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Modeling and Control of Sampled-Data
Image-Based Visual Servoing With

Three-Dimensional Features
Marco Costanzo , Member, IEEE, Giuseppe De Maria , Ciro Natale , and Antonio Russo

Abstract— Image-based visual servoing (IBVS) with 3-D fea-
tures refers to the use of 3-D feature vectors in the visual
control. The availability of low-cost and lightweight RGB-D
cameras makes it natural to use 3-D point coordinates of the
acquired image to construct the feature vector. In this article,
by using 3-D features, we propose, first, a novel sampled-
data model of the feature dynamics, which, in contrast to the
usual forward Euler approximation, retains the rigid motion
constraint. The need to introduce the sampled-data model arises
from the fact that, due to the limited camera frame rate and
actuation delays, the effects of a finite sampling time of the
visual control system cannot be neglected. The stability analysis of
the resulting discrete-time control system is carried out, showing
that the desired equilibrium point of the visual control system is
almost globally asymptotically stable. Finally, a new IBVS control
algorithm is designed by resorting to the Lyapunov direct method.
It explicitly takes into account the camera velocity limits while
ensuring stability at the same time. Furthermore, despite large
sampling times, it guarantees the absence of hidden oscillations
and a smooth approach of the camera to the prescribed target
configuration. The experiments are carried out in an emulated
in-store logistic scenario by performing pick&place and object
handover tasks, testifying to the effectiveness of the approach.

Index Terms— Sampled-data control, stability of nonlinear
systems, visual servo control.

I. INTRODUCTION

VISUAL control schemes use visual feedback from a
camera to navigate a mobile robot or to position the robot

end-effector of a manipulator. This objective is achieved by
extracting features from the camera image. Features used in
visual servoing can be points, lines, and contours (see [1],
[2], [3], and references therein) or 3-D features generated
by combining 2-D and 3-D information [4], [5]. If these are
used to estimate the camera pose directly in the 3-D space,
the control strategy is called position-based visual servoing
(PBVS), and it aims at minimizing the error between the
current and target poses. On the other hand, the so-called
image-based visual servoing (IBVS) aims at directly bring-
ing the current image features to the target ones. Reference
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tutorials for such approaches are [6], [7], and [8]. The IBVS
approach is usually preferred to the PBVS one, owing to its
robustness against camera calibration errors. IBVS controllers
require the extraction of visual features from the camera image
and their matching with the features of the given target image.
Then, the tracking module provides the visual controller with
the feature vector frame by frame. To avoid the bottleneck
of feature extraction and matching steps, the so-called dense
approaches have been proposed in the literature. For instance,
the photometric approach [9] is based on the luminance of all
the pixels in the figure and requires stable lighting conditions.
Dense depth map strategies [10], [11] require accurate camera
calibration to provide satisfactory accuracy in the camera
positioning.

For large camera transformations, the feature-based visual
control results in inaccurate matching. To overcome such a
difficulty, data-driven visual servoing approaches have been
proposed recently. Deep neural network-based methods [12],
[13], [14] are adopted to estimate the relative pose between
the current and desired images and to perform the camera
positioning. The mentioned methods generalize to novel and
dynamic scenes [15], but the camera positioning accuracy is
still unsatisfactory, especially in dynamic scenes [16].

In this article, with reference to applications where
pick&place and handover of objects are dominant, as in intral-
ogistic scenarios, we will adopt the 3-D IBVS control scheme
because it guarantees high camera positioning accuracy in the
short range of interaction among the actors of a shared task
and the object to handle, and last but not least, it is robust
against the changing of the scene over time if the visibility
constraint is satisfied.

The feature-based visual control strategies proposed in the
literature (refer to [17] for an up-to-date textbook on visual
servoing) are based on the continuous-time model describing
the relationship between the feature rate and the camera
velocity screw. The control law aims at giving the feature
error a decoupled and monotonically decreasing behavior by
acting on the camera velocity as input to the robot controller.
An interesting first discussion on stability and convergence
problems of such control strategies can be found in [18].
In [19], with reference to the IBVS with 3-D features, the
equilibrium points of the 3-D IBVS closed-loop system are
identified, and the instability of the undesired equilibrium
points is proven by exploiting the isomorphism between SE(3)

and the subset of the feature space to which the feature vector
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must belong to comply with the rigid motion constraint. This
result has been extended in [20], where the basin of attraction
of such undesired equilibria has been characterized for the
classical continuous-time visual servoing scheme.

Due to the limited camera frame rate, actuation delays,
and the time needed for computations, the sampling time of
the visual control system is not negligible, and its intrinsic
sampled-data nature should be taken into account to pursue
the objective of improving the visual servoing quality and
robotic system overall performance, by ensuring stability at
the same time, as it is required in specific scenarios. For
instance, in human–robot collaborative scenarios, the collabo-
ration acceptability and the optimal sharing of the task require
that the robot is able to perform actions at a speed compara-
ble to that of the human partner. Costanzo et al. [21], [22]
present the shelf replenishment task performed by the robot
autonomously or in a collaborative way, respectively, by using
standard algorithms and libraries for object detection [23] and
visual servoing [24].

A first discrete-time analysis and design of a visual control
scheme aimed at regulating the relative pose between a robotic
camera and a rigid object can be found in [25]. The authors
use the forward Euler finite-difference approximation to for-
mulate a discrete-time approximation of the visual servoing
system model. Other discrete-time design approaches refer to
multirate visual control [26], or they resort to model predictive
control (MPC) strategies. MPC techniques are used with the
aim to improve visual servoing performance and to take
into account work space and robotic system constraints in
the control law design. In [27], three sets of constraints are
considered, namely: 1) robot mechanical limitations, i.e., work
space limits and joint speed saturation; 2) visibility constraint,
to ensure that the visual measurements stay in the image
plane; and 3) control constraints, such as actuator limitations.
Recently, a lightweight MPC architecture using a slim neural
network, which can be trained on the fly, is proposed in [14] to
solve the IBVS objective of minimizing the error between the
current and target images. In [28], the model predictive path
integral (MPPI), developed for autonomous robot navigation
tasks, is proposed for coping with the PBVS control goal. The
cited discrete-time designs are based on the approximation
of the feature dynamic model derived via the forward Euler
method. However, the obtained discrete-time model does not
retain the rigid motion constraint, which is the base of the
continuous-time model. Furthermore, the discrete-time IBVS
model obtained via the forward Euler method approximates
the continuous-time model with a relatively good degree of
accuracy only in a neighborhood of the desired equilibrium
point. This, in turn, implies that the stability analysis can be
performed only locally.

In this article, we first propose an exact nonlinear
sampled-data model of the feature dynamics by suitably
exploiting the properties of the interaction matrix. Then,
we inspect the stability properties of the error dynamics
equilibrium points. Extending the results presented in [19]
and [20] to the sampled-data case, we prove that, for a
suitable choice of the sampling time and control parameters,
the sampled-data IBVS closed-loop system exhibits a desired

equilibrium point being almost globally asymptotically sta-
ble [29], implying that the only trajectories not converging
to it are those belonging to zero Lebesgue measure sets.
Based on the results on the stability of the sampled-data
visual control system specifically developed in this article,
we propose a novel control algorithm aimed at improving the
accuracy and execution speed of the visual servoing task. The
algorithm is based on the discrete-time Lyapunov analysis,
and it allows the designer to guarantee end-effector Cartesian
velocity constraints, depending on the robot configuration and
joint velocity limits. Moreover, the algorithm enforces the
constraint of monotonic convergence of the feature error over
time, i.e., it does not exhibit any hidden oscillations, and it
guarantees a prescribed smooth approach of the camera toward
the target configuration. These control objectives are achieved
through adaptation of the control gain obtained as the solution
of a constrained optimization problem.

The proposed IBVS control schemes are experimentally
evaluated in a lab-scale emulated in-store logistic scenario,
where pick&place operations for shelf replenishment are exe-
cuted by a robot in collaboration with a human partner,
by utilizing object handover and dexterous handling maneu-
vers [30].

