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Multinode Real-Time Control of Pressure in Water
Distribution Networks via Model Predictive Control

Giacomo Galuppini , Enrico F. Creaco, and Lalo Magni

Abstract— Leakage represents a crucial issue in the manage-
ment of water distribution networks (WDNs). Due to leakage
dependence on service pressure, the application of pressure
real-time control (RTC) can effectively alleviate the problem.
Current RTC implementations rely on a closed-loop control
of pressure at a single (local or remote) node of the WDN.
In this case, the regulation performance may be good at the
selected node, but rather poor across the whole WDN. While
conservative choices are usually carried out to mitigate it, this
issue becomes extremely relevant in the case of multiple nodes
reaching critical values of pressure during the day. This work
proposes a novel multinode (MN) RTC approach, which explicitly
considers closed-loop control of pressure at multiple WDN nodes.
The control scheme is based on a Kalman Filter for state and
disturbance estimation, a steady-state auxiliary target calculator,
and a model predictive controller for regulation and disturbance
rejection. A detailed pressure-driven, unsteady flow model is
used to simulate a real WDN under different demand scenarios
and assess the performances of the proposed approach, which
delivered satisfactory results. Moreover, the MN-RTC approach
discussed in this work is suitable for in situ implementation, due
to its low computational complexity. Finally, as demonstrated in
the simulated environment, the tuning of the control algorithm
can be performed by relying on input–output data collected
directly from the plant, with no need for a hydraulic simulator.

Index Terms— Infrastructures, networks, nonlinear model pre-
dictive control (MPC), robust MPC.

I. INTRODUCTION

REAL-time control (RTC) of service pressure plays a fun-
damental role in the context of water distribution network

(WDN) management, allowing for leakage reduction [1], [2],
pipe burst abatement [2], [3], [4], and overall infrastructure
life extension. These goals can be in fact achieved by suitably
reducing pressure excess across the WDN. However, pressure
should always be sufficient to fulfill the water demand, which
is uncertain and time-varying. To ease control operations, the
WDN is first subdivided into homogeneous pressure zones
[5], and a pressure control valve (PCV) is installed in each
zone [6]. At this point, a hierarchical control scheme is typ-
ically adopted, where high-level, model predictive controllers
optimize the overall network operation and provide specific
setpoints to the lower level RTC controllers [7], [8]. While the
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former aspect of the control scheme is widely addressed in the
automatic control literature (see, e.g., [9], [10], [11], [12]),
the design of lower level RTC is recently gaining attention
due to the spread of smart WDNs, as promoted by the Water
4.0 approach [13]. In smart WDNs, sensors, actuators, and
computing units are connected by wire (e.g., via optical fiber)
or by high-end wireless networks (e.g., NB-IoT) to ensure
fast and reliable communication. From an RTC perspective,
this allows moving from local RTC, where the pressure is
controlled right downstream of the control valve [14], [15],
[16], to remote RTC, where the pressure can be controlled at
any point of the WDN [17], [18], [19], [20]. This represents
an important advantage with respect to local RTC, where only
the pressure at the valve site is controlled in a closed loop,
while the pressure at all the demanding nodes can only be
controlled in an open loop [16]. In particular, in remote RTC,
the WDN node characterized by the minimum daily pressure
(denoted as critical node) is usually chosen as controlled node
[6], with the aim of avoiding low-pressure values that may in
turn result in unsatisfied users’ demand of water.

