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Day-Ahead and Intra-Day Building Load Forecast
With Uncertainty Bounds Using Small Data Batches

Marco Lauricella and Lorenzo Fagiano , Senior Member, IEEE

Abstract— An approach to provide day-ahead and intra-day
load forecasts of buildings, such as electrical or thermal power
consumption, is presented. The method aims to obtain a nominal
forecast and associated error bounds with small data batches
of two weeks for the training phase, resulting in a ready-to-
go algorithm that can be employed whenever large datasets of
months or years are not available or manageable. These cases
include new or renovated constructions, buildings that are subject
to changes in purpose and occupants’ behavior, or applications
on local devices with memory limits. The approach relies on a so-
called “fictitious input” signal to capture the prior information on
seasonal and periodic trends of load consumption. Then, linear
multistep predictors with different horizon lengths are trained
periodically with a small batch of the most recent data, and
the associated worst case error bounds are derived, using set
membership (SM) methods. Finally, the forecast is computed, for
each time step, by intersecting the error bounds of the different
multistep predictions and taking the central value of the obtained
interval. Such a method is applied here for the first time to
real-world data of electrical power consumption of a medium-size
building and of cooling power consumption of a large complex.
In both cases, the obtained results indicate a tightening of the
worst case error bounds between 15% and 25% on average with
respect to those obtained with a standard linear SM approach.

Index Terms— Energy prediction, filtering, load forecasting, set
membership (SM) estimation, smart buildings, smart grid.

I. INTRODUCTION

IN BUILDING energy management, accurate forecasting
of electric and thermal power consumption, “load” in

the remainder, leads to higher energy efficiency, thus lower
costs and reduced environmental impact. It also favors the
inclusion of buildings in the future smart cities, facing the
challenges related to growing urbanization, pollution, and
climate change. Indeed, a widespread use of optimization
methods for buildings, enabled by the availability of load
forecasts, can have a strong impact on the sustainability of
our built environment: buildings account in fact for 30% of the
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global energy consumption on average, and for nearly 33% of
associated CO2 emissions [1]. This applies especially to the
nonresidential scenario, where the facility manager can use
forecasts to optimize the energy usage over time by adapting
the building operations. Moreover, future smart grids will
employ dynamic pricing techniques to improve the demand
side management [2]: in this context, a better energy consump-
tion forecast allows one to obtain more favorable purchase
plans. Short-term load forecasting has become increasingly
important with the rise of competitive energy markets as well,
since it plays an essential role in the composition of energy
prices [3]. Moreover, robust approaches to building and grid
management require an estimate of the worst case prediction
error, in addition to a nominal forecast [4], [5], [6]. Such an
upper bound on the error’s magnitude shall be the tightest
possible, to avoid that too conservative measures are taken,
e.g., an excessive energy reserve with respect to the actual
forecast uncertainty.

A. State-of-the-Art

Motivated by the considerations above, load forecasting
for buildings has been widely studied in the literature, con-
sidering different time-scales, and using a large variety of
approaches, spanning from linear autoregressive models (AR,
ARX, ARIMA) [7], [8], [9], [10], to periodic or seasonal ones
(seasonal ARIMA, Periodic AR) [11], generalized Fourier
series [12], support vector machines (SVMs) [13], artificial
neural networks (ANNs) [14], [15], [16], [17] and genetic
algorithms (GAs). For a more comprehensive list of forecast-
ing approaches, see e.g., [3], [18], [19], [20], [21], [22], [23],
[24], and the references therein. In this work, we focus on
short-term load forecasting, with a particular emphasis on the
one-day-ahead horizon, since it is the most common for the
optimization of energy production, storage and consumption
operations, and for energy market transactions [25].

Commercial and industrial buildings are known to exhibit
periodic trends in their energy consumption profile, in addition
to an influence from weather [26], [27]. For these reasons, sev-
eral approaches aim to directly take into account such periodic
trends, resorting for example to Fourier series [28], periodic
AR models [9], [11], or indexed ARX models [8]. Forecasting
approaches based on linear autoregressive models, designed
to make use of the known periodic trends, often achieve
comparable performance to those of neural networks [8], with
the advantage of having a simpler and more understandable
model structure.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5756-1963
https://orcid.org/0000-0002-0109-6484


LAURICELLA AND FAGIANO: DAY-AHEAD AND INTRA-DAY BUILDING LOAD FORECAST 2585

One main drawback of the majority of the cited tech-
niques is the need for a large dataset to be able to capture
the building’s dynamics and periodic trends only from data.
In most cases, the employed datasets consist of year(s) of
measurements with sampling period of the order of minutes.
This is a problem when only recent energy consumption data
are available, or when the building is subject to a change in
purpose and number of occupants (e.g., due to a change in
scope of part of the facility and/or personnel relocation), thus
making previous data not representative of the new course.
Another possible limitation is the available memory for data
storage, which can be rather small if local devices, such as
smart meters or circuit breakers, are used for data collection
and possibly to derive the wanted forecast.
A second drawback of the existing approaches is that they
usually don’t provide a systematic way to estimate worst case
error bounds associated with the nominal forecast, despite
the importance of such bounds when the load prediction is
used for robust optimization, scheduling, and decision making,
as pointed out above.

A number of rather recent contributions in the literature
aim to obtain a forecasting model using generative adversarial
networks (GANs) [29], [30], [31], in some cases explicitly
using “scarce” datasets. Using a generator versus discriminator
training process, GANs aim to deliver a neural network able
to produce load consumption time-series whose statistical
properties match those of the training dataset. This can be
used to augment the dataset itself and/or directly as a predictor.
However, GANs are not aimed at delivering worst case error
bounds associated with a nominal estimate, rather they can
be seen as a statistically representative forecast generation
mechanism. As such, they are more suited to stochastic opti-
mization/control techniques rather than robust ones. Moreover,
the mentioned works still employ relatively large training
datasets, ranging from 6 to 14 months in [30], to 8 batches of
28 days each (i.e., 224 days) in [29], to 2 years in [31].

