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Abstract— Cable-driven parallel robots (CDPRs) are a type of
parallel mechanism in which cables are used as actuators. Due to
the two levels of redundancy and numerous constraints within the
CDPR actuation, joint and operational spaces (together known
as the tri-space), tracking a given trajectory in the operational
space while satisfying constraints in tri-space simultaneously is
challenging. To the best of the authors’ knowledge, there does not
exist any tri-space control framework, which is robust, effective,
and directly applicable to several architectures of redundantly
actuated CDPRs. This article proposes a tri-space control frame-
work that combines reactive control (RC) and iterative-learning
control (ILC) to perform repetitive tasks in the operational space.
The framework allows the tracking of operational space trajec-
tories online with feasible cable forces while avoiding undesirable
situations such as cable-link interference, joint interference, and
loss of manipulability. On the other hand, by finding an optimal
parameter in the null space using a novel parameterization of a
null-space vector, the performance can be improved through ILC
when the task is repeatedly executed. Simulation and hardware
results on various multilink cable-driven robots (MCDRs) and
hybrid cable-driven robots (HCDRs) show that the proposed
tri-space control framework can be conveniently and effectively
applied to the real-time control of different CDPRs.

Index Terms— Cable-driven robots, iterative-learning control,
reactive control (RC), tri-space control.

I. INTRODUCTION

CABLE-DRIVEN parallel robot (CDPR) are a type of par-
allel mechanism actuated by cables instead of rigid links,
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having advantages of low inertia, large potential workspace,
high reconfigurability, and transportability. Hence, CDPRs
have been widely studied and applied in manufacturing [1],
[2], building construction [3], [4], rehabilitation [5], and rapid
prototyping [6]. However, the control of CDPRs is difficult
due to the unique property that cables can only apply pulling
forces (positive cable forces), resulting in a redundantly actu-
ated system. This redundancy generates challenges in their
mechanical design [7], workspace analysis [8], [9], [10], [11],
[12], and control and synthesis [13], [14], [15], [16].

Single-link cable-driven robots (SCDRs), a common type
of CDPR, consist of a single rigid body end-effector actuated
by cables connected from the base frame. However, this
design requires the base frame to completely encapsulate
the desired workspace, leading to a large robot footprint.
Moreover, SCDRs typically have a limited range of end-
effector orientations. Multilink cable-driven robots MCDRs
and hybrid cable-driven robots (HCDRs) have been developed
to relax such limitations.

MCDRs are a type of CDPR consisting of multiple rigid
links in order to combine the dexterity and increased end-
effector orientation capability of serial manipulators with the
actuation advantages of CDPRs. In addition, the similar-
ities between MCDRs and anthropomorphic systems have
motivated biorobotic applications, such as musculoskeletal
arms [17], humanoid [18] robots, and snake-like robots [19].
HCDRs are hybrid actuated systems that combine cables and
direct joint actuation and possess both passive and active joint
degrees of freedoms (DoFs). Examples of HCDRs include:
1) the FASTKIT robot [20], where a CDPR is mounted onto
multiple mobile robot platforms such that these mobile robots
can enlarge their workspace and reconfigure the attachment
points, and 2) the SpiderArm robot, where robot arms are
mounted onto the end-effector of an SCDR to increase the
dexterity and accuracy of the CDPR while still maintaining
a large translational workspace. In this work, CDPRs will be
referred to as MCDRs and HCDRs.

Compared to SCDRs, the control of CDPRs is more compli-
cated since the kinematics and dynamics have to be described
within three spaces: 1) actuation space refers to the control
input to the robot, such as cable forces and length commands
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Fig. 1. Tri-space mapping (shown by arrows) between the actuation,
joint, and operational spaces of MCDRs and HCDRs for m + p actuators,
n-dimensonal joint space, and r -dimensional operational space such that
s1 : a → q and s2 : q → r . In this figure, ID means inverse dynamics,
FK means forward kinematics, and IK means inverse kinematics.

for the actuated DoF with m + p DoF; 2) joint space repre-
sents the DoF (generalized coordinates) with n DoF; and the
3) operational space (or task space) denotes the pose of the
end-effector with the DoF of r . The combination of actuation,
joint, and operational spaces is defined as the tri-space. The
dimensions in the tri-space usually satisfy r < n < m + p,
as shown in Fig. 1. For example, in the SpiderArm robot,
r = 6, n = 12, and m + p = 8 + 6 = 14.

Due to the tri-space setting in CDPRs, the control of CDPRs
has two levels of redundancies. One is between operational and
joint spaces (kinematic redundancy) and the other is between
joint and cable actuation spaces (actuation redundancy). The
kinematic redundancy leads to potentially infinite joint poses
that result in the same operational space motion and the actu-
ation redundancy leads to potentially infinite sets of actuation
commands to produce the same joint motion. The infinitely
many solutions from redundancies always conflict with various
constraints, such as positive cable forces, joint limits, and cable
interference.

Four requirements are identified in developing the tri-space
control framework. First, the framework can solve the tri-
space redundancy problem in the CDPRs by simultaneously
determining actuation and joint space motion variables in a
single process with the consideration of tri-space constraints.
Second, the avoidance functions in the framework can guide
the CDPRs to smoothly avoid undesirable situations such as
cable-link interference, loss of manipulability, and reaching
mechanical joint limits in advance. Third, it can improve
the performance if the operational task repeats itself. Finally,
this framework should provide a feasible solution with a
relatively lower computational cost. Consequently, this work
proposes a generalized tri-space operational control framework
by combining reactive control (RC) and iterative-learning
control (ILC) for the CDPRs.

Direct reactive operational space control or RC approaches
have been used to directly determine a set of feasible actuation
commands at each time step from an operational space trajec-
tory [21]. However, a drawback for RC is that it only considers
the instantaneous pose and does not consider evolution of
the pose and control input. Typically, the task performance is
based on the entire trajectory, where reactive methods struggle.
Besides, existing RC approaches [22] are unable to handle
constraints, such as lack of manipulability [23], joint limits
[24], or cable interference [25]. ILC is well-known for its

ability to improve the tracking performance when the task
repeats itself [26], [27], [28], [29]. Traditionally, ILC updates
control actions at each sampling instant within the given time
interval with appropriate convergence conditions to guarantee
convergence [26], [27].

Hence, in this work, RC is used to formulate the reference
tracking in the operational space with the consideration of
constraints in the tri-space. The resultant problem is then
transformed into an optimization problem with an unknown
parameter set to balance the control effort and avoidance of
the constraints. In addition, the projection of the joint space
acceleration onto its null space is parameterized by another set
of unknown parameters. The role of ILC is thus to learn two
sets of unknown parameters to improve the performance when
the task is repetitive. By carefully choosing initial values of
parameters in these two sets, the feasible solutions of control
of CDPRs are guaranteed. In order to reduce the ILC computa-
tional cost, this work utilizes novel two set parameterizations.
One set balances the control effort and the satisfaction of
constraints. The other set is the best parameterization in its
null space. Moreover, the well-known optimization techniques,
such as pattern search (PS) and Particle Swarm Optimization
(PSO), are used to find optimal parameters iteratively.

The main contributions of this work are summarized as
follows.

1) A novel CDPR tri-space operational control framework
is proposed. This framework can track the reference
trajectory in task space, handle kinematic and actuation
redundancy, avoid cable-link interference, prevent loss
of manipulability, and avoid reaching mechanical joint
limits simultaneously. To the best of the authors’ knowl-
edge, it is the first time that such a control framework is
developed to handle multilevel redundancies and various
constraints for CDPR.

2) The proposed framework combines RC, which provides
feasible and optimal performance in the operational
space and constraints in tri-space, with ILC to find two
sets of optimal parameters. One set tries to balance the
control effort and satisfy constraints, while the other set
is the parameterization in the null space. The proposed
framework is thus able to improve the task performance
over iterations with a low computational cost.

3) The capabilities of the control framework are illustrated
through simulations of various operational space trajec-
tories using the Cable-Robot Analysis and Simulation
Platform for Research (CASPR) software1 [30] on a
biologically inspired mechanical arm (BMArm) robot
(two-link MCDR), and the SpiderArm and FASTKIT-
Planar HCDRs. Experiments on the BMArm are also
conducted to show the robustness of the proposed frame-
work.

The remainder of this article is organized as follows.
Section II discusses the related work. Section III provides
important notations, generalized MCDR and HCDR models

1All methods and algorithms in this work have been implemented in
the open-source cable robot software CASPR and can be accessed from:
http://www.github.com/darwinlau/CASPR
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with examples, and control objective. Section IV discusses
multiple CDPR control challenges and outlines the tri-space
operational control framework. Sections V and VI propose
the reactive and ILC components, respectively. Section VII
presents the control framework stability analysis. Simulation
and hardware results are presented in Sections VIII and IX,
respectively. Finally, Section X concludes this article and
discusses future work.

II. RELATED WORK

This section revisits the literature about handling redundan-
cies of CDPRs. A lot of work has focused on SCDR, which
only involved a redundancy between joint and operational
space. For example, in [31], a dual-space control scheme
was proposed. The uncertainties in the dynamic models make
an accurate feedforward control impossible. Consequently,
the proposed tension distributions algorithm cannot guaran-
tee a feasible solution within the entire robot workspace.
To deal with disturbances appearing in the un-actuated joints,
Qi et al. [32] proposed a minimum actuated joint torque con-
trol for the actuated joints while resolving the kinematic
redundancy without considering the tracking performance in
joint space and the constraints.