However, a WDN (or WDN pressure zone) may show mul-
tiple nodes associated with very low-pressure values (e.g., due
to different elevations of the WDN areas). When the demand
in the WDN is highly variable in the day, due, for instance,
to the presence of commercial or industrial users, two or more
nodes may switch the role of critical node, i.e., the node
with the lowest service pressure in the WDN: as an example,
one node could be the critical node in a certain time slot
(e.g., at daytime) and another node could be the critical node in
another timeslot (e.g., at nighttime). Under these unfavorable
conditions, even remote RTC may fail in properly controlling
the pressure and fulfill the users’ demand at all times. Again,
this is due to the open-loop nature of the control scheme
for pressure associated with the nonmonitored nodes. To
overcome this limitation, this work proposes a single-input–
multiple-output (SIMO) control design methodology that can
effectively cope with the presence of multiple critical nodes;
in the rest of this work, this novel approach will be denoted
as multinode (MN) RTC, while the standard one will be
denoted as single-node (SN) RTC. Specifically, a constrained
model predictive control (MPC) scheme is proposed [21],
based on a linear parameter-varying (LPV) description of
the WDN dynamics [22]. The LPV nature of the system is
handled in the MPC by considering a constant prediction
for the scheduling variable along the prediction horizon [23],
[24]. While, from a theoretical point of view, this approach
produces suboptimal control laws (thus the term suboptimal
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LPV-MPC adopted in the literature), it is typically well suited
for practical implementations. As a matter of fact, the resulting
finite-horizon optimal control problem (FHOCP) to be solved
at runtime is a standard quadratic program (QP), which can be
efficiently solved even by relying on low computational power.
Moreover, the suboptimality is very often well compensated
by the receding horizon (RH) nature of the MPC algorithm
[25], [26], [27].

In this work, the proposed control scheme addresses
the problems of setpoint tracking and disturbance rejection
and is complemented by a parameter-varying Kalman fil-
ter (PVKF) for state and disturbance estimation and by
a parameter-varying steady-state auxiliary target calculator
(SSATC), which computes, instant by instant, an admissible
steady-state target for the SIMO system, given the current
value of the scheduling variable and the current disturbance
estimate [21], [28], [29].

The performance of the control scheme is assessed by
performing simulated experiments with a detailed, pressure-
driven [30] unsteady flow model of the WDN [31], which is
well suited to replace the actual plant for a preliminary in
silico evaluation of the approach [32]. In particular, a realistic
case study is constructed, based on a real WDN topology
and an accurate modeling of the users’ demand pattern [33].
Additional tests are carried out to stress the reliability of
the control scheme, by simulating realistic scenarios, such
as the sudden opening of fire hydrants [34]. The results
obtained in silico stress the effectiveness of the novel MN-RTC
approach. Moreover, due to its low computational complexity,
the proposed algorithm is suitable for in situ implementations,
even on low-power computing units.

This article is organized as follows. Section II describes
the realistic case study addressed in this work, Section III-A
discusses the numerical model of the WDN, and Section III-B
discusses the choice of the controlled nodes for MN-RTC. The
definition of the WDN working point is given in Section III-C,
while a discussion of the model identification procedure is
given in Section III-D. The control scheme is thoroughly
described in Section III-E. Simulated results are presented and
analyzed in Section IV, while further discussion is given in
Section V. Finally, Section VI summarizes the main findings
of this work.

II. CASE STUDY

The case study adopted for this work is the skeletonized
WDN of the town of Castelfranco Emilia, located in North-
ern Italy. The network consists of 27 nodes (26 demanding
nodes and one source node) and 32 pipes. Moreover, two
fire hydrants are present at nodes 3 and 13. The complete
topology is shown in Fig. 1. Detailed features of network
nodes, pipes, and hydrants are reported in [32] and [34].
A PCV with diameter of 250 mm is installed in pipe 26-20,
linking the source to the rest of the network. This PCV
models a T.I.S. GROUP “NUOVAL” plunger valve (details
and datasheet can be found in [35]), which can be equipped
with an electric actuator and controlled by a PLC for automatic
control purposes. The actuation speed is limited to prevent fast
valve operations, which may stress the WDN structure due

Fig. 1. Topology of the WDN.

to the resulting water hammer effect. Specifically, the valve
moves from a completely open to a completely closed position
in 300 s.