B. Contribution

A common feature in the mentioned literature is that the
forecasting model is trained once and for all with a fixed batch
of data. This is one of the reasons why rather large datasets
are needed, to capture seasonal variations of the consumption.
Also, this appears to be unnecessarily limiting, since new
data are collected daily and can be used to train/adapt the
model. Based on this observation, our approach entails a
periodic training procedure with a user-selected frequency.
At the beginning of each period, a new forecast model is
derived, using a rather small batch of data pertaining to an
interval immediately prior to the training time. Such a model
is then used to predict the day-ahead load consumption for the
whole period, until a new training procedure is carried out.
In a previous contribution [32], we presented an algorithm
based on this concept, which proved to achieve state-of-the
art performance in terms of accuracy using just two weeks
of past data for each forecasting model. Additionally, the
approach employs periodic input signals named “fictitious,”
since they are not measured quantities. These signals are sine

Fig. 1. ABB office building whose electric load consumption has been
collected in dataset A.

Fig. 2. Business/commercial building complex whose cooling load consump-
tion has been collected in dataset B.

and cosine functions of time, whose frequencies are chosen by
the user on the basis of the above-mentioned prior knowledge
of periodic building consumption trends, while the amplitudes
are identified from data. Finally, the algorithm, based on linear
prediction models, allows one to use the set membership
(SM) approaches described in [33] to estimate worst case
bounds on the forecast error. In this article, we provide three
main additional contributions. First, we improve over [32] by
delivering a technique that obtains tighter worst case error
bounds. To do this, we leverage a multiple SM prediction
approach, whose theoretical properties have been introduced
in [34]. Second, we apply here the improved method to
two real-world buildings: an office building hosting around
200 employees, equipped with electrical heating and cooling
(see Fig. 1), and a large complex of five buildings hosting
offices for more than 4000 people, two data centers and a
commercial area (see Fig. 2). In the former case, the goal is
to predict the electric power consumption, while in the latter
the focus is on the cooling power. In both cases, weather
measurements collected from nearby stations are considered
as input to the model, in addition to the mentioned fictitious
input. This work represents the first time that the presented
improved approaches are tested on data pertaining to real-
world buildings. Finally, as third contribution we apply the
proposed method also to intra-day load forecasting, in addition
to the day-ahead one.

The article is organized as follows. Section II contains
the problem formulation and an overview of the approach.
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Section III details the ingredients of the forecasting algo-
rithm, describing the predictor structure, the adopted iden-
tification method and the local and global forecasting pro-
cedures. Section IV introduces the implementation of the
proposed approach for the day-ahead and intra-day forecasts,
and Section V presents the experimental results. Finally,
Section VI concludes the article.

II. PROBLEM DESCRIPTION AND OVERVIEW OF THE
APPROACH

We assume to have a dataset of load consumed by the
building of interest, averaged every quarter-hour, collected
over N subsequent days in the recent past. The choice of
quarter-hour sampling periods is typical in this application and
is made for the sake of clarity here, without loss of generality
of the proposed algorithms. We thus denote with ỹi (k) ∈ R the
average load consumption measured in the kth quarter-hour of
day i , with k = 1, . . . , 96, and i = 1, . . . , N . We adopt the
convention that k ≤ 0 corresponds to the variables of the
previous days in a reverse order, so for example

ỹi (0) = ỹi−1(96)

ỹi (−1) = ỹi−1(95)

ỹi (−96) = ỹi−1(0) = ỹi−2(96)

and so on. Moreover, we assume to have weather measure-
ments at the building location during the same N days, typi-
cally including measurements of external temperature, relative
humidity, solar irradiation and wind speed, averaged every
quarter-hour. We denote with ũw,i (k) ∈ RnW the vector of
weather variables of the kth quarter-hour of day i , where nW

is the number of considered weather variables.
The problem we address is to use the described N -days-

long dataset to derive one-day-ahead and intra-day forecasts
of the building’s load, together with bounds on the forecasting
errors. In particular, the forecasts are computed daily for a
period of M days, then a new forecasting model is identified,
after having updated the N -days-long dataset. Typically, one
chooses N > M so that the time series contained in the
dataset is longer than the period during which the model is
employed. To derive the forecasts, we will use models with
an auto-regressive part, i.e., where the predicted load depends
on a number ny ∈ N (model order) of past values of the load
itself, in addition to the input signals. Procedure 1 provides a
high-level description of this recursive modeling approach and
serves as a guideline for Sections III and IV of the article.

In the remainder, we set N = 14 and M = 7, meaning that,
at the beginning of each week (e.g., each Monday), a new
model is identified from the most recent two weeks of data.
This model is then employed to forecast the building energy
consumption for each day of the upcoming week. For day-
ahead forecasts, the model is reinitialized at the beginning of
each day with the last ny measured load values of the previous
day. For intra-day operation, the model is reinitialized during
the day with the last ny load measurements and the forecast
is recomputed for a chosen horizon H of future steps. Figs. 3
and 4 illustrate the described model reinitialization for the
day-ahead and intra-day forecasting approaches, respectively.

Procedure 1 Overview of the Proposed Load Forecasting
Approach

1) At the beginning of each M-days-long period, derive
a one-step-ahead prediction model of a chosen order
ny , using a simulation error criterion and the dataset
collected from the most recent N days, named training
dataset. The model identification procedure is described
in Section III-B. Also, derive the set of all multi-
step predictors that are compatible with the collected
data (feasible parameter set—FPS) as described in
Section III-C–III-E.

2) For each day of the considered M-days-long period,
use one of the forecasting algorithms described in
Section IV to predict the energy consumption and esti-
mate the associated worst case error bounds, with either
a one-day-ahead or an intra-day strategy.

3) At the end of the M-days-long period, update the
training dataset with the newly available measurements,
adopting a moving window criterion with a fixed length
of N days, then go to 1).

Fig. 3. Working principle of day-ahead forecasting approach with
ny = 3 over the 96 time samples composing a day. Red cells: load
measurements used to initialize the predictor; blue cells: forecasting horizon,
i.e., future time steps for which the load forecast is computed.

Fig. 4. Graphical representation of the intra-day forecasting strategy working
principle over the 96 time samples composing a day, with ny = 3 and
H = 8. Red cells: load measurements used to initialize the predictor; blue
cells: forecasting horizon, i.e., future time steps for which the load forecast
is computed.

Note that the adopted model initialization and forecasting
horizon, both for day-ahead and intra-day load forecasts, can
be arbitrarily chosen according to the specific application
needs without any change to the general approach.

