
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 6, NOVEMBER 2023 2887

An Adaptive Line-of-Sight (ALOS) Guidance Law for Path
Following of Aircraft and Marine Craft

Thor I. Fossen , Fellow, IEEE

Abstract— This brief presents a novel nonlinear adaptive line-
of-sight (ALOS) guidance law for path following, compensating
for drift forces due to wind, waves, and ocean currents. The
ALOS guidance law is proven to have uniform semiglobal expo-
nential stability (USGES) properties during straight-line path
following at constant speed. The ALOS guidance law performs
similar to the classical integral line-of-sight (ILOS) and adaptive
ILOS guidance laws when the sideslip angle is nearly constant.
The ALOS guidance law, however, has better tracking capabilities
when compensating for rapidly varying sideslip caused by a
time-varying disturbance. This is because the integral state of
the ALOS guidance law is additive to the unknown sideslip
angle (disturbance matching). In contrast, the ILOS guidance
laws must compensate sideslip through a saturating arctangent
function. The study also includes an input-to-state stable (ISS)
reduced-order extended state observer for estimation of the line-
of-sight (LOS) crab angle, known as the ELOS guidance law.
The performance of the ALOS, ILOS, and ELOS guidance laws
is compared by simulating rapid changes in the sideslip angle to
stress the critical assumptions of the algorithms. Finally, a case
study of the Remus 100 autonomous underwater vehicle (AUV)
exposed to stochastic ocean currents is used to compare the
performance of the ILOS, ALOS, and ELOS algorithms during
normal operation.

Index Terms— Adaptive control, guidance, land vehicles,
marine vehicles, unmanned aerial vehicles (UAVs).

I. INTRODUCTION

AIRCRAFT, marine craft, and unmanned vehicles use
line-of-sight (LOS) guidance laws to accomplish motion

control scenarios, such as object tracking, path following, path
tracking, and path maneuvering; see Breivik and Fossen [3],
Beard and McLain [1], Fossen [12], Lekkas and Fossen [16],
Lin [18], Wilhelm and Clem [31], and Yanushevsky [32] for
instance.

Vehicle path-following control systems can be implemented
using both heading and course autopilot systems in cascade
with a guidance law. This brief studies LOS guidance laws
for path following using a heading autopilot command ψd .
The system under consideration is

ẏ p
e = U sin(ψ + βc − πh) (1)

ψd = πh + θ2 − tan−1(K p y p
e + θ1

)
(2)
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where y p
e is the cross-track error expressed in a path-tangential

reference frame {p} rotated an azimuth angle πh with respect
to the North-East reference frame {n}, ψ is the yaw (heading)
angle, U = (u2

+ v2)1/2 is the speed, where (u, v) denotes
the surge and sway velocities, and βc = tan−1(v/u) is the
vehicle’s crab angle; see Section II for details. It is assumed
that the heading autopilot achieves ψ = ψd , where ψd is the
LOS yaw angle command (2), which can be tuned by the
proportional gain K p > 0. The crab angle βc is assumed to be
unknown, and the control objective is to cancel βc by using
the control signals θ1 or θ2 to drive the cross-track error y p

e to
zero. Previous studies assumes that θ1 = θ2 = 0 or that θ1 can
be designed to cancel βc. The main contribution of this brief is
an adaptive law for θ2, which achieves disturbance matching.
The different design techniques and their root in the literature
are presented below.

A. LOS Guidance (θ1 = θ2 = 0)

The study in this brief builds on the concept of path
following using proportional guidance where K p = 1/1,
and 1 is the look-ahead distance. The proportional guidance
law, ψd = πh − tan−1(y p

e /1), mimics the heading angle
command of an experienced sailor [14]. Applications to marine
craft are discussed by Pettersen and Lefeber [26] and Fossen
et al. [7]. A similar approach has been applied to small
unmanned aerial vehicles (UAVs) by Nelson et al. [23]. This
work uses a vector field surrounding the path generating
course commands to guide the UAV toward the desired path.
A comparative study of the LOS and vector-field guidance
laws with application to autonomous underwater vehicles
(AUVs) are found by Caharija et al. [5]. Proportional guidance
techniques can also be used to guide missiles; see Siouris [29]
and Yanushevsky [32]. Model-based predictive control (MPC)
has been applied successfully to LOS guidance path following
by numerous authors; see Liu et al. [19], Oh and Sun [24],
Pavlov et al. [25], and Rout and Subudhi [28].