Residential demand profiles are generated according to the
bottom-up procedure [33], [36]. The demand profiles follow
patterns keeping into account human daily routine. Three
main peaks can be identified in the daily profiles: one in
the morning, one close to midday, and an evening one, while
demand is typically lower and flatter during nighttime. In this
work, two different residential demand patterns are considered,
leading to two different trends of the total WDN demand [see
Fig. 2(a)]: a flatter trend (profile A) and a more peaked trend
(profile B). This allows the analysis of RTC robustness with
respect to different nodal demand behaviors. In this work,
an industrial user is assumed to be present around node 24.
This user is modeled by adding to the residential demand a
constant offset (0 : 007 m3/s plus random, white fluctuations),
active between 11 A.M. and 5 P.M. The industrial demand
contribution ramps from 0 to its maximum value ad vice
versa in 180 s in both demand profiles [see Fig. 2(b)]. The
minimum pressure head required for full demand satisfaction
for all WDN users is set to 20 m. Finally, the source pressure
head profile is reported in Fig. 2(c).

In the context of SN-RTC, node 1 would be chosen as
the critical node of the network and, consequently, as the
controlled node since it is the node reaching the minimum
pressure head during the day [37]. With the aim of guarantee-
ing a minimum pressure head of 20 m throughout the whole
WDN, a reasonable pressure setpoint value for the critical node
would be 25 m [20], [37]. For the MN-RTC discussed in this
work, both nodes 1 and 24 are chosen as controlled nodes,
with pressure setpoints of about 25 m. Specific details about
the choice of the two nodes, as well as of the corresponding
setpoints, are given in the rest of this article. Here, we only
anticipate that the daytime activation of the industrial user
close to node 24 induces spatial changes in the pattern of pipe
water discharges in the WDN. This causes the switch of the
critical node from node 1 to node 24, motivating the need for
the MN-RTC approach developed in this work.

III. MATERIALS AND METHODS

This section describes the hydraulic model adopted for
simulations, as well as the main steps required for the design
of the MN-RTC algorithm introduced in this work.
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Fig. 2. (a) Total demand profiles A (red line) and B (cyan line). (b) Demand profiles A (red line) and B (cyan line) at the industrial district (node 24).
(c) Source pressure head profile.

Fig. 3. Local head loss coefficient ξ as a function of the valve closure α.

A. Hydraulic Model for Simulations

This section summarizes the approach adopted for the
implementation of the WDN simulated environment; for
further details, refer to [20] and [38]. In particular, a pressure-
driven [30], unsteady flow modeling approach [31], [32] is
adopted and allows for a proper analysis of the hydraulic
transients resulting from rapid nodal demand and/or valve
setting variations.

For a generic pipe of a WDN, the 1-D unsteady flow
equations take the form


∂h p

∂x p
+

1
g Ap

∂ Q p

∂t
+ Jp = 0 (1)

∂h p

∂t
+

c2

g Ap

∂ Q p

∂x p
= 0 (2)

where h p (m) and Q p (m3/s) are the pressure head and the
flow discharge along the pipe, respectively, x p (m) is the
position along the pipe, t (s) is time, Ap (m2) is the pipe cross-
sectional area, g (m/s2) is the gravity acceleration constant,
c (m/s) is the wave celerity, and Jp is the friction slope.

To account for leakage from WDN pipes, the following
outflow per unit of pipe length ql (m2/s) is considered:

ql = αleakhγ
p (3)

where αleak (m2−γ /s) and γ (-) are the leakage coefficient and
exponent, respectively. As for leakage evaluation, the exponent

γ is set to 1, typical value for plastic pipes [39]. The coefficient
αleak (-) is set to 9.4 × 10−9 m/s to obtain a leakage percentage
rate of 20%. Moreover, hydrant outflows qhd (m3/s) can be
calculated as the outflow from a pressurized orifice based on
the emitter equation [5]

qhd = Chdh0.5
p (4)

where Chd (m5/2/s) is the emitter coefficient, which takes
account of the outflow contracted area. If a hydrant is opened
linearly in time, Chd increases linearly from 0 to its maximum
value Chd,max. On the contrary, if it is closed linearly in time,
Chd decreases linearly from Chd,max to 0.