III. FORECAST METHOD

The approach proposed in this article is based on the
following ingredients:

A. a fictitious input signal, designed to capture the periodic
trends of load consumption;

B. a linear, discrete time, one-step-ahead dynamical model
identified using a simulation error criterion;

C. a user-chosen number p̄ ≥ 1 of multistep predictors,
obtained by iteration of the identified one-step-ahead
model considering different horizon values. As it will
be shown in the remainder, a larger value of p̄ yields
tighter worst case error bounds at the cost of higher
computational burden; and
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D. and E. the estimation of forecasting worst case error
bounds for each one of the considered multistep
predictors using SM methods, and the derivation
of a filtered version of the load forecast with
either a local (D.) or a global (E.) approach.

These ingredients are detailed next sections.

A. Fictitious Input

Buildings have daily, weekly and seasonal patterns in
their energy consumption profile [26]; numerous contributions
employ this knowledge in different ways, as briefly reported
in Section I-A. The common ground of the vast majority of
these approaches is the need for a large-enough dataset, to be
able to identify the seasonal trends of the analyzed load time
series. In this article, we rather adopt the method proposed in
our previous work [32], which demonstrated to provide good
forecasting performance even with a small dataset. As men-
tioned in Section I-B, the novelties with respect to [32] are an
improved approach to derive worst case error bounds on the
computed forecast, the use of such an improved method on two
real-world buildings with different size, and the formulation of
both a day-ahead and an intra-day strategy. A core element of
the approach in [32] is the inclusion of a so-called “fictitious
input” signal to excite a linear prediction model in accordance
with the expected periodic behavior of the load consumption,
thus exploiting such a knowledge. A physical interpretation
of the fictitious input is that it accounts for periodic trends of
the building’s usage, such as occupancy, servers’ workload,
canteen workload, working days versus weekend, etc., and
of environmental factors like solar irradiation and external
temperature. Note that weather-related signals, when present,
can be still used as input to the forecast model in addition
to the fictitious one, as we did in the experiments reported
in Section V. Said fictitious input signal is given by a linear
combination of sine and cosine functions whose harmonics
are not estimated from data, but they are a priori chosen, for
example as fractions of days and weeks, based on an expert
knowledge of the relevant frequency contributions. On the
other hand, the amplitude of each sine and cosine is estimated
in the training phase. Since the forecast model that we use
is linear, the fictitious input signals are eventually summed
over the sine and cosine contributions (so that the approach
is equivalent to estimating amplitude and phase shift of each
frequency component) and also over frequencies, thus resulting
in an overall scalar periodic input signal.

For each time step k = 1, . . . , 96 of each day i = 1, . . . , M ,
the fictitious input is thus defined as

u f,i (k) =



cos(ω1(k + 96(i − 1)))
...

cos
(
ωnω

(k + 96(i − 1))
)

sin(ω1(k + 96(i − 1)))
...

sin
(
ωnω

(k + 96(i − 1))
)


(1)

where nω is the number of considered frequency contributions,
and each angular frequency ω j = 2π f j , j = 1, . . . , nω,

corresponds to one of the selected harmonics. This results in
u f,i (k) ∈ Rn f , with n f = 2nω.

Considering the quarter-hour-long sampling period of this
application, we select f j = ( j/(4 · 24 · 7)), obtaining, in the
case of nω = 14, a fictitious input signal composed of sine
and cosine waves with periods in the interval between seven
days ( j = 1) and 12 h ( j = 14). Note that the choice
of the harmonics could be fine-tuned during operation, for
example before training a new model at the end of the M-
days-long period (see Procedure 1) by repeating a posteriori
the forecast computation and evaluating the obtained error (and
error bounds) with different choices of frequencies. Another
way to select the values of ω j is to compute the Fourier
transform of the load signal and take the nω most relevant fre-
quency components. In our experience with both the buildings
considered in this work and with other conceptually similar
modeling tasks, the gain in accuracy and tightness of the
worst case error bounds obtained by changing the harmonics
is rather limited with respect to the choice presented above,
provided that nω is large-enough, of the order of 10 or more
components. Nevertheless, the optimal choice of frequencies
and also of functions that compose the fictitious input is a
current subject of further research.

B. One-Step-Ahead Model

To obtain the wanted forecast, we start with a linear, discrete
time, one-step-ahead predictor, with ARX (auto-regressive
with exogenous input) structure. For the generic day i , the
prediction model is denoted as

ŷi (k|k − 1) = φ
(1)
i (k − 1)T θ̂ (1) (2)

where ŷi (k|k − 1) denotes the estimated load at time k given
the value at time k − 1 of the regressor φ

(1)
i , which is built as

φ
(1)
i (k − 1) =

[
Yi (k − 1)T Ui (k − 1)T ]T

∈ Rny+nu nx

Yi (k − 1) =
[
yi (k − 1), . . . , yi (k − ny)

]T
∈ Rny

Ui (k − 1) =
[
uw,i (k − 1)T , . . . , uw,i (k − nx )

T ,

u f,i (k − 1)T , . . . , u f,i (k − nx )
T ]T

∈ Rnu nx .

(3)

The model auto-regressive order is ny , while the order of the
input-related part is nx , and nu = nW +n f denotes the number
of considered input signals. In (3), the values of yi (k) are
defined as

yi (k) =

{
ỹi (k), if k < 1
ŷi (k|0), if k ≥ 1

where ·̃ denotes a measured sample of a quantity. We adopted
this notation to indicate that the predictor is initialized each
day with ny measured values, and it is then iterated in
simulation to provide a load forecast.

In (2), θ̂ (1)
∈ Rny+nu nx is the vector of model parameters

to be identified. In our approach, the value of θ̂ (1) is learned
from the dataset using a simulation error criterion. Namely,
we look for the model parameters that minimize the squared
ℓ2-norm of the mismatch between load measurements and their
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estimate, obtained by means of open loop simulation of the
predictor. The latter is initialized each day with the last ny load
measurements of the previous one. This is done by solving the
following unconstrained nonlinear program (NLP)

θ̂ (1)
= arg min

θ∈�

N∑
i=1

∥∥Ỹ i − Ŷ i (θ)
∥∥2

2 (4)

where, as described in Section II, N corresponds to the number
of days composing the training dataset, � is an hypercube
representing a compact approximation of Rny+nu nx , introduced
to technically replace inf operator with min, and

Ỹ i =
[
ỹi (1), . . . , ỹi (96)

]T

Ŷ i (θ) =
[
ŷi (1|0), . . . , ŷi (96|0)

]T
.