Uniform global asymptotic stability (UGAS) and uniform
local exponential stability (ULES) of the proportional LOS
guidance law were first proven by Pettersen and Lefeber [26].
This is also referred to as global κ-exponential stability as
defined by Sørdalen and Egeland [30]. More recently, Fossen
and Pettersen [11] have shown that the proportional guidance
law, when applied to course and heading control, is uniformly
semiglobally exponentially stable (USGES). This guarantees
strong convergence and robustness properties to perturbations;
see Pettersen [27]. An immediate consequence of Fossen and
Pettersen [11] is that global exponential stability (GES) of
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the proportional LOS guidance law cannot be achieved due
to a saturating sinusoidal function in the cross-track error
dynamics.

B. ILOS Guidance (θ1 ̸= 0, θ2 = 0)

Despite the effectiveness and popularity of proportional
LOS guidance laws, they have limitations when the vehicle
is exposed to drift forces caused by wind, waves, and ocean
currents. In addition, underactuated vehicles cannot produce
a sway force. Hence, convergence to the desired path under
the influence of drift is a nontrivial task. The consequence
can be large cross-track errors during path following. The
standard solution to this problem has been to add an integral
state θ1 to the guidance law in an ad hoc manner and rely
on linear superposition. This is referred to as proportional-
integral (PI) guidance. Unfortunately, the PI guidance laws can
be challenging to tune, and no global stability results exist.

In 2008, a nonlinear integral LOS (ILOS) guidance law
was proposed by Børhaug et al. [2]. In this work, global
κ-exponential stable for straight-line path following at con-
stant speed was proven using the Lyapunov stability analysis.
Extensions to path following for curved paths using monotone
cubic Hermite splines were made by Lekkas and Fossen [17].
The ILOS guidance law has been successfully implemented
in many applications, and excellent performance has been
demonstrated by Caharija [4] and Caharija et al. [6].

An adaptive ILOS guidance law replacing the integral state
with a parameter for sideslip compensation has been proposed
by Fossen et al. [10], while Fossen and Lekkas [9] present
indirect and direct adaptive control methods for LOS path
following. Alternative methods using observer theory have
been proposed by Liu et al. [20], [21].

C. ALOS Guidance (θ1 = 0, θ2 ̸= 0)

The brief’s main contribution is a novel adaptive LOS
guidance law with USGES stability properties. An adaptive
LOS (ALOS) guidance law is proven to have USGES prop-
erties during straight-line path following at constant speed.
Unknown disturbances due to wind, waves, and ocean currents
are modeled as drift, and the ALOS guidance law compensates
for this by parameter adaptation. The main difference between
the classical and adaptive ILOS guidance laws to the ALOS
guidance law is that the integral state θ1 is replaced by θ2,
which is additive to the unknown crab angle. In contrast,
the ILOS guidance law must compensate the crab angle
through a saturating arctangent function using the integral
state θ1. The guidance laws have similar tracking performance
during normal operations. However, the ALOS guidance law
has better tracking capability for rapidly varying crab angles
caused by environmental disturbances.

D. Organization of This Brief

Section II contains the kinematic preliminaries, including
the cross-track error dynamics expressed in a path-tangential
reference frame. Sections III and IV present the classical and
adaptive ILOS guidance laws represented by the control signal

Fig. 1. North-East and path-tangential coordinate systems {n} and {p},
respectively. The along- and cross-track errors are denoted by (x p

e , y p
e ).

θ1. Section V discusses the new ALOS guidance law defined
by the control signal θ2, while the extended state observer for
LOS path following is presented in Section VI. A comparative
study of the guidance laws is presented in Section VII, and
Section VIII is a case study based on a high-fidelity model of
the Remus 100 AUV. Finally, Section IX concludes the results.

II. KINEMATIC PRELIMINARIES

This section presents the coordinate frames, tracking error
dynamics, and kinematic differential equations.