Finally, each pipe friction slope is evaluated as

Jp = 10.29
n2

|Q p|Q p

d5.33
p

(5)

where n [s/m(1/3)
] is the Gauckler–Manning coefficient. In

addition, to improve the accuracy of the model and account
for the unsteady flow effects, pipe friction slopes are increased
using the correction proposed in [40].

The effect of the control valve is modeled by considering
no link at the valve site and setting nodal outflow Qup from
the upstream end node and nodal inflow Qdown into the
downstream end node at

Qup = Qdown =

√
2g

ξ(α)
Av

√
1Hv (6)

where Av (m2) is the valve cross-sectional area, g (m/s2) is
the gravity acceleration constant, ξ (-)the valve cross-sectional
is the valve local head loss coefficient, 1Hv (m) is the head
drop in the valve, and α (-) is the valve closure setting, ranging
from 0 (fully open) to 1 (fully closed). The valve local head
loss coefficient is a growing function of α, as shown in Fig. 3
for the specific valve model adopted in this work. This function
is characterized and made available by the valve manufacturer
[35]. From this point onward, let Qv denote the flow at the
valve site.

In the model implementation, the water hammer partial
differential equations are solved by relying on the method of
the characteristics [31]. Network pipes are discretized with
spatial steps 1x p, and the hydraulic variables of interest
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(pressure head and water flow) along the pipes are computed
at each time integration step 1t , with 1x p and 1t such that

c
1t
1x p

≤ 1. (7)

Suitable boundary conditions are assigned in correspon-
dence to source and demanding nodes, where fixed total
pressure head and demands are prescribed, respectively. The
discretized water hammer equations are coupled with the con-
tinuity equation, applied to each node of the WDN. Note that,
with this approach, leakage is modeled along pipes, by leaning
on the internal nodes of the method of characteristics.

The instantaneous, residential demand at each WDN node
is first evaluated using the stochastic bottom-up approach
proposed in [33], [36]. The industrial demand, generated as a
constant offset with random (white) fluctuations, is then added
to the residential demand at node 24 during the time in which
this user is active. Finally, the nodal outflow is computed by
multiplying the instantaneous demand by the correction factor
proposed in [30], to account for the dependence of nodal
outflow on service pressure head.

In addition, in order to obtain a more realistic framework,
measurement noises are introduced in the WDN model, acting
on the measured pressure heads h(t) and on the flow at the
valve site Qv(t).

B. Controlled Nodes Selection

The design of any remote RTC algorithm starts with the
choice of the controlled node. As briefly introduced earlier in
this article, a typical criterion for the choice of the controlled
node is the critical node criterion. Specifically, when dealing
with SN control schemes, the controlled node is chosen as
the node whose pressure head reaches the minimum value
throughout the whole network, during the whole day [6], [37].
This worst case approach is usually effective in preventing the
pressure head to fall below the minimum desirable value in
any point of the network, provided that the pressure setpoint
for the control scheme is chosen with some safety margin [38].
However, as discussed in Section I, several nodes, located
far away in the WDN topology, may reach critical pressure
head values during the day, due to spatial inhomogeneities
in both elevation and users’ demand. In these scenarios, SN
control schemes may fail to maintain sufficient pressure head
throughout the WDN, due to the inherent open-loop nature of
the control scheme for the nonmonitored WDN nodes.

The MN-RTC framework proposed in this article can over-
come this limitation, provided that a careful choice of the
controlled nodes is carried out. For this purpose, the critical
node criterion needs to be extended for the choice of a set
of p controlled nodes. A naive approach would be sorting
the WDN nodes according to the minimum pressure heads
reached during the day and choosing the p nodes associated
with the lowest values of pressure. However, due to the WDN
physics, this approach is likely to select the critical node (in
the strict sense), plus a set of p − 1 neighboring nodes. This
is strongly undesirable since the need for MN-RTC is mainly
motivated by a time-varying distribution of the peak demand
values through the WDN, or by the presence of multiple,

isolated nodes simultaneously reaching very low-pressure head
values. Such naive choice of controlled nodes would provide
very little advantage to the control scheme, which would
continue to operate in an open-loop fashion for controlling the
pressure head associated with distant—almost or temporarily
critical—nodes.

