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Real-Time Pressure Control in Water Distribution
Networks: Stability Guarantees via Gain-Scheduled

Internal Model Control
Giacomo Galuppini , Enrico Creaco, and Lalo Magni

Abstract— This article proposes a novel scheme for the
real-time control (RTC) of service pressure in water distribution
networks (WDNs), which is beneficial in terms of leakage
reduction, energy recovery, pipe burst abatement, and extension
of infrastructure lifetime. Compared with the other schemes
previously proposed in the scientific literature, this novel scheme
combines regulatory performance with proven guarantee of sta-
bility, which is obtained by framing gain scheduling in the context
of internal model control (IMC) of linear parameter-varying
(LPV) systems. Previous works relying on gain scheduling only
prove stability for fixed scheduling parameter values, which is
only a necessary condition for stability in case of possibly fast,
time-varying parameters. The proposed RTC scheme guarantees
instead stability of the closed loop for any admissible trajectory
of the scheduling parameter. The novel control scheme is tested
numerically against challenging operating conditions in a bench-
mark WDN, including two different demand patterns and four
hydrant activation scenarios.

Index Terms— Gain scheduling, internal model control (IMC),
linear parameter-varying (LPV) systems, real-time control
(RTC), smart cities, water networks.

I. INTRODUCTION

IN THE context of water distribution networks (WDNs)
management, leakage reduction [1], [2], excess energy

recovery [3], [4], [5], [6], pipe burst abatement [2], [7], [8], and
overall infrastructure life extension represent absolute priori-
ties. Real-time control (RTC) of service pressure [9] represents
an effective approach to pursue these goals, as it allows reduc-
ing pressure excess across the WDN, while providing sufficient
pressure to ensure satisfaction of users’ demand. With the rise
of the Water 4.0 approach [10], novel WDNs include sensors,
actuators, and computing units, which are connected by wire
(e.g., via optical fiber) or by high-end wireless networks [e.g.,
narrowband internet of things (NB-IoT)] to ensure fast and
reliable communication. This technological advance enables
the transition from local RTC, where the pressure is con-
trolled right downstream of the control valve [11], [12], [13],
to remote RTC, where the pressure can be controlled at any
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point of the WDN [14], [15], [16], [17]. Specifically, the aim
of remote RTC is regulation of service pressure at the so-
called critical node, i.e., the WDN node characterized by the
minimum daily pressure. As several works in the literature
clearly demonstrated both in silico and in situ, a suitable
choice of the desired pressure at the critical node, combined
with an effective control scheme, can simultaneously reduce
pressure excess and guarantee satisfaction of users’ demand
[13], [15], [16], [18].

The majority of the literature dealing with RTC of pressure
focuses on the performances of the control scheme, whereas
the fundamental issues of closed-loop stability and robustness
are often overlooked. Motivated by incidents occurred on real
plants [19], a series of works [19], [20], [21], [22], [23] started
analyzing stability and robustness of common RTC schemes
and highlighted common pitfalls in the control design that can
lead to instability. In particular, Galuppini et al. [22] stress
the need for an accurate description of the high-frequency
dynamics of the plant, in order to achieve a reliable controller
design. The WDN dynamics is, in fact, characterized by a
strong resonant behavior, which arises from the interaction
of pressure waves traveling at finite speed through the pipes
[24]. A low-order model of the process, such as the first- or
second-order linear models commonly adopted in the litera-
ture, may not adequately describe such resonant behavior and
may, in turn, result in a poor evaluation of the stability margins
of the control design [22]. Moreover, Janus and Ulanicki [21]
and Galuppini et al. [22] highlight the presence of strong
static nonlinearities affecting the process and demonstrate how
their combination with the high frequency resonance peaks
can lead to closed-loop instability. Finally, Janus and Ulanicki
[21] and Galuppini et al. [25] propose a combination of gain
scheduling and nonlinearity inversion to robustify the control
schemes and mitigate these issues. The scheduling policies aim
at keeping the loop function design unaltered, as the process
moves across a wide range of operating points. This guarantees
that, for all fixed values of the parameters, the closed loop
is (robustly) stable. The resulting gain-scheduled controllers
are parametric in nature and belong to the class of linear
parameter-varying (LPV) systems. It is well understood that,
for LPV systems, stability for all fixed parameter values does
not necessarily imply stability for time-varying parameters
[26], [27]. Whereas slow parameter variations can be tolerable,
arbitrarily fast variations can be extremely dangerous and
compromise the closed-loop stability. In the context of RTC,
fast variations occur whenever the water demand increases or
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decreases abruptly (e.g., in case of fire hydrant operations
[28] or presence of industrial users [29]). Therefore, all the
aforementioned works fail to rigorously consider the issue of
LPV stability and only focus on stability for fixed parameter
values. The main aim of this work is to combine the findings
from [21] and [25] with the rigorous gain scheduling approach
discussed in [27], [30], and [31], to propose and test an RTC
scheme for pressure control with LPV stability guarantees. The
proposed approach is based on an LPV internal model control
(IMC) scheme [27] and includes an LPV Smith predictor
(SP) [32] to compensate for the presence of time delays.
Low-pass filters are used to clean the scheduling signals
from high-frequency oscillations [31]. A filter reinitialization
strategy is also proposed, to preserve LPV stability of the
closed loop.

The novel control scheme is tested in a simulated environ-
ment, by relying on a detailed, pressure-driven [33] unsteady
flow model of the WDN [34]. This hydraulic modeling
approach is the most suitable to replace the actual plant for
a preliminary evaluation [35]. The case study explored in this
article is based on a real WDN topology and an accurate mod-
eling of the users demand pattern [36]. Simulations include the
sudden opening of fire hydrants [28], to evaluate the behavior
of the control system in case of fast scheduling parameter
variations. All the results stress the effectiveness and the
reliability of the novel RTC approach discussed in this article.

