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Optimal Actuator Placement for the High-Precision
Control of Quasi-Static Elastic Plates

André Heining , Kevin Schmidt , Ulrich Schönhoff, and Oliver Sawodny , Senior Member, IEEE

Abstract— Adaptive optical elements are often used to com-
pensate for disturbances in the beam to enhance the image
quality. If the element is thin, the force profile for its motion may
lead to a significant unevenness of the optical surface impairing
the image quality. A remedy falls back on the overactuation
with a larger number of actuators. However, the question arises
of what the minimal number of actuators for a given optical
requirement is. Thus, we investigate the case of a low-frequent
reference acceleration in the spatial degrees of freedom of a rigid
body, where the elastic modes of a thin plate experience quasi-
static amplification. Considering the information on the elastic
plate modes, an optimal mapping of the demanded reference
acceleration on the actuators leading to a minimal surface
deviation from ideally flat is derived analytically. Furthermore,
this mapping and the information of the nonsquare relative gain
array (RGA) are exploited to obtain an actuator placement to
further reduce the elastic plate deformation. Numerical results
show a major improvement in flattening the optical surface
profile compared to the case of neglecting the information about
the elastic plate modes and lead to a Pareto front that supports
the choice of a minimal number of actuators.

Index Terms— Actuator placement, distributed parameter sys-
tem, feedforward control, plate vibration.

I. INTRODUCTION

THE active control of optical elements presents a common
strategy to compensate for aberrations in the optical

path. Recent development in optical applications considers an
increasing size of the optical surface to improve the image
quality [6], [11], [22]. However, maintaining the mass while
increasing the surface requires a reduction of its thickness,
leading to thin plates. In adaptive optics, thin elements are
typically controlled by a large number of actuators to compen-
sate for wavefront disturbances, which perturb the transmitted
information and limit the image resolution in large telescopes
[1], or the maximum output power of high-power lasers [21].
Considering a thin optical element that corrects for piston and
tip-tilt disturbances, the force profile for its motion may lead to
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Fig. 1. Visualization of vertical piston and rotational tip-tilt motion.

Fig. 2. Reflection of light beam on (a) ideally stiff plate and (b) elastically
deformed plate.

an uneven optical surface. The surface deviation then impairs
the compensation of the piston and tip-tilt disturbances and
introduces additional distortions in the optical path, as shown
in Figs. 1 and 2. If a high-precision control with large
bandwidth is desired, the change in the surface profile needs
to be kept small. In the case of a low-frequent change of the
plate motion, i.e., a negligible transient system response, the
applied force profile introduces a quasi-static excitation of the
elastic plate modes. Common measures to compensate for the
elastic plate deformation are the actuation of the plate and the
positioning of actuators.

Optimal actuator placement is a frequently addressed objec-
tive in the control of dynamic systems. It has a major impact on
the control performance. Moreover, the identification of opti-
mal actuator locations is encountered repeatedly in the design
process since it is coupled to the actuator force profile. Solv-
ing the coupled objectives requires an efficient optimization
algorithm. Although coupled, the optimization problem can be
drastically simplified by obtaining an analytic solution for the
actuator force profile assuming a given actuator configuration.
This leaves the positioning as an optimization problem, which
can be solved by considering a state-space representation of
the system for example, enabling the treatment of various
complex geometries. Due to the multitude of systems and
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control objectives, there is no general procedure to obtain an
ideal actuator placement as shown in the following.

A. State-of-the-Art

Screening present literature shows that there are frequently
addressed approaches for optimizing the system configuration.
The list ranges from methods in the time domain to methods in
the frequency domain. Considering the time domain, an objec-
tive based on the controllability Gramian is often minimized
subject to additional constraints. Alternatively, the frequency
domain offers methods such as the relative gain array (RGA),
to obtain configurations that satisfy the desired conditions and
is especially useful in systems with a finite amount of possible
inputs and outputs.

The work of [9] gives a brief overview of typical optimiza-
tion criteria. The list ranges from maximizing modal forces
and the deflection of the considered structure to maximizing
the controllability and observability and minimizing spillover
effects that might occur when neglecting higher order modes.

Findings in [7] show the effect of piezoelectric patch-type
actuators on exciting specific modes of a thin rectangular plate.
Experiments give evidence that a mode is dominantly excited,
if the input frequency is close to the resonant frequency of a
mode. Furthermore, the location and orientation of the actuator
patch play a key role in the ability to excite specific modes
since the actuator edges act in phase and, thus, parallel edges
are likely to support or cancel out each other in the case of
the excitation of a particular mode.

Sadri et al. [20] considered two objectives for finding
optimal actuator locations for active vibration control of a rect-
angular isotropic simply supported plate. For a fixed number
of actuators, the placement obtained by maximizing the modal
controllability and the controllability Gramian is compared.
Simulations show the capability of both objectives to find
ideal actuator locations, with the modal controllability criterion
leading to slightly better damping for particular modes. The
optimization problems were solved with a genetic algorithm.

In a comparable manner, the work in [17] also considers
maximizing the controllability Gramian to search for an opti-
mal configuration of piezoelectric patch actuators on a plate.
Equivalently to [20], the optimization is solved with a genetic
algorithm. Based on the resulting locations, an adaptive control
law is synthesized to suppress the vibration response of the
plate. Conducted simulations show that the optimal actuator
locations improve the power efficiency of the actuators as well
as the control efficiency.

An optimization of a collocated piezoelectric actuator–
sensor pair is also the topic in [15]. Optimal locations are
determined by solving a zero-one optimization problem by
minimizing the linear quadratic regulator (LQR) performance
with a genetic algorithm. The control performance of the LQR
is compared to proportional feedback and negative velocity
feedback. A comparison reveals a major improvement for the
LQR and the negative velocity feedback and a reduction in
the actuator voltages for the LQR.

