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Optimization-Based Multipoint Trajectory Planning
Along Straight Lines for Tower Cranes

Mark Burkhardt , Andreas Gienger , and Oliver Sawodny , Senior Member, IEEE

Abstract— On common construction sites, it is often the case
that tower cranes must move heavy payloads along straight lines
either due to obstacles or it is the direct route to a target location.
In order to enable this motion for autonomous tower cranes,
the goal of this work is an offline trajectory planning algorithm
for the tower crane’s payload to follow multiple straight con-
nection lines of waypoints and compute smooth transitions at
the intersection of the connection lines. The considered tower
crane is a rigid tower crane with five degrees of freedom.
An optimal control problem (OCP) is formulated in order to
compute the trajectory for the transition between two waypoints
minimizing the transition time and weighted path error. The
smooth transitions between the connection lines are obtained by
solving the OCP for the next connection line utilizing the current
position as initial condition. The simulation results investigate the
time gain in comparison to a trajectory that precisely positions
the payload at each waypoint. The experimental validation with
a real large-scale tower crane verifies that the crane is able to
time-efficiently pass through an obstacle course.

Index Terms— Electromechanical systems, optimal control,
predictive control for nonlinear systems, trajectory planning.

I. INTRODUCTION

THE building industry represents the largest industry glob-
ally, but faces a challenge given by the growing need

of new housing, workplaces and infrastructure due to the
rapid urbanization and population growth. It is all the more
striking that the degree of automation of many construction
machines is low in comparison to, e.g., machines utilized in the
manufacturing sector. Tower cranes are crucial machines that
are responsible for the overall construction progress. Tower
cranes transport heavy payloads from a pick up location to
a target location. The automation of such transportation tasks
offers potential for increased flexibility and productivity.

One of the main control issues is to find a collision-free
trajectory of the payload’s coordinates path to the desired
target position. Moving a load along straight sections is
desirable in practice, as construction sites and constructed
buildings often only allow transports along narrow corridors.
In some cases it is desired to position the payload at the corner
points of the straight section, whereas in other cases it is
desired to continue directly without stopping. We consider the
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Fig. 1. Experimental tower crane Liebherr 154 EC-H Litronic 6, which is
utilized on common construction sites. ©IntCDC, University of Stuttgart.

trajectory generation problem that waypoints (representing the
end points of the straight sections) have been identified and
the payload is supposed to follow the straight connection lines
between them. The final waypoint is defined as operation point
at which the payload is stopped because the payload is either
mounted or dismounted. First, the path of the corresponding
trajectory needs to maintain a small discrepancy between the
straight connection lines of the waypoints while the trajectory
also needs to smooth the connections’ intersections in order
to avoid a braking process for the payload such that the
transition time is not unnecessarily prolonged. We assume that
the smoothed path is required to maintain a user-specified
distance to the intersection of the connection lines. Sec-
ond, maneuvering the transported payload yields load sway
motions that require time to manually damp and present a
danger. Thus, the tower crane’s sway dynamics and actuator
constraints need to be considered throughout the trajectory
generation. The tower crane shown in Fig. 1 serves as the
test bench for the experimental validation of the presented
results.

Cranes are classified as either overhead cranes or rotary
cranes. The majority of the literature focuses on the trajectory
planning for overhead cranes [1], [2], [3], or [4]. The optimiza-
tion problem proposed in [2] computes a trajectory for moving
the payload to a specified position with minimal transition time
in 2-D considering acceleration and sway angle constraints.
Similar to the solution presented in this brief, the optimization
variable is the Cartesian payload position and the constraints
are expressed with respect to the Cartesian payload position.
However, neither the generation of a trajectory describing the
motion in proximity to a path is solved nor the planning of time
efficient transitions between a sequence of waypoints is solved.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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Thus, the method presented in [2] is a good introduction to
the method presented in this brief.

The trajectory generation for tower cranes is barely
addressed in [5], [6], [7], [8], and [9]. The motion along
connection lines and the planning of time efficient transitions
between them while satisfying constraints are not considered.

A good overview on general trajectory planning algorithms
in robotics is given in [10] and [11]. A well-known method
that is often employed for multipoint trajectory generation are
B-splines, see e.g., [11] and [12]. Examples for a generation
of smooth trajectories between multiple waypoints are given
in [13], [14], and [15]. In the context of our trajectory
generation issue, B-splines can be used to obtain smooth
transitions between the connection lines. However, the optimal
time step during which the trajectory should switch to the
B-spline depicting the transition is not known. Although this
approach solves the trajectory generation issue discussed in
this brief, this work’s algorithm is more beneficial because
the beginning of the transition between connection lines is
computed inherently considering the tower crane dynamics and
desired requirements.