Additional care is therefore required for the choice of
the controlled nodes. In particular, the critical node criterion
should be combined with a detailed inspection of the WDN
topology. The procedure adopted in this work for the choice
of p controlled nodes requires two main steps:

1) identification of p groups of neighboring nodes, whose
minimum pressure reaches very low values during the
day;

2) application of the critical node criterion to each group
of neighboring nodes from step 1.

As an example, Fig. 4 shows the minimum daily nodal
pressure head in the no-control scenario for some potentially
critical nodes in the case study. Based on the spatial distribu-
tion of the nodes in the WDN, two critical nodes are finally
chosen, i.e., nodes 1 and 24.

C. Working Point Definition

This section discusses the definition of the working point of
the system in the case of MN-RTC. Consider the multi-input–
multioutput (MIMO) system defined by the following input
signals.

1) ξ(α(t)) is the local loss coefficient, function of the valve
closure (-).

2) H(t) is the source pressure head (m).
3) D(t) is the vector of water demands (m3/s).

The output signals are given as follows.
1) h(t) is the vector of the measured pressure heads at the

controlled nodes of the WDN (m).
2) Qv(t) is the flow measured at the valve site (m3/s).

Let ξ(α(t)) be the control variable, h(t) be the controlled
variables, and H(t) and D(t) be stochastic disturbances acting
on the process. Moreover, let Dtot(t) be the overall demand of
the WDN, i.e.,

Dtot(t) =

Nnodes∑
i=1

Di (t) (8)

where Di is the water demand at node i and Nnodes is
the number of demanding nodes in the WDN. The average
values of typical H(t) and Di (t) profiles are considered as
input to the system for the definition of the WP. Note that
this information is usually available to the WDN manager.
Fig. 2(a) and (c) shows the profiles of Dtot(t) and H(t) adopted
for simulations, respectively.

Let the tuple WP = (ξ , H , D, h, Q) represent the working
point for the MIMO system. In this work, the values of ξ

and h are defined by simulated experiments performed on
the WDN. In particular, the procedure consists in adjusting
the valve closure α (i.e., the local head loss ξ ) until the
minimum of h reaches the desired pressure head. The value
of ξ associated with such valve closure is adopted as ξ . The
corresponding pressure heads at the controlled nodes then
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Fig. 4. (a) Minimum daily pressure heads from a simulation with constant valve closure, at the WDN nodes downstream of the PCV. (b) Pressure heads at
the chosen controlled nodes (1 and 24) are highlighted in red.

define h. Note that, in a real scenario, this procedure can
be directly performed on the real plant, by manual trial and
error adjustments of α, or by means of SISO control schemes,
as discussed in [41].1 Moreover, preliminary computations,
based on a (possibly steady state) hydraulic model, can provide
a convenient starting point for the search of ξ .

Remark: The choice of ξ as control variable, opposed to α,
is motivated by the strong nonlinearity of the ξ(α) curve.
As underlined in [42], when the system moves far away
from its nominal WP, with α ≈ 1 in particular, the increase
in the process gain may result in instability of the closed-
loop system. Since the ξ(α(t)) curve is typically available
and invertible, the problem can be faced by exploiting ξ as
a control variable and introducing a nonlinearity inversion
block in the loop to compute at runtime the corresponding
value of α [38].