Another approach considers the controllability Gramian to
obtain optimal actuator placements again [16]. The objective

represents the input energy of the actuators in conjunction with
an LQR. Furthermore, the number of actuators and the possible
actuator locations are fixed. Therefore, the problem is solved
using an integer-coded genetic algorithm.

The work of [18] considers a zero-one optimization problem
for finding the optimal combination of discrete actuator loca-
tions. The problem is solved by utilizing a genetic algorithm
and the cost function maximizes the dissipated energy of the
controller.

Solving a zero-one optimization problem as well, Huang
et al. [12] used an adaptive genetic algorithm to minimize
the effort of an LQR on damping vibrations. The considered
system is a thin cantilever plate and the actuators are piezo-
electric patches collocated with a sensor. Results are tested in
a simulation and show a major improvement in damping the
plate vibration.

Chhabra et al. [4] used a modified heuristic genetic
algorithm for determining the optimal location of piezoelectric
actuators for the damping of plate structures. The cost function
maximizes the singular value of a modified control matrix.
Findings show that the modified algorithm converges to the
global optimum and optimized placements together with an
LQR lead to a significant increase in the closed-loop damping
ratio.

In addition to the dynamic view on a system, the compen-
sation of stationary effects is approached as well. Therefore,
optimal actuator locations for compensating static disturbances
by controlling the shape are obtained in [10]. The root
mean square (rms) defines the objective and the optimization
problem is solved by using the NEWSUMT package. The
optimization scheme is applicable to the placement of force
and heat actuators and was applied to a beam.

Furthermore, Wagner et al. [28] investigated the actuator
placement on a 1-D Euler–Bernoulli beam to counteract static
loads. In order to obtain the ideal positions for a given number
of actuators, the trace of the Gramian compensability matrix
is minimized.

Besides the optimization of the actuator placement via
Gramian matrices, the coupling between the input and output
of a system in a steady state is often of interest. The RGA
presents a mature technology for systems with multiple-input–
multiple-output (MIMO) to assess this kind of coupling. The
RGA for square systems was first introduced by Bristol [2]
and transferred to nonsquare systems with multiple inputs and
outputs by Cheng and Yu [3].

For example, a multivariable control scheme for a
ternary distillation column is designed by the use of the
RGA [26]. Therefore, the nonsquare system is first trans-
formed into a squared one by applying a precompensation
matrix.

A second application controls the de-oiling membrane pro-
cess [14]. Based on the evaluation of the RGA, the decoupling
of control loops was improved and it turned out that actuators
need to be located differently depending on the operating
point.

Moreover, the bending vibration of a cantilever plate was
analyzed by an extension to the RGA in [8]. By the use of a
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block RGA (BRG), the actuator location for two sets of three
self-sensing actuators is determined.

More recently, the temperature of a walking beam furnace
was subject of control in [13]. However, the application of
the RGA did not lead to a sufficient control performance and,
thus, was replaced by a Gramian interaction measure.

B. Contribution and Structure of This Article

The correction for piston and tip-tilt disturbances requires
the realization of a demanded motion. This shall be done
without introducing additional distortions of an uneven optical
surface through the applied force profile. Moreover, it is
desirable to realize this with a low number of actuators. Hence,
the contribution of this article is twofold:

1) an analytically derived expression for the actuator force
profile that realizes the demanded motion and assures
a minimal surface deflection under the assumption of a
quasi-static response of the elastic plate modes;

2) a procedure for obtaining optimized actuator locations
by considering the results of 1) and aspects from the
time and frequency domains leading to a Pareto front
for deciding on the number of actuators.

Therefore, the remaining article is structured as follows.
In Section II, the underlying model for the optimization
procedure is derived. Hereinafter, we present an analytic
solution of the optimal mapping of the desired rigid body
acceleration on the actuator force profile by taking information
of the elastic plate modes into account. Advancing from here,
a procedure for obtaining optimized actuator locations by
combining methods from the time and frequency domains is
additionally covered in Section III. Subsequently, the discus-
sion in Section IV presents the numerical results for a low
number of actuators and an analysis of the plate deformation
for a given rigid body acceleration. Moreover, gathering the
results for the different amounts of actuators leads to a Pareto
front that serves as a tool on selecting the minimal amount of
actuators. A summary and outlook concludes this article with
Section V.

II. MODELING

In this section, the governing equations for a circular
plate with elastic boundary are presented. Subsequently, the
quasi-stationary model in the case of a slowly varying rigid
body acceleration is derived.

A. System Modeling

A truncated design model, which is partitioned in the rigid
body modes (subscript r) and elastic modes (subscript e), is the
basis for the further steps of this article and is given as

d
dt

[
xr
xe

]
=

[
Ar

Ae

][
xr
xe

]
+

[
Br
Be

]
u ≜ Ax + Bu. (1)

The considered rigid body degrees of freedom (DoFs)
cover a piston and tip-tilt motion (see Fig. 1). However, the
state-space description can be easily extended by the remain-
ing three DoFs. For a wide range of mechatronic applications,
it is sufficient to consider a circular region of interest—at least

Fig. 3. Model of thin plate with ui (t) and i ∈ N as the force input as well
as y j (t) and j ∈ N as measured plate deflection perpendicular to its surface
and elastic boundary support.

for fundamental design issues like an optimal placement of the
actuators. Thus, we introduce a dynamic thin-plate model in
the following (see Fig. 3). In this case, the elastic support
represents the stiffness of the remaining geometry outside the
region of interest.