A. Coordinate Systems

For marine craft and aircraft, the six different motion
components in the body frame {b} are defined as surge,
sway, heave, roll, pitch, and yaw. The North-East coordinate
system is denoted by {n}. Consider a straight-line segment
given by two waypoints (xn

i , yn
i ) and (xn

i+1, yn
i+1) expressed

in {n} where i = 1, 2, . . . , N . Assume that the path-tangential
coordinate system {p} has its origin located at (xn

i , yn
i ), and

the x p-axis is pointing toward the next waypoint (xn
i+1, yn

i+1).
Hence, the path-tangential coordinate system can be obtained
by rotating the North-East coordinate system {n} an angle πh

about the downward zn-axis, as shown in Fig. 1.

B. Tracking Errors

The along- and cross-track errors (x p
e , y p

e ) expressed in {p}

are given by [
x p

e

y p
e

]
= R⊤

z,πh

([
xn

yn

]
−

[
xn

i
yn

i

])
(3)

where (xn, yn) is the vehicle’s North-East position

Rz,πh =

[
cos(πh) − sin(πh)

sin(πh) cos(πh)

]
∈ SO(2) (4)

and πh = atan2(yn
i+1 − yn

i , xn
i+1 −xn

i ). This can be extended to
path following for curved paths using the approach of Fossen
and Pettersen [11].
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C. Kinematic Differential Equations

Let pn
= [xn, yn

]
⊤ be the position vector expressed in {n},

and vb
= [u, v]⊤ be the velocity vector expressed in {b}.

Then, it follows that [12]:

ẋn
= u cos(ψ)−v sin(ψ) (5)

ẏn
= u sin(ψ)+ v cos(ψ) (6)

where ψ is the yaw angle.

D. Amplitude-Phase Representation

It is advantageous to express the kinematic differential
equations (5) and (6) in amplitude-phase form

ẋn
= U cos(ψ + βc) (7)

ẏn
= U sin(ψ + βc) (8)

where the amplitude U is the speed over ground (SOG), and
βc is the crab angle given by

U =

√
u2 + v2 (9)

βc = tan−1
(v

u

)
. (10)

The course over ground (COG) is recognized as χ := ψ+βc.

E. Influence of Wind, Waves, and Ocean Currents

Aircraft operates in the wind, while marine craft can be
exposed to ocean currents, waves, and wind. The aerodynamic
and hydrodynamic forces are the functions of the relative
velocity vector vb

r = vb
−vb

f , where vb
f = [u f , v f ]

⊤ is the flow
velocity vector due to wind, waves, and currents expressed in
{b}. This implies that lift will be perpendicular and drag will
be parallel to the relative flow. The linear relative velocities
can be expressed by Fossen [12]

ur = Ur cos(β) (11)
vr = Ur sin(β) (12)

where Ur = (u2
r + v2

r )
1/2 is the relative speed and

β = tan−1
(
vr

ur

)
(13)

is the sideslip angle. Note that the crab angle1 defined by
(10) is equal to the sideslip angle when u f = v f = 0. We can
express the crab angle as a function of the flow velocities by

βc = tan−1
(
vr + v f

ur + u f

)
= tan−1

(
tan(β)+

v f

Ur cos(β)

1 +
u f

Ur cos(β)

)
. (14)

This formula is used in Section VI when simulating vehicles
exposed to environmental disturbances.

F. Tracking-Error Differential Equations

The tracking-error dynamics expressed in {p} is found by
time differentiation of (3) and substitution of (7) and (8). This
gives the formulas

ẋ p
e = U cos(ψ + βc − πh) (15)

ẏ p
e = U sin(ψ + βc − πh). (16)

1In the literature, the term sideslip angle is often used for the crab angle
while we explicitly distinguish between the angles.

III. CLASSICAL ILOS GUIDANCE LAW

The control objective is to choose the yaw angle ψ in
(16), such that the cross-track error y p

e → 0. The LOS
algorithms for path following are usually employed at a
kinematic level under the assumption that the heading autopilot
guarantees that ψ = ψd . The classical ILOS‘ guidance law
(Børhaug et al. [2]) assumes that βc is unknown for a given
azimuth angle πh . Hence

ψd = πh − tan−1(K py (y
p
e + κy p

int )
)

(17)

ẏ p
int =

1

12 +
(
y p

e + κy p
int

)2 y p
e (18)

where y p
int is the integral state used to compensate βc as

defined by (14), 1 > 0 is the user-specified look-ahead
distance, and K py = 1/1. The integral gain κ > 0 is a tunable
parameter. Substitution of (17) into (16) gives

ẏ p
e = U sin(βc − tan−1(K py (y

p
e + κy p

int ))). (19)

Hence, βc must be compensated for by the integral state y p
int

to satisfy the control objective. In the stability analysis, the
following assumptions will be made.

