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Backflipping With Miniature Quadcopters by
Gaussian-Process-Based Control and Planning

Péter Antal™, Tamas Péni

Abstract—This article proposes two control methods for
performing a backflip maneuver with miniature quadcopters.
First, an existing feedforward control approach is improved by
finding the optimal sequence of motion primitives via Bayesian
optimization, using a surrogate Gaussian process (GP) model.
To evaluate the cost function, the flip maneuver is performed
repeatedly in a simulation environment. The second method is
based on closed-loop control and it consists of two main steps:
first, a novel robust, adaptive controller is designed to provide
reliable reference tracking even in case of model uncertainties.
The controller is constructed by augmenting the nominal model
of the drone with a GP that is trained using measurement data.
Second, an efficient trajectory planning algorithm is proposed,
which designs feasible trajectories for the flip maneuver using
only quadratic programming. The two approaches are analyzed
in simulations and in real experiments using Bitcraze Crazyflie
2.1 quadcopters.

Index Terms— Aerial robotics, Gaussian process (GP), nonlin-
ear control, robust control, trajectory planning.

I. INTRODUCTION

ITH the widespread use of quadcopters, increas-
Wing expectations toward these systems, such as fast
autonomous navigation in a cluttered environment, rapidly
changing wind conditions in built environments, and secu-
rity and surveillance tasks, require to perform complex, fast
maneuvers that push the drones to their physical limits [1].
In these cases, classical flight controllers designed for a
linearized dynamical model of the vehicle are no longer suffi-
cient, and more advanced control methods capable to handle
the entire operating domain are needed [2]. These algorithms
can be developed based on nonlinear control techniques or
machine learning approaches.

Execution of a backflip illustrates well such complex
maneuvers because it requires careful handling of the full
complex nonlinear behavior of the drone, and it is typically
a challenging task even for a human pilot. The complexity
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and speed of the maneuver are characterized by the fact that
it takes less than a second to complete during which the
vehicle is able to make a full turn around one of the horizontal
axes.

Because of its benchmark characteristics, various control
strategies have already been proposed to perform the flip
maneuver. In [3], energy-based control is applied to overcome
the uncontrollability of the quadcopter at singular config-
urations when following a circular or clothoidal reference
trajectory. In [4], a Lyapunov-stability based controller synthe-
sis is used to execute multiflip maneuvers with quadcopters.
Machine learning approaches are used in many cases, for
example, to imitate the maneuver performed by an expert
drone pilot with apprenticeship learning [5], or train a deep
neural network sensorimotor controller for executing acrobatic
maneuvers [6].

A simple learning strategy for adaptive feedforward control
is proposed in [7], based on the optimization of a parametric
motion primitive sequence. As backflipping pushes the actua-
tors of the quadcopter to their physical limits, the application
of near-maximal and minimal control inputs is required. This
approach builds on the theory of bang-bang control and first-
principle motion primitive design to perform and optimize
the flip maneuver. The method is easy to implement and
it is well-suited for generating a feasible motion sequence;
however, many trials on the real robot are necessary to
optimize the parameters of the motion and the resulting control
law is sensitive to parameter uncertainties and external distur-
bances. These effects have greater influence on the behavior
of miniature quadcopters compared with medium-sized and
large drones, and hence, the control robustness is even more
important.

The robust adaptive control method we propose' in this
article is based on geometric control, which is a nonlinear
approach for attitude feedback control of rigid bodies in 3-D
space. In [2], it is theoretically proven that geometric control is
able to stabilize the orientation of a quadcopter in the whole
operating domain based on differential geometric considera-
tions and Lyapunov stability. In [9], this geometric control is
augmented with robust terms to guarantee uniformly ultimately
bounded tracking errors in the presence of uncertainties in the
quadcopter dynamics. However, the control design requires

'In the conference paper [8], preliminary version of the algorithms pre-
sented in this article has been discussed. Compared with [8], the main
contributions of this article include the introduction of the Bayesian-
optimization-based feedforward method, the Gaussian process (GP)-based
model augmentation, and the derivation and proof of the robustness properties
of the feedback control algorithm.
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a priori knowledge of the magnitude of external disturbances
which can be challenging to foresee in real-world situations.
An adaptive augmentation of geometric control is proposed
in [10], where the adaptive terms compensate the effects of
uncertainties in the quadrotor dynamics, while the stability
of the closed-loop system is proven mathematically. Artificial
neural networks (ANNs) are used in [11] to develop an adap-
tive geometric control law that renders the quadcopter able
to perform complex maneuvers in wind fields. Although both
the adaptive algorithms can be implemented efficiently, they
do not provide an estimation of the uncertainty of the adaptive
terms. Furthermore, both the methods lack a systematic way
to determine the parametric structure of the adaptive terms,
which can be challenging without expert knowledge of the
unmodeled dynamics and external disturbances.

To overcome these challenges, the main contributions of our
present work are as follows.

Cl1 We improve the convergence and the training time
of the feedforward control design of [7] by applying
Bayesian optimization with a GP surrogate function,
making it possible to effectively apply the method in
real experiments.

C2 By GP-based augmentation of a nominal quadcopter
model, we achieve adaption to unknown model dynam-
ics and external disturbances together with quantification
of the remaining model uncertainty. A robust geometric
control scheme is designed that exploits the GP model
for improved robust performance compared with previ-
ous methods and has convergence guarantees.

C3 To execute the flip maneuver by the robust geometric
approach, we propose an optimization-based trajectory
planning method. The algorithm is based on quadratic
programming and it is computationally efficient.

C4 We compare the proposed methods in simulation and
experimentally in performing the backflip maneuver.

This article is structured as follows. First, a brief intro-

duction to GP regression is given in Section II, while in
Section III, the dynamic motion model of quadcopters is
presented. Then, the Bayesian-optimization-based improved
feedforward control strategy is described in Section IV, cor-
responding to C1. The GP-based robust geometric reference
tracking control scheme and the quadratic-programming-based
trajectory planning are presented in Section V, corresponding
to C2 and C3. Sections VI and VII give a detailed com-
parison of the two control approaches: first via simulations
and then in real-world experiments, providing C4. Finally
in Section VIII, conclusions on the proposed approaches are
drawn. A video presentation of our results is available at
https://youtu.be/Ed9jY1Zr95c.

