I. The ZIP load parameters are chosen randomly in
the specified ranges such that the required passivity measures
are fulfilled (see Remark 9). Furthermore, typical values are
used for the DGUs and the lines [4], [9], [13]. The lines exhibit
the same per kilometer parameter values, and the line length
is chosen randomly in the given interval. The line lengths are
given in Appendix B. The power gains for the actuated buses
are set to η1 = 0.8, η2 = 1.0, η3 = 1.2, η4 = 1.4, η7 = 1.6,
and η10 = 0.6.

The simulation starts off in State A (see Fig. 4) with Bus 9
connected and with all states at zero. The following changes
are made at the indicated times.

1) t = 5 s: The actuation states αi of the buses switch from
State A to State B, and Bus 9 is disconnected.

2) t = 10 s: The communication topology switches from
State A to State B, and Bus 10 is connected.

3) t = 15 s: The electrical topology switches from State A
to State B.

4) t = 20 s: The bus actuation status along with the com-
munication and electrical topologies revert to State A.
Bus 9 is connected and Bus 10 is disconnected.

Furthermore, at each change, half of the buses are randomly
selected and assigned new ZIP load parameters. The ZIP load
parameters can be found in Appendix B.

The closed-loop controller parameters in Table II are
designed successively, starting from the microgrid subsystems.
First, the passivity indices for the lines (ρt = 0.01) and
loads (ρL = cL = 0.05) are calculated from Proposition 12
and Proposition 9, respectively. Next, the parameters for the
power regulator (19) are chosen to provide a fast and damped



MALAN et al.: PASSIVITY-BASED POWER SHARING AND VOLTAGE REGULATION IN DC MICROGRIDS 1421

TABLE II
CONTROLLER PARAMETER VALUES

Fig. 5. Simulated bus voltages with line colors as per the legend in Fig. 4.

response (here, yielding a 5% settling time of 23 ms). Note
that since the controllers (19), (24), and (27) all have a PI
structure, conventional tuning methods may be applied. The
DGU passivity indices are then calculated from Theorem 10,
with the optimization verified for the practically relevant
intervals v ∈ [200 V, 550 V] and î ∈ [10 A, 350 A], and for a
gain η ∈ [0.6; 1.6]. Note that adding the restriction νd,2 ≥ −ρt
to the optimization in Theorem 10 ensures that (53) will
be met. This yields a worst-case solution νd,1 = −4.696,
νd,2 = −0.01, and ρd = 0.01, with which the microgrid supply
rate is constructed as per Theorem 14. The DDA parameters
have no effect on its passivity properties and thus do not
influence the stability of the closed loop (see Proposition 15).
Thus, its parameters were chosen to provide quick settling and
disturbance rejection times (here, yielding a 5% settling time
of 190 ms). Next, parameters for the agent PI controllers are
found using the closed loop with the weighting function set
to a unity gain (here, yielding a 5% settling of around 1.5 s).
Finally, the weighting function parameters are designed using
Theorem 17. Note that Theorem 14 requires strictly passive
loads (cL > 0) and Theorem 17 necessitates leaky integrators
(ζu > 0).

B. Results

The bus voltages vk shown in Fig. 5 confirm the stability
of the closed-loop results although the voltages tend to be
lower than desired, due to the use of leaky integrators. The
remaining steady-state offset can also be seen in the weighted
errors plotted in Fig. 6, where the average tends toward a
nonzero value in each instance (see Remark 5). Despite this,
the four-stage controller reaches a consensus on the average of
the nonlinear weighted voltage errors. Note that the voltages
of Buses 9 and 10 are at 0 V during the periods where they
are disconnected and not actuated.

In Fig. 7, the outputs of the agent controllers show that no
synchronization of the agent controllers is required or takes
place. The agent controller outputs at Buses 1–8, which are
continuously connected to the communication network, are

Fig. 6. Simulated weighted voltage errors and the average error of connected
agents with agent line colors as per the legend in Fig. 4.

Fig. 7. Simulated outputs of the local agent controllers with line colors as
per the legend in Fig. 4.

Fig. 8. Simulated power setpoints with line colors as per the legend in Fig. 4.

near identical. However, the disconnecting buses, e.g., Bus 9
after t = 5 s, rapidly diverge from other controllers and do
not synchronize on reconnect. Nevertheless, the final controller
stage ensures proportional cooperation, as demonstrated by the
power setpoints p∗

k = ηkφ
∗

k in Fig. 8. When Bus 10 connects at
t = 10 s, its setpoint p∗

k rapidly converges to be proportional
to the coordinated common setpoint used by all connected
agents.