II. IBVS MODEL

In this section, to make the notation used in this article
self-consistent, we recall notations and the continuous-time
dynamics of the IBVS taken from [20], necessary to derive
the corresponding exact nonlinear sampled-data model.

A. Continuous-Time Model

The IBVS model is based on the data provided by RGB-
D cameras, consisting of RGB images and per-pixel depth
information. Let pi be the i th point on the image, captured
by the camera, having pixel coordinates (ui , vi )

⊤, and let zi be
the corresponding depth. Denote with K the camera calibration
matrix

K =

Fx 0 Cx
0 Fy Cy
0 0 1

 (1)

where Cx and Cy represent the center of the camera in pixel
coordinates, and by denoting with f the focal distance and
with lx and ly the width and the height of the pixel, Fx = f/ lx
and Fy = f/ ly . Then, the point pi in 3-D coordinates with
respect to the camera frame is expressed as

pi = K−1

ui zi
vi zi
zi

 . (2)

We assume that the 3-D feature vectors of the captured RGB
image, indicated hereafter with si , are composed of the 3-D
coordinates of the points pi , i.e., si = pi . The IBVS approach
aims at designing a closed-loop control scheme that regulates
the current image feature set to a given target set of an image
acquired beforehand. Let si , s⋆

i ∈ R3, i = 1, . . . , n, be the
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i th current and target feature vectors, respectively; then, the
vectors s, s⋆

∈ R3n

s =
[
s⊤

1 · · · s⊤
n
]⊤ (3)

s⋆
=
[
s⋆⊤

1 · · · s⋆⊤
n
]⊤ (4)

represent the vectors of n matched image features.
Denote with v =

[
v⊤ ω⊤

]⊤
∈ R6 the body velocity screw

of the camera, where v ∈ R3 is the linear velocity and ω ∈

R3 is the angular velocity. Then, the link between the rate of
s(t) and v(t) is described by the following relationship:

ṡ(t) = L(s)v(t), s(0) = s0 (5)

where L(s) ∈ R3n×6 is the so-called interaction matrix, and
due to the particular feature set selected, it takes the structure

L(s) =

[
−I3 · · · −I3

S⊤(s1) · · · S⊤(sn)

]⊤

(6)

where I3 indicates the 3 × 3 identity matrix and S(si ) is the
skew operator applied to the vector si such that S(si )ω =

si × ω.
Assuming that there exist at least three distinct nonaligned

features, the matrix L(s) has full rank, i.e., rank(L(s)) = 6.
By defining the error feature vector e ∈ R3n as

e(t) = s(t) − s⋆ (7)

then the distance between the current feature and the reference
one is represented by ∥e(t)∥. Moreover, denoting with Le =

L(e + s⋆), the dynamics of the current feature deviation from
the target one can be easily derived from (5) and (7) as

ė(t) = Lev(t). (8)

Hereafter, we will drop the dependence on the time for the
sake of notation simplicity.

The basic approach to IBVS control, aimed at guaranteeing
a decoupled and exponential decrease of the error, is to design
the velocity screw as [7]

v = −λL†
ee, λ > 0 (9)

where L†
e ∈ R6×3n is the Moore–Penrose pseudoinverse of Le

and λ is a positive constant or a positive time-varying gain.
Therefore, the visual servoing error dynamics is

ė = −λLe L†
e e, e(0) = e0. (10)

The matrix Le L†
e ∈ R3n×3n has rank 6; thus, Le L†

e has
a nontrivial null space and the configurations of the feature
vector s such that e ∈ ker(L†

e) = ker(L⊤
e ) are those in which

the velocity controller output is zero and the error gets stuck
in an undesired equilibrium point with s ̸= s⋆.

The configurations of the feature vector s and, consequently,
of the error e are subject to the rigid motion constraint, that
is,

∃R(r, θ), p : s = R̄s⋆
+ p̄ (11)

R̄ = In ⊗ R(r, θ), p̄ = 1n ⊗ p (12)

where the symbol ⊗ indicates the Kronecker product, and
In and 1n are the n × n identity matrix and the vector

Fig. 1. Block scheme of the controlled sampled-data IBVS system. The
block VC represents the visual controller.

Fig. 2. Test to show that the ideal Cartesian motion device assumption
is reasonable. Left: norm of the translational velocity. Right: norm of the
rotational velocity.

[
1 1 · · · 1

]⊤
∈ Rn , respectively. Furthermore, r and θ are

the unit axis and the rotation angle of the rotation matrix R,
which, together with the translation vector p, describes the
displacement from the target feature vector to the current one.

B. Sampled-Data Model

The camera frame rate and the sampling rate that can be
achieved by the visual perception pipeline are usually much
lower than the sampling rate of the low-level robot control
loop. With standard hardware and taking into account any
possible latency of the robot control interface, the sampling
time of the visual control loop can be as high as 100 ms.
Therefore, the sampled-data nature of the control loop should
be explicitly taken into account in the design to allow the
maximum possible performance of the robotic system while,
at the same time, ensuring the stability and precision of
the closed-loop system. Fig. 1 shows a block scheme of
the visual control system, where the feature dynamic system
is commanded with a sampled-data control input through a
zero-order-hold (ZOH) block. We here assume that the robot
accepts Cartesian velocity commands, and it can be considered
an ideal Cartesian motion device. To prove that this assumption
is reasonable, the following experiment has been carried out.
Considering the same setup that will be used in Section V, the
robot is real-time controlled via velocity commands at 1 kHz,
and the velocity commands are updated at 20 Hz. The robot
is commanded with sinusoidal translational and rotational
velocity commands, sampled at 50 ms, with an amplitude
of 0.4 m/s and 0.8 rad/s, respectively, and a frequency of
0.5 Hz. The left and right plots of Fig. 2 show the norm of the
translational and rotational velocities, respectively. The blue
piecewise constant line is the command, while the measured
velocity is reported in red. The results clearly show that the
measured velocity reaches the set point value much faster than
the command sampling rate.

The first step toward the design of the proposed IBVS
control algorithm is to derive the sampled-data model of
the feature dynamics without resorting to the forward Euler
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approximation adopted in the previous literature. Taking into
account the structure of L(s) in (6) and the properties of
the skew symmetric matrix S(si ), i.e., S(si )ω = −S(ω)si =

S⊤(ω)si , then the term at the right-hand side of (5) can be
written as L(s)v = S̄⊤

(ω)s − v̄, and the feature dynamics in
(5) can be expressed as

ṡ = S̄⊤
(ω)s − v̄ (13)

where S̄(ω) ∈ R3n×3n and v̄ ∈ R3n have the following
expressions:

S̄(ω) = In ⊗ S(ω), v̄ = 1n ⊗ v. (14)

Denoting with T the control sampling time, the velocity
control v is kept constant at the value v(kT ) = vk =[
v⊤

k ω⊤

k

]⊤ in the time interval [kT, (k + 1)T ). Therefore,
S̄(ωk) is instantaneously updated at each step k and is constant
within this time interval. This makes the system in (13) a linear
piecewise constant system, and the feature evolution in this
time interval can be computed as

s(kT + t) = e−S̄(ωk )t s(kT ) +

−

∫ kT +t

kT
e−S̄(ωk )(kT +t−τ) dτ v̄k ∀t ∈ [0, T ).

(15)

Assuming that t = T and by a suitable change of variable,
the feature dynamics in the sampling instants are governed by

sk+1 = e−S̄(ωk )T sk −

∫ T

0
e−S̄(ωk )σ dσ v̄k ∀k ∈ N0 (16)

where sk stands for s(kT ).
By expanding the exponential matrices in the previous

equation in power series, it holds that∫ T

0
e−S̄(ωk )σ dσ = T

∞∑
i=0

(S̄⊤
(ωk))

i T i

(i + 1)!
(17)

and the discrete-time feature dynamics results in

sk+1 = sk +

∞∑
i=1

(S̄⊤
(ωk))

i T i

i !
sk +

− T
∞∑

i=0

(S̄⊤
(ωk))

i T i

(i + 1)!
v̄k . (18)

By rearranging the previous equation, we obtain

sk+1 = sk + T
∞∑

i=1

(S̄⊤
(ωk))

i−1T i−1

i !
S̄⊤

(ωk)sk +

− T
∞∑

i=0

(S̄⊤
(ωk))

i T i

(i + 1)!
v̄k (19)

and by changing the index in the first summation, we have

sk+1 = sk + T
∞∑

i=0

(S̄⊤
(ωk))

i T i

(i + 1)!