Assumption 1: The vehicle is moving at positive forward
speed 0 < U min

≤ U ≤ U max.
Assumption 2: The crab angle βc is constant during path

following, such that β̇c = 0.
Assumption 3: The crab angle estimation error β̃c = βc −

β̂c, where β̂c is the parameter estimate, is small during path
following. When applying integral control instead of parameter
adaption, β̂c ≡ 0, and thus, β̃c = βc is small.

Remark 1: Vehicle control systems are designed to keep
the relative speed Ur constant and the sideslip angle β small.
Because of (14), the crab angle βc will be nearly constant
for a vehicle traversing straight lines and circular paths if
the flow velocity vector is nearly constant. Also note the
sway velocity v (and, thus, the yaw rate r ) will be small
during straight-line path following. Straight lines and circles
are the main segments used to construct Dubins paths [13].
The switching between the segments will appear as steps
in the integral state. For vehicles traversing a noncircular
feasible path, i.e., a small curvature path, βc will vary slowly.
However, the dynamics of βc will be much slower than
the control bandwidth; thus, integral control will track the
changes. Also, note that although the crab angle is relatively
small, it primarily affects the path-following properties of the
vehicle. Not adequately compensated, this results in significant
deviations from the desired path.

For the ILOS guidance law (17) and (18), β̃c = βc is small
by Assumption 3. Hence, sin(βc) ≈ βc and cos(βc) ≈ 1.
Furthermore, application of the trigonometry identity,
sin(a − b) = sin(a) cos(b)− cos(a) sin(b), to (19) gives

ẏ p
e = U cos(tan−1((y p

e + κy p
int )/1

)
βc

−U sin(tan−1((y p
e + κy p

int )/1
)
. (20)

Using cos(tan−1((x + a)/d)) = d/(d2
+ (x + a)2)1/2 and

sin(tan−1((x + a)/d)) = (x + a)/(d2
+ (x + a)2)1/2, the
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expression for (20) is further simplified, such that

ẏ p
e = −

U (y p
e + κy p

int )√
12 +

(
y p

e + κy p
int

)2
+ d (21)

where d is an additive disturbance defined by

d :=
U1√

12 +
(
y p

e + κy p
int

)2
βc ≤ dmax. (22)

Assumption 4: The additive disturbance d is nearly constant
and upper bounded, so integral action can be applied.

Theorem 1: The classical ILOS guidance law (17) and
(18) applied to the cross-track error (16) renders the origin
(y p

e , y p
int ) = (0, ȳ p

int ) USGES under Assumptions 1–4 if the
heading autopilot guarantees that ψ = ψd and κ ≤ κmax,
where the upper bound κmax is defined by Børhaug et al. [2].

Proof: The origin (y p
e , y p

int ) = (0, ȳ p
int ) is UGAS/ULES

as shown by Børhaug et al. [2]. This can be extended to
USGES following the approach of Fossen and Pettersen [11].

IV. ADAPTIVE ILOS GUIDANCE LAW

Assumption 4 stating that d given by (22) must be con-
stant can be removed. The adaptive ILOS guidance law
of Fossen et al. [10] replaces the integral state (18) with a
parameter estimate β̂c according to

ψd = πh − tan−1
(

y p
e

1
+ β̂c

)
(23)

˙̂βc = γ
U1√

12 + (y p
e +1β̂c)2

y p
e . (24)

Theorem 2: The adaptive ILOS guidance law (23) and (24)
applied to system (16) renders the origin (y p

e , β̃c) = (0, 0)
USGES under Assumptions 1–3 if γ > 0, and the heading
autopilot guarantees that ψ = ψd .

Proof: See Fossen et al. [10].