In [33], a tricriteria optimization-coordination-motion
scheme was proposed for dual-redundant robots, which com-
bined minimum velocity norm, repetitive motion planning,
and infinity-norm velocity minimization solutions into a single
quadratic programming (QP) formulation. In order to solve
such a QP problem, different techniques were proposed. For
example, the parameter-varying-based neural networks were
proposed in [34] and [35]. In [36], the training-free NN-based
technique was proposed to deal with both convex and non-
convex sets while removing the initial error and accumulated
error issues for redundant robots. In [37], a mutual collision
avoidance scheme was proposed by using a line segment-based
distance measurement algorithm to solve the motion planning
problem of dual manipulators. The above techniques have
been shown to be efficient and accurate for solving a dual-
redundancy problem. However, how to balance the tracking
accuracy, control effort, and satisfaction of constraints has not
been discussed. This is important otherwise tracking becomes
unstable for some joint configuration and eventually diverges
(see Section VIII-A).

Another common approach is the cascading method (or two-
stage optimization). The first stage determines a joint space
trajectory that can track the reference by solving a serial
robot inverse kinematics (IK) problem. The second stage is
to compute the cable forces by solving the CDPR inverse
dynamics (ID) problem [14], [38]. As the two stages are
independent of each other, there might be some conflicts
between them, i.e., the reference trajectory may not be feasible
in the actuation space as pointed out in [21]. In [39], decou-
pled horizontal and vertical vibration models were developed,
leading to a model predictive control of an HCDR. Such a
technique can reduce trajectory tracking errors and vibrations
without exploring the kinematic redundancy. In [40], standard
kinematic resolution techniques based on local optimization

of the null-space component were used to generate feasible
generalized coordinates for HCDR end-effector tracking task.
However, the work only focused on the kinematic redundancy
and not on the actuation redundancy.

In [22], Khatib’s [21] operational space control was
extended to determine the muscle forces required to achieve
reactive operational space control of biomechanical systems
in which the workspace is conservatively approximated by
a set of linear constraints [41]. As such, the control com-
mand can be determined by solving convex QP. However, for
CDPRs, the linear constraints approximation of the pregener-
ated workspace is not practical due to the high workspace
irregularity and computational costs for high DoF robots.
As such, the approach proposed in [22] for biomechanical
systems cannot be effectively used for CDPRs in general.
Hence, in summary, there is no effective solution for a tri-
space operational control to deal with two-level redundancy
problem with the consideration of feasibility in the CDPRs,
which motivates the proposed tri-space control framework for
CDPRs.

III. NOTATIONS, CDPR MODELING, AND
CONTROL OBJECTIVE

This section provides relevant mathematical notations and
the generalized modeling of CDPRs including MCDRs and
HCDRs, followed by the control objective of this work.

A. Notations

Let N represent the set of all nonnegative integers. The
notation R represents the set of all real numbers, R≥0 is the
set of all nonnegative real numbers, and R>0 is the set of all
positive real numbers. For any vector x ∈ Rn , ∥x∥2 represents
its Euclidean norm, defined as ∥x∥2 ≜ (xT x)1/2, where
(·)T represents the transpose. For two vectors in Rn with
x = [ x1 · · · xn ]

T and y = [ y1 · · · yn ]
T , x ≤ y indicates

that xi ≤ yi , ∀ i = 1, . . . , n.
For a matrix A =

{
ai, j

}
∈ Rn×m , ∥A∥2 is the induced

matrix norm defined as ∥A∥2 = (AT A)1/2. The Frobenius
norm of A is defined as ∥A∥F = (

∑n
i=1

∑m
j=1 a2

i, j )
1/2. The

pseudoinverse A† is defined such that AA†
= In , where In

denotes an n-dimensional square identity matrix. The null
space of matrix A is the set NA = {x ∈ Rm

: Ax = 0}. The
matrix NA ∈ Rm×(m−n) denotes a matrix whose columns form
a basis of the set NA.

B. SCDR and MCDR Modeling

An MCDR is a type of CDPR where the number of links is
more than one. If the number of links is one, then the MCDR
becomes an SCDR. Let the joint space q = [q1, . . . , qnM ]

T
∈

RnM be defined as the generalized coordinates. The cable
lengths and forces are denoted as l = [l1, . . . , lmM ]

T
∈ RmM

and f = [ f1, . . . , fmM ]
T

∈ RmM , respectively. Hence, the
kinematic relationship between l and q is described by

l = s1(q) (1)
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where the nonlinear mapping s1 : RnM → RmM is the IK
function [42]. The derivative of (1) gives

l̇ = L(q)q̇ (2)

where L(q) = [∂s1(q)/∂q1, . . . , ∂s1(q)/∂qnM ] ∈ RmM ×nM is
the joint-cable Jacobian matrix. Due to the unilateral actuation
property of cables, actuation redundancy (mM ≥ nM + 1)
is needed to produce motion in all DoF. The dynamics of
the system is described by the following equation of motion
(EoM):

M(q)q̈ + C(q̇, q) + G(q) = −L(q)T f (3)

0 ≤ f ≤ f ≤ f . (4)

The left-hand side of (3) refers to the system wrench,
composed of the mass-inertia matrix M(q) ∈ RnM ×nM , the
centrifugal and Coriolis vector C(q̇, q) ∈ RnM , and the
gravitational vector G(q) ∈ RnM . The joint-cable Jacobian
matrix L(q) maps the cable force vector f into the joint space
system wrench. Cable forces are requested to be bounded by
the minimum and maximum positive force bounds f and f
in (4), respectively.

The MCDR operational space can be defined as the position
and/or orientation of the end-effector x = [x1, . . . , xr ]

T
∈

Rr , where r refers to the number of operational space DoF.
Usually, r ≪ nM . For this work, Euler angles are chosen over
quaternions because quaternions are much less intuitive than
Euler angles. However, since the framework is generic, hence,
quaternions can also be used to represent the operational space.
The kinematic relationship between the joint and operational
space (Euler space) can be written as

x = s2(q). (5)

In (5), s2 : RnM → Rr represents the Forward Kinematics
(FK), mapping the joint space to operational space Rr . The
derivative of (5) becomes

ẋ = J(q)q̇ (6)

where J(q) = [∂s2(q)/∂q1, . . . , ∂s2(q)/∂qnM ] ∈ Rr×nM is the
joint-operational Jacobian matrix. This leads to the following
derivative of (6):

ẍ = J(q)q̈ + J̇(q)q̇. (7)

Equation (7) can be rewritten as

q̈ = J†(q)(ẍ − J̇(q)q̇) + q̈ N (8)

where q̈ N and J† are null-space vector and pseudoinverse of
J , respectively.

C. HCDR Modeling

HCDR are hybrid actuated systems that combine cables and
other types of rigid-link actuators. For an HCDR with m-cables
with its CDPR joint space q M ∈ RnM and p-actuators, the
original CDPR joint space q M , is extended to include the rigid-
link actuated DoF qa ∈ Rp. As a result, the joint space of the
HCDR becomes q = [qT

M qT
a ]

T
∈ Rn , where n = nM + p.

The kinematic relationship between the cable lengths l and

CDPR joint space q M is the same as that of (1) and (2) with
appropriate dimensions. The actuation command a is formed
by combining the cable force f ∈ Rm and the active joint
torque τ ∈ Rp as

a =

[
f
τ

]
:=

[
aC

aD

]
∈ Rm+p. (9)

The bounds on a are defined as

a ≤ a ≤ a

a =

[
f
τ

]
, a =

[
f
τ

]
(10)

where τ , τ ∈ Rp are the minimum and maximum joint torque.
The dynamics of HCDRs can be expressed by the following

extended EoM from (3) and (4):

M(q)q̈ + C(q̇, q) + G(q) = B(q)a, (11)

B(q) =
[
−L(q)T A(q)

]
, (12)

a ≤ a ≤ a (13)

where B(q) ∈ Rn×(m+p) is formed by the joint-actuator
Jacobian matrix L(q) and the Jacobian matrix for active joint
torques A(q) ∈ Rn×p. When p = 0, the extended EoM of
HCDRs defined by (11) reduces to the EoM for MCDRs or
SCDRs in (3). Therefore, the extended EoM given by (11) will
be used to describe the dynamics of CDPRs in the remainder
of this article.

D. Control Objective

It is noted that most tracking tasks are defined in the
operational space, but due to redundancy coming from CDPRs
(referring to MCDRs and HCDRs), a good operational tracking
performance does not guarantee feasible joint space perfor-
mance. When the actuation space is considered to minimize
the control effort, the control design becomes more chal-
lenging. In addition, undesirable situations, such as cable-link
interference, loss of manipulability, and reaching mechanical
joint limits, might happen. The aim of this work is thus
to exploit the two-level redundancy of CDPRs to achieve
good performance in the operational and joint space while
minimizing the control effort and avoiding undesirable situa-
tions simultaneously. More precisely, the control objective is
summarized as follows.

For a given desired trajectory xd(t) ∈ Rr , t ∈ [0, T ] for
some T ∈ R>0, the control objective of a CDPR is to track
this desired operational space trajectory with the desired joint
space performance with simultaneous minimized control effort
and avoidance of undesirable situations when the task performs
repetitively.