(
S̄⊤

(ωk)sk − v̄k

)
. (20)

Finally, by following the same arguments used to derive
(13), in view of (17), (20) can be written in a more compact
form as

sk+1 = sk + Pk L(sk)vk (21)

with Pk ∈ R3n×3n defined as

Pk = P(ωk) =

∫ T

0
e−S̄(ωk )σ dσ. (22)

Equation (21) represents the sampled-data feature dynamic
model, which describes exactly the behavior of the IBVS
system at the sampling instants.

Now, let us denote the sampled-data feature error vector
e ∈ R3n as

ek = sk − s⋆. (23)

Then, it is straightforward to derive the feature error dynam-
ics as

ek+1 = ek + Pk Lek vk (24)

where Lek = L(ek + s⋆) and vk =
[
v⊤

k ω⊤

k

]⊤
∈ R6. Let the

velocity control law in (24) be defined as

vk = −λL†
ek

ek (25)

with, again, λ being either a positive constant or a positive
time-varying scalar. Then, the expression of the sampled-data
closed-loop feature error dynamics in (24) becomes

ek+1 = (I3n − λPk Lek L†
ek

)ek, e0 = e(0). (26)

III. STABILITY PROPERTIES

A. Geometric Characterization

The dynamics in (26) presents two families of equilibrium
points: the desired equilibrium ek = 0 and the set of undesired
equilibrium points such that ek ∈ ker(L⊤

ek
), that is, the set of

ek such that Lek L†
ek

ek = 0. In [19], it is proven that, given
the target s⋆, there exist only three feasible configurations
ŝx , x = a, b, c, of the feature vector s corresponding to the
undesired equilibrium configurations with e ∈ ker(L⊤

e ), s ̸= s⋆

and satisfying the rigid motion constraint (11). The three
configurations are characterized by (θ, p, r) = (θ̂ , p̂, r̂) that
satisfy the following conditions:

θ̂ = ±π (27a)
p̂ = (I3 − R) s⋆

6 (27b)

r̂ = eigvect

( n∑
i=1

(
s⋆

i s⋆⊤
i

)
− ns⋆

6 s⋆⊤
6

)
(27c)

where

s⋆
6 =

1
n

n∑
i=1

s⋆
i . (28)

By virtue of the rigid motion constraint expressed in (11),
the visual servoing dynamics can be characterized in SE(3)

by means of the variables θ , r , and p. In the SE(3) space, the
desired equilibrium configuration s = s⋆ corresponds to θ = 0,
r ∈ R3 (that is, R(r, θ) = I3), and p = 0. The undesired
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Fig. 3. Plane (∥eN ∥, ∥eI ∥); the undesired equilibria are reported on the
horizontal axis. The points in the red area do not satisfy the rigid motion
constraint.

equilibrium configurations, instead, are those characterized by
θ , r , and p satisfying conditions (27).

Following the same idea used for the continuous-time
analysis in [20], we denote with eI the projection of e on
the Im(Le), that is, eI = Le L†

ee, and eN the projection of e
on the ker(L⊤

e ), that is, eN = (I3n − Le L†
e)e.

Note that, even if the feature vector s ∈ R3n , the rigid
motion constraint (11) imposes the features to belong to the
subset R⋆

⊂ R3n [isomorphic to SE(3)] defined as the set
of all the feature vectors s satisfying (11). Fig. 3 graphically
illustrates such constraint in the plane (∥eN ∥, ∥eI ∥). The figure
has been numerically constructed with the procedure described
in [20]. The red areas correspond to points that do not satisfy
the constraint (11); thus, any point of the system trajectories
reported in the plane (∥eN ∥, ∥eI ∥) cannot belong to such
regions.

Denoting with ρx the vertical lines passing through ∥eN ∥ =∥∥êx
∥∥, being êx = ŝx −s⋆, with x = a, b, c, the three undesired

configurations, in [20], we have proved the following results.
1) The boundaries of the red areas in Fig. 3 are tangent to

the vertical lines ρx in the points (∥ex∥, 0).
2) As a consequence of result 1, it is

lim
∥e∥→0

∥e∥
∥eI ∥

= 1. (29)

3) In view of [20, Proposition 1], for all three undesired
equilibria ŝx (the subscript x will be dropped to simplify
the rest of the treatment), the following property holds.
Any point s obtained as a pure translation of ŝ belongs to
the manifold N = {s | s = ŝ +1 p̄}, where 1 p̄ = p̄− ¯̂p
and ¯̂p = 1n ⊗ p̂. Such a set for any given s⋆ corresponds
to the ρ lines in the plane (∥eN ∥, ∥eI ∥) in Fig. 3. In other
words, considering a pure translation starting from ŝ, the
feature error projection eN remains constant and equal
to ê.

B. Dynamics Characterization

In our former paper [20], we proved that the trajectories
of the continuous-time closed-loop system (10) starting from
e0 such that s0 ∈ N converge to the undesired equilibrium ê

for any value of the gain λ. Here, we are ready to prove that
such behavior is exhibited also by the sampled-data closed-
loop system (26) but with a limit on the gain λ depending on
the sampling time. Note that the proof of the next proposition
is fairly more articulated due to the presence of the matrix
P(ωk) in the sampled-data system dynamics.

Given the above reasoning, we are now ready to analyze
the behavior of the system (26) when s0 ∈ N .

Proposition 1: With reference to the system (26), the only
trajectories ek that asymptotically converge to ê are those
starting from e0 such that s0 ∈ N if and only if 0 < λT < 2.

Proof: Recalling result 3, any s0 ∈ N can be generated
as a pure translation of ŝ, that is, s0 = ŝ + 1 p̄0, with 1 p̄0 =

p̄0 − ¯̂p. Thus, for any given s⋆, e0 = ê + 1 p̄0. Then, given
the dynamics in (26), for k = 0, it holds that

e1 = (I3n − λP0 Le0 L†
e0

)(ê + 1 p̄0). (30)

Since ê ∈ ker(L⊤

ê ) and its components êi ∈ R3 are such
that

n∑
i=1

êi =

n∑
i=1

(
(R̂ − I)s⋆

i + p̂
)

= 2S2(r̂)
n∑

i=1

s⋆
i − 2nS2(r̂)s⋆

6 = 0 (31)

it holds that

L⊤
e0

ê =

[
0

S⊤(1 p0)
∑n

i=1 êi

]
= 0. (32)

Then,

e1 = ê + (I3n − λP0 Le0 L†
e0

)1 p̄0 (33)

which, considering that 1 p̄0 ∈ Im(Le0), becomes

e1 = ê + (I3n − λP0)1 p̄0. (34)

Since s0 ∈ N , then ω0 = 0, and from (22), P0 = T I3n ,
providing

e1 = ê + (1 − λT )1 p̄0

= ê + 1 p̄1

with 1 p̄1 = (1 − λT )1 p̄0, resulting in the fact that e1 repre-
sents a mere translation with respect to ê. This, in turn, implies
that no rotation is generated. Hence, by iterating the above
reasoning, it is possible to write the dynamics of trajectories
ek with e0 such that s0 ∈ N as

ek+1 = ê + (1 − λT )1 p̄k (35)

or, equivalently,

ek+1 − ê = (1 − λT )1 p̄k . (36)

Thus,

lim
k→∞

∥∥ek − ê
∥∥ = 0 (37)

since 1 p̄k+1 = (1 − λT )1 p̄k is an LTI discrete-time system,
which is stable for 0 < λT < 2.
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Thus, the feature trajectories starting from the set N con-
verge to the undesired equilibrium points ŝ without leaving
N , which means that the error converges to ê.