The solution to (4) represents step 1) of Procedure 1, and it
can be performed using standard sequential quadratic program-
ming algorithms, such as the Gauss-Newton, which are known
to be computationally efficient for this class of optimization
problems. In general, (4) is not convex, due to the polynomial
dependency of each estimated variable, beyond time (1|0),
on the parameters θ̂ (1) of the one-step-ahead model. However,
with both the considered experimental datasets, we never
experienced problems related to possible local minima of (4),
with any of the tested order values. The reasons are that the
input signals (fictitious input and weather data) are rich enough
to persistently excite the model being identified, and that the
chosen linear model has a rather small number of parameters
with respect to the employed data points. For example, in our
experiments (see Section V) with ny = 3 (third-order system),
nx = 1, nW = 4 (external temperature, relative humidity,
solar irradiation, and wind speed) and n f = 28 we had
3+4+28 = 35 parameters to be identified for the first building,
and 33 parameters for the second one (since there were no
solar irradiation and wind speed measurements available, i.e.,
nW = 2). In both cases, we employed N = 14 days, thus
96 · 14 − 3 = 1341 data points (two weeks with quarter-hour
sampling period, minus the model order for initialization).

C. Multistep Predictor

In the remainder, for the sake of notational simplicity we
will drop the subscript i indicating the considered day, since
all the steps are operated on a daily basis, where the initial
conditions and the used fictitious input and weather data are
updated every day.

The identified one-step-ahead prediction model (2) can be
iterated in simulation to obtain the load prediction at a generic
time instant k from a given initial condition at time k − p and
with given courses of the inputs up to k − 1, resulting in the
following linear equation:

ŷ(k|k − p) = ϕ(p)(k − p)T θ̂ (p). (5)

The regressor ϕ(p)(k − p) ∈ Rny+nu(nx +p−1) is given by

ϕ(p)(k − p) =
[
Y (p)(k − p)T U (p)(k − 1)T ]T

with

Y (p)(k − p) =
[
ỹ(k − p), . . . , ỹ(k − p − ny + 1)

]T
∈ Rny

U (p)(k − 1) =
[
uw(k − 1)T , . . . , uw(k − p − nx + 1)T

u f (k − 1)T , . . . , u f (k − p − nx + 1)T ]T

U (p)(k−1) ∈ Rnu(nx +p−1). The entries of θ̂ (p)
∈ Rny+nu(nx +p−1)

are polynomial functions of the parameters in θ̂ (1), which
are readily obtained by recursion of (2) for p steps. As an
example, with ny = nx = nu = 1 one would obtain

θ̂ (1)
=

[
θ̂

(1)
1

θ̂
(1)
2

]
, θ̂ (2)

=

 θ̂
(1)
1

2

θ̂
(1)
2

θ̂
(1)
1 θ̂

(1)
2

, . . .

where θ̂
(1)
j is the j th entry of vector θ̂ (1).

D. Local Multistep Forecast and Error Bounds

Let us now consider the dataset collected during the last
N days. For each prediction horizon p that is of interest, we
solve the following linear program (LP):

ε̂(p)
= α min

ε,θ (p)
ε

s.t.
∣∣ỹ(k) − ϕ(p)(k − p)T θ (p)

∣∣ ≤ ε

k = p, . . . , 96 N (6)

where 96 N is the total number of available load measure-
ments. Namely, the quantity ε̂(p) computed in (6) is the
smallest upper bound on the pointwise-in-time error between
the load measurements and the corresponding forecast that can
be obtained by any linear multistep predictor. It is an estimate
of the worst case effect of process-model mismatch and of the
effects of exogenous signals such as process disturbance and
measurement noise. In (6), α > 1 is a scaling parameter used
to account for the uncertainty resulting from the use of a finite
dataset in the estimation of such an error bound, see [33] for
more details.

Following a SM modeling approach, we can then compute
the set 2(p) of all the linear multistep predictors with horizon
p that are consistent with the available measurements and with
the estimated worst case error bound (FPS)

2(p) .
=

{
θ (p)

:
∣∣ỹ(k) − ϕ(p)(k − p)T θ (p)

∣∣ ≤ ε̂(p),

k = p, . . . , 96N
}
. (7)

Finally, for the available multistep predictor θ̂ (p) (computed
as mentioned by iterating the one-step-ahead model (2) and a
given regressor ϕ(p)(k − p), we can compute a bound on the
forecasting uncertainty as

τ̂ (p)(ϕ(p)(k − p), θ̂ (p))

= ε̂(p)
+ max

θ (p)∈2(p)

∣∣ϕ(p)(k − p)T (θ (p)
− θ̂ (p))

∣∣ (8)

i.e., the sum of ε̂(p) with the maximum returned by an LP.
The bound τ̂ (p)(ϕ(p)(k − p), θ̂ (p)) is named “local,” because
it pertains to a specific regressor value ϕ(p)(k − p). If the
estimate ε̂(p) is no smaller than the actual uncertainty bound,
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which is guaranteed to happen to the limit with infinitely many
and informative data points, then by construction we have

ỹ(k) ∈
[
ϕ(p)(k − p)T θ̂ (p)

± τ̂ (p)(ϕ(p)(k − p), θ̂ (p))
]
. (9)

In practice, with a finite dataset one can never be sure a priori
whether ε̂(p) is an under- or over-approximation of the actual
uncertainty, hence the role of the tuning parameter α in (6)
to tradeoff conservativeness and tightness of the error bound.
In particular, smaller α values lead linearly to smaller error
bounds, hence making them less conservative but increasing
the risk that the actual load exceeds such values. In practice,
one can adjust the value of α based on the observed violations
of the error bounds while the algorithm is running or at the
end of the M-days-long period. In general, if excessively large
values of α are needed, this may be a sign that the data
collected in the last N -days-long period are not representative
enough of the building behavior in the subsequent M-days-
long period. In the specific application, this is very rarely the
case: indeed we could set a rather small value of α in our
experiments and obtain tight worst case error bounds which
were never violated, see Section V.