This article is organized as follows. Section II describes
the realistic case study addressed in this work. Section III-A
discusses the numerical model of the WDN. The definition of
the nominal working point (WP) of the system is discussed
in Section III-B, and the identification of the process model
is presented in Section III-C. The overall control scheme is
thoroughly described in Section III-D. Simulated results are
presented and analyzed in Section IV, while further discussion
is given in Section V. Finally, Section VI summarizes the main
findings of this work.

II. CASE STUDY

The case study analyzed in this article is the skeletonized
WDN of the town of Castelfranco Emilia, Northern Italy. The
WDN is composed of 27 nodes (26 demanding nodes and one
source node) and 32 pipes. In addition, two fire hydrants are
located at nodes 3 and 13, respectively. The complete topology
is depicted in Fig. 1. For further details, including features of
network nodes, pipes, and hydrants, refer to [28] and [35].

For this case study, the goal to be achieved is pressure
regulation at hsp = 25 m at node 1, which is chosen as
controlled node. A T.I.S. GROUP “NUOVAL” plunger valve
with a diameter of 250 mm (other details and datasheet can
be found in [37]) is installed in pipe 26-20, linking the source
to the rest of the network. This pressure control valve (PCV)
is well suited for RTC, as it can be equipped with an electric
actuator and controlled by a programmable logic controller
(PLC). For safety reasons, the actuation speed is limited to
0.0033 s−1.

Residential demand patterns are generated by means of the
bottom-up approach discussed in [36] and [38]. The demand

Fig. 1. Topology of the WDN [14].

Fig. 2. Source pressure (left) and demand patterns (right).

patterns keep into account human daily routine. With the aim
of assessing the robustness of regulatory performances, two
different demand patterns are considered, resulting in two
different trends of the total WDN demand (see Fig. 2): a flatter
trend (pattern A) and a more peaked trend (pattern B). Note
that demand patterns A and B share the same average values
for each single demand pattern. In addition, the presence of
leakage is explicitly considered in this system. The source
pressure pattern (see Fig. 2) follows the overall demand trend.

III. MATERIALS AND METHODS

This section describes the hydraulic model adopted for
simulations as well as the main steps required for the design
of the control algorithm introduced in this work.

A. Hydraulic Model for Simulations

The pressure-driven [33], unsteady flow modeling [34], [35]
is the most suitable approach enabling an accurate analysis of
the hydraulic transients resulting from rapid nodal demand
and/or valve setting variations. For a generic pipe of a WDN,
the 1-D unsteady flow equations take the form

∂h p

∂x p
+

1
g Ap

∂ Q p

∂t
+ Jp = 0

∂h p

∂t
+

c2

g Ap

∂ Q p

∂x p
= 0

(1)

(2)
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Fig. 3. Local head loss coefficient ξ as a function of the valve closure α.

where h p [m] and Q p [m3/s] are the pressure head and the
flow discharge along the pipe, x p [m] is the position along the
pipe, t [s] is time, Ap [m2

] is the pipe cross-sectional area, g
[m/s2

] is the gravity acceleration constant, c [m/s] is the wave
celerity, and Jp is the friction slope.

An additional outflow per unit of pipe length ql [m2/s]
models leakage from WDN pipes

ql = αleakhγleak
p (3)

where αleak [m2−γ /s] and γleak [−] are the leakage coefficient
and exponent, respectively. The exponent γleak is set to 1,
typical value for plastic pipes [39]. Coefficient αleak [−] is
set to 9.4 × 10−9 m/s, resulting in a leakage percentage rate
of 20%. Hydrant outflows qhd [m3/s] are obtained as the
outflow from a pressurized orifice, by means of the emitter
equation [40]

qhd = Chdh0.5
p (4)

where Chd [m5/2/s] is the emitter coefficient, which takes
account of the outflow contracted area. If a hydrant is opened
linearly in time, Chd increases linearly from 0 to its maximum
value Chd,max and vice versa.

Each pipe friction slope is evaluated as follows:

Jp = 10.29
n2

|Q p|Q p

d5.33
p

(5)

where n [s/m
1
3 ] is the Gauckler–Manning coefficient. Further-

more, pipe friction slopes are increased using the correction
proposed in [41] to account for the unsteady flow effects.

The effect of the control valve is modeled by considering
no link at the valve site and setting nodal outflow Qup from
the upstream end node and nodal inflow Qdown into the
downstream end node, at

Qup = Qdown =

√
2g

ξ(α)
Av

√
1Hv (6)

where Av [m2
] is the valve cross-sectional area, ξ [−] is

the valve local head loss coefficient, 1Hv [m] is the head
drop in the valve, and α [−] is the valve closure setting,
ranging from 0 (fully open) to 1 (fully closed). The valve

local head loss coefficient is a growing function of α. This
function is typically available in the PCV datasheet [37]
or can be characterized by laboratory experiments. Fig. 3
shows the function related to the T.I.S. GROUP “NUOVAL”
plunger valve of the Castelfranco Emilia WDN. From this
point onward, let Q denote the flow at the valve site.

In the model implementation, the water hammer partial
differential equations are solved by relying on the method of
the characteristics [34]. Network pipes are discretized with
spatial steps 1x p, and the hydraulic variables of interest
(pressure head and water flow) along the pipes are computed
at each time integration step 1t , with 1x p and 1t , such that

c
1t
1x p

≤ 1. (7)

Suitable boundary conditions are assigned in correspondence
to source and demanding nodes, where fixed total pressure
head and demands are prescribed, respectively. The discretized
water hammer equations are coupled with the continuity
equation, applied to each node of the WDN.

Finally, measurement noises acting, respectively, on the
measured pressure heads h(t) and on the flow at the valve
site Q(t) are also included in the model.

B. WP Definition

Consider the multi-input multioutput (MIMO) system
characterized by input signals as follows:

1) ξ(α(t)), the local loss coefficient, function of the valve
closure ([−]);

2) H(t), the source pressure ([m]);
3) D(t), the vector of water demands ([m3/s]).

Consider the multi-input multioutput (MIMO) system
characterized by output signals as follows:

1) h(t), the measured pressure ([m]) at the critical node of
the WDN;

2) Q(t) the flow at the valve site ([m3/s]).
The local head loss coefficient ξ(α(t)) is chosen as con-
trol variable, whereas pressure h(t) is chosen as controlled
variable. Source pressure H(t) and water demands D(t) are
stochastic disturbances acting on the process.