II. GP REGRESSION

GPs are universal function approximators [12]. Due to their
flexibility, wide representation capability, and ability to express
uncertainty of the approximation, GPs have become popular in
robotics and control engineering [13], [14], [15], [16]. Other
supervised learning approaches, such as ANNs, are frequently
applied to compensate unmodeled dynamic effects [11], [17];

however, the uncertainty quantification of ANNs is complex
and unreliable. Basic statistical methods (e.g., Gamma tests)
are not useful for robust control, parameter uncertainty with
ellipsoidal regions is overly conservative, while both MCMC
and dropout methods together with Bayesian ANNs are com-
putationally overwhelming [18]. The main advantage of GPs
over ANN-based methods is that they provide co-estimation
of the nominal functional relationship together with its uncer-
tainty in a computationally efficient manner as shown in
many applications [12]. This makes them especially attractive
for developing adaptive robust control solutions. In terms
of real-time implementation, the evaluation of baseline GP
requires the entire training dataset that can be computationally
demanding; however, there are several methods that solve this
problem efficiently [19].

GP regression is used for estimating an unknown, possibly
nonlinear relationship fy : R” — R between the input x € R”
and noisy output observations y € R of the form

y = folx) +e€ (1)
where ¢ is an independent noise process with € ~ N(0, o2).
In fact, y and € are random variables, but for the sake
of simplicity, we will not use a different notation for their
sample realization. Consider that a set of observations Dy =
{xi, yi}{": , are available from (1). The core idea of GP-based
estimation of f is to consider that candidate estimates f
belong to a GP, seen as a prior distribution. Then, using Dy
and this prior, a predictive GP distribution of f is computed
that provides estimate of fj in terms of its mean and describes
uncertainty of this estimate by its variance.

In terms of definition, a GP GP : R" — R assigns to every
point x € R" a random variable GP(x) € R such that for
any finite set xi, ..., xy, the joint probability distribution of
GP(x1),...,GP(xy) is Gaussian. GPs are fully determined
by their mean m and covariance functions «, hence if f ~
GP(m, k)

m(x) = E{f(x)}
K(x, X) = E{(f(x) =m(x)(f(x) —m(x))}

then the joint Gaussian probability of GP(x1),..., GP(xy)
is N(M,,K.,) with M, = [m(x)),...,m(xy) ]’ and
[Kiclij = k(xi.x;), i,j € {1,...,N}. Both m and «,
where the latter is also called a kernel function, are often
parameterized in terms of hyper parameters 6 € R™. In fact,
taking f ~ GP(m, k) as the prior distribution in the estimation
process defines the prior knowledge about fy in terms of
the mean function m, while the choice of « determines the
function space in which an estimate of the function is searched
for. Parameterization of m and « in terms of 6 allows to
adjust the prior, i.e., these choices to the estimation problem
of fp using Dy. For the estimation of a smooth fy, a squared
exponential (SE) kernel for « is a common choice. The SE
kernel is characterized by

Kksg(x, X) = of exp(—%(x —HTA N (x = ;z)) )

where hyperparameters are the scaling oy, used for numerical
conditioning, and the symmetric matrix A, which determines
the smoothness of the candidate function class along each x;.



ANTAL et al.: BACKFLIPPING WITH MINIATURE QUADCOPTERS BY GP-BASED CONTROL AND PLANNING 5

Based on the given Dy and the prior f ~ GP(m, k)
p(Y|X,0) = N(My, Kix +021) 3)
describes the probability density function of the outputs ¥ =
[ ¥1,...,yn 17 seen as random variables conditioned on the
observed inputs X = [ xi,...,xy |7 and hyperparameter
values 6. To predict the value of the unknown function fy at
a test point x,, the following joint distribution

v M Kox + 021 K(xy)
f(x*) m(x,) |’ K);r(x*) K (X, Xy)

with [K,(x,)]; = «(x;,x,) holds based on the previous
considerations. Hence, the predictive distribution for f(x,),
based on the observed samples {y;}, in Dy, is the posteriori
p(f (x| Dy, x5) = N (iu(xy), o (xy)) characterized by

i) = mix,) + KT () (Kee + 020y) (Y= M) (4a)

0 () = k(, )= K (0 (K + 02Iy) 'Ki(x.). (4b)
The mean (4a) gives an approximation of fy(x,) while the
variance (4b) gives measure of the uncertainty of this approx-
imation. Computation of (4) requires only elementary matrix
operations, and therefore, it is computationally efficient.

To tune the hyperparameters 6 and o associated with the
prior, a common method is to maximize the likelihood, i.e.,
probability, of the observations of Y for (3) marginalized with
respect to 6 and o,

9*
[a*i| = arg%lgx log(p(Y|X, 0, 0¢)) (@)

where without loss of generality, the log of the pdf is taken
to simplify the optimization problem and

log(p(Y|X, 0, 0.))
1
= —E(YT(K;XI +02IN)Y

+ logdet(K ! + o2ly) + Nlog(2m)).  (6)
For alternative methods, see [12]. Here, we considered scalar-
valued GPs; however, GP regression can be applied under
multidimensional outputs by estimating a predictive distribu-
tion of each output dimension independently.

III. QUADCOPTER DYNAMICS

In this section, we introduce the basic principles of quad-
copter modeling based on [20] and develop a nominal quad-
copter model.