Now, note that the load consumption at a given time instant
k can be predicted by multistep predictors having different
horizons, e.g., ŷ(k|k − 3) and ŷ(k|k − 5). These predictors
originate from the same one-step-ahead model of the form (2),
identified solving (4), but they are initialized at different time
instants, with correspondingly different data. Thus, they will
produce in general different load estimates and uncertainty
intervals (9). On the other hand, all these intervals are in
principle guaranteed to contain the actual load that will be
consumed, if α is large enough. Therefore, the intersection
of such intervals, being a subset of all of them, cannot but
improve the error bound with respect to that of each individual
predictor. The idea that we exploit here is thus to combine
different multistep predictors to refine the uncertainty range
of the true load value that is to be estimated. Taking a number
p̄ of multistep predictors to estimate the load at time k, with
k ∈ [ p̄ + 1, 96], the refined uncertainty interval is given by

ỹ(k) ∈ Y ( p̄)(k)
.
=

{
ȳ :

∣∣ȳ − ϕ(p)(k − p)T θ̂ (p)
∣∣ ≤ τ̂ (p)(ϕ(p)(k − p), θ̂ (p))

∀p = k − p̄, . . . , k − 1
}
. (10)

The extremes of the interval Y ( p̄)(k) are

y( p̄)(k) = max
y∈Y ( p̄)(k)

y = min
p=1,..., p̄

ϒ (p),max(k)

y( p̄)(k) = min
y∈Y ( p̄)(k)

y = max
p=1,..., p̄

ϒ (p),min(k) (11)

with

ϒ (p),max(k) = ϕ(p)(k − p)T θ̂ (p)
+ τ̂ (p)(ϕ(p)(k − p), θ̂ (p))

ϒ (p),min(k) = ϕ(p)(k − p)T θ̂ (p)
− τ̂ (p)(ϕ(p)(k − p), θ̂ (p)).

(12)

Note that computing (11) simply entails taking the minimum
(resp. maximum) value of a vector. Computing the boundaries
of Y ( p̄)(k) thus requires solving, for each forecast time k,

a number p̄ of LPs as in (8), each having 2(96N − p) con-
straints [see (7)], requiring the previous “offline” computation
of the error bound ε̂(p) for p = 1, . . . , p̄, which is obtained
by solving p̄ LPs as in (6).

The forecast uncertainty interval is then [y( p̄)(k) y( p̄)(k)].
This interval allows one to estimate the worst case error of any
predictor used to compute the nominal load forecast. In this
work, we consider (and compare) computing the nominal
forecast with either the model (2) (case ①), or the center of
the error interval (case ②), i.e.:

ŷ( p̄)(k)
.
=

1
2

(
y( p̄)(k) + y( p̄)(k)

)
. (13)

In case ①, the uncertainty interval will be in general asymmet-
ric with respect to the nominal estimate, while in case ② it will
always be symmetric by construction. In particular, in case ①
we have

ỹ(k) ∈

[
ŷ(k|0) − τ ( p̄)(k), ŷ(k|0) + τ ( p̄)(k)

]
(14)

where the upper and lower error bounds are

τ ( p̄)(k) = y( p̄)(k) − ŷ(k|0)

τ ( p̄)(k) = ŷ(k|0) − y( p̄)(k). (15)

On the other hand, for case ② we have

ỹ(k) ∈

[
ŷ( p̄)(k) ± τ ( p̄)∗(k)

]
(16)

where the error bound is

τ ( p̄)∗(k) =
1
2

(
y( p̄)(k) − y( p̄)(k)

)
. (17)

The proposed local approach is the basis of one of the possible
forecast techniques to be used at step 2) of Procedure 1,
and it is summarized in Procedures 2 and 4 in Section IV
for the day-ahead and intra-day forecasting strategies, respec-
tively. In a previous contribution, we analyzed the guaranteed
properties of this approach, under the main assumption that
the system at hand is linear. For the sake of completeness,
we now recall the main theoretical result, slightly adapted to
the application at hand.

Lemma 1 (Lemma 1 in [34]): The following properties
hold:

1) the accuracy bound (17), obtained by the predictor (13),
is the smallest worst case error bound that can be
achieved by any predictor and

2) the accuracy bound (17) is smaller than any single bound
τ̂ p(ϕp(k − p), θ̂ (p)), ∀p ≤ p̄.

We refer the interested reader to [34] for a proof and a
numerical example that showcases these properties. In the
SM literature, the quantity (17) is named “(local) radius of
information” and it represents the smallest worst case error that
can be obtained by the considered class of predictors under
the standing assumptions. In a real-world application, like the
one considered here, the process can not be assumed linear: in
this case, property 1) in Lemma 1 still holds against any linear
predictor, while there may be nonlinear ones that provide
better worst case accuracy. However, deriving worst case error
bounds related to nonlinear estimators in a computationally
tractable way is still a largely open problem, see [35] for a
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possible SM approach. As a matter of fact, the experimental
results we obtained with both the considered buildings indicate
that the proposed linear structure, together with the fictitious
input, provide tight worst case error bounds, as shown in
Section V (see Figs. 6 and 8).

E. Global Multistep Forecast and Error Bounds

As mentioned, the forecast approach based on local uncer-
tainty bounds presented in Section III-D requires the online
solution of a series of LPs, which nowadays can be easily done
in a large number of applications. In our case, these compu-
tations are largely feasible with a common laptop considering
the quarter-hour-long sampling period. However, there may be
specific applications where the computational power available
for the on-line estimation is not sufficient. In this situation,
it is possible to move the required computational effort to
a preliminary offline phase using a forecasting algorithm
which is based on so-called “global” error bounds, instead
of the local bound (8). Such a global bound is intended to
hold for any possible regressor realization, hence it is more
conservative than the local one, which is estimated for a
specific regressor occurrence. On the other hand, it allows one
to precompute the error bounds, resulting in a strong decrease
of the required online computation, which is reduced to a few
vector multiplications.

For the available multistep predictor θ̂ (p), the corresponding
global uncertainty bound is given by

τ̂ (p),g(θ̂ (p))

= γ
(

max
ϕ(p)∈Ṽ (p)

max
θ (p)∈2(p)

∣∣ϕ(p)(k − p)T (θ (p)
− θ̂ (p))

∣∣) (18)

where the set Ṽ (p) contains all the measured regressors avail-
able in the training dataset, and γ > 1 is a tuning parameter,
again required to account for the fact that we operate with
a finite number of data. The bound (18) should ideally hold
globally, i.e.,

ỹ(k) ∈
[
ϕ(p)(k − p)T θ̂ (p)

± τ̂ (p),g(θ̂ (p))
]

∀ϕ(p)(k − p) ∈ V (p)

where V (p)
⊇ Ṽ (p) is the set containing all regressor values

that can realistically occur. The choice of γ is clearly crucial
for this property to hold while at the same time limiting the
conservativeness. To this regard, the considerations made in
Section III-D for α are valid here as well: if the available data
are well-representative of the building’s energy behavior, then
it is expected that γ close to 1 suffices. The computation of
bound (18) can be reformulated as one LP, in turn requiring
the preliminary solution of 2(96N − p) LPs

τ̂ (p),g(θ̂ (p)) = γ min
τ∈R+

τ

s.t. ckp − ϕ̌ p(k − p)T θ̂ (p)
≤ τ

k ∈ K (19)

where K = [p + 1, 96N ] ∪ [96N + p + 1, 192N ], ckp

.
=

maxθ (p)∈2(p) ϕ̌ p(k − p)T θ (p) and

ϕ̌ p(k − p) =

{
ϕp(k − p), if k ≤ 96N
−ϕp(k − p − 96N ), if k > 96N .