IV. PROPOSED REACTIVE-ITERATIVE TRI-SPACE
OPERATIONAL CONTROL FRAMEWORK

This section presents a robust control framework to achieve
the control objective for CDPRs. For given xd(t), from (8),
the joint space motion qd(t) satisfies

q̈d = J†(qd)(ẍd − J̇(qd)q̇d) + q̈ N . (14)
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Equation (14) composed of two parts: one is the desirable
joint space trajectory qd(t) and the other is related to the null-
space trajectory q N (t). Due to the kinematic redundancy, the
solution of (14) is not unique. Optimization techniques are
widely used to solve such a redundancy problem.

The cost function used in the optimization is based on the
widely used lower level proportional–derivative (PD) control
law, performance requirements in CDPR (MCDR and HCDR),
as well as a special form of parameterization of the null-space
trajectory q N .

A. PD Control Law

For a given reference trajectory in operation space xd(t) ∈

Rr , a PD controller has been widely used. Let the tracking
error be

e(t) = xd(t) − x(t) (15)

where x is the actual operational space pose as defined in (5).
An ideal PD controller can eliminate the nonlinearities of the
CDPR, leading to the following “ideal” closed-loop system:

(ẍd − ẍ) + K d(ẋd − ẋ) + K p(xd − x) = 0r (16)

or equivalently

ë + K d ė + K pe = 0r (17)

where K d , K p ∈ Rr×r are diagonal matrices with positive
diagonal elements. For the convenience of notation, we defined
the set Xd(t) = {xd(t), ẋd(t), ẍd(t)} containing the desired
trajectory and its derivatives. Moreover, it is denoted as

b(Xd , q, q̇, e) = ẍd − J̇ q̇ + K d ė + K pe. (18)

Remark 1: It is noted that the choice of PD control matrices
K d and K p will not affect the stability properties of the “ideal”
closed loop, though their choices affect the transient behaviors.
Even though the CDPR is working in nonideal situations, the
existence of PD control law will ensure the boundedness of
the operation trajectories x(t) for any t ∈ [0, T ], as shown
in Theorem 2. The introduction of ILC for updating the
parameters will improve the performance over iterations when
the CDPR is performing a task repetitively. Hence, the choice
of PD control matrices is not the focus of this work. In our
analysis, these matrices are fixed. ◦

Substituting ẍ = ẍd + K d ė + K pe into (8) and writing
q̈ as joint acceleration command q̈c(Xd , q, q̇, e), (8) can be
rewritten as

q̈c(Xd , q, q̇, e) = J†b(Xd , q, q̇, e) + q̈cN . (19)

It is noted that if q̈ is computed, both q̇ and q can be
obtained using numerical integration techniques. Furthermore,
e is defined in operation space instead of joint space. Thus,
we can rewrite q̈c(Xd , q, q̇, e) as q̈c(Xd , q̈) and b(Xd , q, q̇, e)
as b(Xd , q̈) when optimization is designed in joint space.
In an ideal case, if the operational space errors are fully
compensated (i.e., e = ė = 0), (19) takes the form of (14).

Let J†
W = W−1

q J T (J W−1
q J T )−1 be the weighted pseudoin-

verse of J [43] with a symmetric positive definite weighting
matrix Wq ∈ Rn×n . The use of Wq is suitable when the

joint space of the CDPR has mixed units, such as between
translation and rotations. Replacing J† by J†

W in (19) yields

q̈c(Xd , q̈) = J†
W b(Xd , q̈) + q̈cN . (20)

When the joint space trajectory q(t) is designed, it is
expected that q(t) can track the commanding joint acceleration
q̈c(Xd) with the consideration of other joint space require-
ments. The error between q̈(t) and q̈c(Xd) can be formulated
as one optimization problem.

B. Cost Function for Joint Space Trajectories

The user-defined cost function is denoted as V (Xd , q̈, a),
which is related to control objectives. In this work, it com-
prises three quadratic components: 1) operational space track-
ing function gt (Xd , q̈) resolving the kinematic redundancy;
2) actuation function g f (a) minimizing control effort and
resolving the actuation redundancy; and 3) the function related
to constraints or avoidance function ga(q̈), to which aims
undesirable situations. Hence, V (Xd , q̈, a) can be expressed
as

V (Xd , q̈, a) = gt (Xd , q̈) + α · g f (a) + β · ga(q̈) (21)

where α > 0 and β > 0 are scaling factors for the actuation
function and avoidance function, respectively. As a general
guideline, α ≪ β < 1 is selected to prioritize tracking over
actuation and avoidance function. Other forms of cost function
can be used. The positive pair (α, β) is learned when the
CDPR performs repetitive tasks.

The details of choosing the cost function V (Xd , q̈, a) and
other constraints in joint space will be discussed in Section V.
The RC will be used to determine an appropriate joint space
trajectory q̈(t) for t ∈ [0, T ].

C. Parameterization and Its Cost

Since the null-space vector q̈cN plays an important role in
joint space optimization, in this work, a novel parameterization
of the null-space vector q̈cN is considered such that (20) can
be rewritten as

q̈cN = (I − J†
W J)D J†

W b(Xd , q̈) (22)

where D = diag (d1, . . . , dn) ∈ Rn×n is an unknown diagonal
matrix that scales the components of J†

W b(Xd , q̈), which is
an n-dimensional vector. The columns of the matrix D need
to be identified for improving the performance of the CDPR
over repetitive tasks. The matrix I − J†

W J is the null-space
projection matrix. Consequently, (20) is rewritten as

q̈c(Xd , q̈) = J†
W b(Xd , q̈) + (I − J†

W J)D J†
W b(Xd , q̈).

(23)

Together with α and β from (21), a reactive tuning param-
eter vector θ ∈ Rn+2 can be defined as

θ = [d1, . . . , dn, ln(α), ln(β)]T . (24)

The parameter θ needs to be identified through repetition.
Hence, the widely used technique of ILC, which improves
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Fig. 2. Tri-space operational control framework.

the task performance through iterations when the trajectory is
repeatedly executed, is used to learn an optimal θ∗.

Remark 2: It is highlighted that in this framework, two sets
of optimal parameters are sought. The first set tries to balance
the control effort and satisfaction of constraints, while the
second optimal parameters are related to parameterization in
the null space, i.e., the best parameters in the null space to
achieve the optimal performance in operational space. More
discussions on null-space parameterization are presented in
Section VI. ◦

D. Overall Structure

The proposed tri-space operational control framework con-
sists of two primary components.

1) RC plans the joint space trajectory to solve redundancy
of CDPR so that it can track the desired trajectory
xd(t), t ∈ [0, T ] in operational space and achieve the
desirable performance in terms of q̈(t) with respect
to the cost V (Xd , q̈, a) and other constraints in joint
space. Such a problem can be converted into an opti-
mization problem with appropriate constraints if q̈(t)
and a(t) are sampled with the sampling rate Ts . More
precisely, at each sampling instant tk = 0, 1, . . . , N − 1,
an optimization problem is solved. Here, tk = kTs, k =

0, 1, . . . , N − 1, with Ts satisfying N = (T/Ts).
A standard QP controller is used to solve both the
kinematic and actuation redundancies (tri-space redun-
dancies) simultaneously at each sampling instant. The
RC is responsible for maintaining the system stability
and satisfying the unilateral constraints of a(t), when
encountering new trajectories without any past experi-
ences. The reactive controller also operates real time at
each time instant (faster-time scale). More details of the
RC in Section V as well as Algorithm 2.

2) ILC improves the task performance through iterations
by selecting the optimal parameter θ ⋆ with respect to
some user-defined cost function P(·), where θ is defined
in (24) when the trajectory is repeatedly executed
(Section VI). To avoid confusion, the ILC cost function
is referred to as the trajectory performance function
(PF). The ILC focuses on improving the performance
through exploring the joint space redundancy when the

operational space task is repeated. The ILC performs
each update at the end of each trajectory cycle (iteration)
at a slower time scale.

The overall structure of tri-space operational control frame-
work is shown in Fig. 2, where the implementation details of
the RC are shown comprehensively. The ILC implementation
details are discussed in Section VI. The operation modes of
the control framework are given as follows.

1) Hardware Mode: In the controller operation, both hard-
ware and simulation modes are available. In the hardware
mode, the length commands are sent to the BMArm through
robot operating system (ROS) at 200 Hz and cable lengths are
controlled by the myomuscle units [44]. The length commands
are generated from the optimized actuation command a⋆(tk),
by applying a forward dynamic (FD) model. At each sampling
instant tk , joint space velocity q̇(tk) and position q(tk) are
determined through FK, using the cable length feedback,
calculated from the motor encoder feedback (Fig. 2). This FK
model is located within the CDPR/hardware block. As shown
in Fig. 2, the operational space position x(tk) and velocity
ẋ(tk) are evaluated through FK with q(tk) and q̇(tk) computed
using (6). To validate the cable force commands, load cells
were placed in-line with the cables to measure the cable
forces f (tk).

2) Simulation Mode: For a simulation mode, instead of the
hardware, the length commands are sent to a CASPR CDPR
model. Control frequencies of 100 and 200 Hz were selected
for various simulations. During simulations, to simulate the
sensor noise, additive noise was added to the model’s length
feedback to generate the cable lengths l(tk).