To prove that they are the only ones, consider a slight
perturbation on e0 obtained by perturbing θ = θ̂ + δθ and
r = r̂ + δr . Since, on the manifold N , the angular velocity
ω = 0, then a slight perturbation from N generates a low
angular velocity.

The matrix Pk = P(ωk) in the system dynamics (26),
by virtue of the Euler–Rodrigues rotation formula R =

eS(θ r)
= I3 +sin θ S(r)+(1−cos θ)S2(r) [31], can be written

as

P(ωk) = T
[

I3n +
1 − cos(∥ωk∥T )

∥ωk∥T
S̄⊤

(
ωk

∥ωk∥

)
+

∥ωk∥T − sin (∥ωk∥T )

∥ωk∥T
S̄2
(

ωk

∥ωk∥

)]
. (38)

For very low values of ∥ωk∥, it holds

P(ωk) ≈ T I3n +
1
2

T 2 S̄⊤
(ωk). (39)

Now, consider the Lyapunov candidate function

Vk = (ek − ê)⊤(ek − ê) (40)

whose first-order variation along the error dynamics (26)
1Vk = Vk+1 − Vk can be written, recalling that
eI k = Lek L†

ek
ek and eNk = ek − eI k , as

1Vk = 2λe⊤

I k P⊤

k (ê − eNk) − 2λe⊤

I k P⊤

k eI k

+ λ2e⊤

I k P⊤

k Pk eI k . (41)

Substituting (39) into (41), it holds that

1Vk ≈ 2λT e⊤

I k(ê − eNk) + 2λT 2e⊤

I k S̄⊤
(ωk)(ê − eNk) +

− λT e⊤

I k((2 − λT )I3n +
1
4
λT 3 S̄2

(ωk))eI k . (42)

Note that the approximation (42) of (41) is obtained by
neglecting terms of the order ∥ωk∥

2; therefore, there exist
a neighborhood of ωk = 0 where they have the same sign.
Furthermore, in view of (39), system (26) becomes

ek+1 = ek − λT
(

I3n −
1
2

T S̄⊤
(ωk)

)
eI k . (43)

As long as ωk is negligible, considering ek = eI k + eNk ,
the solution of the system can be approximated as

eNk = eN0 (44)

eI k = (1 − λT )k eI 0 (45)

implying that eI k decreases. By evaluating the single terms at
the right-hand side of (42), we note that, being s0 close to the
manifold N , the vectors eNk = eN0 and ê are almost aligned
and such that

∥∥ê
∥∥ ≈ ∥eNk∥. Thus, the difference ê − eNk

can be considered orthogonal to both vectors, i.e., it is almost
aligned with eI k , implying that the first term in (42) is positive
definite. Regarding the second term in (42), we cannot evaluate
its sign, but we can evaluate its norm. In fact, comparing the
first and second terms, it can be observed that the norm of the
second term is definitely smaller than the norm of the first one
due to the presence of terms S̄(ωk) (with ωk having negligible

Fig. 4. Simulation results with s0 close to the manifold N . Left: trajectory
in the plane (∥eN ∥, ∥eI ∥). Right: ∥ω∥, ∥eN ∥, and 1V .

Fig. 5. Simulation results with camera measurement noise and s0 on the
manifold N . Left: trajectory in the plane (∥eN ∥, ∥eI ∥). Right: error norm.

norm) and T 2 (being T smaller than 1). Thus, the second
term can be neglected compared to the first one. Regarding
the third and last terms, the term characterized by T 3 S̄2

(ωk)

is positive semidefinite, and it can be neglected due to its small
magnitude. Therefore, the first-order variation 1Vk in (42) can
be further approximated as

1Vk ≈ 2λT e⊤

I k(ê − eNk) − λT (2 − λT )∥eI k∥
2 (46)

where the first term is linear with respect to eI k , while the
second term is quadratic. As long as the norm of ωk is
negligible, the solution of eI k evolves as in (45), and there
exist a time instant k such that the linear term definitely
dominates the quadratic one, thus yielding a positive first-order
variation of the Lyapunov function. This implies that

∥∥ek − ê
∥∥

increases, and the trajectory moves away from the manifold
N , thus proving that any trajectory starting outside N cannot
converge to the undesired equilibria.

The arguments on the feature error dynamics character,
discussed in the proof of Proposition 1, are elucidated by
means of the simulation results illustrated in Figs. 4 and 5.
The results in Fig. 4 are obtained by starting the feature
dynamics with an initial condition close to the manifold N ,
that is, θ0 = 179.9◦, r0 = r̂ , and p0 = [0.3, 0, 0]

⊤. The
left plot in Fig. 4 shows the error norm trajectory in the
plane (∥eN ∥, ∥eI ∥). It can be observed that the trajectory
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initially evolves due to the translational velocity control only;
in fact, the angular velocity ∥ω∥ in the right plot is negligible.
In correspondence with the sign variation of 1V , in the right
plot, ∥ωk∥ begins to grow up; at the same time, ∥eN ∥ starts
to change noticeably, and ∥eI ∥ begins to increase. For this
reason, the error trajectory in the left plot goes away from the
ρ line, which means that the feature dynamics moves away
from the manifold N .

The analysis in Proposition 1 and the simulation have
been carried out so far, assuming the absence of any camera
measurement noise. It is clear that, in real cases, in the
presence of noise, the feature trajectory cannot lie on the
zero Lebesgue measurement manifold N , even if the initial
condition belongs to it. Anyway, the importance of Proposition
1 is to highlight a pathology on the trajectory convergence
character when θ0 ≈ θ̂ and r0 ≈ r̂ due to the very low norm
of the camera angular velocity in the initial part of the feature
trajectory. Fig. 5 shows the simulation results carried out
assuming θ0 = θ̂ , r0 = r̂ , and a random uniform uncertainty
of 1% on the depth measurement. As illustrated in the left
plot, in the first part of the trajectory, the camera moves only
due to a translational velocity control; thus, it translates only
and reaches the target at around t = 3 s, but θ is still close
to θ̂ . Between 3 and 6 s, the angular velocity is almost zero,
and the error norm is practically constant (see the right plot
in Fig. 5). At t = 6 s, the angular velocity starts increasing,
and the error trajectory moves away from the manifold N .
This behavior entails a drawback: the end-effector rotates only
after getting very close to the target, e.g., in a task of object
pick&place, this implies that the robot may collide with the
object or the desk on which it lies, and/or depending on
the robot configuration, a collision between the camera and
the robot arm may occur. The above analysis suggests that
initial conditions of the feature points close to the manifold
N should be avoided in order to prevent the generation of
sole translational trajectories followed by sole rotations; the
latter performed when the camera is very close to the target
configuration. By simulation, we will show later that the basin
of convergence of the trajectories that do not present the
described pathology is very large.

We now discuss the stability properties of the desired
equilibrium e = 0.

Proposition 2: Consider the sampled-data closed-loop sys-
tem (26) with λ = λk . Denote with ω1

k = −
[
03 I3

]
L†

ek
ek and

αk = ∥ek∥/∥eI k∥. If λk is selected such that

0 < λk T <
2

1 + αk∥ω
1
k∥

∀k ∈ N0 (47)

then the desired equilibrium point e = 0 of system (26) is
almost globally asymptotically stable.