For convenience, define the overall demand of the WDN
Dtot(t) as follows:

Dtot(t) =

Nnodes∑
i=1

Di (t) (8)

where Di (t) is the water demand at node i and Nnodes is the
number of demanding nodes in the WDN.

Let the tuple WP = (ξ , H , D, h, Q) represent the WP for
the MIMO system. The average values of typical H(t) and
Di (t) patterns are usually available to the WDN manager (e.g.,
via billed consumption) and are adopted for the definition
of the WP. The value of ξ must be chosen, so that the
corresponding steady-state pressure at the controlled node,
h, is sufficiently close to the desired one. In a simulated
environment, this can be achieved by adjusting the valve
closure α until the pressure h reaches the desired pressure hsp.
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The value of ξ associated with such valve closure is adopted as
ξ . In a real scenario, this procedure can be directly performed
on the real plant, by manual trial-and-error adjustments of α,
or by means of SISO control schemes, as discussed in [42].

Remark: The analysis carried out in previous works [19],
[22], [25] underlines that the choice of ξ as control variable is
fundamental to face the strong static nonlinearity affecting the
system and improving the robustness of the control scheme.
If α is chosen as control variable, due to the ξ(α) nonlinearity,
the increase in the process gain occurring at high values of
α represents the main source of instability for closed-loop
pressure control systems [17], [19]. However, as the ξ(α)

function is typically available and invertible, this issue can
be conveniently faced by selecting ξ as control variable and
introducing a nonlinearity inversion block in the loop to
compute at runtime the corresponding value of α [25].

C. Process Model Identification

This section summarizes the two-step procedure originally
introduced in [24] and [42] for the identification of an LPV
process model [26]. The methodology combines the black-box
identification of a local, linear model, and physical knowledge
of the valve static behavior, to obtain an LPV description of
the plant dynamics.

Start by considering a continuous-time, strictly proper trans-
fer function P(s), relating local head loss variations δξ(t) =

ξ(t) − ξ , to pressure head variations δh(t) = h(t) − h.
If available, a hydraulic WDN simulator (as discussed in
Section III-A) can be exploited as source of input–output data.
If, instead, a hydraulic model of the WDN is not available, or it
is not sufficiently accurate, input–output data can be directly
collected by means of experiments performed on the real plant.
Note that, when working in silico, the experimental design
can focus on maximizing the information contained in the
dataset, but the collected data can be affected by hydraulic
model versus plant mismatch. On the other hand, working
in situ avoids this issue, but requires a more careful design of
experiments, which should not interrupt the service to users
and should not stress the WDN structure [42]. Once a dataset
is available, input–output identification techniques can then
be applied to compute suitable parameter estimates for P(s)
(e.g., via prediction error method (PEM) [43]). At this point,
P(s) should provide an accurate description of the WDN
dynamics in a neighborhood of WP, and a testing dataset
could be effective in assessing the predictive performances of
P(s). Due to the dissipative nature of the system, P(s) must
be asymptotically stable. Moreover, due to the interaction of
pressure waves in the WDN, P(s) is typically characterized by
several high-frequency resonance peaks, possibly associated
with low damping factors [22], [24]. In addition, in the context
of remote RTC, P(s) is also characterized by a time delay
arising from the time required by pressure waves to travel the
WDN pipes from the PCV to the pressure sensor, along the
quickest path [24]. This process model typically takes the form

P(s) = µ

∏
i (1 + sTz,i )∏
i (1 + sTp,i )

∏
i (1 + 2sζi/αni + s2/α2

ni )∏
i (1 + 2sξi/ωni + s2/ω2

ni )
e−sτ

(9)

where µ is the static gain, Tz,i and Tp,i are time constants
associated with real zeros and poles, ζi and ξi are the damping
factors of complex pairs of zeros and poles, αni and ωni are
the natural modes of complex pairs of zeros and poles, and τ

is the time delay.
At this point, physical knowledge of the valve can be incor-

porated in P(s), to extend its range of validity. In particular,
note that, in the valve equation [see (6)], the pressure loss
induced by the valve, 1Hv , quadratically depends on the
flow through the valve, Q. Furthermore, several works in the
literature suggest that a static description of this nonlinearity
can be very effective in improving the associated control
design [14], [24], [25]. As Q(t) can be measured online, it is
possible to adopt it as scheduling parameter w(t) and move
to an LPV description of the plant. Let µ be the static gain
of P(s), corresponding to the flow at the valve site at WP,
Q. Define P(s, w) as the LPV extension of P(s), and let its
parameter-dependent static gain µ(w(t)) be

µ(w) = µ

(
Q

Q

)2

. (10)

Moreover, define

T (s) = e−sτ (11)
P(s, w(t)) = P ′(s, w(t))T (s) (12)

and consider a state-space realization of P(s, w) of the form

5(w(t))


ẋ(t) = AP x(t) + BP(w(t))u(t)

z(t) = CP x(t)

y(t) = z(t − τ)

x0 = x(0), t ≥ 0

(13)
(14)
(15)
(16)

with u(t) = δξ(t), y(t) = δh(t), AP and CP matrices of
suitable dimensions, and BP(w) a continuous function of the
parameter w, which is supposed to belong to a compact set
W .1 Similarly, denote by 5′(w(t)) = {AP , BP(w(t)), CP} the
state-space realization of P ′(s, w). With the proposed class
of possible state-space realizations, the system 5′(w(t)) is
both asymptotically stable and LPV stable (see Appendix,
Definition 1) if and only if the matrix AP is Hurwitz.

D. Control Design Methodology

This section discussed the control design methodology pro-
posed in this article. The overall control scheme (Fig. 4) has,
as fundamental building block, the IMC scheme for LPV-stable
time delay systems originally developed in [27] and [30],
which is adapted to meet the specific needs of this application.
Each element of the control scheme is discussed in detail in
the reminder of this section.