D. Process Model Identification

This section summarizes the identification of a black-box
LPV process model [22], to describe the WDN dynamic
behavior. It should be remarked that the choice of explicitly
modeling the transient response of the WDN is motivated by
the detailed analysis performed in [38], [43], [44]. The analysis
stresses the fact that the presence of unmodelled dynamics may
result in wide pressure oscillations or even lead to closed-loop
instability [20], [43], as the WDN drifts away from its nominal
operating point, due to fluctuations in the users demand. This is
extremely important, as the occurrence of the aforementioned
events could not just impact on the service to end users but
also stress or damage the WDN infrastructure. Note that this
issue mainly occurs with low-level controllers in charge of
pressure regulation, as the one proposed in this work. More-
over, as stressed in [42], standard robustness analysis may not
provide accurate results if the WDN dynamic response is not
modeled. On the other hand, even simple or partial information
about the WDN transient behavior [45] could sensibly improve

1In this case, the knowledge of the average values of H(t) and Di (t) is not
even required, provided that the flow Qv(t) can be measured and exploited
as a gain scheduling parameter [38], [41].

the design of more robust and efficient control algorithms [46].
The approach was originally introduced and discussed in detail
in [41] and [45], which can be consulted for further details;
further details on the linear identification techniques can be
found in [47].

The procedure adopted in this work consists of three main
steps.

1) Identification of Linear, Local Models of the WDN
Dynamics Around WP: Consider a parametric, linear,
local model, whose input is the variation signal δξ(t) =

ξ(t) − ξ and output is the variation signal δh(t) =

h(t)−h. Input–output data can be obtained by exploiting
a nonlinear WDN simulator (hydraulic modeling dis-
cussed in Section III-A), if available, or by means of
experiments performed directly on the real plant. While
the experimental design can be focused on maximizing
the information contained in the dataset in the former
case, particular care is required in the latter case since
the experimental session should not interrupt the ser-
vice to users and should not stress the WDN structure
[41]. Input–output identification techniques can then be
applied (e.g., by means of MATLAB Identification Tool-
box [48]) to compute the parameter values that provide
the best fit between model prediction and identification
and test data.

2) Discretization and Realization: If the linear model from
step 1 is identified as a continuous-time one (e.g., as in
[38] and [41]), it then needs to be discretized with a
proper sampling time. It should be remarked at this
point that the high-frequency behavior of the system
plays a very important role and should be properly
described by the linear process model to reduce the risk
of instability [42], [46]. The choice of the sampling
time should be therefore carried out to preserve the
description of high-frequency oscillations in the model
response. In addition, the control sampling time should
also be consistent with the desired closed-loop response
of the system [46], [49]. As a matter of fact, closed-
loop settling time plays an important role since sudden
pressure drops occur regularly (e.g., due to the presence
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Fig. 5. Block scheme of the MN-RTC algorithm presented in this work. The algorithm is based on three main elements: a Kalman Filter to estimate state and
disturbances, an SSATC to compute admissible reference signals, and an MPC to perform regulation to the admissible reference. All three elements feature
gain scheduling policies based on low-passed versions of flow at the valve site and valve closure signals.

of the industrial user) but may also occur due to the
opening of fire hydrants or sudden pipe breaks. In this
scenario, pressure should be promptly restored to avoid
problems to end users. In the case of sudden pressure
increase due to a demand drop, pressure should be
instead quickly lowered to reduce the stress on the WDN
infrastructure [20], [34]. Also, note that, as discussed
later in this article, the proposed control scheme requires
the solution of two QPs at each sampling instant and is
therefore computationally tractable for sampling times
in the order of seconds. Finally, the discrete-time model
is converted to a state-space form, and the transport
delay terms that characterize the system response [45]
are replaced by a proper number of poles at the origin of
the complex plane. At this point, the local, linear model
is completely defined as

6


δx(k + 1) = Aδx(k) + Bδξ(k)

δh(k) = Cδx(k) (9)
δx0 = δx(0), k ≥ 0

where δx ∈ Rn is the state of the black-box local model,
δξ ∈ R is its input, and δh ∈ Rp is its output; A ∈ Rn×n ,
B ∈ Rn×1, and C ∈ Rp×n .