Proof: Since the skew matrix is normal, i.e.,
S⊤(ωk)S(ωk) = S(ωk)S⊤(ωk), by resorting to [32, Th. 2.5.3],
the skew matrix S⊤(ωk) can be factorized as

S⊤(ωk) = Uk

0 0 0
0 − j∥ωk∥ 0
0 0 j∥ωk∥

U∗

k (48)

Fig. 6. Plot of the function γ(ωT ) in (56).

where Uk is unitary and U∗

k is the conjugate transpose of
Uk . Since the diagonal matrix at the right-hand side of (48)
is a 3 × 3 singular diagonal matrix with the first element of
the diagonal equal to zero, then the following integral can be
written as:∫ T

0
eS⊤(ωk )σ dσ

= T Uk

1 0 0
0 e jωT k sinc(ωT k) 0
0 0 e− jωT k sinc(ωT k)

U∗

k

= T Uk3kU∗

k (49)

where ωT k = ∥ωk∥(T/2). Thus, the matrix Pk can be
expressed as

Pk =

∫ T

0
e−S̄(ωk )σ dσ = T Ūk3̄kŪ∗

k (50)

where 3̄k, Ūk ∈ C3n×3n are defines as

3̄k = In ⊗ 3k, Ūk = In ⊗ Uk . (51)

By selecting as Lyapunov function candidate V (ek) = e⊤

k ek ,
its first-order variation 1Vk = e⊤

k+1ek+1−e⊤

k ek along the error
dynamics (26) can be written as

1Vk = −2λk e⊤

k Pk Lek L†
ek

ek

+ λ2
k e⊤

k Lek L†
ek

P⊤

k Pk Lek L†
ek

ek . (52)

Denoting with Bk the matrix Pk−T I3n , we can write

Bk = T Ūk
(
3̄k − I3n

)
Ū∗

k . (53)

Then, 1Vk in (52) can be rewritten as

1Vk = −2λk T e⊤

k Lek L†
ek

ek − 2λk e⊤

k Bk Lek L†
ek

ek

+ λ2
k e⊤

k Lek L†
ek

P⊤

k Pk Lek L†
ek

ek . (54)

Recalling that Lek L†
ek

is the projector matrix on the Im(Lek )

and eI k = Lek L†
ek

ek , then 1Vk can be upper bounded as
follows:

1Vk ≤ −2λk T ∥eI k∥
2
+ 2λk∥Bk∥∥eI k∥∥ek∥

+ λ2
k eI

⊤

k P⊤

k Pk eI k . (55)

As the matrix P⊤

k Pk = T 2Ūk3̄
∗

k3̄kŪ∗

k , with Ūk being a
unitary matrix and ∥3̄

∗

k3̄k∥ = 1, as can be easily verified,
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then we have
∥∥P⊤

k Pk
∥∥ ≤ T 2. In view of (53), the norm of

the matrix Bk is such that
∥Bk∥

T
≤

∣∣∣eiωT k sinc(ωT k) − 1
∣∣∣ = γ(ωT k). (56)

The graph of the function γ(ωT ) is reported in Fig. 6, where
the plot clearly shows that γ(ωT k) ≤ ωT k .

In view of the above arguments and the definition of αk ,
the upper bound for 1Vk can be rewritten as

1Vk ≤ −λk T
(
2∥eI k∥ − λk T αk

∥∥∥ω1
k

∥∥∥∥eI k∥ +

− λk T ∥eI k∥
)
∥eI k∥. (57)

Since eN ∈ ker (L⊤
e ), then ω1

k = −
[
03 I3

]
L†

ek
eI k , and

by virtue of (29), the three terms in parenthesis tend to zero
with the same rate. This, in turn, implies that, for ∥eI k∥ ̸= 0,
it is always possible to select λk T such that 1Vk ≤ 0.
Hence, for such selection of λk T , the rate of variation of
the Lyapunov function is negative definite almost everywhere
(since, apart from ∥ek∥ = 0, 1Vk = 0 only in the undesired
equilibrium points). Since the only trajectories converging
to the undesired equilibria are those belonging to the zero
Lebesgue measure sets introduced in Proposition 1, by virtue
of (29), almost global asymptotic stability is achieved for the
desired equilibrium point if, for each k, λk is such that

0 < λk T <
2

1 + αk
∥∥ω1

k

∥∥ ∀k ∈ N (58)

implying that 1Vk < 0, ∀k.

IV. SAMPLED-DATA VISUAL SERVOING CONTROL

In this section, a novel visual servoing control algorithm is
presented to pursue the fulfillment of the following require-
ments.

1) The feature error dynamics should exhibit a monotonic
decrease over the continuous time t .

2) The camera velocity control should comply with the
joint velocity limits.

3) The camera velocity control should guarantee a pre-
scribed smooth approach of the camera toward the
prescribed target configuration.

4) The visual control should adapt to the specific robotic
system without the need of experimentally tuning the
control parameters.

The first three requirements aim at fully exploiting the robot’s
dynamic performance, while the last requirement ensures the
portability of the visual controller.

The control algorithm proposed in the following proposition
requires the definition of two scalar functions, i.e., π(·, ·)

called cost function and l(·) called landing function. The first
one is defined as

π(ek, λk T ) = −λk T
(

2l(ek) − αkλk T
∥∥∥ω1

k

∥∥∥− λk T
)

(59)

which, as a function of λk T , being λk > 0, is a concave
up parabola passing through the origin and the point λk T =

2l(ek)/(1 + αk
∥∥ω1

k

∥∥) = λ0
k T . The landing function l(ek),

which is designed to allow a smooth approach to the feature
target configuration, is defined as follows. Denote with eM k

the mean square error eM k = ∥ek∥/
√

n, with eL and eH two
positive scalars such that eL < eH , let µ ∈ (0, 1], and then

l(ek) =


µ, if eM k ≤ eL

1, if eM k ≥ eH

µ + (1 − µ)q
(

eM k − eL

eH − eL

)
, otherwise

(60)

where q(·) is a fifth-order polynomial whose coefficients
are determined such that the first- and second-order deriva-
tives are zero at the extremes of the interval [0, 1] and
q(0) = 0, q(1) = 1. Note that 0 < l(ek) ≤ 1, and µ =

1 implies that l(ek) = 1. Finally, denote with vM
k and ωM

k the
maximum allowed norm of the linear and angular velocities
at the kth step, respectively.

Remark 1: The term “landing function” for l(ek) has been
chosen because an appropriate setting of the values eL and eH ,
and the parameter µ allows to design the deceleration profile
for a smooth approach to the target configuration. Guidelines
to select these values will be provided in Section V.

The design of the visual servoing controller is then pre-
sented in the following proposition.

Proposition 3: Consider the sampled-data closed-loop sys-
tem (26) with λ = λk . Assuming that s0 ̸∈ N , if the gain λk
is determined, for each sampling time interval, by solving

P1: min
λk T

π(ek, λk T ) (61a)

s.t. 0 < λk T <
2l(ek)

1 + αk
∥∥ω1

k

∥∥ (61b)

∥ωk∥ ≤ ωM
k , ∥vk∥ ≤ vM

k (61c)

then the following holds.
1) The equilibrium point e = 0 of the sampled-data closed-

loop system is almost globally asymptotically stable.
2) The feature error norm ∥e(t)∥ exhibits a monotonic

decrease over the time t .
Proof: In Proposition 2 we have proven that the

sampled-data closed loop system in (26) is almost globally
asymptotically stable if λk T is selected in the range defined
in (47). The proof has been performed via the Lyapunov
direct method by selecting the Lyapunov function candidate
V (ek) = e⊤

k ek . An upper bound of its first-order variation
1Vk can be written by rearranging (57) as

1Vk ≤ −λk T (2 − λk T αk

∥∥∥ω1
k

∥∥∥− λk T )∥eI k∥
2 (62)

implying that

1Vk ≤ π(ek, λk T )∥eI k∥
2 (63)

since l(ek) belongs to the range (0, 1]. Then, the equilibrium
point e = 0 is almost globally asymptotically stable if λk T is
in the range (61b).

Now, we have to prove that the proposed gain adaptation
algorithm allows us to achieve the objective 2).

By multiplying and dividing the last term in (54) by T 2 and
by dividing the left-hand and the right-hand side by ∥eI k∥

2,
we obtain

1Vk

∥eI k∥
2 = λ2

k T 2ak − 2λk T bk = fk(λk T ) (64)
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Fig. 7. Plot of fk (λk T ) and its upper bound in (57) normalized with respect
to ∥eI ∥

2.

where ak , by virtue of (50), is given as follows:

ak = e⊤

I kŪk3̄
∗

k3̄kŪ∗

k eI k/∥eI k∥
2 > 0 (65)

bk = (1 + eT
k Ūk

(
3̄ − I3n

)
Ū∗

k eI k/∥eI k∥
2) > 0. (66)

Let us define the function gk(λk t) = ∥e(kT + t)∥2
−

∥e(kT )∥2, t ∈ [0, T ], which has the following properties:

gk(0) = 0
gk(λk T ) = fk(λk T )∥eI k∥

2
∀λk T > 0. (67)

The function gk(λk T ) is upper bounded by the right-hand
side of (63), which is a parabola with branches pointing up
and negative definite for λk T belonging to the open interval
in (47).