1) IMC Scheme for LPV-Stable Time Delay Systems:
The time delay present in the LPV system arises from the
propagation of pressure waves across the WDN, and its time
scale can pose sensible limitations to the performances of the
control loop [24]. For LPV-stable systems as 5(w(t)), the
effect of time delay can be effectively compensated by means

1This is not restrictive as the flow Q is always positive and upper limited
due to the design of the WDN itself and cannot vary discontinuously.
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Fig. 4. Block scheme for the proposed RTC control algorithm, including parameter-varying internal model controller, saturation sat(·), and rate limiter
rate lim(·) of control action, parameter-varying SP, gain scheduling policies, and low-pass filters.

Fig. 5. LTI control system for a time delay plant based on the SP.

Fig. 6. SP control scheme rearranged.

Fig. 7. IMC scheme for the LPV-stable time delay plant.

of the LPV-SP formulation proposed in [30]. This approach
frames the SP in the context of IMC and rearranges the control
scheme to obtain a Youla–Kucera (YK) parameterization of
the overall controller. Fig. 5 depicts the standard linear time-
invariant (LTI) control system based on the SP, with C(s)

the transfer function of the primary controller, located in the
forward path of the overall controller, R(s) (delimited by a red
dashed line). Fig. 6 depicts the scheme rearranged as an IMC
scheme. The negative feedback loop inside the blue dotted
rectangle, whose transfer function is

Q(s) = [1 + C(s)P ′(s)]−1C(s) (17)

represents the YK parameter of a controller whose positive
feedback path (outside the blue dotted rectangle) contains a
model of the time delay system. In case of LPV systems,
transfer functions should be replaced by state-space realiza-
tions, as depicted in Fig. 7, to correctly address the issue of
LPV stability. Let 2(w) = {AQ(w), BQ(w), CQ(w), DQ(w)}

be the state-space realization of the proper LPV YK parameter
Q(s, w), where AQ(w), BQ(w), CQ(w), and DQ(w) are
continuous functions of w ∈W .

It must be stressed that 2(w) may be unstable for time
varying w, even if AQ(w) is Hurwitz for all constant values
of w [26], [27]. To overcome this issue, it is necessary to
compute an LPV-stable realization of Q(s, w), every time the
scheduling parameter w varies in time. As proved in [27],
every parametric transfer function Q(s, w) that is stable for
all admissible constant values of w admits an LPV-stable
realization 2(w), i.e., a realization that is stable for all
functions w(t) taking values in W . Procedure 1 [27] allows
the computation of such LPV-stable realization.

Procedure 1:
Given w ∈W , the following hold.
1) Compute a generic realization

2̂(w) =
{

ÂQ(w), B̂ Q(w), Ĉ Q(w), D̂Q(w)
}

(18)

with ÂQ(w) Hurwitz.
2) Compute the positive-definite solution ϒ(w) of the

following Lyapunov equation:

Â
⊤

Q(w)ϒ(w) + ϒ(w) ÂQ = −I. (19)

3) Factorize ϒ(w) as follows:

ϒ(w) = 3⊤(w)3(w) (20)
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with 3(w) an upper triangular matrix (Cholesky’s
decomposition).

4) Realize Q(s, w) as follows:

2(w) = {AQ(w), BQ(w), CQ(w), DQ(w)} (21)

where[
AQ(w) BQ(w)

CQ(w) DQ(w)

]
=

[
3(w) 0

0 I

][
ÂQ(w) B̂ Q(w)

Ĉ Q(w) D̂Q(w)

]
×

[
3−1(w) 0

0 I

]
. (22)

Theorem 1 ensures LPV stability of the closed-loop control
scheme in Fig. 7.

Theorem 1 [30]: If the system 5(w) is LPV stable, the
control system in Fig. 7 is LPV stable (see Appendix,
Definition 2) if the state-space realization of 2(w) is LPV
stable.

The considered IMC scheme for LPV-stable time delay
systems entails the design of the parametric transfer function
of the controller C(s, w). In turn, this consists of two steps,
namely, the design of a nominal controller transfer function
C(s) based on P ′(s) and the definition of a scheduling policy
based on the online knowledge of w(t).

2) Nominal Controller Design: Several techniques are
available in the literature for the design of C(s) (e.g., pole
placement and loopshaping [44], [45]).

In this article, a loopshaping procedure is carried out, adopt-
ing the controller structure and the design rationale discussed
in [22]. As the control scheme proposed in this article includes
an SP for compensating the effects of time delay, the design
of the nominal primary controller transfer function C(s) is
based on the delay-free transfer function P ′(s). The controller
structure consists of a proportional–integral (PI) term and an
additional filter term. Specifically, let C pi (s) be the PI transfer
function

C pi (s) = µC
1 + sTi

s
= Ki

1 + s K p

Ki

s
(23)

with K p the proportional gain, Ki the integral gain, and Ti =

K p/Ki the integral time constant. The gain of the transfer
function µC coincides with Ki .

Then, let C f (s) be the filter transfer function

C f (s) =
(1 + sTd)

(1 + sT f )
. (24)

Finally, the primary controller transfer function C(s) is

C(s) = C f (s)C pi (s). (25)

Note that C f (s) has unitary static gain, so that µC coincides
with the gain of the overall regulator.

The integral term responds to static performances require-
ments (i.e., robust regulation to the constant set points, and
disturbance rejection in presence of constant and slowly
varying process disturbances). The filter term improves the
deamplification of the high-frequency resonance peaks of
P ′(s). The two additional zeros in the controller can be
used to compensate for the effect of low-frequency poles
in P ′(s) and to recover phase margin. In this article, after

sufficient deamplification of resonance peaks is provided, the
closed-loop bandwidth is set to the largest possible value to
assess the performances of the control scheme in a demanding
situation.

Let ωr p be the angular frequency associated with the res-
onance peak of P ′(s) located at the lowest frequency. Then,
the controller design can be carried out by setting

Td =
1
5

1
ωr p

T f = 20Td . (26)

Let Tp be the time constant associated with the lowest fre-
quency pole of P ′(s) with null imaginary part. One can then
set

Ti = Tp µC =
ωc

µ
(27)

where ωc is the desired closed-loop bandwidth expressed in
rad/s.