This work presents an optimization-based trajectory gen-
eration approach minimizing the path error and transition
time while considering sway angle, velocity, and acceleration
constraints. A smooth transition of the trajectory between the
connection lines is obtained by solving the corresponding
optimization problem for tracking the connection line between
the next pair of waypoints. The trajectory is planned in flat
coordinates. Introductory literature on flat systems is given
by [16], [17], and [18]. The improvement in efficiency of
solving dynamic optimization problems through a problem
formulation using flat coordinates is investigated in [19].

This work has three main contributions as follows.
1) The trajectory planning problem for a payload following

the straight connection line between two waypoints with
a tower crane.

2) A novel trajectory planning algorithm produces
time-efficient and smooth trajectories at the transition
between two straight connection lines approaching each
waypoint up to a user-defined minimum distance.

3) The application and experimental validation considering
an obstacle course for a large-scale tower crane.

The brief is structured as follows: Section II covers the
preliminaries. Section III introduces the optimal control prob-
lem (OCP) that computes the desired payload trajectory for
following the connection line between two waypoints. The
main result of this brief is presented in Section IV dealing
with the algorithm computing a smooth transition between the
connection lines. The exemplary trajectory for the transition
along three waypoints is discussed in Section V, followed by
a performance demonstration of the trajectory on a large-scale
experimental tower crane in Section VI. The brief is closed
by a summary and conclusion given in Section VII.

II. PROBLEM STATEMENT

This section introduces the underlying tower crane model
and the trajectory design objectives.

Fig. 2. Schematic drawing of the tower crane investigated throughout this
work. The degrees of freedom are highlighted in blue. The inertial system is
highlighted in green.

A. System Dynamics

The considered tower crane is a top-slewing tower crane
as shown in Fig. 2. It consists of a horizontal jib clamped
into the vertical tower. The jib and the tower are assumed to
be rigid bodies. The coordinate system K serves as inertial
system and is located above the tower crane cabin. The tower
crane has three electrical actuators. First, the slewing drive
rotates the entire jib on a slewing ring which yields the slewing
angle γ . Second, the trolley drive moves along the jib, and its
position in radial direction is xtr. The crane hook is attached
to the end of the hanging rope. The length of the crane rope
lr is changed by the third actuator namely the hoisting drive.
The payload is modeled as a point mass, which is attached
to the crane hook, whereas the hook mass is neglected due to
its relatively low weight. The rope behaves like a pendulum
leading to load sway during transport. The sway angles are
denoted by φx in the tangential direction (perpendicular to the
jib) and φy in radial direction. In total, the considered tower
crane has five degrees of freedom: three actuated degrees of
freedom, which are γ , xtr and lr, and two nonactuated degrees
of freedom, which are the sway angles φx and φy. The degrees
of freedom are addressed by q = [γ, xtr, lr, φx, φy]. The inputs
are the accelerations of the drive systems denoted by uγ =

γ̈ , utr = ẍ tr, and ur = l̈ r. The derivation of the dynamic
equations for the sway angles φ̈x and φ̈y of rigid tower cranes
is straightforward. The resulting equations of motion are given
by (3e) and (3f) in [20]. Introducing the state vector x = [q, q̇]

and the input vector u = [uγ , utr, ur], it is straightforward to
obtain the system in the state space representation

ẋ = f(x,u). (1)

Additionally, each driving system has velocity and acceleration
constraints. This implies the box constraints

γ̇min ≤ γ̇ ≤ γ̇max, γ̈min ≤ γ̈ ≤ γ̈max (2a)

ẋ tr,min ≤ ẋ tr ≤ ẋ tr,max, ẍ tr,min ≤ ẍ tr ≤ ẍ tr,max (2b)

l̇ r,min ≤ l̇ r ≤ l̇ r,max, l̈ r,min ≤ l̈ r ≤ l̈ r,max (2c)
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for the state and input vector. For comfort and safety issues,
constraints for the sway angles

φx,min ≤ φx ≤ φx,max, φy,min ≤ φy ≤ φy,max (3)

are also introduced. Throughout this work, the sway angle
constraints are chosen to φx,max = φy,max = −φx,min =

−φy,min = 2.5◦. Therefore, the sway angles will remain small,
and the rope’s bending in the lateral direction is neglected.

B. Problem Definition and Requirements

Given a set of Nwp waypoints

W =
{
w1, . . . ,wNwp

}
where each waypoint wi ∈ R3 describes a load position in
Cartesian coordinates within the coordinate system K shown
in Fig. 2 and wNwp is considered as operation point. The prob-
lem considered in this brief is to generate a reference trajectory
of the state vector xd(t) and a feed-forward control input
uFF(t) for a Two-Degree-of-Freedom control loop describing
the entire transition of waypoint w1 to operation point wNwp .
The waypoints can be defined such that offsets or deformations
of the tower crane’s jib, tower, or rope will be compensated.
For instance, a waypoint can be shifted upward in the vertical
direction by the amount of bending of the tower crane’s jib.
The requirements on the trajectory are as follows.

1) The trajectory needs to satisfy xd(t) ∈ C0 and ud ∈ C0,
i.e., it needs to be continuous.