As the first step, three frames are introduced: the inertial
frame F' in the north—east—down (NED) coordinates, the
vehicle frame FV fixed to the vehicle, but aligned with Fi
and the body frame F° aligned with the body of the vehicle.
The transformation from F' to FV is only a translation, while
F¥ and F® are connected by rotation only [21]. In Fig. 1, the
three frames are displayed with the Euler angles characterizing
the pose in the body frame (roll: ¢, pitch: 6, yaw: i) together
with the direction of the rotor thrusts and angular velocities.
Based on these frames, the dynamic model is formulated as

(72)
(7b)
(7¢)

mi = mges — FRyes
PV ~b
Ry = Ryw

Jo® =1 —® x JPw®

Fig. 1. Inertial F', vehicle FV, and body F° frames describing the
geometric relationships of the vehicle and the environment. Thrusts and
angular velocities of the rotors are also illustrated.

where » = [ x y z ]" is the position of the quadcopter
in the inertial frame F', e3 is the unit vector of the z-
axis in F°, m is the mass of the drone, F is the collective
thrust of the propellers, and g is the gravitational acceleration.
Ry () € SO(3) is the rotation matrix from F® to FV, where
SO(3) denotes the 3-D special orthogonal group, also called
the rotation group. Furthermore, w® is the angular velocity
of the vehicle in the body frame, J b is the inertia matrix of
the body of the vehicle, and 7 =[ 1, 7y T, 1T is the vector
of torques produced by the propellers. The notation * stands
for the projection: R? — SO(3) ensuring that £y = x x
y for all x,y € R?® where x corresponds to the vector
product. To simplify the notation, the coordinate frames are
not indicated in the sequel, i.e., R=R},J = JP w = wb.
The dynamic model has four inputs, the collective thrust F,
and the torques around the three axes of the body frame 7.
Assuming that the quadcopter configuration is symmetric and
the torque generated by each propeller is proportional to the
rotor thrust 7;, these inputs can be calculated as follows:

11

Fl | —t—1 1 ||n

|:r]_ Lo—l -1 || 7 ®
¢t lln

where [ is the distance of two motors along the x-axis, b is the
drag constant, and ¢ is the thrust constant. Furthermore, the
thrust generated by each motor is considered to be proportional
to the square of the corresponding angular velocity: 7; =
ca)i2 for i € {1,2,3,4}. In terms of input constraints, the
individual rotor thrusts are in the range 0 < 7; < Tpnax, Where
Tmax depends on the specific quadcopter design.

N RS

IV. FEEDFORWARD CONTROL BY BAYESIAN
OPTIMIZATION

A. Overview

The flip maneuver can be executed as a 360° rotation around
the y-axis of the body frame of the quadcopter, displayed
in Fig. 1. If the corresponding ideal actuation sequence of
the individual motors in terms of 7; is computed based
on the nominal quadcopter model to execute this maneuver,
then the actuation sequence can be implemented on the
real quadcopter in terms of feedforward control. However,
computation of such an actuation profile is difficult, due to:
1) the complexity of the involved optimization problem to
find a feasible motion trajectory under the given actuation
constraints and 2) due to unmodeled aerodynamical effects
that can significantly influence the system response.
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Y Y T,

Fig. 2. Two-dimensional vehicle frame, the pitch orientation and the forces
acting on the quadcopter during an ideal flip.

The feedforward control proposed in [7] solves the problem
above by tuning a fixed sequence of parameterized motion
primitives via experiments. However, the approximation of the
Jacobian matrix in the optimization loop requires many trials
on the real drone and careful selection of the measurement
data is needed to ensure the numerical convergence. We have
modified the original algorithm at several points to improve its
performance and adapt it to our specific design configuration.
First, we tune the parameters of the motion primitives in
simulation using a high-fidelity nonlinear model of the drone.
Second, the optimization is solved by a Bayesian optimization
method, using GP surrogate function. The main advantages
of the proposed method are that Bayesian optimization is
numerically better conditioned and requires significantly less
function evaluations than the Jacobi approximation as the
evaluation points are systematically selected. This makes the
proposed method computationally more favorable.

Unlike in [7], we perform the backflip in a “x” config-
uration as two rotors can produce a larger torque than one.
The desired trajectory of the flip motion is within the xz
plane of the body frame (illustrated in Fig. 2), and therefore,
the equations of motion (7) can be simplified using that the
translation along the y-axis and the rotation around the x- and
z-axes, i.e., the roll ¢ and the yaw 1, are fixed to zero.

The simplified equations of motion are as follows:

mi = —(T\ + T, + T3 + T4) sin6 (9a)
mZ=—(Ty + T, + T3 + Ty) cos O + mg (%9b)
b =1(Ty + Ty — T, — Ty). (9¢)

The directions of the thrusts and pitch are illustrated in Fig. 2.

B. Parameterized Primitives of the Maneuver

Similar to the control strategy laid down in [7], the backflip
maneuver is divided into five main phases (motion primitives)
that are illustrated in Fig. 3 and defined as follows.

1) Accelerate: Gain elevation and kinetic energy with
near-maximal collective acceleration, while rotating
slowly to the negative direction of the pitch angle 6.

2) Start Rotation: Increase the angular velocity by applying
maximal differential thrust.

3) Coast: With low and uniform thrusts, hold the angular
velocity, and wait for the drone to rotate.

4) Stop Rotation: Use maximal differential thrust to
decrease the angular velocity and stop the rotation.

5) Recover: Apply near-maximal collective thrust to com-
pensate gravity, and try to get back to hover mode.

Each of the five phases has three parameters, the collective
acceleration U;, duration #;, and angular acceleration éi, result-

ing in 15 parameters altogether. However, based on [7], the
number of parameters can be reduced by applying bang-bang-
type control on a restricted control envelope. This means that
the control actions U; and §i are either zero or near-maximal
during all the phases. As a result, only the following five
independent parameters remain: n = [U1 t t3 Us t5]T € Ri.

These parameters are tuned to minimize the norm of the
final state error e € R, which is obtained by applying
the actuation profile in Fig. 3 in open loop and taking the
difference between the final and initial states. Formally, the
optimization problem can be written as follows:

lle(m 2

min
neR3

s.t.e(m) = [ x(t) 2t % (1) 2(r0) O(1r) 17

x(to) = z(to) = X(to) = 2(10) =0

Unin Ui < Unax, 1 €{1,5}
jefl,3,5} (10)
where 7y and # are the initial and final time instants of the

maneuver, respectively, and the bounds Upnin, Umaxs fmins fmax
are determined from the physical limitations of the drone.