With this procedure, ωc is the only free design parameter,
which must fulfill ωc ≪ ωr p in order to provide robust-
ness margins against gain and phase uncertainties. Note that,
if 1

T f
< ωc, the actual closed-loop bandwidth is smaller than

the expected one, due to the effect of the pole associated
with time constant T f . To conclude the nominal design phase,
nominal closed-loop stability can be proved by means of Bode
criterion [44].

Remark: Note that Theorem 1 ensures that the closed-loop
system remains LPV stable as long as the YK parameter
is stable for every fixed parameter values and is properly
realized. While this work takes advantage of the control
design considerations from the literature (e.g., [22], [24], [25]),
the proposed control methodology would also allow for an
online, trial-and-error tuning of the YK parameter transfer
function [27].

3) Gain Scheduling for Static Nonlinearity Compensation:
As discussed in Section III-C, if the local head loss coefficient
ξ is used as control variable, the process model is characterized
by a static nonlinearity depending on the flow at the valve
site Q [see (10)]. In order to keep loop functions constant
over a wide range of operating points, the primary controller
transfer function C(s) can be made parameter-dependent [25]
by acting on its static gain. The static gain µ

GS−Q
C (w) of the

parameter-dependent controller transfer function C(s, w) can
be chosen as follows:

µ
GS−Q
C (Q(t)) = µC

(
Q

Q(t)

)2

(28)

so that the dependence on the scheduling parameter does not
appear in the loop functions.

4) Gain Scheduling for Regulation Error Versus Cost of
Control Trade-Off: The control approach discussed above is
able to compensate the static nonlinearities of the process
because of the choice of the local head loss coefficient ξ

as control variable and the LPV design based on online
measurements of the flow at the valve site Q. In this way,
the loop functions can be kept as constant as possible over
a wide range of operating points of the WDN. However, this
choice may not always be the most efficient one. Consider
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Fig. 8. Example of gain scheduling policy for regulation performances versus
cost of control trade-off.

an operating point characterized by high flow values and
associated valve closure α assuming values close to zero.
Under these conditions, the function ξ(α) is almost flat, and
small variations of the control variable ξ require a wide
variation of α to be obtained. As a result, the cost of control
associated with high flow conditions is much higher than that
of low flow conditions. This issue can be explicitly accounted
for by leveraging the gain-scheduled nature of the control
scheme, to progressively reduce the closed-loop bandwidth as
the flow at the valve site Q increases. To this end, include the
valve closure α in the scheduling parameter w, and note that
α ∈ [0; 1], so that w = [Q α]

⊤ still belongs to a compact set.
The static gain µGS−α

C (w(t)) of the new parameter-dependent
primary controller transfer function, C(s, w), can be cho-
sen according to the following scheduling law, inspired by
Galuppini et al. [25]:

µGS−α
C (Q(t), α(t)) = µratio(α(t))(µGS−Q

C (Q(t))) (29)

where µratio(α(t)) ∈ (0, 1] is a multiplicative factor. Assuming
the nominal design of C(s) to result in the maximum desired
closed-loop bandwidth, µratio(α(t)) can be chosen as follows:

µratio(α(t)) =

{
1, ∀α(t) > α∗

k ∗ α p
+ µ∗

ratio, ∀α(t) ≤ α∗
(30)

k =
1 − µ∗

ratio

α∗p (31)

with α∗
∈ [0; 1], µ∗

ratio ∈ (0; 1], and p > 0 are design
parameters.

In particular, µ∗

ratio represents the value of µratio(α) when
α = 0, p the power of increase of µratio(α) as α → α∗, and
α∗ the upper limit of the gain scheduling policy, which affects
the design only for α ∈ [0; α∗

]. An example is reported in
Fig. 8. The three parameters are selected, so that the gain of
the controller is progressively reduced, as soon as the valve
closure α reaches the flat region of curve ξ(α). The value of
α∗ can, therefore, be selected by inspecting the curve ξ(α) (see
Fig. 3). The values of µ∗

ratio and p are then selected to obtain
a sufficiently fast reduction of the controller gain. Based on

[25], convenient starting values are µ∗

ratio = 0.1 and p = 4,
which should be adjusted to fit the specific case study.

5) Filtering of the Scheduling Parameter: The scheduling
policies discussed above are based on steady-state considera-
tions about the WDN and involve online measurement of flow
at the valve site Q and valve closure α. Since the WDN is
mainly driven by the users’ time-varying demand, pressure
and flow oscillations arise from both high-frequency demand
oscillations and from the water hammer effect in the WDN
pipes. Part of these oscillations is transferred to α(t), through
the closed-loop system. Low-pass filtering of the scheduling
parameter can be introduced in the control scheme to mitigate
this issue. Then, let LP(s) be the transfer matrix of the
low-pass filters for the scheduling parameter w(t)

LP(s) =

[
1

1+sTlp,Q
0

0 1
1+sTlp,α

]
(32)

with Tlp,Q and Tlp,α the filter time constants. Denote as
wlp(t) = [Qlp(t) αlp(t)]⊤ the low-pass filtering of the schedul-
ing parameter w(t). Note that Tlp,Q can be selected offline,
by analyzing the spectrum of daily records of Q(t), which
can be directly collected from the plant. A straightforward
choice for Tlp,α could then be setting Tlp,α = Tlp,Q [25].

Simulations show that this low-pass filtering improves the
performances of the gain-scheduled control approach. Nev-
ertheless, this introduces a mismatch between the measured
and the filtered scheduling parameter. In principle, both gain
scheduling and SP design require a perfect knowledge of the
parameters. In order to retain the benefits of the low-pass
filtering and avoid stability issues, the following solution based
on the small gain theorem [31], [45] is proposed.

1) Implement a state-space realization 8 of the low-pass
filter, such that the filter state xlp(t) coincides with the
filter output wlp(t).