V. ADAPTIVE LOS

The main result of this brief is the ALOS guidance law

ψd = πh − β̂c − tan−1
(

y p
e

1

)
(25)

˙̂βc = γ
1√

12 + (y p
e )2

y p
e (26)

where γ is the adaptation gain, and β̂c is the parameter
estimate. Note that β̂c in (25) is additive to the unknown crab
angle in (16). This is referred to as disturbance matching.
In contrast, the classical and adaptive ILOS guidance laws
must compensate for the crab angle through a saturating
arctangent function. Also note that the parameter update law
(26) does not include the additional term 1β̂c of the adaptive
ILOS parameter update law (24) nor the speed U .

Substituting (25) into (16) under the assumption that the
heading autopilot guarantees that ψ = ψd gives

ẏ p
e = U sin

(
β̃c − tan−1

(
y p

e

1

))
(27)

TABLE I
KEY PROPERTIES AND ASSUMPTIONS OF THE LOS ALGORITHMS

where β̃c = βc−β̂c. Assumption 2 implies that ˙̃βc = −
˙̂βc, and

application of Assumption 3 to (27) gives the error dynamics

ẏ p
e = −

U√
12 +

(
y p

e
)2

y p
e +

U1√
12 + (y p

e )2
β̃c (28)

˙̃βc = −γ
1√

12 + (y p
e )2

y p
e . (29)

Theorem 3: The ALOS guidance law (25) and (26) applied
to the system (16) renders the origin (y p

e , β̃) = (0, 0) USGES
under Assumptions 1–3 if the heading autopilot guarantees that
ψ = ψd and γ > 0.

Proof: See Appendix A.

VI. EXTENDED STATE OBSERVER FOR LOS PATH
FOLLOWING

Liu et al. [21] have derived a reduced-order extended state
observer (ESO) for estimation of the crab angle, given by

β̂c =
ĝ

U cos(ψ − πh)
(30)

with

ṗ = −kp − k2 y p
e −kU sin(ψ − πh) (31)

ĝ = p + ky p
e (32)

where k > 0 and p(0) = −ky p
e (0). The estimation error

g̃ = g − ĝ satisfies the differential equation ˙g̃ = −kg̃ − ġ.
Liu et al. [21] have derived conditions for the state g̃ to
be input-to-state stable (ISS) with the input being ġ. The
ESO-based LOS (ELOS) guidance law is chosen as (23). The
observer (30)–(32) is capable of estimating a time-varying crab
angle βc.

VII. COMPARATIVE STUDY OF THE GUIDANCE LAWS

The goal of the case study is to stress test the critical
assumptions of the guidance laws by computer simulations.
The following algorithms are tested.

ELOS [21]:

ṗ = −kp − k2 y p
e −kU sin(ψ − πh) (33)

β̂c =
p + ky p

e

U cos(ψ − πh)
(34)

ψd = πh − tan−1
(

y p
e

1
+ β̂c

)
. (35)

Classical ILOS [2]:

ψd = πh − tan−1
(

y p
e + κy p

int

1

)
(36)

ẏ p
int =

1

12 +
(
y p

e + κy p
int

)2 y p
e . (37)
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Fig. 2. Performance of the classical ILOS, adaptive ILOS, ALOS, and ELOS
algorithms when βc (deg) is allowed to vary as a function of time. The green
vertical lines separate Phases 1–3.

Adaptive ILOS [10]:

ψd = πh − tan−1
(

y p
e

1
+ β̂c

)
(38)

˙̂βc = γ
U1√

12 + (y p
e +1β̂c)2

y p
e . (39)

ALOS (main result of Section V):

ψd = πh − β̂c − tan−1
(

y p
e

1

)
(40)

˙̂βc = γ
1√

12 + (y p
e )2

y p
e . (41)

The properties and assumptions of the different LOS algo-
rithms are summarized in Table I. The guidance laws were
implemented using 1 = 20.0 m. The ILOS integrator gain
was tuned to obtain maximum performance, and the chosen
value was κ = 3.0. A similar approach was used to find the
adaptive ILOS and ALOS adaptation gain γ = 0.2, while the
ELOS observer used k = 0.5. The initial states were chosen
as y p

e (0) = 0 m, y p
int (0) = 0, β̂c(0) = 0, and p(0) = 0. The

sampling time was selected as 20 Hz. It is assumed that the
vehicle control system keeps the speed at U = 2.0 m/s during
path following. Hence, the environmental disturbances can be
simulated by perturbing βc according to (14). Three phases
are considered.