Imin = Z‘j =< Tmax.,

C. Bayesian Parameter Optimization

In [7], the numerical optimization of 7 is based on iterative
optimization, using an approximate Jacobian matrix of the
final state error with respect to the parameter vector. However,
the numerical gradient approximation has vast computational
cost, because the whole maneuver needs to be simulated in
every approximation step and it suffers from convergence
problems. Here, as our first contribution, we apply a Bayesian
optimization approach to find the global optimum of (10). This
approach does not require the calculation of derivatives and it
is suitable for global optimization of cost functions that are
expensive to evaluate; see [22], [23]. To apply this approach,
the optimization problem (10) is written as

max f(x) (11

where n = x € R”" is the n = 5 dimensional vector
of optimization variables, X is the feasible parameter set
(bounded interval of the search space for the parameters 1),
and f is the objective function, i.e., f(x) = —|le(n = x)||».
The core concept of Bayesian optimization is to evaluate the
unknown objective function at limited number of points, giving
Dy ={yi = f(x), x[}f"zl, fit a surrogate model based on GP
regression on the data, and optimize this surrogate model of the
original objective function [12]. The optimization is performed
iteratively, where in each step the next evaluation point is
determined by minimizing a so-called acquisition function, the
objective function is evaluated at this point, and the surrogate
model is updated. The optimization stops if the minimum is
reached with high confidence or the iteration reaches a certain
number of evaluations.

The acquisition function blends the approximated objective
(the mean of the GP) and the approximation uncertainty (the
variance of the GP) in a scalar-valued function that can be
optimized by standard gradient-based procedure. A common
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Fig. 3.
primitives.

Flip motion described in terms of five parameterized motion

acquisition function is expected improvement, defined as fol-
lows. After f is evaluated in N points, giving the observation
dataset Dy, a GP predictive distribution f N~ GP(un,opn) is
obtained with respect to Dy. Let f + be the value of the best
sample so far and x,; = arg max,cx, 1Y) (x) be the location
of that sample based on Xy = {x;}¥,, ice., £ = u™ ().
The next test point xy4; is chosen such that the expected
improvement predicted by the GP model is the best with
respect to x;

Ely (x) = E{L/n(x) = 3]} (12)
where |y] = max(y,0). The right-hand side of (12) has
an analytical form and the next test point is obtained via
Xy41 = argmax,ecx Ely(x), the point with highest expected
improvement. In the literature, there are other common acqui-
sition functions, e.g., upper confidence bound or knowledge
gradient [22]. Steps of the Bayesian optimization using a
GP surrogate model are summarized in Algorithm 1, based
on [22].

With the mathematical model of the quadcopter and a
suitable optimization algorithm, it is possible to simulate the
maneuver with different parameter sets, optimize the motion,
and implement it on the vehicle. For the implementation of the
flip maneuver, a stabilizing feedback controller is also required
to balance the quadcopter at the beginning and after the end of
the maneuver, for which we use the geometric control method
introduced in Section V.

V. GEOMETRIC TRACKING CONTROL WITH TRAJECTORY
PLANNING

The second considered approach for quadcopter backflip-
ping is based on closed-loop control. For this purpose, as our
second contribution, we propose a novel robust adaptive con-
troller to provide reliable reference tracking even in the case
of modeling uncertainties and external disturbances. The pro-
posed method is an extension of the geometric control law [9]
applicable for trajectory tracking of aggressive maneuvers.
Furthermore, we also introduce a novel optimization-based
trajectory planning method for this geometric approach,
which is essential for finding an efficient motion path for
backflipping.

A. Robust Adaptive Geometric Control by GPs

The proposed robust nonlinear geometric tracking control
is based on the extension of the control law introduced in [9].
The control method is able to track a reference position rq(t) =

Algorithm 1 High-Level Steps of Bayesian Optimization
f is evaluted at N > 0 initial points, providing Dy
Set a GP prior on f in terms of f~ GP(m, k)
while N < N,,.x do
Determine fn ~ GP(uy,on) via (4) and (5) w.r.t. Dy
Let xn11 = arg max,ex Ely(2),
Observe yni1 = f(zn+1)
Dnt1 =Dy U{yns1,2N4+1}
N+ N+1
end while
return z, = arg max,ey uN)(2)

[ xa(?) ya(?) za(t) 17 and a reference attitude Rq(z) € SO(3),
represented by rotation matrices. To synthesize the control law,
we use (7), describing the quadcopter dynamics, and augment
it by an additive state-dependent disturbance

mi = mge3 — FResz + Ai(x) (13a)
Jo=1—wx Jo+ Ar(x) (13b)

where A.(x), Ar(x) € R® comprise the model errors and
uncertainties associated with the quadcopter dynamics, which
depend on the state vector x = [ 7' 7' g w' ]T. The attitude
quaternion ¢ is computed directly from R.

For controlling the flight dynamics in (13), we propose
to use the control law in [9] augmented by the adaptive
state-dependent terms 7;, nr to cope with A; and Ag

F Z(_krer - kvev —mges + m;:d — N + l’Lr)TRe3

T =—krer — kqgeq+w x Jw
— J(QR"R4Qq — RTR4) —r +ur  (140)
where k;, ky, kg, k, € R are the controller gains and
e=r—rq, = %(RIR—RTRd)V (15a)
ey=F—Fq,  e,=w— R Rywy (15b)

are error terms with ry, R4, and wq corresponding to the
position, orientation, and angular velocity references, tr(-) is
the trace operator, and the vee operator (-)¥ : SO(3) — R3 is
the inverse of the hat operator (). The attitude tracking error
er is interpreted as the gradient of the attitude error function
characterized by [2]

W(R, Ry) = %tr(l — R{R). (16)

Furthermore, the angular velocity error term satisfies the
equation W = ege,.
We identify the external disturbances from noisy observa-
tions using GPs, more specifically in the form
Ar = GPi(x) ~ N(m:(x), Ze(x)) (17a)
Ar = GPr(x) ~ N(r (1), Zr(1))- (17b)
The mean of GP is then directly used in (14) to compensate the
effect of A;(x), Ar(x). The uncertainty of the approximations,
characterized by the covariances X; and Xy, is handled by
introducing the additional terms . and wr that make the
controller robust to this uncertainty. To define these terms,
we assume that the GPs are trained until the true A;(x), Ar(x)
are inside the 95% confidence interval. We can now define u,
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and pg similar to [9], as

i 81 2eplesll” o et Sy
= — B = J—
S el e tom
Srea -1
MRZ_W’ ea=eq+cJ er (18)
RII€A R

where c1, ¢3, €, €r, T are positive constants, 7 > 2, §;, ér are
the uncertainty bounds, and |-|| is the Euclidean vector norm.
However, instead of estimating §;, 6r as in [9], we use the
uncertainty of the corresponding trained GP. We calculate the
standard deviation of a GP at an evaluation point as the norm
of the square root of the covariance matrix (sphere bounding
the ellipsoidal level set)

o) = 1Ll = VIE N2 LL =% (19)
or(x) = ILr ()2 = VIZR() ]2,  LrLg = Zx  (19b)

where ||-||, is the 2,2 induced norm (also called the spectral
norm) of a matrix which is equal to its largest singular value.
We define the uncertainty bounds using the 95% confidence
interval of the normal distribution, namely,