2) (Re)initialize the filter state and output so that

xlp(t) = wlp(t) = w(t) (33)

every time the following condition on the loop gain is
violated:

||Q(s, wlp(t))|| ||T (s)1(s, wlp(t), w(t))|| < γ < 1
(34)

where || · || is a generic operator norm, γ > 0 is a
robustness threshold (accounting for measurement errors
for the scheduling parameter), T (s) is the time delay
operator [see (16)], and 1(s, wlp(t), w(t)) is given by

1(s, wlp(t), w(t)) = P(s, wlp(t)) − P(s, w(t)). (35)

Similarly, it is possible to define filter reinitialization poli-
cies based on thresholds on the absolute difference between
measured and filtered scheduling parameters. Whereas the
reinitialization policy discussed earlier ensures closed-loop
stability, these can improve the control performances in case
of sudden scheduling parameter variations (due to, e.g., fire
hydrants opening [28] and temporary activation of industrial
user demands [29]).
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Fig. 9. IMC scheme for the LPV-stable time delay plant including input
saturation sat(·) and rate limiter rate lim(·).

6) Input Saturation and Rate Limiter: Note that the valve
closure α is upper and lower bounded. Moreover, under normal
WDN operations, the valve must never be completely closed,
i.e., the upper bound for α is always lower than 1. As a
consequence, the head loss coefficient ξ is also upper and
lower bounded by finite values. Moreover, as discussed in
Section II, the valve speed is limited for safety reasons. This,
in turn, imposes maximum and minimum rates of variations
to ξ . In order to account for these limitations, it is possible
to include models of input saturation, sat(·), and rate limiter,
rate lim(·), in the control scheme, as shown in Fig. 9, and
prove bounded-input bounded-output (BIBO) stability of the
closed loop. Due to the saturation, u(t) is bounded. As the
system 5(w) is quadratically stable, it is also BIBO stable,
i.e., y(t) is bounded whenever u(t) is bounded. Note that the
same holds for the system model inside the controller; thus,
ŷ(t) is bounded whenever u(t) is bounded. The difference
y(t) − ŷ(t) is also bounded. It follows that the output of the
YK parameter 2(w) is bounded for bounded set-point signals
ysp(t). In summary, y(t) is bounded for bounded set-point
signals ysp(t).

IV. RESULTS

This section applies the RTC methodology proposed in this
work to the Castelfranco Emilia WDN, described in Section II,
and presents the results of simulations under several operating
conditions.

A. Nominal Controller Design and Gain Scheduling Policies

For the Castelfranco Emilia WDN, a reasonable set point
for pressure at the critical node (node 1) is hsp = 25 m. Based
on the average values of typical users’ demand and source
pressure, the corresponding WP is

WP =



ξ = 170.45 (i.e., α = 0.619)

H = 39.6 m
D1 = 0.0014 m3/s
. . .

DNnodes = 0.0007 m3/s
h = 25 m
Q = 0.0586 m3/s.

(37)

Remark: As the average value of each demand Di (t) is the
same for demand patterns A and B, a single WP is sufficient
to cover both scenarios.

Input–output data for the identification of the nominal pro-
cess transfer function, P(s), are obtained from a step response

simulation around WP. The parameters of P(s) are obtained
by means of PEM identification [46], by relying on MATLAB
identification toolbox [43]. Fig. 10 compares identification
data and model prediction. The complete definition of P(s)
is reported in (36), as shown at the bottom of the next page,
and the Bode diagram of P(s) is reported in Fig. 11. From
the Bode diagram of the modulus of P(s), it holds that
ωr p = 0.1 rad/s.

The design of the nominal primary controller C(s) is based
on the delay-free transfer function, P ′(s) and is carried out fol-
lowing the loopshaping approach discussed in Section III-D2.

The parameters of the filter term of the controller, C f (s),
are set to

Td = 2 s T f = 40 s. (38)

The required closed-loop bandwidth is ωc = 0.0306 rad/s.
As the nominal gain of P ′(s) results µ = −0.0631 m, the
nominal static gain of the controller is set to

µC = −0.4849 m−1. (39)

As P ′(s) does not contain any real pole, Tp is not defined, and
the integral time constant Ti can be treated as a free design
parameter. In this case, Ti is set to

Ti = 5.5 s (40)

to recover some phase margin, which results φm = 70◦.
The gain margin results Km = 18.9. As for resonance peak
deamplification, the analysis of Bode diagram of the loop
gain function L(s) = C(s)P ′(s) (Bode diagram in Fig. 12)
shows that the highest resonance peak, located around ωr p =

0.1 rad/s, reaches −15 dB of magnitude.2

The parameters of the gain scheduling policy GS − α are

α∗
= 0.5 µ∗

ratio = 0.3 p = 6. (41)

The low-pass filters time constants are set to

Tlp,Q = Tlp,α = 600 s. (42)

The threshold for filter reinitialization based on the small gain
theorem is set to γ = 0.8. Moreover, the filter processing the
flow at the valve site Q(t) is also reinitialized at time t if

|Q(t) − Qlp(t)| ≥ 0.03 m3/s (43)

and the filter processing the valve closure α(t) is also reini-
tialised at time t if

|α(t) − αlp(t)| ≥ 0.25. (44)

B. Closed-Loop Simulations

Fig. 13(a) and (b) shows the results of whole-day, closed-
loop simulations for demand patterns A and B, respectively
(details of results at the time scale of seconds are depicted
in Fig. 13(c) and (d), respectively). In both scenarios, the
control scheme provides accurate regulation of pressure to the

2The presence of a resonance peak around ωr p = 0.1 rad/s is masked in
the modulus of L(s) by the negative slope introduced by the integrator. For
this reason, in the nominal controller design, it is important to keep track of
the angular frequencies at which the resonance peaks are originally located
in P ′(s).
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Fig. 10. Model identification. Top: pressure variation δh(t) (blue solid line:
identification data and red dashed line: model prediction). Bottom: valve head
loss coefficient variation δξ(t).

Fig. 11. Bode diagram of the nominal process transfer function P(s).