Fig. 3. Remus 100 AUV at the AUR Laboratory at the Nor-
wegian University of Science and Technology, Trondheim, Norway.
URL: https://www.ntnu.edu/aur-lab/auv-remus-100.

Phase 1 (0 ≤ t < 100): Initial phase showing the
convergence of the integral state and crab angle estimates when
the crab angle is increased slowly from 0 to 10.0 deg. The
maximum crab angle rate is |β̇c| ≤ 0.4 deg/s.

Phase 2 (100 ≤ t < 200): The crab angle is decreased from
10.0 to −20.0 deg, and |β̇c| ≤ 1.0 deg/s.

Phase 3 (200 ≤ t < 300): The crab angle is increased from
−20.0 to 20.0 deg, and |β̇c| ≤ 2.0 deg/s.

Fig. 2 shows the exponential convergence of y p
e to zero

during Phases 1–3 for the four guidance laws when the vehicle
is exposed to stochastic disturbances. The classical ILOS
algorithm shows a performance reduction compared with the
other guidance laws during Phases 2 and 3 when the crab
angle is allowed to vary rapidly. During these phases, |β̇c|

is 1.0–2.0 deg/s. The adaptive ILOS and ALOS algorithms,
and the ELOS algorithm keep the cross-track error y p

e close
to zero even when βc is time-varying. As shown by Liu
et al. [20], the adaptive guidance laws may suffer from
peaking and oscillation behaviors during the transient state,
since a large initial tracking error may deteriorate the learning
process. The largest oscillations are observed for the adaptive
ILOS algorithm, but there are also some oscillations in the
ALOS algorithm, particularly when |β̇c| is large. The overall
conclusion is that the ALOS and ELOS algorithms outperform
the other two when |β̇c| is large. The ELOS algorithm removes
the oscillations to the price of degrading the USGES stability
property to ISS. However, during normal operation (Phase 1),
the performance of the four algorithms is quite similar. The
case study also confirms that the ALOS assumption that βc is
constant can be relaxed, since |β̇c| ≤ 2.0 deg/s gives accurate
regulation of the cross-track error to zero.

VIII. CASE STUDY WITH THE REMUS 100 AUV

Since the ALOS guidance law outperforms the adaptive
ILOS guidance law, it was decided to compare the ALOS
guidance law with the classical ILOS and ELOS guidance
laws using a high-fidelity model of the Remus 100 AUV; see
Fig. 3. The goal is to evaluate the efficiency and robustness of
the AUV during normal operation when the AUV is exposed
to a stochastic ocean current.

The three guidance laws were implemented with 1 = 10 m.
The ILOS integrator gain was chosen as κ = 0.1. The ALOS
adaptation gain was chosen as γ = 0.0006, while the ELOS
gain was k = 0.5. The initial current speed was chosen as
Vc = 1.0 m/s with direction βVc = 180.0 deg (see Fig. 4). The
sampling time was selected as 20 Hz.

The mathematical model of the AUV is available in the
MATLAB MSS toolbox; see Fossen and Perez [8]. The script
remus100.m describes an AUV of length 1.6 m, a cylinder
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Fig. 4. Vehicle speed U = (u2
+ v2)1/2 (m/s), current speed Vc (m/s), and

current direction βVc (deg).

diameter of 19.0 cm, a mass of 31.9 kg, and a trim weight
of 1.0 kg. The vehicle’s maximum speed is 2.5 m/s, obtained
by running the propeller at 1525 rpm in zero currents. The
endurance is 22 h at the optimum speed of 1.5 m/s. Depth
is controlled using the stern plane δs , and the heading angle
is controlled using a tail rudder δr . In the case study, the
following control systems have been implemented (see Fig. 5).

A. Propeller Revolution

The propeller revolution is increased linearly from 1000 to
1300 rpm (see Fig. 5) until the AUV reaches its cruise speed.