1) Dynamic Thin-Plate Model: In order to illustrate the
proposed actuator placement methodology, we consider a
circular region of interest of a Kirchhoff plate with radius R
and thickness h in polar coordinates (r, ϕ). For any time
t > 0 and (r, ϕ) ∈ (0, R) × (0, 2π), the deflection w(r, ϕ, t)
is governed by the partial differential equation (PDE)

D11w + ρh
∂2w

∂t2 + Qd = Qa (2)

depending on the fundamental material parameters E modulus
of elasticity, ν Poisson’s ratio, ρ the mass density, and the
flexural rigidity D = Eh3/(12[1 − ν2

]). The spatial Laplace
operator in polar coordinates is denoted 1 = ∂2

r +∂r/r+∂2
ϕ/r2.

Moreover, a Rayleigh damping force is considered

Qd(r, ϕ, t) = λd
∂w(r, ϕ, t)

∂t
+ κd11

∂w(r, ϕ, t)
∂t

(3)

featuring a viscous and a Kelvin–Voigt component with the
coefficients λd and κd, respectively. The plate is actuated by
i = 1, . . . ,ma pointwise force actuators ui (t) at the polar
positions (ra,i , ϕa,i ), which are collected within the expression

Qa(r, ϕ, t) =

ma∑
i=1

ui (t)
ra,i

δ(r − ra,i )δ(ϕ − ϕa,i ) (4)

where δ(·) is the Dirac delta distribution. Note that the actuator
locations and the number of actuators ma are design variables
in the remainder of this article.

As the system equations are linear, we assume homogeneous
initial conditions w(r, ϕ, 0) = ∂tw(r, ϕ, 0) = 0 without any
loss of generality and ∂t as the partial derivative of w with
respect to t . In order to define the boundary conditions at
r = R properly, consider the operators

M = −D
[
∂2

∂r2 +
ν

r
∂

∂r
+
ν

r2

∂2

∂ϕ2

]
(5)

V = −D
[
1
∂

∂r
+

1 − ν

r
∂2

∂ϕ2

(
1
r
∂

∂r
−

1
r2

)]
(6)
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which correspond to the boundary bending moment Mw and
the Kelvin–Kirchhoff shearing force Vw, respectively [24],
[29]. With the preliminary definition, the boundary conditions
read as

Mw(R, ϕ, t) = cM
∂w(R, ϕ, t)

∂r
(7)

Vw(R, ϕ, t) = −cVw(R, ϕ, t) (8)

with the rotational and translational stiffness functions cM and
cV , respectively.

2) Modal Analysis and Truncation: For an analysis of the
plate deflection, the deflection w(r, ϕ, t) is decomposed in
spatially dispersed plate modes ψmn(r, ϕ) and time-dependent
modal amplitudes qmn(t). The index m ∈ N+ denotes the
number of concentric nodal lines and the index n ∈ N+

represents radial nodal lines in the elastic modes [29]. In
accordance with the preceding one, the modal analysis is
performed by applying the modal transformation

qmn(t) =

∫∫
P
w(r, ϕ, t)ψmn(r, ϕ)rdrdϕ (9)

to the PDE (2), with the plate area P = (0, R) × (0, 2π). By
performing integration by parts twice and applying Green’s
theorem, we obtain the following eigenvalue problem with the
corresponding eigenvalues λmn:

11ψmn(r, ϕ)−
λ4

mn

R4 ψmn(r, ϕ) = 0, (r, ϕ) ∈ P (10)

and the boundary conditions

Mψmn(R, ϕ) = cM
∂ψmn(R, ϕ)

∂r
(11a)

Vψmn(R, ϕ) = −cVψmn(R, ϕ). (11b)

By performing a multiplicative separation of the operator in
(10), the expression is rewritten as(

1−
λ2

mn

R2

)(
1+

λ2
mn

R2

)
ψmn(r, ϕ) = 0 (12)

leading to two independent solution parts(
1−

λ2
mn

R2

)
91,mn(r, ϕ) = 0 (13a)(

1+
λ2

mn

R2

)
92,mn(r, ϕ) = 0 (13b)

that add up to the overall solution

ψmn(r, ϕ) = 91,mn(r, ϕ)+92,mn(r, ϕ). (14)

With some further calculus, the independent solution parts
are reshaped to Bessel’s ordinary differential equation (ODE),
and thus, the solution approach for the plate modes ψmn(r, ϕ)
is formed by superpositioning the Bessel functions of the
first and second kinds, i.e., Jn(·) and Yn(·), respectively, and
the modified Bessel functions of the first and second kinds,
i.e., Im(·) and Km(·), respectively. Hence,

ψmn(r, ϕ) = Amn

[
Jn

(
λmnr

R

)
+ BmnYn

(
λmnr

R

)
+ Cmn Im

(
λmnr

R

)
+Dmn Km

(
λmnr

R

)]
e−imϕ

(15)

forms the solution for the plate modes. The normalization
factor Amn and the shape parameters Bmn , Cmn , and Dmn

are determined by solving the boundary conditions (11) and
further demanding

lim
r→0

ψmn(r, ϕ) < ∞ (16)

ψmn(r, 0) = ψmn(r, 2π). (17)

The demand of (16) enforces the coefficients Bmn and Dmn

to vanish since the Bessel function of the second kind and
the modified function of the second kind exhibit a singu-
larity at r = 0. Plugging (15) into the boundary conditions
(11a) and (11b) and further eliminating the remaining shape
parameter Cmn leads to the frequency equation whose roots
define the values of λmn [29]. The condition for determining
the normalization factor Amn is then given by∫ 2π

0

∫ R

0
ψmn(r, ϕ)ψpq(r, ϕ)rdrdϕ = δmpδnq (18)

with δab = 1 for a = b and zero elsewhere. Thus, the
normalization factor is defined with

Amn =

(∫ 2π

0

∫ R

0

((
Jn

(
λmnr

R

)