Fig. 12. Bode diagram of the nominal loop gain function L(s).

chosen set point, by rejecting the disturbances generated by
time-varying users’ demand and source pressure. For demand
pattern B [Fig. 13(b)], due to its first, high peak, the valve

TABLE I
RESULTS OF CLOSED-LOOP SIMULATIONS WITH DEMAND
PROFILES A AND B FOR THE LPV IMC CONTROL SCHEME

PROPOSED IN THIS ARTICLE AND FOR THE
FPI-SP-GS CONTROL SCHEME FROM [25]

saturation limit is reached around t = 8 h. However, because
of the saturation model discussed in Section III-D6, the control
loop quickly responds to the demand decrease and does not
introduce any noticeable windup effect. Also note that, in both
scenarios, the magnitude of high frequency oscillations of
the valve closure α remains almost constant throughout the
entire simulation and across very different working conditions.
This highlights the benefits of the additional gain scheduling
policy discussed in Section III-D4. For whole-day simulations,
a quantitative assessment of the performances of the control
scheme is also given in this article, by means of the fol-
lowing metrics (defined for discrete-time signals, with k the
discrete-time instant).

1) (1/Ktot)
∑Ktot

k=1 |h(k) − hsp| [m]. The regulation error,
accounting for the proximity of the measured pressure
to the set point.

2)
∑Ktot

k=1 |α(k) − α(k − 1)| [−]. The control effort,
accounting for energy consumption and wear of actu-
ators.

All signals are sampled with a 1-s sampling time; for whole-
day simulations, then Ktot = 86400. The values reported
in Table I are quite similar for both demand scenarios and
are aligned with the state-of-the art results in the literature
(see [25], [47]), which, however, do not provide rigorous
guarantees in terms of LPV stability. This further stresses the
effectiveness and reliability of the approach proposed in this
article.

As already discussed in this article, one of the main advan-
tages of the proposed control scheme is its ability to face
arbitrarily fast changes in the scheduling parameter. Specifi-
cally, as the flow Q appears in the scheduling parameter, this
issue can occur in case of pipe bursts or fire hydrant operations.
Four simulations involving fire hydrant operations are then car-
ried out in order to assess the reliability of the control scheme
under these circumstances. In particular, Fig. 13(e) and (g)
shows the results of fire hydrant operations at nodes 3 and 13,
respectively, for demand pattern A. Fig. 13(f) and (h) shows
the results of fire hydrant operations at nodes 3 and 13,
respectively, for demand pattern B. In all cases, fire hydrants

P(s)=−0.001812
(s+0.02091)(s2

+0.05448s+0.02347)(s2
+ 0.0619s + 0.05856)(s2

− 0.4878s + 1.625)

(s2+0.07914s+0.01334)(s2+0.05366s+0.03801)(s2+0.05476s+0.07299)(s2+0.07267s+0.3812)
e−19s

(36)
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Fig. 13. Closed-loop simulations. Top: pressure head at node 1 h1(t) (blue solid line) and pressure set point hsp (red dashed line). Middle: flow at the valve site
Q(t) (red solid line) and low-pass-filtered flow at the valve site Qlp(t) (green dashed line). Bottom: valve closure α(t) (black solid line) and low-pass-filtered
valve closure αlp(t) (cyan dashed line). (a) Whole day, demand pattern A. (b) Whole day, demand pattern B. (c) Detail of whole-day simulation, demand
pattern A. (d) Detail of whole-day simulation, demand pattern B. (e) Hydrant opening at node 3, demand pattern A. (f) Hydrant opening at node 3, demand
pattern B. (g) Hydrant opening at node 13, demand pattern A. (h) Hydrant opening at node 13, demand pattern B.
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remain open for about 1600 s, from t = 0.83 h to t = 1.27 h.
In all four cases, pressure is promptly regulated to the set
point within few minutes from the fire hydrant opening or
closure, with negligible overshoot in the response (recall
that the usual sources of disturbance are always active). The
dynamic response is consistent with the expected one, based
on the loop function design discussed earlier in this section.
Interestingly, the sudden variation in both flow at the valve site
and valve closure results in low-pass filter reinitialization [see
Fig. 13(e), (f), and (h)] due to (43) and (44). On the contrary,
the stability-preserving reinitialization was never triggered in
this simulations.

C. Comparison With the State of the Art

As discussed earlier in this article, several gain-scheduled
control schemes are available in the literature of pressure RTC
in WDNs (e.g., [21], [25], [35]). However, none of them
rigorously considers the issue of closed-loop stability for any
admissible time history of the scheduling parameters. This
is a fundamental step toward the implementation of pressure
RTC schemes in real WDNs. Loss of stability may trigger
wide pressure oscillations that can stress and possibly damage
the infrastructure and disrupt the service to end users [19],
[22]. The control scheme proposed in this work provides
stability guarantees, while retaining the advantages of [25],
i.e., a straightforward design of the nominal regulator, and
simple gain-scheduling policies. A comparison with the results
achieved by the filtered proportional-integral with smith pre-
dictor and gain scheduling (FPI-SP-gs) control scheme from
[25] highlights that the novel control scheme can result in
similar regulatory performances, while guaranteeing closed-
loop stability. To ensure a meaningful comparison, simulations
are carried out by requiring the same nominal loop functions
and using the same gain-scheduling policies. The results of the
FPI-SP-gs control scheme are reported in Table I. A compari-
son with the results achieved by the LPV IMC scheme stresses
that the performances are almost identical for demand profile
A, as expected from the same design of the loop functions
and similar scheduling policies. With demand profile B, the
performances of the two control schemes are still similar, but
not identical. Further investigations highlights that the main
differences occur while the control action is saturating. This
is consistent with a different handling of saturation in the two
schemes.

V. DISCUSSION

The closed-loop simulations presented in the previous
section highlight the effectiveness of the RTC scheme pro-
posed in this work and support its implementation on a real
plant. Note that the definition of the nominal WP, as well as
the identification of the LPV process model, can be both per-
formed directly on the real WDN with no need for an accurate
hydraulic model, by following the guidelines discussed in [42].
In this case, the knowledge of average users’ demand would
not even be required.