8:(x) = 20v(1),  Sr(x) = 20r(1)- (20
From the confidence interval, we calculate an ultimate bound
for the difference between the disturbances and the adaptive
terms over the operating domain as follows:

8, = max8,(x), g = maxdg(x). 1)
X X

Now we can show for the considered uncertainty bound (21)
that the following stability guarantee holds true.

Theorem 1: Consider that the control force F and torque
7 defined by (14) are applied on the uncertain system (13).
Given any V¥ max, €r,, > 0 and initial conditions that satisfy

V(R(0), Ra(0)) < ¥imax <1 (22a)
lec(O)Il < e, (22b)

then there exists a controller (in terms of the choice of
parameters k;, ky, kr, ko, C1, C2, €, €r, T) such that all the
error terms in (15) are uniformly ultimately bounded.

Proof: Throughout the proof, we adapt the steps of
Proposition 3 in [9] to the GP-based uncertainty bounds. First,
we derive the dynamics of the rotational and translational
tracking error and construct Lyapunov functions for them.

Based on (13), (14), and (15), the error dynamics can be
expressed in the following form:

meé, = mge; — mrq — deeg—X + A;
= _krer - kvev_X + Ar — N+ U (23&)
X = #((@3T R] Re3)Res — Ryes) (23b)
e; Ry Res
Jéo=T+Agr— o x Jo+ J(@R" Rywg — R Rycq)
= —krer — ke, + AR — R + UR. (23¢)

Similar to [9], consider the following Lyapunov function
candidates:
1 2, 1 2 T
V) = Ekr”er” + Em”ev” +cre. ey (24a)
1
V, = EeIJew + kr W (R, Rq) + c2eg €. (24b)

First, let us focus on V,. For the attitude error function W, the
lower and upper bounds can be given in terms of the attitude

error eg as follows:

1 2 2
E”é’R” < W(R, Ry) = llerl”. (25)

1
T 2- wl,max
The detailed derivation of these bounds can be found in [24].
Note that (25) implies that W is positive definite and decrescent
for all + € R,. Using (25), the following upper bound can be
derived for the time derivative of V;:

V, < —2, Waza + €A (Ag — nr + UR)

lex 2R PR g
o= e ®OR, Wy=| n 26
: [uewn} R Y

where A\, AM denote the smallest and largest eigenvalues of
the inertia matrix J, respectively. If the controller parameters
are chosen such that W, is positive definite, then zzT Wyz, is a
positive definite function. Now we examine the second term
on the right-hand side of (26) and construct an upper bound for
this term as well. First, note that || Ax — nr|| < dg holds under
the assumption that A, Ar are inside the 95% confidence
interval of the GP distribution. Using this inequality and the
definition of the robust control law (18), the following upper
bound can be obtained:

en (AR — 1R + 1R) < Srlleall — M
A - Srlleall + er
8
Rlleall @ < e 27

Srlleall + er
where € is chosen to be a sufficiently small positive constant,
and therefore,

V< —2] Wazs + . (28)
The right-hand side of (28) is a shifted negative definite func-
tion, and hence, the tracking errors eg and e, are uniformly
ultimately bounded.
Consider now Lyapunov function candidate V. Its time
derivative can be given as follows:

. ik crky
V1= —(ky — cDlled? = el — e e,
m m
T(€1
XAt (Sete). @)

Similar to the case of )%, the first three terms can be made
negative definite by suitably choosing the parameters of the
controller. The last term can be divided into two parts: the
first one is e];r(Ar —n + W), and e];rX is the second. Using

(21) and (18), an upper bound can be derived for the first term
5r1+2 ”eB ||'L'+2

T
eg (Ar — 1 + pr) < Sllesll —
B T r r r 8rz+1||eB”T+1 +6r1:+1

Siles| ce G0

— T+l

S el + & T
where similar to eg, € is also a sufficiently small positive
constant, both typically in the order of magnitude of 10~*—
102, To obtain an upper bound for ej X, first we construct
an upper bound for X using (23b)

IXI < IAllll(e3 R{ Re3)Res — Raes]|
< (kllec| + kylleyll + B + 8,) [ (e5 R{ Res)Res — Ryes|
31)
where A = —k.e,—kyey—mge3+miq—n.~+u;, and we assume

that the reference trajectory rq has been designed such that
condition || — mge; + mig — n;|| < B holds for some B > 0.
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Using the following relation (see [9] for details)

|(e3 R{ Re3)Res — Rues|| < llerll = VW (2 — W)

= [\/wlmax(z - wl,max) £ ‘X] <1
(32)

the upper bound for X can be expressed as follows:
X1 < (kellerll + kvlley]l + B + e
By substituting (30) and (33) into (29), we obtain

. crk;
Vi < —(ky(1 —a) —c)lleyll* — ‘7(1 —a)lle?

ci
+ lerll{(B + 80 (SHlerll + lleul]) + klerlley ]

c

(33)

ky
+ ;n A+ a)lledllleyll + €. (34)

According to the proof of Proposition 3 in [9], inequality
(34) implies that the tracking errors e, and e, are uniformly
ultimately bounded as well. This completes the proof. (]

Remark: The user-specified tolerable error bounds
W1, max> €r,,, 10 (22) are required to be realistic to achieve high
control performance in the allowed input range.

B. Trajectory Planning for the Flip Maneuver

To use the geometric tracking controller to perform the flip
maneuver, a suitable reference trajectory is needed. For this
purpose, we introduce an optimization-based trajectory design
method which is an additional contribution of this article.