V. REACTIVE CONTROLLER

At each sampling instant tk , the CDPR has joint information
qk := q(tk), q̇k := q̇(tk), and q̈k := q̈(tk). This section will
first formulate the RC design as an optimization problem,
followed by the discussion of the cost function V (Xd , q̈, a)

defined in (21). Finally, Section V-B discusses the details of
avoiding undesirable situations.

A. QP Optimization Formulation

The primary objective of the reactive controller is to deter-
mine a set of feasible actuation commands ak = a(tk) =

[ f T
k , τ T

k ]
T and the reference joint trajectory q̈k that actuates
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the system to track the operational space trajectory Xd(tk)
while avoiding undesirable positions for k = 1, 2, . . . , N−1 as
defined by the cost function V (Xd , q̈, a) with the consideration
of cable force, joint torque, and EoM constraints coming
from (10) to (13). This leads to the following convex QP
formulation, which deals with both levels of redundancy
(kinematic and actuation) in the tri-space:

min
q̈k ,ak

V
(
Xd(tk), q̈k, ak

)
s.t. M(qk)q̈k + C(q̇k, qk) + G(qk) = B(qk)ak

a ≤ ak ≤ a

8

[
q̈k
ak

]
≤ ρ (25)

where 8 ∈ Rnq×(m+n+p) and ρ ∈ Rnq define the controller
inequality constraints for some interger nq .

Remark 3: The choices of 8 and ρ are application depen-
dent. In this work, the RC controller contains three types
of linear constraints: the EoM (11), actuation bounds, and
other task constraints. The EoM ensures that the system
dynamics can be satisfied, while the actuation bounds ensure
that the resulting actuation commands are feasible. Other
inequality constraints are hard constraints that maintain
the system’s capability of achieving the tracking task (see
Section V-B). ◦

Next, we will discuss the operational space tracking gt (·, ·)

and actuation command g f (·) terms of (21). The ga(·) term is
discussed in Section V-B2.

1) Operational Space Tracking: From (20), a good candi-
date for gt (Xd , q̈) is

gt (Xd , q̈) =

∥∥∥q̈ − J†
W b(Xd , q̈)

∥∥∥2

2
(26)

where b(·, ·) is defined in (18). Other choices of the tracking
performance can be used.

2) Actuation Command: The objective function component
g f (a) is responsible for resolving the actuation redundancy
for CDPR systems. As such, the actuation command a should:
1) produce the required joint acceleration q̈ while satisfying
the EoM (11); 2) be within the feasible actuation bound (10);
and 3) satisfy some desired objectives such as minimal control
effort. The EoM and actuation bounds are represented as
constraints in the QP (25), and the minimization of control
effort can be simply expressed by the objective function
component

g f (a) = aT Wa a (27)

where Wa ∈ R(m+p)×(m+p) is positive-definite, typically a
diagonal matrix for decoupling different joint actuation efforts
in the controller.

The choice of gt (·, ·) and g f (·) was quite straightforward.
In this section, from henceforth, the focus of the discussion
is the avoidance of undesirable situations, which forms the
foundation for the ga(·) term of (21) and also defines the
controller inequality constraints 8 and ρ of (25).

B. Avoidance of Undesirable Situations

Despite the ability of the tracking task and resolution of the
two-level redundancies, the system is not robust if the reactive
controller does not consist of an avoidance function, to prevent
the system from encountering undesirable situations, such
as loss of manipulability, cable interference, and reaching
mechanical joint limits.

To avoid such problems, a combination of hard and soft
constraints within the reactive controller (25) is used to avoid
undesirable situations. In addition to the loss of manipulability,
other undesirable situations include the interference of cables
and also limits on the range of joint motion. In this work, the
function h(q) is used to represent either constraints or the cost
such as follows.

1) Satisfaction of h(q) ≥ hmin as a hard constraint.
2) Increase of h(q) as an objective to avoid hmin.
1) Hard Linear Constraints: In this work, the undesirable

situation is represented as hmin ≤ h(q) ≤ hmin + 1h , where
1h ∈ R+ represents the region size that is considered to
be close to the undesirability. Since h(q) is nonlinear, it is
proposed to add a velocity level constraint when hmin ≤

h(q) ≤ hmin + 1h

ḣ(q) =
∂h(q)

∂q
q̇ ≥ ϵ (28)

where ϵ > 0 is the minimum increase in h(q) required such
that the system would move away from the constraint. As the
optimization variable of the QP involves q̈ instead of q̇, the
velocity can be expressed numerically as

q̇ = q̇ p + q̈Ts (29)

where Ts is the time step and q̇ p is the joint space velocity
at the previous time step. By combining (28) with (29), the
following linear constraint can be included in RC to avoid
undesirable situations

8 =

[
−Ts

∂h
∂q

0m+p

]
, ρ =

∂h
∂q

q̇ p − ϵ (30)

where 0m+p is an m + p zero row vector. Since ∂h(q, q̇)/∂q
is a constant row vector at a particular state q, so (30) is a
linear constraint.

2) Avoidance Function: Hard constraints are activated such
that the system can react when it is too close to undesirable
situations or even failure. However, the activation of hard
constraints creates sudden changes of acceleration, which
potentially creates nonsmooth joint space motions. Hence,
in addition to hard constraints, an avoidance function ga(q̈) is
proposed to guide the system smoothly away from undesirable
situations prior to reaching the hard constraints, increasing
the capability to avoid undesirable situations in advance. The
avoidance function ga(q̈) of (21) can be formulated as

ga(q̈) =
∥∥q̈ − q̈ A

∥∥2
2 (31)

where q̈ A refers to the avoiding acceleration, which is the
required acceleration to drive the system to avoid undesirable
situations. The avoidance objective can be formulated as a
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desired velocity in order to increase the gradient of function
h(q) and the desired acceleration q̈ A expressed as

q̈ A =

(
k1

∂h
∂q

T

− q̇ p

)
1
Ts

(32)

where k1 > 0 is a constant that governs the strength related
to joint position-level avoidance.

3) Examples of Avoidance Acceleration Formulation: By
introducing suitable functions for h(q), the avoidance acceler-
ation can be determined by using (32). Examples of different
types of undesirable situations, their avoidance acceleration
formulations, and how to combine them to determine the final
avoidance acceleration are discussed as follows.

a) Loss of manipulability: The loss of manipulability
K (q) of a CDPR can be defined using unilateral dexterity [45]

K (q) =
σn(L(q))

σ1(L(q))

√
m + 1 ηmin(q)√
η2

min(q) + 1
. (33)

In (33), σ1 and σn refer to the largest and smallest singular
value of the joint-cable Jacobian matrix L(q), respectively,
and ηmin(q) refers to the smallest element in the normalized
null-space vector n̂(q), which is obtained by projecting the
vector v = [1, 1, . . . , 1]

T
∈ Rm into the null space of L(q)

n(q) = (I − L(q)L†(q))v (34)

where n̂(q) = n(q)/(∥n(q)∥). Consequently, K (q) reaches
a maximum value of 1 when the system is unilateral
isotropic [45] and reaches 0 when the system loses its capabil-
ity to generate any arbitrary direction of wrench through pos-
itive cable forces. Hence, the larger the K (q), the higher the
manipulability. Therefore, the avoidance of low manipulability
acceleration q̈ AK can be obtained by setting h(q) = K (q)

in (32).
b) Cable-link interference: For a CDPR, the distance

between each cable-link pair (SpiderArm) can be calculated
numerically by treating cables and links as line segments [46],
denoted as δi (q). Hence, the avoidance of interference accel-
eration, denoted by q̈ AD , can be generated by setting h(q) =

δmin(q) in (32), where δmin(q) is the distance between the
closest cable-link pair in the CDPR.

c) Joint limits: In MCDRs or HCDRs, hitting the
mechanical joint limits is an undesirable situation, which
causes instability in the system. The instability can be pre-
vented by assuming

h(q) =


1
2 (q − qmax)

2, q ≥ qmax
1
2 (q − qmin)

2, q ≤ qmin

0, otherwise
(35)

where qmax and qmin represent the maximum and minimum
joint limits, respectively. The avoidance of joint limits accel-
eration, denoted by q̈ AL , can be generated by setting h(q) as
per (35) in (32).

d) Combining multiple undesirable situations: In cases
where more than one type of undesirable situations has to be
avoided, q̈ A can be defined as the weighted average of N joint

accelerations

q̈ A =

N∑
i=1

wi (q, q̇) · q̈a,i (36)

where q̈a,i corresponds to the joint acceleration required
to avoid the i th undesirable situations given by (32) and
wi > 0 represents the weights that priortize the avoidance of
multiple situations. For example, if two types of undesirable
situations are considered for a CDPR such as the loss of
manipulability and the cable interference, then the avoiding
acceleration q̈ A can be written as

q̈ A = q̈ AK + w(q)q̈ AD ,

w(q) = 1/
(
1 + eλw(δmin(q)−ϵ)

)
(37)

where w(q) is a weight function that governs the acceleration
that avoids cable-link interference q̈ D . In (37), the cable-link
pair minimum distance δmin(q) is determined by taking the
minimum of {δi (q)}

nl
i=1, where nl represents the number of

cable-link pairs. The weight function w(q) increases as the
δmin(q) reaches the user-defined buffer ϵ. The rate of w(q)

increase is controlled by the value of λw. For a high value of
λw, w(q) approaches the value of unity when δmin(q) just goes
below the ϵ. The weight of avoidance of low manipulability
acceleration q̈K is set to unity so that loss of manipulability
avoidance can always be prioritized.