Moreover, as previously introduced, the proposed control
scheme enables online tuning of the YK parameter Q(s), with

no risk for the stability of the control loop. This would enable
a safe application of reinforcement learning methodologies
for the design of the controller. In fact, it is usually hard
to directly relate relevant features of the loop functions and
in situ performance metrics, as the dynamics of the main
disturbances affecting the plant (i.e., users’ demands) are
difficult to model, especially at a fine timescale. For these
reasons, Galuppini et al. [47] proposed an alternative approach
for the design of the controller, based on biobjective opti-
mization. In the proposed formulation, the cost functions to
be minimized/maximized encode the conflicting requirements
of control performances (e.g., closed-loop settling time and
process disturbance rejection) and moderation of the control
action/rejection of measurement noise/robustness to model
uncertainties. An integral action is still included in the con-
trolled to ensure robust static performances. This approach
provides a Pareto front of tunings to be tested on the real
plant and evaluated according to the desired performance
metrics. The possibility of changing the controller parame-
ters online, without compromising the stability of the closed
loop, represents an interesting feature of this work, which
well complements the biobjective optimization approach, as it
enables an automated choice of the “best” tuning over the
available candidates forming the Pareto front. Therefore, the
development of a fully automated controller design procedure
represents an interesting research direction. Another possible
extension of this work could focus on the identification of a
full LPV model from experimental data. In fact, while this
article only considers a static parametrization of the process
model, the introduction of parameter-dependent dynamics and
time delay may improve the predictive performances of the
model and, possibly, of the overall control scheme. Note that
the control scheme proposed in this article would not require
any modification, as long as the new process model is LPV
stable. Finally, run-to-run [48] or Bayesian optimization [49]
approaches could be leveraged to automate and optimize the
design parameters of the gain-scheduling policies as well as
the time constants of the low-pass filters.

VI. CONCLUSION

This article deals with RTC of service pressure in WDNs
and proposes a gain scheduling approach guaranteeing stability
of the closed-loop system for arbitrary variations of the
scheduling parameter. The proposed approach combines an
IMC scheme with gain scheduling, in order to handle an LPV
description of the WDN dynamics. The control scheme also
includes an SP, to compensate for time delay effects, as well as
models of the static nonlinearities affecting the control action,
to avoid windup issues. Finally, to improve the performances,
low-pass filtering of the scheduling parameter is also imple-
mented, and filter reinitialization policies are included in the
scheme to prevent loss of stability due to measured/filtered
scheduling parameter mismatch. A detailed pressure-driven,
unsteady flow model is used to simulate a real WDN under
different demand scenarios and assess the performances of the
proposed approach, which delivered satisfactory results even
in case of very fast variations of the scheduling parameter.
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APPENDIX

LPV Stability: Consider the following LPV system:

6(w(t))


ẋ(t) = A(w(t))x(t) + B(w(t))u(t)

z(t) = C(w(t))x(t)

y(t) = z(t − τ)

x0 = x(0), t ≥ 0

(45)
(46)
(47)
(48)

where A(w(t)), B(w(t)), and C(w(t)) are continuous
functions of the parameter w, which is supposed to
belong to a compact set W . Denote by 6′(w(t)) =

{A(w(t)), B(w(t)), C(w(t))} the state-space representation of
the delay-free part of the system.

Definition 1 [30]: System 6′(w(t)) is LPV stable, if the
system ẋ(t) = A(w(t))x(t) is asymptotically stable for any
function w : [0; +∞) →W .

Considering now the entire LPV system 6(w(t)), assume
that there is no external input, and let ν(t) be the norm (in
the space of the continuous vector functions x defined in the
interval [t − t∗, t]) defined by

ν(t) = sup
t−t∗≤σ≤t

||x(σ )||. (49)

Definition 2 [30]: System 6(w(t)) is LPV stable, if for all
functions w : R+

→W

||x(t)|| ≤ φ(ν(0), t) (50)

where φ(ν, t) is a continuous function strictly increasing with
respect to the first argument and strictly decreasing with
respect to the second argument and such that limt→∞ φ(ν, t) =

0, uniformly with respect to ν.
Proof of Theorem 1 [30]: With reference to Fig. 7, note

that the output of 2(w) = {AQ(w), BQ(w), CQ(w), DQ(w)}

coincides with the input u(t) of both blocks (system and
internal model) 5(w) = {AP(w), BP(w), CP(w)}. Then, the
equations describing the overall system in the absence of
external inputs are:

ẋ(t) = AP(w(t))x(t) + BP(w(t))u(t) (51)
z(t) = CP(w(t))x(t) (52)
˙x̂(t) = AP(w(t))x̂(t) + BP(w(t))u(t) (53)

ẑ(t) = CP(w(t))x̂(t) (54)

ẋQ(t) = AQ(w(t))xQ(t) + BQ(w(t))(w(t))v(t) (55)
u(t) = CQ(w(t))xQ(t) + DQ(w(t))v(t) (56)

v(t) = ẑ(t − τ) − z(t − τ). (57)

Consider now the auxiliary variable xe(t) = x̂(t)−x(t), whose
evolution is described by

ẋe(t) = AP(w(t))xe(t). (58)

Since 5(w) is LPV stable, then, in view of [30, Lemma
3.1], xe(t) → 0 from any initial condition as t → ∞, and
its norm is bounded from above by a continuous and strictly
decreasing function. Therefore, v(t) = CP(w(t − τ))xe(t − τ)

also tends to zero as t → ∞.
Since the YK parameter 2(w) is LPV stable by assumption

and its input v(t) converges to zero, then also its state xQ(t)

tends to zero as t → ∞, and its norm is bounded from
above by a continuous and strictly decreasing function, again
in view of [30, Lemma 3.1]. Consequently, the input u(t)
of both blocks 5(w), which coincides with the output of
2(w), tends to zero (and its norm is bounded from above
by a continuous and strictly decreasing function) and so
does the state x(t) of the LPV-stable plant. To conclude
the proof, it is enough to observe that, according to (58),
x̂(t) = x(t) + xe(t) → 0. Therefore, the system is LPV stable
in the sense of Definition 2.
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