Based on the controller structure (14), first an attitude refer-
ence trajectory Ry is constructed and then it is completed with
a position reference ry. Similar to the feedforward approach,
the objective for trajectory planning is that the quadcopter
should arrive as close to the starting point as possible, while
keeping the control inputs within the allowed range during the
maneuver.

The attitude reference is specified in unit quaternions: gq =
[ 940 941 942 943 17, where qa,0 is the scalar part of the
quaternion, and g4 corresponds to the pitch angle, as g4 =
qa3 = 0, because both the roll and yaw angles are zero during
the flip. Using that g4 is a unit quaternion, we can express the
third element of it as ga» = (1 — g3,)"/? and hence it is
sufficient to design a trajectory only for gq 9. A 360° rotation
around the y-axis means that the scalar part of the attitude
quaternion goes from 1 to —1. In the trajectory design, it is
important to stay within the gq0(f) € [—1, 1] range, because
only unit quaternions describe rotation. For this purpose, the
smooth sigmoid function

2

1 4+ e (%)

is chosen to describe the scalar part of the reference attitude,
where the parameters are the horizontal scaling of the sigmoid
curve v, and the execution time #,,. The attitude quaternion
reference trajectory is displayed in Fig. 4. Assuming that
¢ = ¥ = 0 during the flip, the conversion to Euler angles
yields 6 = 2arccos(go.q), where 0(t) € [—m, w]. Hence, the
pitch angle goes smoothly from zero to m, jumps to —m, and
goes smoothly to zero. Besides rotation, the maneuver also
requires translational motion, because without proper lifting at

qao(t) = 1 35)

qao(t)
qaa(t)

qd( )

Fig. 4. Attitude quaternion reference trajectory for the backflip maneuver
with v, =35 1/s and #, = 0.7 s.

the beginning, the quadcopter would fall to the ground due to
gravity. The position reference is designed considering that the
rotational and translational equations of the dynamical model
are coupled. The translational motion of the flip maneuver is
within the xz plane, and therefore, y4(¢#) = 0. The other two
equations of the translational dynamics in (7a) are

(36a)
(36b)
where R; ; denotes the (7, j)th entry of the rotation matrix R.
However, assuming that the attitude rapidly converges to the

reference, we can substitute the reference rotation matrix in
(36), resulting in the translational state-space representation

mx = —FR1’3

mZ =—FR33+mg

{=AC+ Bu (37)
x 0100 0
RE; 10000 1| Rq1s
5_2’ A=10001] B‘Z 0
Z 0000 Ri33

where ¢ is the reduced state vector capturing the translational
motion, and Ry;; are the corresponding elements of the
reference rotation matrix Ry (converted from the reference
quaternion ¢g4). As the motion equations are decoupled, the
effect of gravity can be added to z which is denoted by Z
(modified state) in the equation. Note that (37) is a linear
time-varying (LTV) state-space representation with the thrust
force F = u as the only control input.

By discretizing (37) using complete, zero-order hold dis-
cretization with discretization step size Ty > 0

St = Aalk + Baruy

17,00 %Rd.l,S(k)
0100 Ts| Rai13k)

Ag = s Bar=— . (38)
8 8 (1) s m | 3 Ras3(k)
Rq33(k)

where k € Z denotes the discrete time, i.e., {; expresses
¢ (kTy), a quadratic programming problem can be formulated
over a finite horizon, similar to model predictive control,
to find a motion trajectory for executing the flip. The input
of the model is the collective thrust of the propellers, u; =
Fy. For a fixed duration of the maneuver with N discrete
time steps, the following quadratic optimization problem is
formulated:

N
min [ (6~ ) Ol — ar) + ] Woa]

{”k}kzl k=1
S.t. Srp1 = Aalk + By ruk
e, € X, {uheg €U (39)
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TABLE I
CONSIDERED PHYSICAL PARAMETERS OF THE CRAZYFLIE 2.1
Mass m 28 g
Prop-to-prop length l 92 mm
Jxx 1.4-107° kgm?
Diagonal inertia Jyy 1.4-10° kgm?

Tz 2.17-10~° kgm?
Thrust coefficient c 2.88 - 1078 Ns2
Drag coefficient b 7.24 - 10~ 10 Nms?

where Q; € R¥** and W, € R are the weight matrices, o is
the initial state, and X,/ are constraint sets for the states
and the control input, respectively. The only objective of the
trajectory design is to minimize the final position error of the
quadcopter and keep the position within a specified range,
and therefore, the weight matrices are (W, Qx) = (0, 0) for
k=1,..., N—1, except for the weight of the final state that is
Oy = diag(1, 0, 1, 0) while Wy = 0. As all the other weights
are zero, it is only required to define a final state position
reference ¢4y, the components of which are zero except for
the effect of the gravity in Zq y = 0.5T>N?g.

We specify linear constraints for the states: x € [x_, x],
z € [z—,z4] to model the available space for the maneu-
ver, preventing collisions with other objects or walls.
We also define linear constraints for the control input,
namely,
Il 7l

] (40)

where t; is the vector of the three torques around the three
body axes, out of which 7, = 7, = 0 normally during
the flip, [ is the distance of the quadcopter center of mass
and the propellers projected to the xz plane, and Fp.x is the
maximal collective thrust of the rotors. The torque control
input t; is calculated from the reference attitude Ry based on
(14a) assuming that the rotation errors eg, e,, are zero.

The optimization problem in (39) can be solved easily using
an off-the-shelf QP solver, e.g., by quadprog in MATLAB.
Finally, to get a smooth trajectory, we fit cubic splines on the
discrete reference points {¢x },’CV=0 obtained in (39).