VI. ITERATIVE-LEARNING CONTROLLER

ILC updates a set of control input trajectories when a system
such as the CDPR is tracking a trajectory repeatedly over
a finite-time interval. For CDPRs, the control input would
naturally be the cable forces f (t) ∈ Rm and joint torques
τ (t) ∈ Rp, combined to form a(t) ∈ Rm+p. However, due to
the cable force constraints and actuation redundancy, existing
ILCs cannot be directly applied onto MCDRs or HCDRs to
determine the cable forces. This is partially due to the lack of
a fixed or iteration invariant relationship between the control
inputs and system outputs coming from redundancy [47],
[48], as demonstrated in Section V. In order to solve the
redundancy problem, optimization techniques have been used
by various numerical gradient or search-based methods to find
some optimal control input [49]. However, given the high
dimensions of the problem due to the high-dimensional input
signal R(m+p)×N for m + p dimensional input and N sampling
points, it is not feasible to achieve real-time control using ILC
directly.

This work proposes a novel reactive-iterative tri-space oper-
ational control framework (see Section IV), which combines
ILC with the reactive controller (see Fig. 2). Rather than
iteratively learning the actuation command a(t) in R(m+p)×N ,
it is proposed to learn a reactive tuning parameter vector
θ ∈ Rn+2, as discussed in Section IV. Note that the dimension
of the parameter is much lower than the input vector, and
hence, the “learned” parameters are used within RC.

The reactive tuning parameter vector is constant for an
entire trajectory and it is designed to affect the characteristic
of the controller in resolving the joint to operational space
redundancy (kinematic redundancy). Hence, the joint space
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Fig. 3. ILC implementation details in the tri-space operational control framework.

profile for achieving better controller performance is explored
by updating θ while executing the desired operational space
trajectory. Furthermore, the null-space exploration parameters
are unconstrained and, hence, can be solved more easily.
Mathematically, the ILC can be solved as an unconstrained
nonlinear optimization problem

θ ⋆
= arg min

θ∈Rn+2

P(θ) (38)

where P(·) is the trajectory PF, which will be defined later.
The optimal set of parameter θ ⋆ contains the optimal set of
null-space parameters and the optimal α∗ and β∗.

As the unconstrained optimization problem (38) is only
performed once for each iteration or cycle off-line, there are
many off-the-shelf optimization techniques that can be used.
Practically, the parameter θ is constrained in a known compact
set 2 ∈ Rn+2. It is assumed that such an optimal value exists
as stated in the following assumption.

Assumption 1: If the solution of the QP formulation (25)
is feasible for any given initial θ0, there exists a compact set
2C such that the optimal θ∗ exists uniquely in this compact
set 2C satisfying P(θ∗) = 0.

An example of such a compact set is 2C := {θ ∈

Rn+2
|∥θ∥2 ≤ C}, for some positive constant C . This leads

to the following optimization problem:

θ ⋆
= arg min

θ∈2

P(θ). (39)

It is usually assumed that this compact set is known.
Remark 4: It is to be noted that for a given task in the

operational space and a given setting of CDPR, the optimal θ ⋆

is fixed or iteration invariant. As the task is repetitive, the goal
of ILC is to learn θ∗. In engineering applications, iteration-
varying uncertainties and random noises exist. In this work,
it is assumed that these iteration-varying uncertainties and
noises are not dominant so that the task is almost repetitive.
As shown in the experimental results, the proposed framework
can improve the performance over iterations. ◦

A. Choices of P( · )

The evaluation of the trajectory performance, such as track-
ing accuracy and actuation efforts, is done after each iteration.
A few performance indices (PIs) are considered. They are
tracking accuracy PE (·), cable actuation effort PC(·), and
direct actuation effort PD(·) [Fig. 2(b)]. Other PIs for the
trajectories over iterations can be considered.

Here, PE represents the tracking performance, which is
defined as

PE (θ) = ∥E(θ)∥F (40)

where the vector E is defined as

E(θ) = [e0(θ), . . . , eN−1(θ)] ∈ Rr×N

where e is defined in (15). This performance E(θ) is a function
of the tracking error e. The cable actuation effort PC(·) is
defined as

PC(θ) = ∥AC(θ)∥F (41)

where AC(θ) = [aC,0(θ), . . . , aC,N−1(θ)] ∈ Rm×N and
{aC,k} ∈ Rm are vectors of cable actuation effort at the kth
sampling instants, ∀k = 0, . . . , N − 1 [see (9)]. The direct
actuation effort PD(·) is defined as

PD(θ) = ∥AD(θ)∥F (42)

where AD(θ) = [aD,0(θ), . . . , aD,N−1(θ)] ∈ Rp×N and aD,k ∈

Rp are vectors of direct actuation effort from active joint
torque at the kth sampling instants, ∀k = 0, . . . , N − 1
[see (9)].

Normalization: As different PFs usually vary in scale and
dimension, hence they are normalized first where

P(θ) = ρe P̂ E (θ) + ρc P̂C(θ) + ρd P̂ D(θ) (43)

where ρE , ρC , and ρD are positive normalization parame-
ters. Here, P̂ E (·), P̂C(·), and P̂ D(·) are normalized track-
ing accuracy, normalized actuation effector, and normalized
direct actuation effort, respectively. Usually, the normal-
ization takes the following form, taking the example
of PE (·):

P̂ E (θ) =
PE (θ)

P⋆
E

where P⋆
E = minθ∈2

PE (θ) as P(·) is an unknown nonlinear
mapping. Here, 2 is the set containing all the computed
parameters so far. Similarly, P⋆

C = minθ∈2
PC(θ) and P⋆

D =

minθ∈2
PD(θ). These unknown parameters or values can be

learned from the ILC algorithm.
In contrast to the reactive null-space projection methods

that aim to optimize certain objective function at each time
step [21], [50], which requires to compute the optimal a ∈

R(m+p)×N , the proposed ILC tries to update the null-space
vector q̈cN [see (22)] at each iteration (slower time scale)
by updating the set of null-space exploration parameters θ ∈

Rn+2, defined by (24). The objective of the ILC algorithm
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is to identify the optimal joint space behavior, i.e., find P⋆
E ,

P⋆
C , P⋆

D , and θ ⋆. The ILC implementation details are shown
in Fig. 3.

B. Choice of Optimization Methods

Although the null-space exploration parameters provide a
great potential in exploiting the kinematic redundancy and
improving in task performance, the highly nonlinear relation-
ship between these parameters and the trajectory PF P(·)

is unknown, making it hard to find an optimal solution
without knowing the explicit gradient information. Thus,
the standard gradient-based optimization methods such as
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [51]
not applicable for solving (39) and (43).

Hence, in this work, search-based methods, such as PS [52]
and PSO [53], are applied to determine θ ⋆ within a given
compact set 2C . Both techniques can find an optimal solution
without the gradient information.

In simulations, PS was used as Algorithm 1 to ensure its
convergence due to introduction of convergence parameter
ρILC. On the other hand, PSO is used in the experiments since
PSO is well known for its ability in terms of robustness with
respect to measurement noises, though the convergence of PSO
is hard to show. Besides, PSO is used for the hardware mode as
the hardware uncertainties (such as friction and sensor noise)
affect the performance evaluation for the same set of control
parameters.

Next, the PS technique is used to iteratively solve the
optimization problems (39) and (43), as shown in Algorithm 1.
It is known that finding P(θ ⋆) is similar to find P⋆

E , P⋆
C ,

and P⋆
D . Algorithm 1 is run three times to solve Q⋆

E , Q⋆
C ,

and Q⋆
D . Then, Algorithm 1 is run to solve the optimization

problem of (43) when these values are computed. It is observed
during simulations that P⋆

E , P⋆
C , and P⋆

D are sensitive to the
desired trajectory xd or Xd , and hence, they are computed
once separately for a given Xd .

Here, Proj(θ , 2) constrains the updating law of θ i within
the compact set 2. There are many different ways to select
the compact set 2. One of them is to choose 2 := {θ j |θ j ≤

θ j ≤ θ̄ j , j = 1, . . . , n + 2} so that

Proj
(
θ j , (θ j , θ̄ j )

)
=


θ j , θ ≤ θ j

θ j , θ j ≤ θ j ≤ θ̄ j

θ̄ j , θ j ≥ θ̄ j

which can ensure that θ i ∈ 2C . At each iteration, new
“optimal” value θ i+1 = θ ⋆

= mins=0,...,i+1{P(θ s)} is com-
puted. Algorithm 1 will ensure that at the (i + 1)th iteration,
the PF will improve, i.e., P(θ i+1) ≤ ρILC P(θ i ) for some
ρILC ∈ (0.1, 1), leading to the convergence of parameter θ

to the optimal value θ ⋆. Moreover, the constraint set 2C used
in Algorithm 1 will ensure the boundedness of the parameter
updating.