+Cmn In

(
λmnr

R

))
cos(nϕ)

)2

rdrdϕ

)−
1
2

. (19)

Moreover, the decoupled ODEs

q̈mn(t)+ 2ζmnωmn q̇mn(t)+ ω2
mnqmn(t)

=

ma∑
i=1

ψmn(ra,i , ϕa,i )

ρhra,i
ui (t), t > 0 (20)

describe the dynamics of the modal amplitudes qmn(t), with
resonance frequency

ω2
mn =

Dλ4
mn

ρh R4

damping coefficient

ζmn =
λd R4

+ κdλ
4
mn

2ρh R4ωmn

and the initial condition qmn(0) = q̇mn(0) = 0. The original
plate deflection is then obtained by an infinite series of the
real-valued plate modes, i.e.,

w(r, ϕ, t) = Re
∞∑

m,n=0

ψmn(r, ϕ)qmn(t). (21)

However, for a practical application, only a finite number
of plate modes can be considered, leading to

w(r, ϕ, t) ≈ Re
Nm ,Nn∑
m,n=0

ψmn(r, ϕ)qmn(t) (22)

with Nn and Nm as the bounds on the considered plate
modes. Similarly, the truncated design model (1) is obtained
by gathering a finite amount of modal amplitudes qmn(t) and
their first time derivative q̇mn(t) in the state vectors xr and xe.
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B. Quasi-Stationary Model

In order to formulate the quasi-static problem description,
further conditions on the system equations (1) are proposed.

The modal state vector x is structured as

x =
(
x⊺

1 · · · x⊺
k · · · x⊺

nm

)⊺

xk =
(
qk q̇k

)⊺

k ∈ {1, . . . , nm}

where nm denotes the number of considered modes sorted in
ascending natural frequency.

Under the assumption of constant rigid body acceleration
and identically zero elastic mode velocity, i.e.,

q̈r = const. ⇒ ẋr ̸= 0 (23a)

q̈e = q̇e = 0 ⇒ ẋe = 0 (23b)

the remaining system equations that constitute the quasi-static
case are

0 = Aexe + Beu (24a)

q̈r = B̄ru (24b)

with B̄r = (I ⊗ [0 1])Br and ⊗ denoting the Kronecker
product.

III. ACTUATOR FORCE PROFILE AND PLACEMENT

This section treats the mapping of the demanded accel-
eration q̈r on the force profile of the actuators for a given
configuration. First, the simplified case in which the infor-
mation about the elastic states of the plate is neglected, called
“naive” approach, is derived, and in a second step, the optimal
mapping that minimizes the plate deflection for a given accel-
eration and actuator configuration is presented. Hereinafter,
we describe a procedure for obtaining actuator positions that
minimizes the worst case deflection by exploiting the optimal
mapping and the information from the RGA.

A. Actuator Force Profile

A naive approach to calculate an actuator force profile
that satisfies the desired rigid body acceleration neglects
the quasi-static plate deflection of the elastic modes. Hence,
solving the optimization problem

min
u

1
2

u⊺u (25a)

s.t. a = W B̄ru (25b)

leads to a minimal force profile that accounts for the desired
acceleration a, with W = W⊺

≻ 0 denoting the scaling matrix
between the desired rigid body acceleration and the accel-
eration of the rigid body modes qr. Appendix II provides a
detailed derivation for the scaling matrix W that is considered
in this article. The obtained input profile is defined by

u∗

naive = B̄+

r W−1a (26)

whereby the operator [·]
+ denotes the Moore–Penrose pseu-

doinverse. However, this definition of the actuator’s force
profile ignores the plate deformation that is imposed by the

elastic plate modes qe that are equally excited by the actuator
action. Thus, the resulting force profile may lead to large
quasi-static plate deformations.

The new approach that is pursued here aims for a force
profile of the attached actuators that minimizes the quasi-static
plate deformation subject to the satisfaction of the desired rigid
body acceleration. This requirement is captured by

min
u

∥w(r, ϕ)∥2
L2

(27a)

s.t. a = W B̄ru. (27b)

Next, the plate deformation is expressed by the modal
synthesis

w(r, ϕ) = ψ⊺(r, ϕ)xe = ψ⊺(r, ϕ)A−1
e Beu. (28)

This leads to the reformulation of the objective to

∥w(r, ϕ)∥2
L2

=

∫∫
P
w2(r, ϕ)rdrdϕ

= u⊺ B⊺
e

(
A−1

e

)⊺
∫∫
P
ψψ⊺rdrdϕ︸ ︷︷ ︸

=I

A−1
e Beu

=
1
2

u⊺ Hu. (29)

Note that the eigen shapes ψ are self-adjoint and, hence,
form an orthonormal basis system; their product equals the
identity matrix I . Moreover, due to the symmetric structure
of H , the matrix is positive definite, i.e., H ≻ 0 , and Gramian.
The aforementioned reformulation leads to

min
u

1
2

u⊺ Hu (30a)

s.t. a = W B̄ru. (30b)

By formulating the Lagrangian

L(u,λλλ) =
1
2

u⊺ Hu + λλλ⊺(
W B̄ru − a

)
(31)

with λλλ as the Lagrange multiplier for the equality constraint,
and calculating the partial derivatives with respect to the
arguments of the Lagrangian

∂L
∂u

= Hu +
(
W B̄r

)⊺
λλλ = 0 (32a)

∂L
∂λλλ

= W B̄ru − a = 0 (32b)

we obtain the following system of linear equations:(
H

(
W B̄r

)⊺

W B̄r 0

)(
u
λλλ

)
=

(
0
a

)
. (33)

Solving for the arguments u and λλλ leads to

λλλ = −
(
W B̄r H−1 B̄W

)−1a (34a)

u = −H−1 B̄⊺
r Wλλλ. (34b)