As anticipated, these problems can be solved once offline at
the beginning of each new week. Then, by combining different
predictors, as described in Section III-D, for k = p̄+1, . . . , 96,
we have

ỹ(k) ∈ Y ( p̄),g(k)
.
=

{
ȳ : |ȳ − ϕ(p)(k − p)T θ̂ (p)

| ≤ τ̂ (p),g(θ̂ (p)),

p = k − p̄, . . . , k − 1
}
. (20)

The boundaries of the set Y ( p̄),g(k) are

y( p̄),g(k) = max
y∈Y ( p̄),g(k)

y = min
p=1,..., p̄

ϒ (p),max,g(k)

y( p̄),g(k) = min
y∈Y ( p̄),g(k)

y = max
p=1,..., p̄

ϒ (p),min,g(k) (21)

with

ϒ (p),max,g(k) = ϕ(p)(k − p)T θ̂ (p)
+ τ̂ (p),g(θ̂ (p))

ϒ (p),min,g(k) = ϕ(p)(k − p)T θ̂ (p)
− τ̂ (p),g(θ̂ (p)). (22)

Computing the boundaries of Y ( p̄),g(k) simply entails looking
for the maximum (or minimum) value in a vector, which
is now done “offline” together with the computation of the
error bounds ε̂(p) and τ̂ (p),g(θ̂ (p)) for p = 1, . . . , p̄. The
global uncertainty region can then be defined as the interval
[y( p̄),g(k) y( p̄),g(k)]. Again, the desired load forecast can be
obtained either using the model (2) in simulation, or taking as
predicted value the center of the region of uncertainty

ŷ( p̄),g(k)
.
=

1
2

(
y( p̄),g(k) + y( p̄),g(k)

)
. (23)

As in Section III-D, this results in a load forecast having
generally asymmetric error bounds if using predictor (2) (case
①), or symmetric ones if using the prediction (23) (case ②).
For case ①, the asymmetric guaranteed error bound can be
defined as

τ ( p̄),g(k) = y( p̄)(k) − ŷ(k|0)

τ ( p̄),g(k) = ŷ(k|0) − y( p̄)(k) (24)

while, for case ②, the symmetric error bound is given by

τ ( p̄),g(k) =
1
2

(
y( p̄),g(k) − y( p̄),g(k)

)
. (25)

This quantity is referred to as the “(global) radius of infor-
mation” in the SM methodology. The corresponding global
forecasting algorithm is summarized in Section IV in Proce-
dure 3, for the day-ahead forecast strategy, and in Procedure 5,
for the case of intra-day load forecasting.

IV. FORECAST COMPUTATION PROCEDURES

Having introduced all the core concepts underpinning the
proposed approach, we now provide the implementation pro-
cedures for the cases of day-ahead and intra-day load forecast.
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Procedure 2 Day-Ahead Forecasting With Local Error Bounds
1) Carry out the offline identification of the one-step-ahead

predictor of the form (2) by solving (4).
2) Estimate offline the error bound ε̂(p) via (6), and define

the corresponding FPSs (7), for p ∈ [1, 96].
3) At the beginning of each day, for each one of the

considered day-ahead prediction steps k = p̄+1, . . . , 96,
compute online the solution to (12), considering, for
each time sample k, values p = k − p̄, . . . , k − 1,
to obtain the bounds (11).

4) Use the identified one-step-ahead predictor (2), or the
central algorithm (13), to obtain the nominal day-ahead
load forecast, and compute the related error bounds
using (15) or (17), respectively.

Procedure 3 Day-Ahead Forecasting With Global Error
Bounds

1) Carry out the offline identification of the one-step-ahead
predictor of the form (2) by solving (4).

2) Estimate offline the error bound ε̂(p) via (6), and define
the corresponding FPSs (7), for p ∈ [1, 96].

3) Before the start of the first day, compute the bounds
τ̂ (p),g(θ̂ (p)) (19) for all the values of p of interest.

4) At the beginning of each day, for each one of the
considered day-ahead prediction steps k = p̄+1, . . . , 96,
compute online the boundaries of the uncertainty inter-
vals Y ( p̄),g(k) as in (22).

5) Use the identified one-step-ahead predictor (2), or the
central algorithm (23), to obtain the nominal day-ahead
load forecast, together with the corresponding error
bounds (24) or (25), respectively.

A. Day-Ahead Forecasting

Day-ahead load forecasting is probably the most common
strategy adopted in the field of short-term forecasting. At the
beginning of each day, the estimation algorithm uses as initial
condition the ny most recent data points, pertaining to the
end of the previous day, and, by means of simulation of the
autoregressive prediction model, it provides 96 load values,
representing the forecast of the electricity consumption for
the entire considered day. Fig. 3 exemplifies such a daily
reinitialization working principle.

Then, either the local or the global algorithms can be used
to obtain the filtered load forecast and the related error bounds,
as outlined in Procedures 2 and 3, respectively.

B. Intra-Day Forecasting

Considering that some energy markets allow for intra-day
trading operations, e.g., those operating on a rolling one-hour-
ahead basis to balance supply and demand after the closure of
the day-ahead market, it is of interest to devise a forecasting
algorithm able to update the energy consumption prediction
based on the new data collected during the same day. This
also allows one to obtain more accurate short-term predictions
that could be used to improve building energy management.

Procedure 4 Intra-Day Forecasting With Local Error Bounds
1) Carry out the offline identification of the one-step-ahead

predictor of the form (2) by solving (4).
2) Estimate offline the error bound ε̂(p) via (6), and define

the corresponding FPSs (7), for p ∈ [1, 96].
3) At each time step k during the current day, compute

online the solution of (12), for p = k − p̄, . . . , k − 1,
to obtain the boundaries of the uncertainty set, over the
intra-day prediction horizon given by [k, k + H ].