Once this new optimal value is computed, it will serve
as an input to the RC (Fig. 2), which uses a QP to
solve the optimization problem [see (25)], as summarized in
Algorithm 2. Algorithms 1 and 2 as well as Figs. 2 and 3

Algorithm 1 Proposed Control Framework Using PS for ILC

Algorithm 2 Reactive Controller for a Single Trajectory

also show the interaction between the ILC and the RC.
With the generalizabilty of the framework, other optimization
methods, such as the PSO, can be easily implemented by
changing the initialization procedure and the update method
of θ (Lines 1 and 5, Algorithm 1, respectively). Algorithm 2
presents the reactive controller for a single trajectory. For
the convenience of notations, the set of joint space position
and actuation command trajectories is denoted as Q and A,
respectively.
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VII. STABILITY ANALYSIS

The stability of the class of controllers that minimizes the
actuation effort given by (27) is a well-studied topic [54],
[55] for unconstrainted cases. In particular, the gradient of
the QP problem (25) without constraints is computed as the
RC law a to show the stability. However, due to the existence
of constraints, such an analysis is not sufficient to show the
boundedness of the trajectories.

In this work, perturbation theory [56, Ch. 10] is applied for
the stability analysis. The analysis shows the boundedness of
trajectories for any sampling instant k = 0, . . . , N −1 and for
any iteration, when both the RC law in (25) (see Algorithm 2)
and the ILC law (see Algorithm 1) are working together.
Then, the ILC algorithm (Algorithm 1) can ensure the tracking
convergence. Hence, the algorithm’s convergence guarantees
tracking performance improvement, which can be seen in
Table II.

A. Boundedness of Trajectories

At the i th iteration, any computed θ i from Algorithm 1
is constrained in the compact set 2. Consequently, it leads
to the bounded solutions of QP problem ai

k and q̈i
k

[see (25) and Algorithm 2]. By applying a perturbation theory
[56, Ch. 10] for a finite interval, the boundedness of q̈i

k leads to
the boundedness of q̇i

k and qi
k . Hence, at the i th iteration and

within a fixed sampling time Ts , the sampled-data structure of
actuation ai (t) in (11) becomes

M(qi (t))q̈i (t) + C(q̇i (t), qi (t)) + G(qi (t)) = B(qi (t))ai (t)

where, ai (t) = ai
k ∀t ∈ [kTs, (k + 1)Ts) (44)

for all k = 0, . . . , N − 1. In (44), ai
k is computed from

Algorithms 1 and 2. The continuity of the trajectories from
(11) ensures that ai (t), qi (t), q̇i

(t), and q̈i
(t) are uniformly

bounded for any t ∈ [0, T ] for the i th iteration. This leads to
the following theorem.

Theorem 1: Assume that a CDPR system (11) has a
sampled-data structure (44) with constraints (11)–(13). If actu-
ation ai

k is computed from Algorithms 1 and 2, then qi (t),
q̇i

(t), and q̈i
(t) in (44) are uniformly bounded for any t ∈

[0, T ] for any i th iteration. Moreover, constraints (13) are
satisfied from QP (Algorithm 2). ◦

Remark 5: It is noted that a PD controller is used in the
designed framework. By tuning the gains of PD controller, it is
possible to tune the tracking error at the i th iteration, the kth
sampling instant ei

k, i = 0, . . . ; k = 0, . . . , N −1, to an appro-
priate range. This indicates that xi (t) is uniformly bounded
for any iteration and any t ∈ [0, T ]. By using pseudoinverse
J , we can also conclude that q(t) is also bounded. Such an
analysis as in [54] and [55] can provide less conservative
estimation of the bound of trajectories. As QP (27) already
provided bounded solutions, the presented analysis is simpler.
It is highlighted that the performance improvement along the
iteration domain is achieved by Algorithm 1. The role of RC
is to avoid unwanted behaviors in time domain t ∈ [0, T ],
which is achieved by QP (Algorithm 2). ◦

B. Convergence of ILC Algorithm

By introducing convergence parameter ρILC and the
projection operator Proj(θ , 2), the proposed PS-based ILC
Algorithm 1 ensures that the cost function P(·) decreases
monotonically. If Assumption 1 holds, Algorithm 1 can ensure
that limi→∞ P(θ ⋆

i ) = 0 and limi→∞ θ ⋆
i = θ ⋆, indicating that

limi→∞ E(θ ⋆
i ) = 0, which comes from (41) and (43). This

shows that limi→∞ ei
k(t) = 0, ∀k = 0, . . . , N − 1.

For any given δ > 0, by applying [57, Th. 1], it can be
shown that lim supi→∞

∥∥ei (t)
∥∥

2 ≤ δ, ∀t ∈ [0, T ], by selecting
a sufficiently small sampling period Ts . This is summarized in
the following theorem.

Theorem 2: Assume that Assumption 1 holds for some
known compact set 2c. Let δ be any positive constant. There
exists T ⋆

s > 0 such that for any small sampling interval
satisfying Ts ∈ (0, T ⋆

s ), the proposed Algorithm 1 can ensure
that lim supi→∞

∥∥ei (t)
∥∥

2 ≤ δ, ∀t ∈ [0, T ]. ◦

Remark 6: Theorem 2 shows that if Assumption 1 holds,
by using Algorithm 1, the operational space tracking error
ei (t) can be arbitrarily small as the iteration number
approaches to infinity. Consequently, Theorem 2 also sug-
gested that for a given positive constant δ1 > δ, where δ comes
from Theorem 2, there exists T ⋆

s > 0 and N ⋆
∈ N such that∥∥ei (t)

∥∥
2 ≤ δ ∀t ∈ [0, T ], i ∈ N and i ≥ N ⋆

to ensure the convergence in a finite number of iterations. ◦

Remark 7: If there exists θ ⋆ such that P(θ ⋆) ̸=

0, Algorithm 1 can select ρILC = 1 to show that
lim supi→∞ P(θ i ) = C1 for some positive constant C1. The
tracking error at steady state in iteration lim supi→∞ ei (t) is
still bounded. Such a bound is determined by the parameters
ρe, ρc, and ρd in (43) as well as the value of C1. ◦

VIII. SIMULATION RESULTS

Simulation results on one MCDR, BMArm, and two
HCDRs, SpiderArm and FASTKIT, are presented in this
section to demonstrate the capability and features of the
proposed framework.

In addition, the simulation results also signify the ability
of the proposed reactive controller to be applied to different
systems with no controller tuning required. Table I provides
all the parameters associated with the simulations. Frequencies
100 and 200 Hz were selected to evaluate the controller
performance with different frequencies.

Controller gains K p and K d were selected in such a manner
so that the damping ratio was approximately set to unity in
all the cases and the boundedness of e(t), t ∈ [0, T ] were
achieved. For the ILC optimization in the simulations, PS
was used as discussed in Section VI-B. All simulations were
performed with the open-source CASPR [30] software using
a computer with an Intel Core i9-11900K CPU @ 3.50 GHz
and 32.0 GB of RAM, using MATLAB R2018a (64-bit). The
QP in the reactive controller was solved using qpOASES [58].

A. BMArm

The BMArm [Fig. 4(a)] is a 4-DoF MCDR (n = 4).
It consists of one spherical joint and one revolute joint. The
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TABLE I
CONTROL AND TRAJECTORY PARAMETERS USED FOR SIMULATIONS

Fig. 4. BMArm operational space tracking simulation results for star-shaped trajectory, without avoidance function, i.e., β = 0. (a) Schematic of BMArm
tracking a star-shaped trajectory on the xz plane. (b) Comparison of actual and desired operational space position x with initial joint position [0.18, 0,
0, −0.45]T . (c) Joint space position with initial joint position [0.18, 0, 0, −0.45]T . (d) Actuation command forces with initial joint position [0.18, 0, 0,
−0.45]T . (e) Failed operational space position x with initial joint position [0.18, 0, 0, −0.45]T . (f) Failed actuation commands with initial joint position
[0.18, 0, 0, −0.45]T .

joint space q ∈ R4 is composed of q1, q2, q3, and q4, where
q1, q2, and q3 are the xyz-Euler angles of the spherical joint
and q4 is the angle of the revolute joint. The joint space
is actuated by six cable forces f ∈ R6, which forms the
actuation command a ∈ R6 (a = f ). The operational space
x ∈ R3 is defined as the xyz-coordinate of the second link’s
tip in frame {0}.

To demonstrate the capability of resolving the kinematic and
actuation redundancies with the tracking function gt (Xd , q̈),
actuation function g f (a), and avoidance function ga(q̇), sim-
ulations on the BMArm are performed. In addition, to show
the relevance of the avoidance function, the simulations are
performed in two parts: with and without avoidance function.

1) RC Without Avoidance Function: A star-shaped tra-
jectory on the xz plane [Fig. 4(a)] is tracked with control
and trajectory parameters defined in Row 1 of Table I with
initial joint position that is set at q = [0.18, 0, 0, −0.45]

T .
Fig. 4(b) shows that the reactive controller tracks the reference
operational space position xd while resolving the kinematic
and actuation redundancies. The resulting joint space motion
q and actuation commands a are shown in Fig. 4(c) and (d),
respectively.

Next, consider the simulation of the same star trajectory, but
with a different initial joint position q = [0.18, 0.2, 0, −0.45]

T

in which a slight twist of the system about the y-axis has
been added (Row 2, Table I). The results in Fig. 4(e) and (f)
show that the operational space tracking becomes unstable and
eventually diverges. The manipulability metric K (q), given
by (33) [black dashed line, Fig. 5(a)], reaches 0, which means

that the system loses its capability to generate any direction of
wrench and leads to the divergence behavior of the controller.