2) The corresponding geometrical path of the payload
position needs to approximate the path obtained by
connecting two waypoints by a straight line.

3) The trajectory needs to satisfy the velocity and acceler-
ation constraints for the actuated degrees of freedom (2)
and the constraints of the sway angles (3) at any time.

4) During the transition to each waypoint, the geometrical
path of the payload trajectory must approach each way-
point wi at least at one time step ti by a user-defined
minimum distance dwp,i serving as upper bound, i.e.,

∃ti :
∣∣rpl,d(ti )− wi

∣∣ ≤ dwp,i (4)

where rpl,d(t) describes the Cartesian payload position
that follows from the state trajectory xd(t).

III. TRAJECTORY GENERATION FOR THE CONNECTION
LINE OF TWO WAYPOINTS

This section presents an OCP utilized for generating the
trajectories xd(t) and uFF(t) achieving a payload transport in
proximity to the straight connection line of two waypoints wi

and wi+1. To investigate the advantage of the OCP’s formu-
lation in flat coordinates over its formulation in original coor-
dinates, a simulation study with 173 randomized transitions
between waypoints has been carried out. The average compu-
tation time in flat coordinates (18 016 decision variables and
23 038 constraints for each OCP) was 67.78% (absolute values
42.87 s and 133.07 s) smaller than the average computation
time in original coordinates (16 014 decision variables and
21 034 constraints for each OCP) using an Intel Core i7-8650
1.9 GHz and 2.11 Ghz processor with 16 GB RAM, Windows
10, and MATLAB 2019b. Moreover, the median computa-
tion time and average deviation of the mean were given by

19.14 s and 36.79 s using the formulation in flat coordinates
compared to 143.48 s and 76.63 s using the formulation in
original coordinates. In fact, employing flat coordinates yields
dynamics that are integrator chains. Furthermore, by planning
the Cartesian payload position directly, it is easier to include
the distance to the straight connection line in the cost function
of the OCP. A disadvantage is that the velocity, acceleration,
and sway angle constraints need to be formulated utilizing
Cartesian coordinates yielding nonlinear inequality constraints
instead of box constraints. However, the easier cost function
and system dynamics outweigh the nonlinear inequality con-
straints. Due to the computational benefits, the formulation in
flat coordinates is further investigated in the following.

The reformulation of the constraints using Cartesian coor-
dinates of the payload is given in Section III-A, whereas the
OCP solving the trajectory generation for the motion along a
connection line of two waypoints is presented in Section III-B.

A. Transformation of Constraints Exploiting Flatness

To include the velocity and acceleration constraints (2) and
sway angle constraints (3) into the OCP, a transformation is
required expressing the slewing, trolley, and hoisting velocity
and acceleration with the Cartesian coordinates of the payload.

We exploit flatness for computing this transformation.
A nonlinear system ẇ = f(w, v) with state vector w ∈ Rn

and input vector v ∈ Rm is called (differentially) flat, if there
are differentially independent outputs h(w, v, v̇, . . . , v(r)) =

[h1, . . . , hm], which can be used to parameterize the state and
input as

w = ψw
(
h1, ḣ1, . . . , h(β1−1)

1 , . . . , hm, ḣm, . . . , h(βm−1)
m

)
(5a)

v = ψv
(
h1, ḣ1, . . . , h(β1)

1 , . . . , hm, ḣm, . . . , h(βm )
m

)
(5b)

see [21]. Thereby, the derivative orders must satisfy
∑m

i=1 βi ≥

n. It is assumed that f is a smooth vector field. Note that h,
9w, and 9v are smooth functions. In this work, the flat system
is given by (1) and the corresponding output equation is

rpl =

 c(γ )xtr − lr
(
s(γ )s(φx)+ c(γ )c(φx)s(φy)

)
s(γ )xtr + lr

(
c(γ )s(φx)− s(γ )c(φx)s(φy)

)
−lrc(φx)c(φy)

 (6)

which describes the Cartesian position of the payload and is
not unique [22]. The abbreviations sin(·) = s(·) and cos(·) =

c(·) are employed in (6). Because the actuator velocities,
accelerations, and sway angles are part of the state and input
vector of the dynamics (1), the desired transformation equals
to the state and input parameterization.

The state and input parameterizations for a rigid tower crane
are derived in previous work [23], which is thus omitted here
due to spatial constraints. The state parameterization is denoted
by

x =

[
q
q̇

]
= 9x

(
rpl, ṙpl, r̈pl,

...r pl
)

(7)

and the input parameterization is denoted by

u =

 γ̈
(
rpl, . . . , r(4)pl

)
ẍ tr

(
rpl, . . . , r(4)pl

)
l̈ r
(
rpl, . . . , r(4)pl

)
 = 9u

(
rpl, . . . , r(4)pl

)
. (8)
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The payload position and its four derivatives in Cartesian
coordinates are defined as flat coordinates

z =

[
rpl, . . . , r(4)pl

]T
(9)

and the expressions for each variable

ξ ∈
{
γ, γ̇ , γ̈ , xtr, ẋ tr, ẍ tr, lr, l̇ r, l̈ r, φx, φ̇x, φy, φ̇y

}
with respect to the payload position and its derivatives are
denoted by ξ = 9ξ (z).