3) Extension to the LPV Structure: The valve equation (6)
shows a quadratic dependence of the pressure loss
induced by the valve on the flow through the valve itself
Qv . In particular, previous works dealing with SN-RTC
underline that a static description of this dependence can
be very effective in improving the associated control
design [17], [38], [45]. The static gain µ of (9) is
given by µ = C(−A)−1B. The input matrix B can be
made parameter-dependent to accommodate the static
nonlinearity as follows:

Bs(Qv(k)) = B
(

Qv(k)

Qv

)2

(10)

where the measured flow at the valve site Qv(k) is
measured online and assumes the role of scheduling
parameter [22]. To conclude, the LPV system 6s mod-
eling the process dynamics is given by

6s


δx(k + 1) = Asδx(k) + Bs(Qv(k))δξ(k)

δh(k) = Csδx(k) (11)
δx0 = δx(0), k ≥ 0

with As = A, Cs = C, and Bs(Qv(k)) as defined in (10).

E. Control Design Methodology

The control scheme proposed in this work is shown in Fig. 5
and consists of three main elements.

1) A PVKF for state and disturbance estimation.
2) An SSATC for the computation of admissible steady

states for the process model, given the current dis-
turbance estimate obtained via PVKF, and the current
measurement of the flow at the valve site.

3) A model predictive controller for the computation of
optimal control moves, given a suitable cost function
for regulation to the current steady state and a set of
physical and performance constraints to be fulfilled at
each time instant.

Moreover, two low-pass filters are introduced in the scheme,
with the aim of smoothing the dynamics of the two scheduling
variables (Qv and α). Each element of the scheme is in fact
based on the LPV system 6s , which is updated at every
time instant according to the current value of the schedul-
ing variable Qv . In addition, the MPC controller features
a further gain scheduling policy based on α, to improve
the tradeoff between error and cost of control over a wider
range of operating conditions [38]. The choice of remov-
ing high-frequency components from the scheduling signals
is common in the context of LPV-based gain scheduling
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(see, e.g., [22], [38], [50], [51]) and typically results in
improved control performances.

Each element of the control scheme is discussed in detail
in the following.

1) State and Disturbance Estimation: This section
describes the PVKF adopted for online estimation of the
states of 6s . Moreover, the control scheme proposed in this
work accounts for the presence of exogenous disturbances
affecting the WDN (source pressure head and users’ demand)
as black-box, nonmeasurable process disturbances d ∈ Rp

acting on the output of 6s , i.e.,

6s,d


δx(k + 1) = Asδx(k) + Bs(Qv(k))δξ(k)

δh(k) = Csδx(k) + d(k) (12)
δx0 = δx(0), k ≥ 0.

The PVKF is therefore exploited for both state and dis-
turbance estimations. To this end, the process model 6s

is augmented to include the effect of disturbances, which
are modeled as integrating disturbances, driven by the white
Gaussian noise. Let 6KF be the corresponding augmented
system included in the PVKF

6KF


δxKF(k + 1) = AKFδxKF(k)

+ BKF(Qv(k))δξ(k) + vx (k)

δh(k) = CKFδxKF(k) + vy(k) (13)
δxK F0 = δxKF(0), k ≥ 0

where

δxKF = [δx′

s d′
]
′ (14)

vx ∼ W G N (0, Q̃), Q̃ = Q̃′
≥ 0 (15)

vy ∼ W G N (0, R̃), R̃ = R̃′ > 0 (16)

δxK F0 ∼ N (δ̃x0, P̃0), P̃0 = P̃′

0 ≥ 0 (17)

and where the system matrices are augmented to include the
disturbance dynamics as follows:

AKF =

[
As 0n×p

0p×n Ip×p

]
(18)

BKF(Qv(k)) =

[
Bs(Qv(k))

0p×1

]
(19)

CKF =
[
Cs Ip×p

]
(20)

with 0r×c ∈ Rr×c the zero matrix and Ir×r ∈ Rr×r the identity
matrix.