The function fk(λk T ) and its upper bound are represented
in Fig. 7.

Define λ⋆
k T as

λ⋆
k T = arg min

λk T
fk(λk T ). (68)

Then, for each k, fk(λk T ) is monotonically decreasing in the
interval [0, λ⋆

k T ].
Now, we claim the following.
1) gk(λ

⋆
k t) is monotonically decreasing in the interval

[0, λ⋆
k T ].

2) For all λ̄k > λ⋆
k , gk(λ̄k t) is not monotonically decreasing

in the interval [0, λ̄k T ].
Proof of Claim 1: ∀λ⋆

k ta, λ⋆
k tb ∈ [0, λ⋆

k T ] : ta < tb and
λkaT , λk bT

λkaT = λ⋆
k ta, λk bT = λ⋆

k tb (69)

as a consequence of the monotonic decrease of fk(λk T ) in
[0, λ⋆

k T ], we have that

λkaT < λk bT H⇒ fk(λkaT ) > fk(λk bT ) (70)

and, by virtue of properties (67), we have

gk(λ
⋆
k ta) > gk(λ

⋆
k tb) (71)

which ensures the monotonic decrease of gk(λ
⋆
k t) in [0, λ⋆

k T ]

and then of ∥e(kT + t)∥ with t ∈ [0, T ], ∀k.
Proof of Claim 2: ∀λ̄k > λ⋆

k , ∃t ′ = T λ⋆
k/λ̄k , t ′′ = T : t ′ <

t ′′, for which it results

gk(λ̄k t ′) = gk(λ
⋆
k T ) = fk(λ

⋆
k T )∥eI k∥

2 (72)

gk(λ̄k t ′′) = gk(λ̄k T ) = fk(λ̄k T )∥eI k∥
2. (73)

Fig. 8. Simulation results for values of the initial angle error
θ0 = {180◦, 179◦, 170◦, 160◦, 150◦, 140◦, 120◦

}. Left: error trajectory in the
plane (∥eN ∥, ∥eI ∥). Right: error norm.

As fk(λ
⋆
k T ) < fk(λ̄k T ), this implies that

gk(λ̄k t ′′) > gk(λ̄k t ′). (74)

Then, gk(λk t) is not monotonically decreasing in [0, λ̄k T ]

∀k, and the sampled-data visual servoing system (26) exhibits
hidden oscillations.

Since the function π(ek, λk T ) has a minimum in correspon-
dence of λ̃k with λ̃k < λ⋆

k , the solution of problem P1 ensures
the absence of hidden oscillations.

If λk = λ̃k is such that the constraint (61c) is not satisfied,
the minimization algorithm will select λk < λ̃k ; as the camera
velocity depends linearly from λk , this again ensures that
gk(λk t) is monotonically decreasing for t ∈ [0, T ], ∀k ∈ N0.

Note that Problem P1 in (61) has a simple closed-form
solution in λk T . In fact, this is a scalar minimization problem
of the parabola defined by the function π . The unconstrained
minimum of the parabola is λk T = l(ek)/(1 + αk

∥∥ω1
k

∥∥),
which satisfies constraint (61b). Moreover, the constraints
in (61c) are linear inequality constraint in λk T and can
be written as λk T < T ωM

k /
∥∥[03 I3

]
L†

ek
ek
∥∥ and λk T <

T vM
k /
∥∥[I3 03

]
L†

ek
ek
∥∥. Thus, the closed-form solution of P1

can be written as

λk T = min

(
l(ek)

(1 + αk
∥∥ω1

k

∥∥) , T ωM
k∥∥[03 I3
]

L†
ek

ek
∥∥ ,

T vM
k∥∥[I3 03
]

L†
ek

ek
∥∥
)

. (75)

After defining the novel visual servoing control algorithm
guaranteeing almost global asymptotic stability of the
closed-loop system and the absence of hidden oscillations,
it is of interest to investigate for which cases of the ini-
tial orientation error the pathological behavior described in
Section III actually affects the behavior of the closed-loop
system causing a longer converging time (see Figs. 4 and
5). This has been verified through a simulation campaign,
as presented in Figs. 8 and 9, carried out to show the behavior
of the controlled system for different values of the initial
orientation error θ0. All the simulations have been performed
by adopting the control algorithm proposed in Proposition
3 with p(0) = [0.3 0 0]

⊤ m, T = 0.05 s, vM
k =
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Fig. 9. Simulation results for values of the initial angle error
θ0 = {180◦, 179◦, 170◦, 160◦, 150◦, 140◦, 120◦

}. Left: value of α. Right:
translational and rotational commanded velocities.

0.1 m/s, and ωM
k = 0.75 rad/s for all k. The response of

the closed-loop system has been evaluated considering six
different values of the initial axis-angle error θ0 and r(0),
i.e., θ0 = 180◦, 179◦, 170◦, 160◦, 150◦, and 120◦ and r(0) =

r̂a, r̂b, r̂ab with r̂a and r̂b the rotation axis corresponding to
the undesired equilibria êa and êb, respectively, and r̂ab is
a rotation axis obtained as mean between r̂a and r̂b. These
values are combined, as shown in the legends of Figs. 8 and
9. It addition, it is assumed that the depth measurements are
affected by white noise corresponding to 1% of the current
depth value. Fig. 8 displays the error convergence for each
value of the initial angle error, with the left plot showing
the plane (∥eN ∥, ∥eI ∥), while ∥e∥ is shown on the right plot.
As expected, in all the considered cases, the error asymptoti-
cally converges to zero, but the initial angle plays a major role
in the determination of the actual error trajectory. Consider first
the cases where r(0) = r̂a . When θ0 = 170◦, the camera starts
with a lower rotational velocity [see Fig. 9 (right bottom)].
In fact, until t = 5 s, the camera motion is predominantly a
translation, and the error trajectory decreases mostly along eI
[see again Fig. 8 (left)]. As the initial angle θ0 decreases, this
behavior is less noticeable, and when θ0 = 120◦, the error
trajectory evolves from the very beginning along both eI and
eN , and the camera rotates and translates at the same time.
As a result, the overall error convergence is faster, as shown
in Fig. 8 (right). Therefore, comparing the convergence times
obtained for different values of the initial rotation errors, it can
be concluded that, for θ0 < 140◦, the effect of the pathological
behavior is almost negligible. Hence, only trajectories with
large initial rotation errors are truly affected by the latency
generated by small angular velocities. Unsurprisingly, such
behavior is evident also considering a different initial rotation
axis. When r(0) = r̂b and θ = 179◦, the trajectory seems to
evolve toward the undesired equilibrium, but, similar to the
simulation in Fig. 4, it slowly converges to the origin. The
same pathological behavior appears also when the angle is the

critical one θ(0) = 180◦, but the rotation axis is neither of the
three equilibrium ones (brown curves) showing that the angle
plays a major role in the determination of such behavior. Note
that, despite the brown and the cyan curves in Fig. 8 across
the ρa line in the (∥eN ∥, ∥eI ∥) plane, this does not mean that
the trajectory crosses the manifold Ne since the represented
plane is just a convenient 2-D visual representation of the
3n-dimensional state space.

Finally, Fig. 9 shows the value α = ∥e∥/∥eI ∥ used to define
the upper bound of the gain in Proposition 2. From (29),
we know that, near the origin, α = 1. The plot shows that
α remains finite and close to 1 in all the simulated cases, and
it reaches a maximum value of α = 1.75 in the θ0 = 170◦

case.