By combining (34a) and (34b), we conclude

u = H−1 B̄⊺
r W

(
W B̄r H−1 B̄W

)−1a ≜ K FFa. (35)

Here, the matrix K FF describes a mapping of the desired
rigid body acceleration on the force profile of the actuators
such that the plate deformation is kept small. However, the
optimization of the quasi-static deformation profile can be
pushed another step further.
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B. Optimization of Actuator Configuration

Up until now, only given actuator positions were consid-
ered. Thus, by optimizing the actuator placement, the plate
deformation may be reduced even further. In order to prepare
an optimization over the actuator positions, the optimization
variable θ ∈ R f ma , with f as the DoF of each actuator and
ma denoting the number of actuators, needs to be declared.
In our case, we consider actuators with two DoFs comprising
the polar coordinates (ra,i , ϕa,i ) of their position. Hence, θ is
structured as

θ =
(
ra,1 ϕa,1 · · · ra,ma ϕa,ma

)⊺
∈ R2ma . (36)

In the next step, the matrices that depend on the actuator
position have to be identified. From the PDE (2), it is obvious
that only the input matrices Br = Br(θ) and Be = Be(θ)

depend on the actuator position. However, the matrices K FF
and H depend on the input matrices Br and Be and, thus,
implicitly depend on the actuator positions as well.

1) Worst Case Optimization: The goal of the optimization
over the actuator positions is to determine an actuator configu-
ration that minimizes the quasi-static plate deformation for an
arbitrary rigid body acceleration. Thus, the optimal mapping
of a onto u is inserted in the squared L2-norm of the plate
deformation profile, leading to

∥w(r, ϕ)∥2
L2

=
1
2

a⊺ K⊺(θ)H(θ)K (θ)a

=
1
2

a⊺ Q(θ)a. (37)

Since the Gramian matrix H is left and right multiplied by
K⊺ and K , respectively, the expression Q(θ) is Gramian as
well. Moreover, the demanded rigid body acceleration a is in
general not constant and may vary in successive plate motions.
Therefore, it is intended to find an actuator configuration
that minimizes the imposed plate deformation of arbitrary
accelerations a. By exploiting the fact that Q(θ) is Gramian,
it can be lower and upper bounded by its smallest and largest
eigenvalues λmin and λmax, respectively, i.e.,

1
2
λmin(Q(θ))∥a∥

2
≤

1
2

a⊺ Q(θ)a ≤
1
2
λmax(Q(θ))∥a∥

2. (38)

As a consequence, minimizing the largest eigenvalue
λmax(θ) returns a placement of the actuators that minimizes the
quasi-static deformation profile w(r, ϕ) caused by the accel-
eration a. For a better understanding, this problem might be
interpreted geometrically. The matrix Q(θ) ∈ Rn×n represents
an n-dimensional ellipsoid whose semiaxes are proportional
to the eigenvalues of Q(θ). By a left and right multiplication
of the vector a ∈ Rn , the vector is projected onto the ellipsoid.
The largest projection occurs in the direction of the largest
semiaxis. Hence, for minimizing the largest projection, the
eccentricity of the ellipsoid needs to be reduced, which is
equivalent to minimizing the largest eigenvalue of Q(θ). The
geometric interpretation is shown in Fig. 4 for the dimension
n = 2.

Since no further constraints on the input u have to be
considered, only the distance between the single actuator
locations has to be greater or equal to a minimal distance

Fig. 4. Geometric explanation of projection on ellipsoid for two dimensions.

in order to ensure a realizable configuration. Therefore, worst
case minimization of the influence of the acceleration a on
the quasi-static plate deformation is represented by

min
θ

max λ(Q(θ)) (39a)

s.t. dmin(θ) ≥ dcrit (39b)

(ra,i , ϕa,i ) ∈ P̃ (39c)

with P̃ ⫅ P as subset of the feasible plate area. However,
due to the nonlinear dependence of the eigenshapes on the
polar coordinates, the optimization over the actuator locations
forms a nonlinear and nonconvex optimization problem. The
difficulty of nonconvex optimizations is the presence of multi-
ple local minima. These local minima may result in a solution
that contains a local gathering of actuators. In order to enforce
a distribution of the actuators over the plate, the nonsquare
RGA (NS-RGA) is considered as an additional aspect in the
optimization.

2) Nonsquare Relative Gain Array: The NS-RGA is defined
as

3(s) = G(s) ◦ (G(s)+)⊺ ∈ Rmo×mi (40)

with G(s) as the transfer function matrix from the considered
m i inputs to the desired mo outputs and the operator ◦ denoting
the Hadamard product [3]. The element 3 j,i describes the
interaction of the i th input to the j th output. Some important
properties of the NS-RGA are given as follows.

1) The sum of each column equals 1, c6,i =
∑mo

j=13 j,i =

1 ∀ i ∈ 1, . . . ,m i.
2) The sum of each row lies in between 0 and 1, 0 ≤ r6, j =∑mi

i=13 j,i ≤ 1 ∀ j ∈ 1, . . . ,mo.
In particular, the second property forms a key aspect for the
considered optimization. Therefore, we introduce an adapted
input matrix

B̃e(θ) = Be(θ)K FF(θ) (41)

considering the rigid body acceleration as the new system
input. Moreover, the output matrix Ce is set up by mo point
measurements of the local plate deviation from its middle line
to obtain a transfer function matrix of finite dimension. The
locations of the system outputs are calculated by the utilization
of a planar Fibonacci grid (see Fig. 5), which presents a simple
solution for a virtually uniformly distributed set of points [23].
This yields the transfer function matrix from the desired rigid
body acceleration a to the defined system output y

G ya(s, θ) = Ce(Is − Ae)
−1 B̃e(θ). (42)
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Fig. 5. Visualization of a Fibonacci grid over a circular area with 100 points.