4) Use the identified one-step-ahead predictor (2), or the
central algorithm (13), to obtain the intra-day load
forecast for the considered horizon, and compute the
related error bounds using (15) or (17), respectively.

5) As a new data point is collected at time k + 1, move
the prediction window one step forward, update the
predictor initial condition, and go back to step 3),
iterating steps 3) and 4) until k = 96.

Procedure 5 Intra-Day Forecasting With Global Error Bounds
1) Carry out the offline identification of the one-step-ahead

predictor of the form (2) by solving (4).
2) Estimate offline the error bound ε̂(p) via (6), and define

the corresponding FPSs (7), for p ∈ [1, 96].
3) Before the start of the first day, compute the bounds

τ̂ (p),g(θ̂ (p)) (19) for all the values of p of interest.
4) At each time step k during the current day, com-

pute online the boundaries of the uncertainty interval
Y ( p̄),g(k) as in (22), over the intra-day prediction horizon
given by [k, k + H ].

5) Use the identified one-step-ahead predictor (2), or the
central algorithm (23), to obtain the intra-day load
forecast for the considered horizon, and compute the
related error bounds using (24) or (25), respectively.

6) As a new data point is collected at time k + 1, move
the prediction window one step forward, update the
predictor initial condition, and go back to step 4),
iterating steps 4) and 5) until k = 96.

To do so, we adopt a moving window forecasting approach,
as illustrated in Fig. 4.

At the beginning of each day, we compute the load forecast
over a prediction window of fixed length H , using either the
local or the global forecasting approach. Then, when a new
data point is acquired, the initial conditions of the prediction
model are updated, the prediction window is moved one step
forward, and the forecasting algorithm is used to estimate the
future load for the next H time steps. This procedure is then
iterated each time a new measure of the energy consumption is
available, namely every quarter-hour, by moving the prediction
window one step forward, updating the predictor initialization,
and computing the filtered load forecast for all the future
steps in the prediction window. Procedures 4 and 5 outline
the described intra-day approach using the local or the global
bounds, respectively.
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TABLE I
TUNING PARAMETERS EMPLOYED IN THE EXPERIMENTAL TESTS

TABLE II
DATASET A – TEST SETS COMPOSITION

TABLE III
DATASET B – TEST SETS COMPOSITION

V. RESULTS

To test the performance of the proposed forecasting
approaches, we used two datasets comprising load and weather
measurements collected from nonresidential buildings. Dataset
A was collected in the period June 2017–March 2019 and
originates from an office building of ABB SpA, located in
Bergamo, Italy, and hosting around 200 employees, with
electric heating and cooling systems, a large canteen kitchen
with fridges, elevators, computers, printers, lighting system,
laboratories, an uninterrupted power supply system, and a
charging station for four electric vehicles. The dataset includes
the power consumption of the whole building, external tem-
perature, relative humidity, solar irradiation, and wind speed.
Dataset B comprises measurements gathered between June
2016 and October 2016 from a complex of five large buildings
in a business area located in Milan. The buildings are mainly
devoted to offices for more than 4000 people, but they also
host two data centers and a commercial area. Here, the load
measurements pertain to the cooling power consumed by
the buildings, measured by multiplying the total flow of the
cooling water times the temperature difference between the
return and inflow manifolds to/from the cooling plant. More
information about the complex, the cooling plant, and the
employed data can be found in [36] and [37]. Dataset B thus
contains the cooling power consumed by the whole complex,
plus the external temperature and relative humidity.

The tuning parameters that we used are summarized in
Table I. We tuned them on dataset A and used the exact
same values on dataset B. The rationale of this choice is
that we wanted to assess the generality and sensitivity of
the proposed approach, by evaluating its performance on a
different experimental dataset without adjusting the design
parameters.

We selected the order of the one-step-ahead ARX model by
trading off model complexity and performance on five weeks
of dataset A (not included in those employed for training and

TABLE IV
DATASET A – DAY-AHEAD LOCAL FORECASTING PERFORMANCE -

MAPE [%, EQUATION (26)]

testing, reported in Table II), resulting in ny = 3 and nx = 1.
As mentioned above, we used the same values also for dataset
B. Regarding the fictitious input, in both cases we adopted the
choice of frequencies described in Section III-A, resulting in
periods of 1 week ( j = 1), 3.5, 2.33, 1.75, 1.16, and 1 days
( j = 2, . . . , 6), and 21, 18.66, 16.8, 15.27, 14, 12.92, and
12 hours ( j = 7, . . . , 14).
To perform the experimental validation, eight sub-sets are
randomly extracted from dataset A, and five sub-sets are
randomly extracted from dataset B, each consisting of two
consecutive weeks of data used for the training phase (N =

14), and the subsequent week of data used for testing (M = 7).
Tables II and III present the starting day of the chosen test
weeks for the sub-sets of dataset A and B respectively. All the
data used for training and testing are normalized to zero mean
and unitary variance, using the values of mean and standard
deviation computed on the training dataset. At the end of the
forecasting procedures, the predicted load and its uncertainty
bounds are then de-normalized.

We identified the ARX model parameters as described
in Section III-B. To solve the NLP (4), we employed an
in-house optimizer coded in MATLAB, which uses a line
search algorithm based on the Gauss-Newton method, see
e.g., [38]. As metrics to measure the forecasting performance,
we employ I) the mean absolute percentage error (MAPE)

MAPE =
100
Nv

Nv∑
t=1

∣∣∣∣ ỹ(t) − ŷ(t)
ỹ(t)

∣∣∣∣ (26)

where Nv is the number of data points used in the testing
phase, and II) the average amplitude of the obtained error
intervals, defined as

Bound amplitude =
100
Nv

Nv∑
t=1

y( p̄)(k) − y( p̄)(k)

for the algorithm based on local uncertainty bounds, and as

Bound amplitude =
100
Nv

Nv∑
t=1

y( p̄),g(k) − y( p̄),g(k)

for its global counterpart. For the case of intra-day load
forecasting, for each k both the MAPE and the error interval
are averaged over all the overlapping moving windows that
contain an estimate of y(k).