B. Depth

The depth is changed from 0 to 20 m, as shown in Fig. 6,
using successive-loop closure

θd = K pz

(
(zn

− zn
d)+

1
Tz

∫ t

0
(z − zd)dτ

)
(42)

δs = −K pθ (θ − θd)− Kdθq − Kiθ

∫ t

0
(θ − θd)dτ (43)

where θd is the desired pitch angle, zn is the heave position,
θ is the pitch angle, and q is the pitch rate. The controller
gains and time constant can be computed using pole placement
[1, Sec. 6.4]. However, trial and failure gave excellent perfor-
mance for K pz = 0.1, Tz = 100.0 s, K pθ = 2.0, Kdθ = 3.0,
and Kiθ = 0.1. The maximum allowed stern-plane deflection
is chosen as ±30 deg.

C. Heading

The ILOS guidance law (17) and (18) and the ALOS
guidance law (25) and (26) are used to compute the desired
yaw angle ψd during path following; see Fig. 7. The PI

Fig. 5. Commanded rudder angle δr (deg), commanded stern-plane angle
δs (deg), and propeller revolution n (rpm) for the ELOS, ILOS, and ALOS
guidance laws.

derivative (PID) controller is

δr = −K pψ ssa(ψ − ψd)− Kdψ r − Kiψ

∫ t

0
ssa(ψ − ψd)dτ

(44)

where ψ is the yaw angle and r is the yaw rate. The controller
gains are chosen using pole placement [12, Algorithm 15.1].
This gave K pψ = 7.5, Kdψ = 15.0, and Kiψ = 0.75 corre-
sponding to a natural frequency of 0.18 rad/s and a relative
damping ratio of 1.0 in yaw. The maximum rudder angle
deflection is ±30.0 deg. The unconstrained yaw angle tracking
error ψ̃ = ψ − ψd is mapped to the interval [−π, π) using
the operator ssa : R → [−π, π) representing the smallest
difference between the two angles ψ and ψd . The MATLAB
MSS toolbox implementation is ssa.m. The goal is to follow
a path given by the following six waypoints:

wpt.pos.x = [0, 150, 300, 200, 0, 0 ]
wpt.pos.y = [0, 200, 400, 800, 1000, 1200].

A switching mechanism for selecting the next waypoint is
used when moving along the piecewise linear path. Waypoint
(xn

i+1, yn
i+1) is selected based on whether or not the vehicle

lies within a circle of acceptance with radius R = 10 m around
(xn

i+1, yn
i+1). In other words, if the vehicle’s position (xn, yn)

at time t satisfies(
xn

i+1 − xn)2
+
(
yn

i+1 − yn)2
≤ R2 (45)

the next waypoint (xn
i+1, yn

i+1) is selected. The case study is
as follows.

Phase 1: The Remus 100 AUV starts at an position
(xn(0), yn(0)) = (0 m, 0 m) and heading ψ(0) = 0 deg
at time t = 0. During the first phase (0–900 s), the vehi-
cle accelerates up to its cruise speed while exposed to a
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Fig. 6. Depth zn (m), roll angle φ (deg), pitch angle θ (deg), and yaw angle
ψ (deg) for the ELOS, ILOS, and ALOS guidance laws.

Fig. 7. Sideslip angle β (deg) and cross-track error y p
e (m) for the ELOS,

ILOS, and ALOS guidance laws.

stochastic ocean current with constant magnitude and direc-
tion (Vc = 1.0 m/s and βVc = 180.0 deg). The current
increases the vehicle’s speed during the first phase, as shown
in Fig. 4. The sideslip angle β varies slowly when traversing
through the waypoints; see Fig. 7. The performance of the
ILOS, ALOS, and ELOS guidance laws is similar, and excel-
lent tracking is obtained for all the algorithms; see Fig. 7.

Phase 2: After 900 s, an extreme stochastic current is
simulated. The current’s direction βVc is changed from 180.0 to
−180.0 deg in 1 min. At the same time, the magnitude Vc of

the current is increased from 1.0 to 2.0 m/s. The ILOS and
ALOS algorithms handle the time-varying current quite well,
even though both assume that βc and U are constant during
path following. As expected, the performance of the ELOS
algorithm is best in extreme situations with a rapidly varying
βc. It is interesting to notice that the ALOS algorithm has a
slightly better tracking performance than the ILOS algorithm
when studying the cross-track error y p

e during rapidly changing
current speed and direction (time 900–1400 s). Also note
that the ELOS algorithm has larger overshoots than the other
algorithms even though the estimate of βc is smoother.