By evaluating the transfer function (42) at the limit lims→0 s,
the stationary NS-RGA

3̄(θ) = Ḡ(θ) ◦ (Ḡ(θ)+)⊺ (43)

with Ḡ(θ) = G ya(0, θ), is obtained. In addition, it should be
mentioned that the use of the Moore–Penrose pseudoinverse
does not preserve the property of unit invariance if scaling
of the input and output signals does occur as it is the case
for the RGA of square systems [27]. Therefore, Uhlmann
[27] introduced a generalized inverse, which preserves unit
invariance through unit scaling. However, in the presented
problem, no unit scaling of the inputs and outputs of Ḡ(θ)
occurs and, thus, the use of the Moore–Penrose pseudoinverse
is valid. Next, the steady-state error

e = yd − y (44)

with the desired output yd and the plant output y moves in
the focus of investigation. By considering a minimal error in
the sense of least squares (see Appendix I), (44) rewrites to

e =

(
Imo − Ḡ(θ)Ḡ+

(θ)
)

yd. (45)

Thus, the error of the j th output is

e j =

(
1 −

(
Ḡ(θ)Ḡ+

(θ)
)

j j

)
yd, j

= (1 − r6, j (θ))yd, j (46)

according to [3], with (4) j j denoting the j j-entry of 4.
Hence, in order to achieve an evenly distributed compen-

sation of the elastic plate deformation, each row sum needs
to be close to one. Therefore, the mean deviation of the row
sums from one is minimized, i.e.,

min
θ

∑mo
j=1 1 − r6, j (θ)

mo
(47a)

s.t. dmin(θ) ≥ dcrit (47b)

(ra,i , ϕa,i ) ∈ P̃. (47c)

3) Optimization of Actuator Position: Finding optimal actu-
ator locations that lead to a minimal surface deflection induced
by rigid body accelerations is done by combining both

criteria (39) and (47). This leads to

min
θ
w1 max λ(Q(θ))+ w2

∑mo
j=1 1 − r6, j (θ)

mo
(48a)

s. t. dmin(θ) ≥ dcrit (48b)

(ra,i , ϕa,i ) ∈ P̃ (48c)

with the weights 0 < w1,2 ∈ R for adjusting the influence of
each criteria. Furthermore, the inequality constraint is included
in the cost function (48a) for a better numerical evaluation by
utilizing a logarithmic barrier function, i.e.,

8(θ) =

{
− log1d, 1d = dmin(θ)− dcrit ≥ 0
∞, else.

(49)

This finally leads to

min
θ
w1 max λ(Q(θ))

+ w2

∑mo
j=1 1 − r6, j (θ)

mo
+ w38(θ)

s.t. (ra,i , ϕa,i ) ∈ P̃ (50)

with 0 < w3 ∈ R as a third weight. The problem (50) is then
solved with the genetic algorithm ga provided by MATLAB.
Since the genetic algorithm is based on a stochastic exploration
of the feasible set, the optimization is solved 0 < N ∈ N
times for each number of considered actuators, whereby each
iteration for N ≥ 2 is initialized by the best individual of the
preceding iteration.

IV. SIMULATION RESULTS AND DISCUSSION

In the following, the effect of the optimal actuator force
mapping K FF(θ̄) for a given actuator configuration θ̄ and the
further improvement through an optimized actuator positioning
(OAP) is subject of investigation. The actuator configuration
θ̄ is set to be evenly distributed over the plate and, thus,
determined by evaluating the Fibonacci grid for ma = 10 actu-
ators. The location of the Fibonacci actuator placement (FAP)
is shown in Fig. 9. Moreover, the considered rigid body
acceleration is set to

a = amax
(
1 −1 1

)⊺
, 0 < amax ∈ R. (51)

Furthermore, the first 26 elastic plate modes are included
in the model description. The plate translation and its rotation
around the plates’ local x- and y-axes are considered for the
rigid body modes. Moreover, the boundary stiffness cM and
cV are both set to zero, which leads to a free boundary, and
the feasible set of actuator locations is set equal to the whole
plate area, i.e., P̃ = P .

A. Input Profiles and Modal Excitation

The naive solution for the actuator force profile is obtained
by applying (26) to the vector a and leads to the quasi-static
plate deformation shown in Fig. 6. Clearly, large deflections
of the normalized deformation profile are detectable on the
boundary of the plate and in its center. In contrast to that,
the mapping of the rigid body acceleration via the mapping
K FF(θ̄) on the actuator profile leads to a reduced deformation
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Fig. 6. Normalized plate deformation for Fibonacci grid-based actuator
placement and naive force mapping via pseudoinverse with ten actuators.

Fig. 7. Normalized plate deformation for Fibonacci grid-based actuator
placement and optimal force mapping with K FF for ten actuators.

as it is visible in Fig. 7. By applying the optimal mapping,
the large plate deflections at the boundary and in its center
are reduced and shifted to a concentric ring area on the plate.
This is connected to the shifted excitation of plate modes (see
Fig. 8). In the case of the naive use of the direct pseudoinverse,
mainly the lower frequent plate modes are excited. These
modes have a lower modal stiffness compared to the higher
ordered modes and, thus, lead to a greater plate deflection,
if excited. The mapping K FF(θ̄) exploits the information about
the elastic plate modes, which are gathered in the system
description and shifts the excitation of the modes in the
midrange of the considered model modes. In particular, the
first three elastic plate modes are much less excited than
in the naive case. The shift of the mode excitation through
the optimal mapping leads to a peak deformation, which is
reduced to 35.13% of the deformation profile in the naive
case (see Table I). However, the lower third of the considered
modes still experience some excitation. This indicates that
there remains some potential for further improvement through
an OAP.