V. EXPERIMENTS

A. Experimental Setup

The visual servoing algorithm has been tested in a col-
laborative in-store logistic scenario for shelf replenishment
tasks. A Kuka LBR iiwa 7 robot has to pick various objects
and place them on the shelves. The objects could be picked
either from a desk or exchanged with the clerk by means of
a handover maneuver. The end-effector is equipped with an
Intel RealSense D435i RGB-D camera mounted in an eye-in-
hand configuration. The grasping device is a WSG50 gripper
by Weiss Robotics equipped with the SUNTouch force/tactile
sensors [33]. The small clearance between the shelves limits
the robot’s collision-free workspace. To successfully execute
the placing task, the robot dexterity is enhanced by the in-hand
manipulation capabilities allowed by the slipping control
algorithm described in [34] based on the dynamic friction
model and the nonlinear observer proposed in [35]. To perform
controlled sliding, the robot is required to grasp the object in
prescribed grasping points with a maximum positioning error
of 2 mm [21]. The visual servoing algorithm is considered
correctly executed if the root mean square error eM goes below
2 mm. A video of the experiments described in this section is
available at https://youtu.be/unNwifaBD4A.

The algorithm runs on an ROS network. The iiwa robot
is controlled via the fast robot interface (FRI) with a PC
running Ubuntu with the PREEMPT_RT real-time patch, ROS
Melodic, Intel i7-8700K CPU @ 3.70 GHz, and 64 GB of
RAM. The robot control rate is set to 1 kHz. The joint
reference position commands are filtered via an additional
first-order filter with a cutoff frequency of 100 Hz.

The RealSense camera is connected to the ROS network via
the REALSENSE-ROS wrapper, the camera resolution is set to
640 × 480 pixels, and the camera rate is set to the upper limit
of 30 Hz. The default ROS wrapper publishes the depth image
data with a depth resolution of 1 mm, whereas, by setting the
camera driver to a depth resolution of 0.1 mm, we obtain an
accuracy of 1% of the depth measurement in the range of 6 m,
which is adequate for a collaborative task.

Since the FRI interface imposes a maximum joint displace-
ment of 0.001 rad between two consecutive commands and
the robot control rate is 1 kHz, the joint velocity limit q̇M
results to be 1 rad/s. This has to be translated into Cartesian
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velocity limits. The relationship between the Cartesian and
joint velocity commands is given by

q̇ = J†(q)v (76)

where q ∈ R7 is the joint position and J(q) ∈ R6×7 is
the robot Jacobian. From (76), the squared norm of the joint
velocity is

q̇⊤q̇ = v⊤ J†⊤(q)J†(q)v (77)

which is a quadratic form depending on the robot Jacobian.
From (77), it is straightforward to find the time-varying
Cartesian velocity limits that keep the joint speed below the
constraint value q̇M

vM
=

∥∥∥∥ q̇M

σ1(J(q))
σ v11(J(q))

∥∥∥∥ (78)

ωM
=

∥∥∥∥ q̇M

σ1(J(q))
σ v21(J(q))

∥∥∥∥ (79)

where σ1(J(q)) is the largest singular value of the robot Jaco-
bian and the vectors σ v11(J(q)) and σ v21(J(q)) ∈ R3 contain
the first and last three elements of the corresponding singular
vector, respectively.

B. Algorithm Implementation Details

We assume that the robot already knows which object has
to grasp and the desired grasping pose that corresponds to
the target image. To acquire the target image, we manually
brought the robot to the grasp location such that the fingertips
touch the object at the prescribed grasping points.

The 3-D feature points vector si and the corresponding
target s⋆

i , i ∈ 1, . . . , n, are extracted and matched at the
beginning (t = 0) via the keypoint matching algorithm
available in the ViSP library [24] (vpKeyPoint class) by using
the first frame acquired by the camera and the target image.
After the initial matching, the features are tracked only on
the current image by using the keypoint tracking algorithm
available in the same library (vpKltOpencv class).

C. Simulation and Real Experiment Comparison

The sampled-data model of the visual servoing system
and the proposed controller are available in a Simulink
library at the following URL https://github.com/Vanvitelli-
Robotics/MATLAB_visual_servo. All the simulated plots in
this article are generated through this library.

This section compares the experimental visual servoing task
with the simulated one to highlight that assuming the robot as
a pure Cartesian motion device is reasonable.

The robot is commanded to grasp an object from the desk
by using the algorithm proposed in Proposition 3 to synthesize
the control action. The initial conditions are selected as θ(0) =

17◦, r(0) = [0.0415 −0.9989 −0.0208]
⊤, and p(0) =

[0.0647 0.0146 0.1145]
⊤ m. The landing function in (60)

l(ek) is designed taking into account the capability of the robot
to decelerate. By assuming a uniformly decelerated motion
at the end of the visual servoing task, an estimation of the
deceleration space is 3vM 2

/2aM , where aM is the maximum

Fig. 10. Comparison of eM between simulation and real experiment. Black
line: real experiment. Blue line: simulation. The inner plot is a zoomed-in
view that shows the difference in the neighborhood of eM = 0.

Fig. 11. Comparison between real (blue) and simulated (red) experiment.
Top plot: camera control translational velocity norm. Bottom plot: camera
control rotational velocity norm.

Cartesian acceleration that the robot can generate. Assuming
that aM is about 5 m/s2, then eH is set to 5 mm, while
eL = 2 mm since it corresponds to the accepted bound on the
steady-state error. Concerning µ, when the root mean square
error eM is below eL , assuming a pure translational motion, the
translational velocity is upper bounded as ∥v∥ ≤ µeL

√
n/T .

Therefore, µ = 0.25/
√

n has been selected in order to have a
maximum velocity of 1 cm/s inside the bound defined by eL .

The initial matched features s(0) and the corresponding
target s⋆ are used to initialize the simulator too. Moreover,
the same time-varying Cartesian velocity limits vM

k and ωM
k

of the real experiment [computed as in (78) and (79)] are used
in the simulator.
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Fig. 12. Snapshots of the tracking experiment. Snapshot (a) shows the relative camera/object desired pose; snapshots (b)–(f) show the object being translated
upwards; snapshots (g)–(j) show the object being rotated.

Fig. 13. Tracking experiment. Top plot: root mean square error eM . Bottom
plot: control gain computed by the proposed algorithm.

Fig. 10 shows the results of the comparison. The blue and
black lines represent the root mean square error eM resulting
from the simulation and the real experiment, respectively.

Remarkably, the blue and black lines have very similar
behavior. The simulated eM converges to zero asymptotically,
while the one of the real experiment is ultimately bounded
in a neighborhood of e = 0 whose radius is less than 1 mm
in spite of the feature error measurement uncertainty and the
limited bandwidth of the robot control interface.

Fig. 11 (top) and (bottom) shows the norm of the transla-
tional and rotational controller output velocities, respectively,
both for the real and simulated experiments and the velocity
limits vM

k and ωM
k . Note that the proposed visual servoing

algorithm is able to not only ensure convergence of the feature
error very close to zero but also push the robot up to the
maximum of its performances.

Fig. 14. Tracking experiment. Transnational (top) and rotational (bottom)
control velocities norm and the respective maximum values vM and ωM .

D. Tracking Experiment

This section shows a tracking experiment in a collaborative
scenario. The robot is commanded to align the camera to a
target object, while a human partner moves the object. Note
that, in this context, the word “tracking” refers to the task
of following a moving object, while the reference features
s⋆ are kept constant for the whole experiment. Thus, the
object motion is a disturbance that the controller has to
compensate for. This experiment is aimed at showing that,
with the proposed control algorithm, the robot is capable
of following the velocity imposed by the human partner up
to its velocity limits. Fig. 12 shows the snapshots of the
experiments, the first image shows the equilibrium configu-
ration, and the robot has to track the object and maintain the
same relative camera-object pose during the whole experiment.
Fig. 13 shows the resulting mean square error eM and the
computed gain λ, while Fig. 14 shows the norm of the
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translational and rotational control input and the respective
limits.