IX. CONCLUSION

A novel nonlinear ALOS guidance law for vehicle path fol-
lowing, which compensates for drift forces due to wind, waves,
and ocean currents, has been presented. The equilibrium points
of the cross-track and parameters estimation errors are shown
to be USGES during straight-line path following at constant
speed. This guarantees strong convergence and robustness
properties to perturbations. Furthermore, it was demonstrated
that the ALOS guidance law performs similar to the classical
ILOS guidance law by Børhaug et al. [2] when the sideslip
angle is nearly constant. The ALOS guidance law, however,
has better tracking capabilities when compensating for rapidly
varying sideslip caused by a time-varying disturbance. This is
because the integral state of the ALOS guidance law is additive
to the unknown sideslip angle (disturbance matching). The
case study used a high-fidelity model of the Remus 100 AUV
exposed to a severe stochastic ocean current. It was concluded
that both the ALOS and the classical ILOS guidance laws
give excellent performance and robustness for normal AUV
operations. In contrast, the ILOS guidance law must com-
pensate sideslip through a saturating arctangent function. The
case study also compared the ILOS and ALOS guidance laws
with a disturbance observer for βc, which can handle rapidly
varying sideslip. As expected, the observer-based guidance law
(ELOS) gave smoother estimates of βc and better accuracy
for large values of the crab angle rate β̇c. However, the ILOS
and ALOS guidance law had less overshoot than the ELOS
algorithm when considering the cross-track error y p

e .
Future studies should analyze the stability of the feedback

interconnection of the ALOS guidance law and the heading
autopilot for varying plant parameters and environmental con-
ditions. The assumption that the crab angle is small should
be relaxed by extending the stability proofs to arbitrary crab
angles.

APPENDIX

A. Proof of Theorem 3

The error dynamics (28) can be expressed as follows:

ẋ = �(x)Ax (46)

where x = [x1, x2]
⊤

:= [y p
e , β̃c]

⊤ and

A =

[
−U/1 U

−γ 0.

]
, �(x) :=

1√
12 + x2

1

. (47)
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The characteristic equation, det(A − λI2) = 0, becomes
λ2

+ (U/1)λ + γU = 0. Since U > 0 and 1 > 0, the
matrix A is Hurwitz if the adaptive gain γ > 0. Consider
the nominal system ẋ = �(x)Ax and Lyapunov function
W (x) = (1/2)x⊤P x with P = P⊤ > 0. Consequently

Ẇ (x) = �(x)x⊤(P A + A⊤ P)x. (48)

Let Q = diag{q1, q2} > 0. Then, P and Q satisfy the
Lyapunov equation P A + A⊤P = − Q and

Ẇ (x) = −�(x)x⊤Qx
< 0 ∀x ̸= 0. (49)

For each r > 0 and all ||x(t)|| ≤ r , we have that

�(x) ≥
1

√
12 + r2

:= c(r). (50)

Let pmin = λmin{P} and pmax = λmax{P} be the minimum
and maximum eigenvalues of the matrix P , respectively, and
qmin = min{q1, q2} and qmax = max{q1, q2}. Consequently

Ẇ (x) ≤ −c(r)x⊤Qx ≤ −2
qmin

pmax
c(r)W (x). (51)

Since W (x) > 0 and Ẇ (x) < 0 whenever x ̸= 0, it follows
from [15, Th. 4.8] that the origin x = 0 is uniformly stable
and ||x(t)|| ≤ ||x(t0)||,∀t ≥ t0. The above holds for all
trajectories generated by the initial conditions x(t0). Hence,
we can invoke the comparison lemma (see [15, Lemma 3.4])
by noticing that the system χ̇ = −2(qmin/pmax)c(r)χ has the
solution χ(t) = e−2(qmin/pmax)c(r)(t−t0)χ(t0), which implies that
ẇ(t) ≤ e−2(qmin/pmax)c(r)(t−t0)w(t0) for w(t) = W (x). Hence

||x(t)|| ≤

√
pmax

pmin
e−

qmin
pmax

c(r)(t−t0)||x(t0)|| (52)

for all t ≥ t0, ||x(t0)|| ≤ r and any r > 0. This allows us to
conclude that the equilibrium point x = 0 of (46) is USGES
(see [22, Definition 2.7]).
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