B. Optimal Control Problem for Trajectory Generation

The discretized version of the following OCP is solved at
an arbitrary time step t0 to obtain the trajectory for a motion
between two waypoints wi and wi+1:

min
tf,v(t)

tf +

∫ t0+tf

t0
ωdistd2(rpl,d(t),wi ,wi+1)+ vT(t)Rv(t)dt

(10a)

s.t. żd =


0 I3 0 0 0
0 0 I3 0 0
0 0 0 I3 0
0 0 0 0 I3
0 0 0 0 0

zd +


0
0
0
0
I3

v (10b)

zd(t0) = z0 (10c)

zd(tf) =
[
wi+1, 0, 0, 0, 0

]T (10d)

φx,min
φy,min
γ̇min
γ̈min

ẋ tr,min
ẍ tr,min
l̇ r,min
l̈ r,min


≤



9φx(zd)

9φy(zd)

9γ̇ (zd)

9γ̈ (zd)

9ẋ tr
(zd)

9ẍ tr
(zd)

9l̇r
(zd)

9l̈r
(zd)


≤



φx,max
φy,max
γ̇max
γ̈max

ẋ tr,max
ẍ tr,max
l̇ r,max
l̈ r,max


. (10e)

The optimization variables consist of a novel input v ∈ R3

and the transition time tf. The inputs v

v =

[
X (5)

pl Y (5)
pl Z (5)pl

]T
(11)

represent the fifth derivative of each position coordinate. The
cost (10a) consists of the free transition time tf, the deviation
of the payload position from the line containing wi and wi+1,
and a regularization term with R = I3. The scalar weight ωdist
serves as a tuning factor. The function

d =

∣∣(rpl,d(t)− wi
)
× ew

∣∣
|ew|

(12)

where ew = wi+1 − wi , computes the distance between the
position rpl,d(t) and the straight line containing the points wi

and wi+1. The cost (10a) includes the quadratic distance d2 to
avoid the occurrence of square roots of decision variables,
which otherwise leads to a significant increase of the compu-
tation time.

The corresponding discretized OCP is derived by introduc-
ing a fixed amount of computation intervals N , during which
the inputs are assumed to be piecewise constant. The choice
for N is crucial for the problem’s scalability. In total, there

are 1 + 3 × N + 15 × (N + 1) decision variables because we
consider tf, v ∈ R3 at N points, and zd ∈ R15 at N + 1 grid
points.

The solution of the OCP is denoted by v∗(t), t ∈ [t0, t∗

f ],
whereas the scalar optimal transition time is represented
through t∗

f . The OCP computes a solution satisfying the first
three requirements formulated in Section II-B. Because the
corresponding payload trajectory z∗

d(t), t ∈ [0, t∗

f ] is obtained
by integrating the discontinuous input v∗(t) with the integrator
chain dynamics (10b), it holds that rpl,d(t) ∈ C4. Conse-
quently, it follows that r(4)pl,d(t) ∈ C0 and thus it yields xd ∈

C1 and uFF ∈ C0 according to (7) and (8). The OCP is solved
for an arbitrary initial condition z0 denoted by (10c), whereas
the terminal constraint (10d) is chosen such that the payload
will be placed at waypoint wi+1. The velocity and acceleration
constraints of the actuated degrees of freedom as well as sway
angle constraints (2) are considered by reconstructing each
variable with its parameterization in (10e). By tuning ωdist
properly, the geometrical distance of the resulting trajectory
z∗

d(t) to the desired path becomes sufficiently small.
Note that the parameterizations introduced in (10e) contain

discontinuities at states, where lr = 0, xtr = 0, or φx, φy ≥ 90◦.
The discontinuities can be excluded through adding additional
constraints to (10) as it is done for the sway angles, which are
limited by (3).

The notation[
t∗

f , v∗(t |t0), z∗

d(t |t0)
]

= O(t0,wi ,wi+1, z0, ωdist), t ∈
[
t0, t∗

f

]
is introduced describing the solution variables and input
parameters. Therein, it holds that rpl,d(t |t0) = rpl,d(t + t0)
emphasizing that the trajectory resulted from the OCP solved
at the time step t0. The input parameters required for solving
the OCP (10) at a time step t0 are the waypoints wi and wi+1
defining the straight line that the trajectory should approach,
the initial condition z0, and the tuning parameter ωdist.

IV. TRAJECTORY GENERATION FOR MULTIPLE
CONNECTION LINES

In order to satisfy (4) for the transitions between connection
lines, the OCP (10) is employed multiple times in a novel
trajectory generation algorithm. The basic procedure for an
exemplary transition is explained in Section IV-A for the
transition between three waypoints w1, w2, and w3. The overall
algorithm and its properties is given in Section IV-B.