Fig. 5 depicts the working principle of the day-ahead fore-
casting approach based on local uncertainty bounds on dataset
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Fig. 5. Dataset A – Day-ahead filtered prediction for testing week
2 with error bars. Solid black line: load measurements; dashed black line:
load forecast; colored vertical bars: error bars given by the local bound
τ̂ (p)(ϕ(p)(k − p), θ̂ (p)) for different horizon lengths.

TABLE V
DATASET A – DAY-AHEAD LOCAL FORECASTING PERFORMANCE -

UNCERTAINTY INTERVAL AMPLITUDE (kW)

Fig. 6. Dataset A – Day-ahead filtered prediction for testing week 6, with
p̄ = 5. Solid black line: load measurements; dotted red line: load filtered
forecast; thin black lines: uncertainty bounds.

A, showing how the uncertainty regions related to different
multistep prediction models have different amplitude and are
centered around different load values, and how their intersec-
tion allows one to tighten significantly the resulting uncertainty
intervals. Tables IV and V report a performance comparison
for the day-ahead local forecasting algorithm applied to the
considered eight weeks of dataset A, with different number p̄
of intersected uncertainty intervals. The forecast obtained by
simulating the one-step-ahead ARX model is also included as
a benchmark.

From the presented results, we note that the proposed
day-ahead forecasting algorithm based on local uncertainty
bounds is able to significantly reduce the amplitude of the
error interval with respect to that of the ARX predictor

TABLE VI
DATASET A – INTRA-DAY GLOBAL FORECASTING PERFORMANCE -

MAPE [%, EQUATION (26)]

already for small values of the horizon p̄, see Table V.
At the same time, it scored MAPE values that are similar to
those of the ARX predictor used for day-ahead forecasting
(see Table IV). In [32], it has been shown already that
these MAPE values are comparable with those of approaches
based on a large amount of training data (two years) and
neural network approximations, including the best-in-class
approach from [21]. Note moreover that, as mentioned in
Section III-D and III-E, one can keep the ARX prediction as
nominal estimate, and compute the uncertainty interval using
our approach, thus obtaining both lower MAPE values and
tight error bounds. Fig. 6 illustrates the day-ahead load forecast
(13) obtained using the local multistep approach for week six
of Table II (dataset A), together with the associated uncertainty
bounds computed as in (17) with α = 1.005. We tuned the
value of α and γ according to the guidelines provided in
Section III-D. It can be noted that the measured load can
be very close to the computed bounds, thus illustrating their
tightness. In particular, the actual load is often close to the
upper one and in fewer cases to the lower one (see, e.g.,
Tuesday morning in Fig. 6).

Tables VI and VII report the performance of the intra-day
forecasting algorithm based on the global uncertainty bounds
for dataset A, for different values of the horizon p̄, while
Tables VIII and IX present its performance on dataset B. Note
that the intra-day forecast allows one to achieve better MAPE
values with respect to the day-ahead one (see Table IV),
as expected since it employs new measurements collected
during the day to update the initial load forecast. Moreover,
the significant decrease of the uncertainty bounds obtained by
intersecting those of different predictors is confirmed. Finally,
Fig. 7 shows the training and testing data of week five of
dataset B (see Table III), and Fig. 8 shows the day-ahead
load forecast for the corresponding test week, obtained using
the global multistep approach, and the associated worst case
bounds, together with the load measurements. It can be noted
that the measured signal is very close to the upper bound in
several days, while the lower bound is much more conservative
during the workweek. This is probably due to the fact that
in the weekend the consumed load takes significantly lower
values (below 350–400 kW) than in the workweek (see Fig. 7),
thus leading to larger values of ε̂(p) in (6) and, consequently,
larger error bounds.

By comparing the results of Table VI with those of
Table VIII, it can be noted that the MAPE values obtained
on dataset B are in a range of 12%–22%, higher than those
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TABLE VII
DATASET A – INTRA-DAY GLOBAL FORECASTING PERFORMANCE -

UNCERTAINTY INTERVAL AMPLITUDE (kW)

TABLE VIII
DATASET B – INTRA-DAY GLOBAL FORECASTING PERFORMANCE -

MAPE [%, EQUATION (26)]

TABLE IX
DATASET B – INTRA-DAY GLOBAL FORECASTING PERFORMANCE -

UNCERTAINTY INTERVAL AMPLITUDE (kW)

Fig. 7. Dataset B – Measured cooling plant power consumption for training
and testing week 5.

achieved on dataset A. The main reason for such higher values
is that, as pointed out above, we did not carry out any tuning
of the approach on this dataset. A second reason for the higher
MAPE values in Table VIII is that some weeks of dataset B
exhibited rather large differences in the load profile between
training and testing weeks, as shown for example in Fig. 7.
The MAPE on dataset B can be improved by adjusting the
ARX predictor order, the choice of harmonics included in the
fictitious input, and the values of N and M . Moreover, possible
improvements to the forecasting method are currently subject
of research, as discussed next in our concluding remarks.

VI. CONCLUSION AND FURTHER RESEARCH

We presented a novel approach that allows one to address
the problems of day-ahead and intra-day forecasting of build-

Fig. 8. Dataset B – Day-ahead global filtered prediction for testing week 5 of
cooling plant consumption, with p̄ = 20. Solid black line: load measurements;
dotted red line: load filtered forecast; thin black lines: uncertainty bounds.

ing energy consumption. By adopting a recursive model train-
ing strategy, the approach is able to obtain good performance
in terms of average forecasting error, together with tight
error bounds, using only small batches of data. The proposed
method relies on the use of a properly designed fictitious
input signal, able to capture the periodicity of the energy
consumption profile, and of a linear one-step-ahead prediction
model. SM multistep estimation methods are then employed
to compute the error bounds, by intersecting the uncertainty
intervals of multistep prediction models with different horizon
lengths. Experimental results illustrated the performance of the
approach on a medium-size office building with power con-
sumption of the order of a few hundred kW, and on a group of
commercial buildings whose cooling plant has a consumption
in the order of the MW. The next steps in this research will be
concerned with the optimal tuning/adaptation of the fictitious
input frequencies and/or employed functions, the inclusion of
further prior knowledge, such as physical bounds on the vari-
ables to be estimated or a split between workweek and week-
ends, the recursive adaptation of the tuning parameters based
on the performance (accuracy of the nominal estimate and con-
servativeness of the error bounds) observed in the past, finally
the combination of the approach with a probabilistic one, such
as Gaussian processes, to provide both worst case error bounds
and an estimation of probability distribution of each forecast.
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