[l 7l
TfukszSFmax_

VI. SIMULATION STUDY
A. Environment

To analyze the properties and the performance of the
introduced methods, we tested them in a simulation environ-
ment based on the dynamic model of a Bitcraze Crazyflie
2.1 miniature quadcopter. The same drone is used in real
experiments, presented in Section VII. For both simulation
and control design, the considered physical parameters of the
quadcopter are given in Table I, which are based on [25]. The
simulations have been executed using MuJoCo, a high-fidelity
physics engine.> The implementation of GP regression is based
on GPyTorch [26], while the Bayesian Optimization is based
on [27]. All the simulation code used in this work is available
at our GitHub,? and a video illustrating the simulation results
can be found at https://youtu.be/Ed9jY1Zr95c. In this section

Zhttps://mujoco.org/
3https://github.com/AIMotionLab-SZTAKI/crazyflie_backflipping

0.2

r (m)
(=]
ne s

0.15 -0.2
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0.05 -

F(N)
) 7 (Nm)

Fig. 5. Backflipping in simulation by feedforward control. The position (r),
orientation (g), collective thrust (F), and input torque (7) are displayed.

and in Section VII, we display obtained results with the
z-axis pointing upward (in contrast to the NED convention
discussed in Section III), because the backflip maneuver is
more illustrative this way.

B. Bayesian Optimized Feedforward Control

The motion primitive parameters of the backflip maneuver
have been calculated as the solution of optimization (10), using
250 random initial function evaluations and 1000 iterations.
The result of the numerical optimization is

pr=[Ur i i Uz ]
=[17.80.140.217.8 0.12]" (41)

where the unit of the collective accelerations U} is m/s?, and
the time is in seconds. The simulation results are displayed
in Fig. 5, using the optimized parameter vector given by (41).
On the left plot, the position of the quadcopter during the flip
is shown. At the end of the optimal maneuver, the position is
r = [=0.009, 0, 0.015] m with [¢, 6, ¢¥] = [0,0.24, 0] rad
orientation, and thus the elements of the final state error
e are uniformly small. On the right, the trajectory of the
position vector, the orientation in quaternion representation,
the collective thrust, and the input torques are shown, where
the five phases of the maneuver defined in Section IV can be
clearly identified. The figure shows that almost near-maximal
and near-minimal collective thrust and torque commands are
required to perform the maneuver successfully. Switching
between these extreme values introduces discontinuities of the
control input where the unmodeled transient behavior of the
actuator dynamics can be significant. The latter can influence
the performance of the control strategy. A possible solution
would be to use a different parametrization of the control
inputs instead of bang-bang control (e.g., spline parameters);
however, such changes would make the feedforward design
much more complex.

C. Geometric Control and Trajectory Planning

The second approach to perform a flip maneuver is trajec-
tory planning and reference tracking with geometric control.
Based on the results of the flip with feedforward control, the
parameters of the reference pitch trajectory are chosen to be
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Vm = 35 l/s and t, = 0.7 s as illustrated in Fig. 4. The
quadratic optimization in (39) is solved under the following
constraints:

X:o{x_,x4,2-,24} =1{-0.15,0,0,0.3} m
U: Fel0,0.64]N

with sampling time 7y = 2 ms. Based on [25], the maximal
collective thrust limit is chosen to be Fi,.x = 0.64 N together
with position bounds such that the trajectory is feasible and the
quadcopter exploits the available flying space while avoiding
collision with walls and obstacles. The quadratic optimization
in (39) is solved off-line before starting the maneuver, on a
desktop PC with Intel Core 19 processor and 16 GB of RAM.
The computation time of the trajectory is 0.11 s in average,
using MATLAB with Mosek.*

The gains of the geometric controller have been determined
based on the stability conditions detailed in [2], resulting in

k=45, k, =03, kp =02, £k, =0.002. (42)

The simulation results of the trajectory planning and reference
tracking with nominal geometric control are displayed in
Figs. 6 and 7. The trajectory of the control torque is smooth
compared with the commands given by the feedforward con-
troller, resulting in less possible sensitivity with respect to
unmodeled actuator dynamics. Moreover, Fig. 7 shows that
highly accurate tracking of the attitude reference can be
achieved (W has the order of magnitude of 107>), which also
leads to small position tracking errors.

Next, we evaluate the performance of the proposed robust
adaptive geometric controller for backflipping. We assume that
the most significant modeling errors compared with the real
drone arise in the rotational dynamics, due to the inaccuracy
of the inertia matrix and center of gravity, and other aerody-
namic effects. In simulation, we apply an external disturbance
characterized by

0
Ag = [—0.007 —0.007 o]T- sin(% + —) Nm. (43)

2
We use the controller gains given by (42) and choose the
following constant values based on the stability conditions
detailed in [9]: T =3,¢c; = 1,¢, = 0.1, ¢, = €g = 0.0004.

In the example of the backflip maneuver, we use only two
scalar adaptive terms: the roll and pitch terms of ng, namely,
nRr,1 and 7R, because most of the uncertainties arise in the
roll and pitch motions. The adaptive terms are represented
by two independent GPs with the following 4-D input: the
x and y elements of the attitude quaternions (qi, g») and
the angular velocity elements w, and w,. The adaptive GP
terms introduced in Section V depend on the full state vector;
however, in case of the backflip scenario, only these four
inputs are relevant, and by reducing the input dimension,
the model complexity is decreased radically without losing
its expressiveness. For the GPs, we use zero mean and SE
covariance, given by (2). The signal variance and lengthscale
hyperparameters are trained using maximum likelihood esti-
mation on 125 training points. Due to the relatively small
input dimension and number of training points, the training
and evaluation of the GPs are fast and efficient.

“https://www.mosek.com/
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Fig. 6. Backflipping in simulation by geometric control. The position,

orientation, and control inputs are displayed.

0.03

z direction
y direction
z direction

0 0.2 0.4 0.6

L) %1077
g0 >

0 0.2 0.4 0.6 0 0.2 0.4 0.6
t(s) t(s)
Fig. 7. Trajectory of the error terms e;, er and the attitude error function W
in simulation by geometric control.
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The simulations by robust adaptive geometric control are
shown in Figs. 8 and 9. We compare the results using nom-
inal geometric control (without adaptive and robust terms),
geometric control with GP mean (without robust terms), and
robust adaptive geometric control given by (14). Our results
show that the attitude error of the nominal controller during
backflipping is reduced significantly using the proposed solu-
tions, especially in terms of eg,, er,. The position error is
most significant in the x-direction (e;, is an order of magnitude
larger than e;,, e,), where the adaptive and robust controllers
are capable to radically improve the tracking performance.