A. Transition Between Two Connection Lines

In a first step, the OCP[curt∗

f ,
curv∗(·|t0), curz∗

d(·|t0)
]

= Ocur(t0,w1,w2, z0, ·)

is solved for the starting time step t0 and the initial state z0,
where (·) are placeholders for variables that are not relevant.
The resulting trajectory describes the motion to the currently
targeted waypoint, which is w2. The values curz∗

d(t j |t0) with
t j ∈ [t0, curt∗

f ] on this trajectory can be utilized as initial
condition for the OCP[pret∗

f ,
prev∗(·|t0), prez∗

d(·|t j )
]

= Opre
(
t j ,w2,w3,

curz∗

d(t j |t0), ·
)
.
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Fig. 3. Illustration of the introduced algorithm for generating a payload
trajectory curz∗

d between two connection lines of three waypoints.

Note that Opre computes the trajectory for the motion along
the next connection line between w2 and w3 with an initial
condition on the trajectory for w1 to w2. Thus, prez∗

d implicitly
contains the transition between the connection lines w1 to
w2 and w2 to w3. The trajectory prez∗

d(·|t j ) is considered as
prediction, because it is discarded for all t j as long as

∃t ĵ : ∃τ :
∣∣prez∗

d(τ |t ĵ )− [w2, 0, . . . , 0]
T
∣∣ ≤ dwp,2 (13)

is not satisfied.
Assuming that the predicted trajectory prez∗

d(·|t ĵ ) satis-
fies (13) at the time step t ĵ , the remainder of the currently
planned trajectory curz∗

d(t |t0), t ∈ [t ĵ ,
curt∗

f ] is replaced with
prez∗

d(t |t ĵ ), t ∈ [t ĵ ,
pret∗

f ]. The currently planned trajectory is
thus extended to

curz∗

d(t |t0) :=

{
curz∗

d(t |t0) t ∈ [t0, t ĵ )
prez∗

d(t |t ĵ ) t ∈
[
t ĵ ,

pret∗

f

]
.

(14)

Similarly it is defined that curt∗

f :=
pret∗

f and

curv∗(t |t0) :=

{
curv∗(t |t0) t ∈ [t0, t ĵ )
prev∗(t |t ĵ ) t ∈

[
t ĵ ,

pret∗

f

]
.

(15)

The procedure is illustrated in Fig. 3. The currently tracked tra-
jectory curz∗

d(·|t0), obtained through solvingOcur, is highlighted
in green. The first predicted trajectory prez∗

d(·|t j ), resulting
from Opre, is computed during time step t j . Because prez∗

d(·|t j )

neither intersects, or touches the purple circle with radius
dwp,2, there exists no time step where the geometrical distance
between the predicted trajectory and the second waypoint is
smaller than the desired distance dwp,2. Hence, the predicted
trajectory is discarded and the currently tracked trajectory
is not changed. The same holds for the next time step t j+1
with the predicted trajectory prez∗

d(·|t j+1). During the time
step t ĵ , the predicted trajectory prez∗

d(·|t ĵ ) intersects the purple
circle and thus (13) is satisfied. The corresponding predicted
trajectory is highlighted in red and replaces the remainder of
the green trajectory.

Algorithm 1 Trajectory Gen. For Multiple Connection Lines

B. Overall Algorithm

The whole process described in Section IV-A is repeated
until Opre computes the trajectory ending at the last waypoint
wNwp . Consequently, the current trajectory is extended one last
time yielding the overall trajectory z∗

d(t), v∗(t), t ∈ [t0, t∗

f ].
The first three entries of z∗

d(t) are denoted by r∗

pl,d(t). The
overall algorithm is the main result of this work and is
summarized as Algorithm 1. Utilizing Algorithm 1 yields a
trajectory curz∗

d(·|t0) in Cartesian coordinates. In order to obtain
the feed-forward control input uFF and state reference xd, the
parameterizations (7) and (8) are utilized.

Note that if the OCP is feasible, it is guaranteed to find a
solution satisfying (13) as long as dwp,i+1 > 0 holds. Due to
the terminal constraint of Ocur, it holds that

∃τ :
∣∣curz∗

d(τ |t0)− [wi+1, 0 . . . , 0]
T
∣∣ ≤ dwp,i+1. (16)

There are no issues with feasibility because the distance
between connection lines and trajectory is only weighted in the
cost. A disadvantage of only weighting this distance within the
cost is that there is no fixed upper bound for the geometrical
distance between trajectory and connection line except (13).