2) RC With Avoidance Function: The avoidance acceler-
ation was formulated by combining the avoidance of low
manipulability and joint limits acceleration in the form of
(37). Fig. 5 shows the effect of the avoidance of low manip-
ulability by setting h(q) = K (q) for the same task as in
Fig. 4(e) and (f), with parameters defined in Row 3 of Table I.
It can be seen from Fig. 5(b) and (c) that the tracking task
is completed without divergence and significant improvement
in manipulability [red line, Fig. 5(a)] has been achieved as
compared to Fig. 5(a), which demonstrates the ability of the
avoidance function to maintain the system’s manipulability to
complete the tracking task.

B. SpiderArm

The SpiderArm is an HCDR that combines a 6-DoF UR3
manipulator on the end-effector of a spatial SCDR [Fig. 6(a)].
In addition, the large translational workspace of SCDR and the
installation of the robot arm lead to increased dexterity. The
hybrid robot is actuated by both cables and revolute joints,
forming actuation command a ∈ R14, where the SCDR is
actuated by eight cables [a1, a2, . . . , a8]

T that are attached
to the base frame, and the 6-DoF robot arm is actuated
by revolute joints [a9, a10, . . . , a14]

T . The joint space of the
SpiderArm is defined as q = [q1, q2, . . . , q12]

T , where q1, q2,
and q3 refer to the translation, q4, q5, and q6 refer to the
Euler orientation of the SCDR in frame {0}, and the joints
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Fig. 5. BMArm operational space tracking simulation results for star-shaped trajectory, with avoidance function, i.e., β = 0.01. (a) Manipulability K(q) with
β = 0 and β = 0.01 with initial joint space position [0.18, 0.2, 0.0, −0.45]T . (b) Successful operational space position tracking x with avoidance function,
i.e., β. (c) Actuation commands a with avoidance function, i.e., β = 0.01.

Fig. 6. SpiderArm operational space tracking simulation results for flower-shaped trajectory. (a) Schematic of the SpiderArm. (b) Operational space position
and orientation x of the end-effector. (c) Cable-link distance plot for cable-link pairs, whose distance went below the buffer at IT1 and IT2. (d) Operational
space position and orientation error at IT1 and IT2. (e) ILC PF reduction with iterations. (f) Cable-link interference plot with ILC tuned null-space exploration
parameter u. (g) Operational space tracking error plot with ILC tuned null-space exploration parameter u. (h) Evolution of u with iterations. (i) Joint
space position q2 increased significantly with ILC. (j) Joint space position q7, q8, and q11 reduced with ILC to prevent the UR3 from hitting the cables.
(k) Comparison of operational space error norm with and without ILC. (l) Comparison of cable force norm with and without ILC.

q7, q8, . . . , q12 refer to the joint angles of the robot arm. The
operational space is defined as x = [x1, x2, . . . , x6]

T , which
represents the xyz-coordinate and Euler angles of the tip of the
robot arm in frame {0}. Simulations on the SpiderArm were
performed to discuss the performance of RC, ILC, and the
proposed framework.

1) Reactive Control: A rose-shaped trajectory [Fig. 6(a)]
was tracked [Fig. 6(b)] with parameters defined in Row 5 of
Table I for T = 20 s to demonstrate the capability of the
proposed reactive controller with avoidance acceleration.

The possibility of the SpiderArm [Fig. 6(a)] hitting the
cables due to the large amplitude of the trajectory (0.45 m)
influenced the consideration of two types of undesirable situ-
ations: loss of manipulability and cable-link interference (see
Section V-B2), which were combined as per (37). The buffer
ϵ in (37) was set at 0.2 m [see the dashed line in Fig. 6(c)],
and the hard limit was set at 0.1 m [see the solid horizontal
line in Fig. 6(c)], which stopped the system once encountered
(see Section V-B3b). The cable-link avoidance acceleration
was obtained by setting h(q) to δmin(q), where δmin(q) refers
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to the minimum distance between the UR3 manipulator link
and the closest cable.

In SpiderArm, nl = 48 cable-link pairs were considered
such that when one of the distance crosses below the ϵ and
enters the avoidance transition region [see the red shaded
region in Fig. 6(c)], the weight function w(q) in (37) reaches
unity abruptly, and avoidance acceleration for cable-link inter-
ference gets more weightage. For the low value of w(q), the
controller focused on maintaining the manipulability of the
HCDR. Since the framework is generic, so other types of
interference, such as cable-to-cable interference, can also be
incorporated in a similar manner in the form of (37).

Fig. 6(c) shows those cable-link pairs, which crosses the
buffer ϵ during the tracking task. At Interference Times IT1
and IT2 (highlighted by yellow), the distance between a cable-
link pair dropped below the buffer of 0.2 m (gray dashed
line), and hence, the system entered the avoidance transition
region. With the avoidance function for cable interference,
the controller increased the distance of the worst case cable-
link pair and pushed the curve above the avoidance transition
region. However, due to the weighted formulation of the QP,
the need for avoidance led to reduced emphasis on tracking,
leading to higher tracking error at IT1 and IT2 [Fig. 6(d)].

2) Iterative-Learning Control: To improve the tracking per-
formance of RC, the null space of the system was explored
by the proposed ILC by optimizing the trajectory PF P(θ)

described in (43), which consists of the weighted sum of
the normalized tracking error norm, and normalized actuation
effort norm made by the cables and the joints of the CDPR
and the UR3, respectively (see Section VI-A). The weights
chosen for the final PF components were ρE = ρC = ρD = 1.
P(θ) was optimized by the PS algorithm (Algorithm 1) with
initial null-space exploration parameters θ and step size set
at [0, . . . 0, ln(1 × 10−6), ln(1 × 10−2)]T , and unity. For θ ∈

R14, the PS algorithm has performed 14 × 2 + 1 = 29 eval-
uations in each iteration. Hence, for a total of 15 iterations,
435 (29 × 15) evaluations were performed.

After the optimization, P(θ) reduced significantly within
the time interval of 6.5–7 s [Fig. 6(e)] since the ILC dis-
covered a joint space trajectory that does not cause cable
interference. From Fig. 6(f), the distances between cable-link
pairs stayed above the buffer (gray dashed line) throughout
the entire trajectory. As a result, the avoidance function was
not activated during the task, and the RC emphasized more
on the tracking task. Hence, the tracking error is maintained
at a low level [Fig. 6(g)] and resulted in a low value of
P(θ), which demonstrates that the ILC has the potential
to produce a motion that both decrease operational space
error, and it can avoid interference between the robot arm
and the cables simultaneously, by exploiting the joint space
redundancy throughout the trajectory.

In addition, further insights regarding the task were also
obtained from the null-space exploration parameters. It can
be observed from Fig. 6(e) that the PF experienced the most
significant decrease in the first 2 iterations. From Fig. 6(h),
it can be seen that the null-space exploration parameter u2
(purple solid line) increased greatly. The increase corresponds
to the importance of y translation movement of the HCDR

Fig. 7. FASTKIT-Planar operational space tracking simulation results for
spherical-helix trajectory.

when the kinematic redundancy is resolved. Likewise, u4
(green solid line) associated with the rotational motion around
the x-axis reduced significantly.

In the absence of the ILC, the UR3 manipulator link has
entered the avoidance transition region at IT1 and IT2 (high-
lighted by yellow in Fig. 6), corresponding to the proximity
of cable c1 and c2 [Fig. 6(a)], respectively. After the ILC
implementation, the CDPR moved away from the trajectory
along the x-axis since q1 decreased at IT1 and IT2 [Fig. 6(i))].
Similarly, rotation along the x- and z-axis, given by q4 and
q6, respectively [Fig. 6(a)] reduced significantly to prevent
the manipulator from hitting the cables. The y movement of
the HCDR is associated with the q2 joint (Fig. 6(a), purple),
which also increased drastically at IT1 and IT2 [Fig. 6(i)]. The
increase in the translational y motion led to less required rota-
tional movement of the UR3 q7, q8, and q11 joints [Fig. 6(j)] to
cover the same trajectory workspace, thereby preventing the
UR3 link from hitting the cables c1 and c2 by not crossing
below the cable-link buffer [Fig. 6(f)].

In summary, the results show that the ILC was able to learn
that for cable-link interference avoidance, the CDPR needs to
move more laterally to reduce the UR3 joints’ motion. Hence,
the results demonstrate that changes in θ can affect the joint
space motion of the robot, and hence, it can improve task
performance. In addition, the operational space error and cable
force norm were also reduced after the implementation of the
ILC [Fig. 6(k) and (l)).

C. FASTKIT-Planar

The FASTKIT-Planar robot [20] consists of a planar CDPR
between two mobile bases [Fig. 7(a)]. The joint space is
defined as q = [q1, q2, . . . , q7]

T , where q1 and q2 refer to
the xy-coordinates of the first mobile base and q3 refers to
its orientation. The distance between the two mobile bases is
modeled by a prismatic joint, denoted as q4. For the planar
robot, q5, q6, and q7 represent the xy-coordinates and the
orientation of the end-effector in the frame of the first mobile
base. The planar robot is actuated by four cables a1, a2, a3, and
a4, with two cables attached on each mobile base. Actuation
forces created by each joint on the mobile bases are denoted
as a5, a6, a7, and a8. The operational space is defined as
x = [x1, x2, x3]

T , which represents the xyz-coordinate of the
end-effector of the planar robot in frame {0}. Next, the results
obtained from the simulations performed on the FASTKIT-
Planar HCDR are discussed.
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Fig. 8. Simulation results of various trajectories with added noise to verify the control framework robustness. (a) Star trajectory on BMArm. (b) Toroidal
trajectory on BMArm. (c) Spherical helix trajectory on BMArm. (d) Rose trajectory on SpiderArm. (e) Cylindrical sine wave trajectory on SpiderArm.
(f) Spherical helix trajectory on SpiderArm. (g) Star trajectory on FASTKIT. (h) Cylindrical sine wave trajectory on FASTKIT. (i) Rectangular trajectory on
FASTKIT.