VII. EXPERIMENTAL STUDY

A. Experimental Setup

The real experiments are performed with a Bitcraze
Crazyflie 2.1 drone. Optitrack motion capture system’ is used
to provide high-precision position and orientation information.
The drone and the positioning system are interconnected via
a ground control PC, which runs the high-level experiment
management and executes data-logging as well. The block
diagram presenting the interconnection of the components is
shown in Fig. 10. The quadrotor is equipped with an IMU
containing a 3-D accelerometer, gyroscope, magnetometer, and
barometer, and it has two microcontrollers: an STM32F405
for running the flight controller and an nRF51822 for radio
communication and power management. In addition, we use
an expansion deck for high-speed logging of measurement data
to a micro SD-card. The quadcopter runs the original Bitcraze
firmware augmented with our proposed control algorithms,
while on the server, the Crazyswarm software platform is used

Shttps://optitrack.com
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Fig. 8.  Backflipping in simulation using nominal, adaptive, and robust
geometric control, with additional uncertainty. The position, orientation, and
control inputs are displayed.
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Fig. 9. Comparison of the error terms e, er and the attitude error function
W in simulation with additional uncertainty.

to ease the implementation and configuration of high-level
control components [28].

B. Optimized Feedforward Control

First, we evaluate the results of performing the backflip with
optimization-based feedforward control. For this experiment,
the optimized parameter set given by (41) is used.

The measurement results are displayed in Fig. 11, showing
that the flip is executed with [x y z] = [—0.22 0.008 0.01] m
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Fig. 10.  Block diagram of the experimental setup: indoor quadcopter
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Fig. 11. Backflipping measurement results with feedforward control using
the optimized parameter vector given by (41). The position, orientation, and
control inputs are displayed.
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Fig. 12. Backflipping measurement results with nominal geometric control.
The position, orientation, and control inputs are displayed.
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Fig. 13. Error terms e, er and the attitude error function W in real

experiments by geometric control.

final position error and [¢ 6 V] [0.032 0.41 0.021] rad
final error in Euler angles. Compared with the simulation
displayed in Fig. 5, the maximal displacement from the origin
in direction x is around four times larger, while in direction
z is around 23% larger. The difference is due to the uncer-
tainties of the simulation model; however, the backflip is still
performed successfully and the quadcopter is near the initial
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Bolt

Fig. 14. Crazyflie 2.1 quadcopter with reflective markers and a steel bolt
used to introduce significant additional dynamics.
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Fig. 15. Measurement results with a bolt attached to the quadcopter, using
nominal, adaptive, and robust geometric control. The position, orientation, and
control inputs are displayed.

configuration at the end of the maneuver. It is important to note
that the feedforward approach is sensitive to uncertainties in
the dynamics and initial conditions. For example, if the flip
maneuver begins when the orientation of the quadcopter is not
horizontal, the stability can be lost at the recovery phase.

C. Trajectory Planning and Geometric Control

The experimental results of backflipping with the nominal
geometric control are displayed in Figs. 12 and 13. The
most important part of reference tracking is the attitude error
function W and error vector egr, because a fast, stable, and
accurate attitude tracking is required to perform the flip
maneuver and recover successfully. As shown in the left plot
of the measurement results, the attitude error egr is small in all
the directions and the controller remains stable. Although the
position error e, is larger (especially in the x-direction), the
stability of the controller guarantees that the quadcopter gets
back to the initial position after the backflip maneuver. In spite
of the imperfect position tracking, the geometric controller is
able to perform the backflip maneuver exactly the same way
ten out of ten times, which indicates that even the nominal
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Fig. 16. Trajectory of the error terms er, er and the attitude error function
W in real experiments with a bolt attached to the quadcopter.

(b)
Fig. 17.

2.1 quadcopter. (a) Optimization-based feedforward control. (b) Robust geo-
metric feedback control.

Composite images of the experiments using a Bitcraze Crazyflie

geometric control algorithm is significantly more robust than
the feedforward method.

Next, we evaluate the performance of the proposed robust
adaptive geometric controller with model uncertainty added
to the quadcopter dynamics.® We have found that a steel
bolt attached to the drone (as illustrated in Fig. 14) has
significant influence on the attitude dynamics; however, the
vehicle is still able to perform the backflip maneuver. Using the
modified configuration, we collect data points by performing
agile maneuvers with the nominal geometric controller and
fit a GP on the measurement data. During the flights, the
GP has to be evaluated at 500 Hz, which is not possible
due to the limited computational capacity of the on-board
microcontroller unit. Therefore, we generate a lookup table
by evaluating the trained GP on a grid of the input variables
with 2025 grid points off-line and upload it to the on-board
microcontroller of the quadcopter. Another viable alternative
would be the use of sparse GP methods, e.g., [12], [19],
which are possible to evaluate real-time, especially on larger
quadcopter platforms with more powerful computational unit
(e.g., NVIDIA Jetson [29]).

The measurement results are displayed in Figs. 15 and 16.
Our results show that using the proposed adaptive and robust
controllers, the attitude tracking error is even more reduced
in real flights than it is in simulation. Moreover, the position
tracking performance is also enhanced by the robust approach,

©The proposed controllers have shown similar performance and robustness
for various trajectories with longer time duration; however, here only the
results for the backflip maneuver are detailed.
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especially in the x- and z-directions. The flight experiments
are illustrated in Fig. 17, which shows composite images of
the backflip maneuver.

VIII. CONCLUSION

In this article, a Bayesian-optimization-based feedforward
control and a robust geometric reference tracking control
approach with optimization-based trajectory planning have
been proposed for quadcopters to reliably perform the backflip
maneuver in the presence of modeling uncertainties. In the
former, relatively simple approach, Bayesian optimization can
be used to fine-tune the feedforward sequence, leading to
efficient implementation both in simulation and real flights.
The second method uses GP-based augmented motion models
that are able to precisely approximate model uncertainties.
Combined with geometric control, the resulting architecture
provides robust stability and high control performance, outper-
forming the feedforward method both in terms of reliability
and optimal tracking of the motion profile.

In our future research, we intend to use learning methods to
perform complex maneuvers with less expert knowledge and
extend the capabilities of the miniature drones even more.
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