V. SIMULATION RESULTS

This section discusses two exemplary payload trajectories
resulting from the introduced OCP (10) and the method
of Section IV utilizing two different values for ωdist. The
simulation results are obtained utilizing the casadi-plugin [24]
in MATLAB 2019b. The optimization problem has been solved
with casadi.nlpsol and employing the solver ipopt. Depending
on the amount of time intervals N and the initial guess, the
computation time for solving the OCP (10) in MATLAB varies
roughly between 3 s (N = 100) and 82 s (N = 5000).
The OCPs solved in this section are computed using N =

1000 equidistant time intervals, which vary in length because
the transition time is a decision variable.

The two trajectories (colors yellow and blue) are
computed for the three waypoints w1 = [1.74,
11.72,−37]

T, w2 = [15.08,−16.69,−36.46]
T, and

w3 = [8.8304,−20.02,−36.63]
T. The coordinates are

not integer values, because this simulation setup is motivated
by recorded measurement data. The initial state of the payload
is chosen as z0 = [w1, 0, . . . , 0]

T. The desired minimum
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Fig. 4. Payload trajectory in the horizontal plane of a tower crane computed
with Algorithm 1. When generating the blue trajectory, the path tracking error
is weighted higher than when generating the yellow trajectory.

distance dwp,2 is chosen to 0.3 m and indicated by a purple
circle. Because it is unnecessary to predict trajectories
right at the start, Opre is only evaluated for positions in a
3 m radius around w2. The solution of Ocur is computed
with ωdist = 5 in both cases. However, the predictions are
computed utilizing ωdist,yellow = 0.02 and ωdist,blue = 0.1.
Thus, the squared geometrical distance d2 is more expensive
during the generation of the blue trajectory than during the
generation of the yellow one.

The simulated geometrical paths of the trajectories during
the transition between the connection lines are shown in
Fig. 4. Because the squared distance d2 is more weighted
for the blue lines, the geometrical path of the blue tra-
jectory directly approaches the connection line of w2 and
w3 accepting an overshoot. On the other hand, the yel-
low trajectory performs a smooth transition in the shape
of an arc, which is time efficient but yields larger squared
distances d2.

If ωdist is chosen too large, the transition looks like the blue
trajectory in Fig. 4 or may even contain loops. However, if ωdist
is chosen too small, a smooth and time-efficient transition
is computed but the path error during the movement along
the connection line is larger. The choice of ωdist depends on
the width of the transport corridors that are available at the
construction site. It is important to choose ωdist sufficiently
high such that the payload trajectory remains in the corridors.
If this is the case, the preferable choice is given by the lower
bound of all weights that yield maximum path errors remaining
in the width of the corridors. Then, the most efficient solu-
tion is obtained satisfying the geometrical constraints on the
construction site while minimizing the overall transition time.
The transition time t∗

f of the overall trajectory r∗

pl,d(t) and
maximum path error

emax = max
τ∈[0,t∗

f ]

{
min

{
d
(
r∗

pl,d(τ ),w1,w2
)
, d

(
r∗

pl,d(τ ),w2,w3
)}}
(17)

have been computed for multiple values

100 ωdist ∈ {2, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 10, 12.5, 15}. (18)

Fig. 5. Overall transition time t∗f and maximum path error emax obtained
through solving the prediction steps of the simulation scenario with different
values of the weight ωdist.

Fig. 6. Trajectory for the slewing angle γd of a tower crane computed with
Algorithm 1. The path tracking error is weighted higher during the generation
of the blue trajectory than during the generation of the yellow trajectory.

Fig. 5 shows, e.g., ωdist = 0.045 is the most efficient solution
if the maximum allowed path error is 12 cm.

The overall trajectories for the slewing angle and trolley
position are shown in Figs. 6 and 7. The trajectories of
both actuated degrees of freedom are continuous and satisfy
the respective constraints during every time step. Due to the
inefficient transition of the blue trajectory, the transition time
t∗

f,blue ≈ 86.8 s is longer than t∗

f,yellow ≈ 73.8 s. In comparison,
the transition time obtained for stopping at waypoint w2 and
moving the payload to w3 from steady state is t∗

f ≈ 81.1 s.
The gain of the efficient transition in this example is thus a
time save of 7.3 s, which is even larger for larger distances
dwp,2 and adds up for multiple transitions.

VI. APPLICATION TO AN EXPERIMENTAL TOWER CRANE

This section discusses the integration of the trajetory result-
ing from Algorithm 1 for a set of waypoints W to a large-scale
tower crane in Section VI-A as well as the corresponding
measurement results in Section VI-B. The waypoints do not
consider the elasticity of the crane.
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Fig. 7. Trajectory for the trolley position xtr,d of a tower crane computed
with the Algorithm 1. The path tracking error is weighted higher during the
generation of the blue trajectory than during the generation of the yellow
trajectory.

Fig. 8. Experimental obstacle course for the tower crane.