Although the leaky integrators yield imperfect results (see
Remark 5 and Fig. 6), this can be mitigated by choosing a
higher vRef. Indeed, by combining the steady state of the agent
PI controller (28) with the DDA steady state (25), we see that
injecting power into the system p∗

k > 0 results in positive
voltage errors. Since we consider (strictly) passive loads,
increasing vRef is, thus, a viable method for correcting the
imperfect results while retaining the advantageous properties
of the stability analysis in Theorem 17.

C. Robustness Test

We now repeat the simulation described in Section VII-A
with the same random seed but with the following changes:
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Fig. 9. Simulated bus voltages with ideal PI controllers and with line colors
as per the legend in Fig. 4.

Fig. 10. Simulated weighted voltage errors and the average error of connected
agents with ideal PI controllers and with agent line colors as per the legend
in Fig. 4.

Fig. 11. Steady-state voltages of connected buses using the nonlinear
weighting function (29) (colored) and a linear weighting (gray).

1) passive loads with cL = 0 are allowed at all buses and
2) ideal agent PI controllers with ζu = 0 are used. Under
these conditions, Theorem 17 can no longer be used to verify
the stability. However, the stability can still be verified using
classical approaches such as evaluating the eigenvalues for the
linearized closed loop.

Fig. 9 demonstrates the improved regulation achieved by
the ideal PI agents, in that the bus voltages are closer to vRef
at steady state than in Fig. 5. Moreover, Fig. 10 shows that
perfect regulation is achieved, where the average weighted
error tends to zero in each case. Fig. 10 also demonstrates the
robustness against communication interruptions, as is the case
for Bus 10 which, for the period t ∈ [5 s, 10 s), is actuated but
does not communicate with the other buses. Despite this, it can
regulate its own bus voltage (compare this with the imperfect
regulation with leaky integrators in Fig. 5).

Finally, the results in Fig. 11 show the steady-state bus
voltages achieved before each change in Fig. 9. These values
in color are contrasted with the steady state achieved when
using a linear gain (hw(vk) = vk) shown in gray. By using
the nonlinear weighting function (29), the largest steady-state

error over all nodes, maxk |vRef−v̂k |, is between 1.7 and 2.4 V
(at least 11.8%) smaller for the five steady-state sets in Fig. 11.
Using the nonlinear weighting function, thus, allows a better
regulation of the critical node voltages. We note that using
the nonlinear weighting function increases9 the variance of
the steady-state voltage errors in Fig. 11. Nevertheless, the
maximum voltage error has greater importance in dc networks
compared to the voltage error variance since a smaller variance
is meaningless if the voltage at one or more buses falls outside
the tolerance band.

VIII. CONCLUSION

In this article, we proposed a four-stage distributed control
structure that achieves power sharing in a dc microgrid while
ensuring voltage regulation for the voltages of both actuated
and unactuated buses. We demonstrated how the passivity
properties of various subsystems can be determined and com-
bined these to form sufficient conditions for the asymptotic
stability for the controlled microgrid equilibrium manifold.
These conditions are independent of topological changes,
actuation changes, bus connections or disconnections, and load
changes.

Future work includes the consideration of nonpassive loads
at arbitrary locations in the microgrid and the construction of
an interface to allow for the presented work to be combined
with tertiary optimal controllers.

APPENDIX A
PROOFS

Proof of Proposition 8: For the control structure in
steady state, ẋu = 0, and thus, yu is constant. The steady-
state output (25) of the Stage-4 DDA, therefore, ensures that
Objective 2 is achieved. Furthermore, consider the steady state
of the Stage-2 DDA

ua,s,k = lim
t→∞

hw(vRef − vk) (65)

lim
t→∞

ya,2,k =
uT

a,s1N

N
= lim

t→∞

1
N

∑
k∈N

(vRef − h(vk)) (66)

if vk is in equilibrium and where h is obtained by shifting
hw by vRef such that h(vk) := −hw(vRef − vk) + vRef. Note
that (66) corresponds to the condition of (22) in Objective 1.
Therefore, ya,2 specifies the regulation error of the average
weighted voltage error in steady state. From the steady state
of the agent PI controller in (27), we have ζuxu = ya,2. Thus,
ideal integrators with ζu = 0 ensure that Objective 1 is met
exactly. For ζu > 0, substitute the PI equilibrium into the
output of the agent PI controller in (27) to obtain the steady-
state equation

xu =
1
k I

u

(
yu + k P

u ya,2

)
. (67)