Fig. 8. Comparison between relative modal amplitude excitation with ten
actuators.

TABLE I
PEAK AND RMS PLATE DEFORMATION FOR OPTIMAL ACCELERATION

MAPPING WITH FAP AND OAP NORMALIZED TO PEAK AND
RMS DEFORMATION OF THE NAIVE CASE

Fig. 9. Actuator positioning based on Fibonacci grid (left) and presented
optimization procedure (right).

B. Actuator Placement

Fig. 9 shows the OAP for ma = 10 actuators compared
to the Fibonacci positioning. Interestingly, the optimization
moved the actuator positions further outward of the center.
In particular, the placement on the boundary of the plate is
notable. An intuitive choice of the actuator locations would
be in the nodal lines of the lower modes such that they do
not get excited by the force profile. The resulting quasi-static
deformation profile of the optimized actuator location in
combination with the optimal mapping K FF(θ) is shown in
Fig. 10. In comparison to Fig. 7, the deformation profile is
more flattened and more evenly distributed. Moreover, the
excitation of the lower frequent elastic plate modes is clearly
reduced and that of the higher frequent ones in the upper third
of the model modes is increased (see Fig. 8). This transfers the
trend of amplifying higher frequent modes with a higher modal
stiffness reducing the quasi-static plate deformation that was
also identified in the case of the nonoptimized actuator con-
figuration in conjunction with the optimal mapping K FF(θ̄).
The trend of amplifying higher frequent modes may arise the
question, whether a flat surface profile is paid with the risk
of a low amplitude, high-frequent plate vibration. However,
with increasing order an excitation of the elastic plate mode
requires more energy. In addition, the considered use case is a
low-frequent change of motion, which leads to a quasi-static
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Fig. 10. Normalized plate deformation for optimized actuator placement and
optimal force mapping with K FF and ten actuators.

plate deformation and, thus, mitigates the mentioned risk.
Furthermore, the peak plate deformation is reduced to 9.33%
of the peak deformation in the case of the naive pseudoinverse
mapping, as listed in Table I.

C. Number of Actuators

Optimizing the actuator configuration for 3–20 actuators
leads to the Pareto front for the rms plate deformation,
as shown in Fig. 11. The rms of the plate in a continuous
form is given by

w2
rms =

1
πR2

∫∫
P
w2(r, ϕ)rdrdϕ

(37)
=

1
2

1
πR2 a⊺ Qa. (52)

According to (38), the best and worst case rms plate
deformation is determined by√

1
2πR2 λmin(Q(θ))∥a∥2

≤ wrms ≤√
1

2πR2 λmax(Q(θ))∥a∥2 (53)

on the basis of the given rigid body acceleration in (51) with
the Euclidean norm ∥a∥ =

√
3amax. However, the course of

the mean deflection is not defined by the mean of the best
case and worst case, but by the mean of the projection along
the axes of the ellipsoid Q(θ), i.e., the mean of its trace.
Therefore, the course of the mean value does not necessarily
lie in the middle of the best case and worst case as it is the
case, for three actuators. It is evident to see that an increase
in the number of utilized actuators leads to a reduced rms
error of the resulting deformation profile of the circular plate.
However, a little spike occurs at ma = 15. Since the genetic
algorithm explores the feasible set in a stochastic manner, it is
possible that the global minimum is not found. Thus, it is likely
that the genetic algorithm returned a local minimum for this
configuration. An increase of the population size, the number
of generations and iterated optimizations, as well as an adapted
mutation of the population and selection of individuals may

Fig. 11. Course of the rms plate deformation for different numbers of
actuators normalized to the largest worst case rms plate deformation.

improve the result but stays in conflict with the computational
effort.

D. Optimization Algorithm

In order to evaluate the solutions that are found by the split
optimization as presented in Section III-A, we compare it to
a direct optimization, i.e., no intermediate optimization of the
actuator force profile but the naive solution in the sense of
least squares. This leads to the optimization problem

min
θ
w1 max λ

(
Q̃(θ)

)
+ w2

∑mo
j=1 1 − r6, j (θ)

mo
+ w38(θ)

s.t. (ra,i , ϕa,i ) ∈ P̃ (54)

whereas Q̃(θ) is formed by replacing the actuator force u in
(30a) by the least squares solution of (30b). Both problems are
optimized with a genetic algorithm, identical in all options as
well as the initial condition. The genetic algorithm, mimicking
natural biological evolution, is a derivative-free method and
domiciled among the metaheuristic optimization algorithms
[5]. Based on a random initial population, i.e., test points,
the cost function is evaluated. Advancing from here, the next
generation of test points is formed by carrying some with low
cost in the next generation and mixing as well as randomly
modifying the remaining points to create a new set of test
points in the following generation.

For each number of actuators, the optimization is repeated
ten times to reduce the risk of being stuck in a local minimum.
The result is presented in Fig. 12 based on the worst case
deformation of each configuration normalized by the solution
of the split optimization for three actuators. Despite the
optimized configuration of three actuators, all solutions of the
split optimization procedure outperform the less sophisticated
approach with the actuator profile in the sense of least squares.
Moreover, the direct optimization approach does not show a
continuous decrease in the worst case performance with an
increasing number of actuators. The result is counterintuitive.
This indicates that the algorithm could not escape a local
minimum. Next, the genetic algorithm is compared with two
different optimization algorithms, simulated annealing and
pattern search, provided by MATLAB.
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Fig. 12. Comparison of split and direct optimization as well as different
algorithms for a split optimization based on the worst case deformation.