In the beginning, between t = 5 s and t = 9 s, the human
partner slowly rises the object up [see Fig. 12(2)], and the
robot is able to follow it within its velocity limits; at t =

9 s, the human partner stops, and the robot reaches again the
desired relative pose [see Fig. 12(3)]. At t = 10 s, the human
partner rapidly moves the object down [see Fig. 12(4)]; this
time, the robot is pushed at the edge of its translational velocity
limits [see Fig. 14 (up)], and correspondingly, the error has a
peak. At the same time, the gain λ [see Fig. 13 (bottom)],
automatically computed by the control algorithm, increases
to push the velocity up to the robot limits. Nevertheless, the
robot is still able to counteract this disturbance, and at t =

11 s, the robot reaches again the equilibrium relative pose
[see Fig. 12(5)].

The same motion has been repeated in the orthogonal
direction. The human partner first slowly moves the object
toward the robot and then moves it back again with a fast
motion. The results are very similar to the previous ones;
during the slow motion, between t = 13 s and t = 16 s,
the robot is able to follow the object by keeping the camera
velocity within its limits. Once again, at t = 16 s, when the
human partner rapidly moves the object back, the robot is
pushed to its translational velocity limits [see Fig. 14 (up)].
Finally, at the end of this phase (t = 18 s), the robot reaches
the equilibrium pose again, as shown in [see Fig. 12(6)].

The remaining part of the experiment is devoted to rotational
motions. The human partner slowly rotates the object [see
Fig. 12(7)] to reach the configuration in Fig. 12(8); then, with
a fast rotational motion [see Fig. 12(9)], the human brings
the object in its original orientation [see Fig. 12(10)]. Three
repetitions of this rotational perturbation are performed and
shown in the graphs between t = 19 s and t = 50 s. The
behavior is qualitatively similar to the translational case, and
the rotational velocity control plot reaches lower values (about
0.1 rad/s) during the slow human motions followed by higher
peaks during the fast motions. Note how, during the last two
fast rotational motions (t = 32 s and t = 44 s), the robot is
pushed to its rotational velocity limits as the ∥ω∥ signal in
Fig. 14 (bottom) saturates to ωM .

The whole experiment followed by an additional phase
where the human operator moves randomly in all the rotational
and translational directions is available in the accompanying
video.

E. Pick&Place Experiments

This section shows pick&place experimental tasks in a
collaborative scenario.

The object to pick is placed on the picking desk [see Fig. 15
(top left)], and the robot is commanded to pick and place it on
a selected shelf [see Fig. 15 (top right)]. Two experiments are
executed; in the first one, the robot performs the pick&place
task autonomously. In the second one, the object position is
perturbed by a human operator during the visual servoing
subtask [see Fig. 15 (bottom)].

Fig. 16 shows the results of the two experiments. The top
plot reports the root mean square error eM , while the bottom

Fig. 15. Pick&place experiments. Top left: initial configuration. Top right:
final placing configuration. Bottom: snapshots of a disturbance induced by a
human operator who moves the object to be picked.

Fig. 16. Pick&place experiment. Top plot: root mean square errors:
unperturbed experiment (blue curve) and perturbed one (red curve).

one reports the control gain λ. The blue lines represent the
results obtained when the object pose is not perturbed by the
human partner. The red lines represent the perturbed case.
At about 0.5 s, the human partner changes the position of
the object to be grasped to avoid the collision between the
robot and another object present on the picking desk. The
object position perturbation lasts 0.5 s and ends at t = 1 s.
During this time interval, the robot follows the moving object,
and the root mean square error is almost constant. When the
perturbation ends, the error decreases and converges toward
zero.
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Fig. 17. Handover experiment performed with Object B. Top left: handover
phase. Top right: preplacing configuration. Bottom left: after the change of the
relative gripper pose orientation by means of the slipping control algorithm
(the so-called pivoting maneuver). Bottom right: actual placing phase.

When the root mean square error eM reaches the prescribed
value of 2 mm, the visual servoing subtask is considered
completed, and the robot grasps the object, moves it to reach
the target location, and places it on the destination shelf to
complete the pick&place task. The placing trajectory, after the
visual servoing phase, has been planned offline by using the
motion planners available in MOVEit [36].

F. Pick&Place Experiments With Human–Robot Handover

The human partner hands the object, picked from the desk,
over to the robot. The human operator handles the object in
the camera’s field of view, and the robot reaches the grasping
location by means of the visual controller. Since the object is
never perfectly still, the object pose is subject to continuous
perturbations due to the unavoidable shaking of the human
hand. A plastic bottle and a carton box are picked and placed
in sequence.

The human operator shows the carton box to the robot,
who grasps it by using the visual controller [see Fig. 17 (top
left)]. Fig. 18 shows the error and the norm of the commanded
translational and rotational velocities. Unsurprisingly, the plots
are similar to the previous experiments, and once again, the
robot is pushed close to its velocity limits. Note that, in less
than 1 s, the visual servoing reaches the value eM = 2 mm,
and the remaining time in the plot corresponds to the gripper
closing and grasping phase. During the gripper closing, the
visual servoing controller is still active to track the object
and reject any perturbation given by the human operator
(see the accompanying video). This time, the robot has to
place the object between the two shelves on the right (see
Fig. 17). Before the placing phase, the robot goes in front
of the prescribed shelf in a configuration not feasible for
the placing operation (top right figure). By using a gripper-
pivoting maneuver, the robot is able to change on the fly
the relative orientation between the gripper and the object to

Fig. 18. Handover subtask performed with the carton box. Top: root mean
square error eM . Bottom: norm of the commanded camera translational
velocity (left axis: blue curve) and norm of commanded camera rotational
velocity (right axis: red curve). The dashed lines represent the velocity limits.

Fig. 19. Handover subtask performed with the plastic bottle. Top: root
mean square error eM . Bottom: norm of the commanded camera translational
velocity (left axis: blue curve) and norm of commanded camera rotational
velocity (right axis: red curve). The dashed lines represent the velocity limits.

reach a feasible configuration (bottom left figure; see also the
accompanying video). Finally, the robot is able to place the
object on the shelf (bottom right figure).

The same experiment is repeated with the plastic bottle.
Fig. 19 shows the results of the visual servoing subtask.
This time, the human operator intentionally applies larger
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perturbations to the object pose. At about t = 0.5 s, a first
perturbation is applied, but the robot is already at the edge
of the velocity constraint, and the control is not able to
counteract the perturbation; thus, the error increases. When
the perturbation ends, the error decreases again. This is visible
in Fig. 19 (top). Between t = 3 s and t = 4 s, another
perturbation is applied when the error is very close to the
equilibrium point; in this case, the visual control counteracts
this event by increasing the velocity command. This is visible
in the two peaks in the bottom plot corresponding to the two
peaks that correspond to the perturbations in the top plot.

VI. CONCLUSION

In this article, we presented a novel IBVS with 3-D features.
A sampled-data model is presented to describe the exact
closed-loop dynamics in the sampling times while retaining the
rigid motion constraint. Useful insights into the well-known
undesired equilibria of an IBVS scheme are provided to
characterize pathological situations in the application of an
IBVS control strategy based on 3-D feature points.

The control design is aimed at pushing the robotic system
performances up in terms of accuracy and execution speed.
The algorithm is based on an exact sampled-data model of the
visual servoing system and a discrete-time Lyapunov analysis.
The input to the robot controller has been synthesized by
adapting the control gain solving a constrained optimization
problem. The constraints refer to the camera Cartesian velocity
limits, depending on the robot configuration and joint velocity
limits, and the monotonic decreasing in the continuous time
of the feature error dynamics. Even though the algorithm
assumes that the robot is an ideal Cartesian motion generator,
the experimental results in the real environment have shown
that such an assumption is entirely reasonable.

Three pick&place experiments, involving a human partner
and requiring handover maneuvers and in-hand dexterous han-
dling, have been presented. The accompanying video shows
that the robot exhibits a high accuracy in grasping and placing
the objects and behaves, in terms of speed of execution,
in a way comparable to the human operator, satisfying the
requirement for the optimal sharing of a collaborative logistic
task.
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