Substitute ζuxu = ya,2 into (25) and simplify to find

ya,2 =
ζu

k I
u
(
1 + ζuk P

u
) yu (68)

9For example, the root mean square of the voltage error is 16.8 V for the
linear and 18.1 V for the nonlinear function at t = 19.95 s.
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for the steady state. Therefore, the steady-state output for the
Stage-4 DDA in (25) gives yu = ya,4, which we combine
with (68) to obtain the error for Objective 1 in (31).

Proof of Theorem 14: Consider the supply rates which
describe the actuated and unactuated states, respectively, for a
given bus k ∈ N

wM,α,k = (1+νd,1ρd)φ̃
∗

α,k ṽα,k − νd,1
(
φ̃∗

α,k
)2

− ρdṽ
2
α,k (69)

wM,β,k = −ρLṽ2
β,k . (70)

These allow the microgrid supply rate in (48) to be decom-
posed according to the actuation states αk

wM,αβ =

∑
k∈Nα

wM,α,k +

∑
k∈Nβ

wM,β,k

=

∑
k∈N

(
αkwM,α,k + (1 − αk)wM,β,k

)
. (71)

Enlarge the supply rate of the unactuated buses in (70) by
adding the positive term νL(φ̃∗

β,k)
2

for an arbitrarily small νL >

0 such that

wM,β,k ≤ wM,β,k = νL
(
φ̃∗

β,k
)2

− ρLṽ2
β,k

≤
wM,β,k

ρL
=

νL

ρL

(
φ̃∗

β,k
)2

− ṽ2
β,k (72)

for ρL as in (54). The supply rate wM,β,k/ρL is equivalent to
the L2 supply rate in Definition 2 and is, thus, bounded by
the sector [−(νL/ρL)1/2, (νL/ρL)1/2

] [29, Lemma 4]. Consider
now the supply rate of the actuated agents (69) narrowed down
to an IFP sector for the case that ρd < 0 and where the supply
rate is unchanged otherwise. This gives

wM,α,k ≥ wM,α,k =

{
wM,α,k, if ρd ≥ 0

φ̃∗

α,k ṽα,k − νd,1
(
φ̃∗

α,k
)2

, if ρd < 0
(73)

such that wM,α,k is sector bounded by [νd,1, (1/ρd)] if ρd >

0 and [νd,1, ∞) if ρd < 0 or if ρd = 0 (see [26, p. 231]).
A relation between wM,α and wM,β/ρL can now be established
by comparing their respective sector bounds

wM,β,k

ρL
≤ wM,α,k if



[
−

√
νL

ρL
,

√
νL

ρL

]
⊆

[
νd,1,

1
ρd

]
,

if ρd > 0[
−

√
νL

ρL
,

√
νL

ρL

]
⊆ [νd,1, ∞),

if ρd ≤ 0.

(74)

Since νL can be arbitrarily small, we derive (55) by com-
paring the lower bounds in (74) and note that the upper
bound relation can be met for any ρd. A visual comparison
of the sector conditions is made in Fig. 12. The combination
of (72)–(74) results in

wM,β,k ≤ wM,β,k ≤
wM,β,k

ρL
≤ wM,α,k ≤ wM,α,k . (75)

Fig. 12. Comparison of the microgrid supply rate sectors in the proof of
Theorem 14 if ρd < 0.

TABLE III
ROUNDED LINE LENGTHS

TABLE IV
STRICTLY PASSIVE LOAD VALUES

Therefore, for the microgrid with the storage function SM (50)
that is dissipative with respect to (48), it holds that

ṠM ≤ wM,αβ ≤

∑
k∈N

(
αkwM,α,k + (1 − αk)wM,α,k

)
=

∑
k∈N

wM,α,k = wM (76)

which is found by combining (71) with (75).
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TABLE V
PASSIVE LOAD VALUES, WITH P AS IN TABLE IV

APPENDIX B
SIMULATION DATA

The simulation parameters used for the lines in Section VII
are given in Table III. Furthermore, the strictly passive load
parameters for the simulation results in Section VII-B and
the passive load parameters for the results in Section VII-C
are given in Tables IV and V, respectively. Note that the
P parameter for the loads in Table V are the same as listed
in Table IV.
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