Simulated annealing and pattern search are also derivative-
free optimization methods. The idea of simulated annealing is
minimizing an energy function, defined by the cost function,
based on the model of an annealing process [19]. In each
step, a random point is evaluated, whereas the probability
distribution is scaled by the system’s temperature. The tem-
perature is systematically decreased such that the algorithm
converges to a minimum. Different from the before mentioned
methods, pattern search does not evolve in a random manner
but deterministically [25]. Starting from an initial point, the
parameter space is searched in each parameter direction,
i.e., positive and negative, with a given step size, and the cost
function is evaluated at these points. If there exists a point
with a lower cost than the initial point, this point becomes the
starting point for the next iteration with an increased step size.
If the starting point still has the lowest cost, the step size is
decreased.

The comparison is conducted with the split optimization
to investigate differences in the returned solution. As can
be seen in Fig. 12, the simulated annealing algorithm finds
for three and four actuators a configuration, which leads to
almost the same worst case deformation. However, the third
configuration shows a worse deformation than the previous
one with less actuators, indicating that the algorithm got stuck
in a local minimum. The same arguments hold for 13 and
14 actuators. Opposed to the simulated annealing, the pattern
search does not find a solution for three actuators, which is
performing similar to the solution of the genetic algorithm. In
addition, the algorithm gets stuck in a local minimum for eight
actuators. However, for nine and more actuators, the pattern
search algorithm returns configurations with a very similar
worst case deformation as the results of the genetic algorithm.
Nevertheless, no configuration falls below the results of the
genetic algorithm, indicating that in general, globally optimal
solutions were found.

By having a look at the overall optimization time for
each actuator configuration, i.e., the summed time for all
ten optimization loops, no significant difference between the
split and direct optimization with the genetic algorithm is
noticed, see Fig. 13. Both show a slightly increasing time
consumption for an increasing number of actuators. Opposed

Fig. 13. Time consumption for each actuator over all optimization loops.

to the genetic algorithm, the simulated annealing algorithm
returns a solution after a short time duration. However, the
quick return of a solution does not compensate the worse worst
case deformation. In contrast to the simulated annealing, which
has no major time differences between the different number of
actuators, the pattern search exhibits a potential increase in the
overall optimization time. However, this trend is broken by 16,
17, and 20 actuators. Furthermore, the optimization time with
the pattern search for 19 actuators is doubled compared to the
genetic algorithm. Since the genetic algorithm with the split
optimization leads to the best rms improvements and obtains
an almost constant computation time, the genetic algorithm is
set to be the best of the considered methods. All conducted
optimizations were performed on a personal computer with an
i7-10850H processor and MATLAB 2020b.

V. CONCLUSION

In optical systems, the elastic surface deformation of an
adjustable optical element due to its motion introduces an
aberration of the wavefront. Based on the description of a plate
with free boundary, the problem of realizing the demanded
motion under minimal surface deflection was encountered.
The mapping of the required rigid body acceleration on the
actuator force profile as well as the actuator locations were
identified as potential measures. In the first step, a closed-form
solution for the optimal acceleration mapping onto the force
profile for a given set of actuator locations was derived. Here,
information about the rigid body modes and elastic modes
of the plate is considered to minimize the L2-norm of the
plate deformation. In a second step, the positioning of the
actuators to further reduce the quasi-static plate deformation
was developed. The objective to minimize considered the
worst case deformation of the plate and additionally took
information of the RGA into account, in order to obtain an
actuator configuration that evenly addresses the elastic plate
deformation. The results show that an OAP in conjunction
with an optimal mapping drastically reduces the quasi-static
elastic plate deformation in comparison to the use of the
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pseudoinverse when only considering information about the
rigid body modes. In addition, the trend of exciting higher
frequent modes to reduce the elastic deformation profile was
identified, too. Moreover, the presented optimization does only
require a state-space representation of the system. Hence, our
method is also applicable to more complex geometries given
as a finite-element model for example.

Upcoming and ongoing investigations will deal with the
effect of the quasi-static actuator placement on the control-
lability of the plate and a minimal number of actuators to stay
below a requested maximal plate deformation. This, however,
requires a more precise description of the plate, including the
additional mass of the actuators, which has been neglected in
this work. Moreover, the evaluation of the sensitivity of the
plate deformation on the actuator locations is subject of current
investigation.

APPENDIX I

Consider the transfer function matrix G(s) ∈ Cm×n from
the input a ∈ Rn to the output y ∈ Rm . The minimal error

e = yd − y (55)

between the desired output yd and the plant output y in the
sense of least-squares is obtained by solving

min
a

1
2

e⊺e (56a)

s. t. y = Ga. (56b)

Plugging the linear constraint into the objective and solving
for its zero-valued derivative lead to

a = G+ yd. (57)

Thus, the minimal error in the sense of least-squares may
be expressed through

e =
(
I − GG+

)
yd. (58)

APPENDIX II

The scaling matrix W maps the modal rigid body modes
qr in physically relevant coordinates. In the considered case,
W is defined as follows:

W = qr 7→

rz
φx

φy

. (59)

Considering rigid body modes that are normalized with
respect to the plate surface leads to

qrz =
1

R
√
π︸ ︷︷ ︸

1
Nrz

rz (60)

for the vertical translation with normalization factor Nrz deter-
mined analogously to (18) with mode shape ψ(r, ϕ) = (1/Nrz )

qφx =
2

R2
√
π︸ ︷︷ ︸

1
Nφx

r cosϕφx (61)

for the rotation around the x-axis

qφy =
2

R2
√
π︸ ︷︷ ︸

1
Nφy

r sinϕφy (62)

and for the rotation around the y-axis with normalization
factors Nφx and Nφy , respectively. Gathering the scaling terms
in a diagonal matrix leads to

W = diag
(
Nrz , Nφx , Nφy

)
. (63)
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