The design of the FASTKIT-Planar [Fig. 7(a)] adds two
major challenges in the RC. First, the mobile bases have
unlimited workspace, and their movements can possibly have
no effect on the end-effector. Second, the controller should
keep the movement of the planar CDPR between the two
mobile bases. Hence, for a system such as the FASTKIT-Planar
with a high number of redundant DoF, the QP formulation (25)
for the reactive controller allows the resolution of kinematic
and actuation redundancies efficiently.

In the FASTKIT-Planar, the avoidance acceleration given
by (32) was formulated by combining the avoidance of
low manipulability and cable-link interference acceleration as
per (37). To prevent the planar robot from colliding with
the mobile bases, the avoidance acceleration for cable-link
interference was obtained by setting h(q) to δmin(q), where
δmin(q) refers to the minimium distance between the pla-
nar end-effector and the closest mobile base. The kinematic
redundancy on the FASTKIT-Planar robot was explored and
exploited with the use of the ILC on various trajectories. The
FASTKIT-Planar simulations are discussed in Section VIII-D.

D. Robustness of the Proposed Framework With Various
Trajectories

In Sections VIII-A–VIII-C, detailed results were presented
to demonstrate the behavior of the proposed framework.
However, many more simulations were also conducted by
adding white Gaussian noise to show the robustness of the
proposed framework. Hence, in this section, a dataset of many
different trajectories were produced, and before and after ILC
implementation, simulations were run on them in the presence

of added noise to simulate the real-time sensor noise. For
simulation comparison, the selected PIs are operational space
root-mean-square error (RMSE) in tracking in x-, y-, and
z-directions, average cable force norm, and average direct
actuation norm. All the simulation parameters were set as
per the values set in Section VIII-A, VIII-B, and VIII-C. The
performance results are compared in Fig. 8 and tabulated in
Table II. Next, we summarize the simulation results for the
three CDPRs.

1) BMArm: Table II shows the RMSE and average cable
force norm values for the BMArm. It showed that these values
decreased slightly for all trajectories [Fig. 8(a)–(c)]. For the
toroidal trajectory [Fig. 8(b)], the manipulability increased
significantly from 3.37 × 10−2 to 4.10 × 10−1.

2) SpiderArm: From Table II, it was observed that the
RMSE for the SpiderArm tracking either decreased (Spherical
helix) or remained almost the same (rose and cylindrical sine
wave) before and after the ILC implementation. However, the
ILC was able to improve the tracking error significantly at the
IT (encircle and highlighted by yellow in Fig. 8(d) and (e))
by discovering a joint space trajectory, which would not
allow the system to enter into the avoidance transition region.
In addition, the average cable force and direct actuation norms
also decreased greatly.

3) FASTKIT-Planar: In the FASTKIT-Planar, after the ILC
implementation, all the PIs decreased significantly [Fig. 8(g)]
for the star-shaped trajectory. However, with noise and without
the ILC, the simulations shown in Fig. 8(h) and (i) failed for
the FASTKIT-Planar, which became successful with the ILC.
In addition, Fig. 8(h) shows that in the presence of random
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TABLE II
COMPARISON OF BEFORE AND AFTER ILC IMPLEMENTATION IMPACT ON THE PIS WITH NOISE

Fig. 9. BMArm hardware operational space tracking results for spherical-helix trajectory. (a) BMArm robot tracking a spherical-helix trajectory. (b) Tracking
comparison between the FK-based, and Opti-Track captured position with the reactive controller. (c) Tracking error comparison between the BMArm and the
reference without ILC. (d) Cable forces measured by the load cells during the tracking task. (e) Comparison of the tracking error norm with and without ILC.
(f) Comparison of the joint space position with and without ILC.

noise, the tracking initially started poorly (encircled), but after
t = 1.1 s, the system’s end-effector movement resumed the
reference trajectory path. For Fig. 8(h) and (i), the reactive
controller tracking failed at t = 10 and t = 5 s. However, the
ILC operated reactive controller was able to finish the tracking
without divergence.

The analysis of the results shows that the selection of α and
β is important for feasibility and performance of the controller
framework. By referring to (21), a low value of α and β

emphasized more on minimizing tracking error. For α = β =

0, a significant reduction in the RMSE was found. However,
for simulation with α = 100, a greater reduction in the average
cable force and direct actuation norms were observed.

IX. HARDWARE RESULTS

The proposed control framework was applied on the
BMArm robot hardware [Fig. 9(a)]. The hardware was con-
trolled by two computers: 1) a 64-bit computer, with a
3.4-GHz Core i7-6700 processor and 16-GB RAM, running
the CASPR-ROS software platform [59] responsible for the
low-level motor control, and 2) with an Intel Core i9-11900K
CPU @ 3.50 GHz and 32.0 GB of RAM, running CASPR in
MATLAB for the proposed reactive and ILC framework.

A. Reactive Control

A helix-shaped trajectory, similar to that in Section VIII-C,
was tracked, rotated about the y-axis with a radius of 0.06 m,

a thickness of 0.012 m, and center at [0, 0.595, 0]
T . The

starting joint pose was set at q = [0.08, 0, 0, −0.2]
T . Control

parameters were set at K p = 20 000I3, K d = 282I3 (damping
ratio ≈ 1), α = 1 × 10−6, and β = 1. A high value was
chosen for K p to overcome the friction in the system caused
by the routing of cables through the various pulleys.

The BMArm’s actual operational space position x was
obtained through FK using the cable length feedback, which
was calculated from the motor encoder feedback. To validate
the FK determined position, Fig. 9(b) compares the FK-
based end-effector position with the position captured by the
OptiTrack Prime 13 system. Fig. 9(c) shows the operational
space tracking error between the hardware tracking task and
the reference trajectory in which an error amplitude lower
than 0.05 m was obtained. Cable forces measured by the load
cells [Fig. 9(d)] also show that the tracking task was achieved
with positive cable forces. For the computational time of the
reactive controller, a worst case of 15.5 ms was recorded
during the warm-up stage of the QP process. However, 99%
of the time steps achieved an average of 2.2 ms, which
demonstrates the capability of the proposed reactive controller
to achieve tri-space operational control of CDPR hardware
online in real time. The obtained results are consistent with
the BMArm simulations.

B. Iterative-Learning Control

ILC was also performed on the BMArm hardware
as per Section VI. For optimizing (39) and (43), PSO
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with six particles was used to explore the solution space
of θ over 15 iterations, resulting 6 × 15 = 90 eval-
uations. Position bounds for the particles were set at
θmin = [−2, −2, −2, −2, ln(1 × 10−7), ln(0.1)]T , θmax =

[2, 2, 2, 2, ln(1 × 10−5), ln(10)]T . The inertia weight ω was
set at 0.73, while particle and swarm best parameters φp and
φg were both set at 1.5 [53].

The results with and without ILC show that the tracking
has improved, with the maximum amplitude of the error norm
reducing from 0.014 to 0.006 m [Fig. 9(e)]. In addition, the
cable forces used in the tracking task also reduced along the
entire trajectory. Both improvements in the tracking error and
cable force norm contributed a 64% reduction in the PF.

The kinematic redundancy was resolved by the RC, which
resulted in the joint space trajectory shown by the dashed lines
in Fig. 9(a). Furthermore, by comparing the joint space trajec-
tory before and after ILC implementation, it can be observed
that the tracking error and cable force norm improvement
are closely related to an increase in the movement of q2,
which corresponds to the twisting motion along the y-axis.
Although excessive twisting creates a potential risk for loss
of manipulability (Section V-B), the ILC could determine a
joint space trajectory that allowed twisting to a suitable extent
such that the tracking error and cable force needed for the task
were reduced while remaining stable. The average computa-
tional time recorded for updating θ and evaluating P(θ) after
completing each trajectory is 0.75 and 16.71 ms, respectively,
which implies that the proposed control framework could
complete a new task and improve the task performance online
on robot hardware.

X. CONCLUSION

This work proposed a novel tri-space operational control
framework, dealing with actuation and kinematic redundan-
cies, was proposed for a class of CDPR, including MCDR and
HCDR when they are performing repetitive tasks. This frame-
work consisted of both an RC and an ILC systematically. The
RC was used for solving a convex QP problem such that an
operational space reference trajectory can be tracked with fea-
sible cable forces while avoiding undesirable situations. The
ILC explored the best set of null-space exploration parameters
in the null-space component of the joint space. It also tuned
the objective function weights. Hence, the ILC component
further improved the performance of the RC at a trajectory
level. To demonstrate the capability and generalizability of
the proposed framework, simulations were performed on one
MCDR, BMArm, and two HCDRs, SpiderArm and FASTKIT-
Planar robot. Experimental results on a two-link MCDR of
BMArm were also presented to demonstrate the practicality
of the framework in controlling hardware online.
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