A. Experimental Setup

The considered experimental tower crane is a Lieb-
herr 154 EC-H Litronic 6 tower crane shown in Fig. 1, for
which a trajectory tracking controller was developed in [23].
The experimental tower crane has a hook height of 41 m and
a jib length of 60 m. The attached payload has a weight of
mpl = 1 t. The connection lines are marked through pylons
that are deployed next to the connection lines as shown in
Fig. 8. The waypoints W = {A, B,C, D, B, A} are shown in
Fig. 9. The offline computed trajectory and tracking controller
are implemented on a dSpace MicroAutoBox (MAB) II pro-
totyping system. The amount of time intervals is chosen to
N = 1000. The required computational time of the trajectory
is 55.85 s. The overall trajectory z∗

d includes nonequidistant
time steps. Thus, the trajectory is interpolated accordingly
before it is saved.

B. Measurement Results

The measurement results are obtained by moving the pay-
load to the waypoint A and playing the offline computed
trajectory. Fig. 9 shows the horizontal payload position of
the trajectory and the payload position reconstructed with the
estimated sway angles. During the transition from waypoint
A to D, the path error remains smaller than 40 cm until the

Fig. 9. Horizontal payload position trajectory (red) and real payload position
reconstructed with the sway angles of an observer (blue) during the trajectory
tracking with the experimental tower crane.

Fig. 10. State reference (red) and recorded states (blue) of the experiment.
The slewing angle and trolley position are measured by sensors, whereas the
sway angles φx and φy are estimated by an observer.

waypoint D is reached and the payload transitions smoothly
between the connection lines. However, the tracking controller
causes a loop during the transition at waypoint D and on the
way back at waypoint B. The overshoot caused at waypoint
D results from the tracking error of φx at t = 60 s and the
tracking error of φy at t = 80 s, whereas the overshoot at
waypoint B is caused by the error of φx at t = 110 s yielding
a global maximum for the payload position error of 0.75 m.
There are two major issues that cause these trajectory tracking
errors. First, the dynamics considered in the OCP (10) model
a rigid tower crane with a single pendulum. The experimental
tower crane is characterized by a double pendulum and the
elasticity of the tower crane’s steel structure has an impact on
the sway dynamics. Smaller tower cranes have less elasticity
and thus the corresponding tracking performance is better.
Second, the tracking controller on its own shows small path
errors as mentioned in [23]. Further experiments showed a
payload positioning accuracy of 0.5 m. The related scattering
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is also supported by disturbances such as wind acting on the
jib. Both reasons lead to a tracking error of the sway angles,
whereas the positions of the actuated degrees of freedom show
negligible tracking errors, which is shown in Fig. 10.

A video comparing the trajectory obtained by concatenating
the solution of the OCP (10) for each straight line and the tra-
jectory resulting from Algorithm 1 is available at https://www.
youtube.com/watch?v=VHkrDUoDKQU.

VII. CONCLUSION

This brief introduces an algorithm for generating a payload
position trajectory such that the payload follows straight
connection lines of a given set of waypoints and for computing
smooth transitions at the intersection of the connection lines.
The requirements on the payload position trajectory are that
it needs to be four times continuously differentiable, the
velocity and acceleration constraints on the tower crane’s
actuated degrees of freedom and sway angles need to be
satisfied, the geometrical path needs to be sufficiently close to
the straight connection lines between the waypoints, and the
transitions between the connection lines are smoothed such
that the distance between the payload position and a waypoint
falls below a user-defined minimum distance. The smoothed
transitions yield time efficiency because the payload is not
stopped and re-accelerated at each waypoint. The trajectory
between two waypoints is computed by solving an OCP for the
payload position in Cartesian coordinates. The novel algorithm
then utilizes the OCP for predicting trajectories to the next
waypoint while taking the values of the trajectory to the
currently targeted waypoint as initial conditions. Once the
predicted trajectory satisfies all requirements at a time step,
the predicted trajectory then becomes the currently planned
trajectory. The application to a real tower crane showed that
an obstacle course consisting of line segments is passed.

Room for improvement of the algorithm is given by chang-
ing or adding constraints to the OCP that bound the path error
between the payload position trajectory and the connection
line, which is not explicitly bounded yet. The performance of
large-scale tower cranes with elastic structure can be further
improved by considering elastic degrees of freedom in the
underlying dynamics. This yields a different flat output and
thus the state and input parameterizations deduced in the
preliminaries of this work do not hold anymore.

REFERENCES

[1] N. Sun, Y. Fang, Y. Zhang, and B. Ma, “A novel kinematic coupling-
based trajectory planning method for overhead cranes,” IEEE/ASME
Trans. Mechatronics, vol. 17, no. 1, pp. 166–173, Feb. 2012.

[2] H. Chen, Y. Fang, and N. Sun, “Optimal trajectory planning and tracking
control method for overhead cranes,” IET Control Theory Appl., vol. 10,
no. 6, pp. 692–699, Apr. 2016.

[3] Z. Wu and X. Xia, “Optimal motion planning for overhead cranes,” IET
Control Theory Appl., vol. 8, no. 17, pp. 1833–1842, Nov. 2014.

[4] H. Chen, Y. Fang, and N. Sun, “A swing constrained time-optimal trajec-
tory planning strategy for double pendulum crane systems,” Nonlinear
Dyn., vol. 89, no. 2, pp. 1513–1524, Jul. 2017.

[5] Z. Tian, L. Yu, H. Ouyang, and G. Zhang, “Swing suppression con-
trol in tower cranes with time-varying rope length using real-time
modified trajectory planning,” Autom. Construct., vol. 132, Dec. 2021,
Art. no. 103954.

[6] H. Ouyang, Z. Tian, L. Yu, and G. Zhang, “Motion planning approach
for payload swing reduction in tower cranes with double-pendulum
effect,” J. Franklin Inst., vol. 357, no. 13, pp. 8299–8320, Sep. 2020.

[7] G. Li, X. Ma, Z. Li, and Y. Li, “Time-polynomial-based optimal
trajectory planning for double-pendulum tower crane with full-state
constraints and obstacle avoidance,” IEEE/ASME Trans. Mechatronics,
vol. 28, no. 2, pp. 919–932, Apr. 2023.

[8] Z. Liu, N. Sun, Y. Wu, H. Chen, X. Liang, and Y. Fang, “Multi-objective
trajectory planning with state constraints for 5-DOF underactuated tower
crane systems,” in Advances in Applied Nonlinear Dynamics, Vibration
and Control, X. Jing, H. Ding, and J. Wang, Eds. Singapore: Springer,
2022, pp. 710–728.

[9] M. Thomas, J. Qiu, and O. Sawodny, “Trajectory sequence generation
and static obstacle avoidance for automatic positioning tasks with a
tower crane,” in Proc. 47th Annu. Conf. IEEE Ind. Electron. Soc.
(IECON), Oct. 2021, pp. 1–6.

[10] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, Path Plan-
ning and Trajectory Planning Algorithms: A General Overview. Cham,
Switzerland: Springer, 2015, pp. 3–27.

[11] L. Biagiotti and C. Melchiorri, Trajectory Planning for Automatic
Machines and Robots. Cham, Switzerland: Springer, 2008.

[12] M. Egerstedt and C. F. Martin, “Optimal trajectory planning and smooth-
ing splines,” Automatica, vol. 37, no. 7, pp. 1057–1064, Jul. 2001.

[13] W. Van Loock, G. Pipeleers, and J. Swevers, “B-spline parameterized
optimal motion trajectories for robotic systems with guaranteed con-
straint satisfaction,” Mech. Sci., vol. 6, no. 2, pp. 163–171, Sep. 2015.

[14] J. A. De Doná, F. Suryawan, M. M. Seron, and J. Lévine, A Flatness-
Based Iterative Method for Reference Trajectory Generation in Con-
strained (NMPC). Berlin, Germany: Springer, 2009, pp. 325–333.

[15] F. Stoican, I. Prodan, and D. Popescu, “Flat trajectory generation for
way-points relaxations and obstacle avoidance,” in Proc. 23rd Medit.
Conf. Control Autom. (MED), Jun. 2015, pp. 695–700.

[16] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “On differentially
flat nonlinear systems,” in Nonlinear Control Systems Design (IFAC
Symposia Series), M. Fliess, Ed. New York, NY, USA: Pergamon, 1993,
pp. 159–163.

[17] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of
non-linear systems: Introductory theory and examples,” Int. J. Control,
vol. 61, no. 6, pp. 1327–1361, Jun. 1995.

[18] H. Sira-Ramirez and S. K. Agrawal, Differentially Flat Systems.
Boca Raton, FL, USA: CRC Press, 2004.

[19] J. Oldenburg and W. Marquardt, “Flatness and higher order differential
model representations in dynamic optimization,” Comput. Chem. Eng.,
vol. 26, no. 3, pp. 385–400, Mar. 2002.

[20] M. Böck and A. Kugi, “Real-time nonlinear model predictive path-
following control of a laboratory tower crane,” IEEE Trans. Control
Syst. Technol., vol. 22, no. 4, pp. 1461–1473, Jul. 2014.

[21] G. G. Rigatos, Nonlinear Control and Filtering Using Differential Flat-
ness Approaches: Applications to Electromechanical Systems (Studies
in Systems, Decision and Control). Springer, 2015. [Online]. Available:
https://books.google.de/books?id=J3zMCQAAQBAJ

[22] K. L. Knierim, K. Krieger, and O. Sawodny, “Flatness based control of
a 3-DOF overhead crane with velocity controlled drives,” IFAC Proc.
Volumes, vol. 43, no. 18, pp. 363–368, 2010.

[23] F. Rauscher and O. Sawodny, “Modeling and control of tower cranes
with elastic structure,” IEEE Trans. Control Syst. Technol., vol. 29, no. 1,
pp. 64–79, Jan. 2021.

[24] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: A software framework for nonlinear optimization and opti-
mal control,” Math. Program. Comput., vol. 11, no. 1, pp. 1–36,
Mar. 2019.