Let δ̂xKF(k|k − 1) be the one-step prediction of δxKF(k),
given the knowledge of system inputs and outputs up to the
time instant k − 1. Then, the PVKF estimator is described by
the following equations:

δ̂xKF(k + 1|k) = AKFδ̂xKF(k|k − 1)

+ BKF(Qv(k))δξ(k)

+ L(k)[δh(k) − CKFδ̂xKF(k|k − 1)] (21)

with

L(k) = AKFP̃(k|k − 1)C′

KF

[
CKFP̃(k|k − 1)C′

KF + R̃
]−1

(22)

where the covariance of the estimation error P̃(k|k − 1) is
the solution of the Riccati equation reported in the following
equation:

P̃(k + 1|k) = AKFP̃(k|k − 1)A′

KF + Q̃ − AKFP̃(k|k − 1)C′

KF

×
[
CKFP̃(k|k − 1)C′

KF + R̃
]−1CKFP̃(k|k − 1)

× A′

KF (23)

initialized according to

P̃(0| − 1) = P̃0. (24)

Note that, due to the system augmentation introduced before

δ̂xKF(k|k − 1) =
[
δ̂x′

s(k|k − 1) d̂′(k|k − 1)
]′ (25)

where d̂(k|k − 1) represents the one-step prediction of d(k)

given the knowledge of system inputs and outputs up to the
time instant k − 1.

Remark: It should be stressed that, with the choice of the
LPV structure described in Section III-D, both the estimator
gain L and the covariance of the estimation error P̃ do not
show any dependence on the scheduling parameter, which only
appears in the system matrix BKF. The following result on the
convergence of the proposed PVKF therefore holds.

Theorem 1 [21]: Let Bq be a partition of Q̃ such that
Q̃ = BqB′

q . If the pair (AKF, Bq) is reachable and that
the pair (AKF, CKF) is observable, then the proposed state
estimator (21) is optimal with

L(k) = L = AKFPC′

KF

[
CKFPC′

KF + R̃
]−1

(26)

where P is the unique positive definite solution of the station-
ary Riccati equation

P = AKFPA′

KF + Q̃ +

− AKFPC′

KF

[
CKFPC′

KF + R̃
]−1

CKFPA′

KF. (27)

Moreover, the estimator is asymptotically stable, that is, all
the eigenvalues of (AKF − LCKF) have modulus less than 1.

2) Steady-State Auxiliary Target Calculation: At each time
instant k, given the pressure setpoint values δhsp = hsp − h,
the current output disturbance estimate d̂(k|k), and the current
scheduling parameter Qv(k), the following constrained QP
allows the computation of an admissible steady state SS(k) =

(δξss(k), d̂(k|k), δxss(k), δhss(k)) for the system 6s,d :

min
δxss(k),δξss(k)

∥δhss(k) − δhsp∥
2
Qss

+ ∥δξss(k)∥2
Rss

(28)

s.t.: δxss(k) = AKFδxss(k) + BKF(Qv(k))δξss(k) (29)

δhss(k) = CKFδxss(k) + d̂(k|k − 1) (30)
δξmin ≤ δξss(k) ≤ δξmax (31)
δhssmin ≤ δhss(k) ≤ δhssmax (32)

where ∥m∥
2
M denotes the square norm of a vector m weighted

by a matrix M, where R > 0, and Qss ≥ 0 is a diagonal,
positive definite matrix. Moreover, δξmin and δξmax are lower
and upper bounds for the control variable δξ , respectively,
and δhssmin and δhssmin are lower and upper bounds for the
steady-state values of the controlled variable δh, respectively.
Note that output bounds (32) can be implemented as soft
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Fig. 6. Example of gain scheduling law for the weight of the control action
R, with cR = 0.3, lR = 0.035, Rmin = 10, and Rmax = 100.

constraints to preserve the feasibility of optimization problem,
while input bounds (31) model physical limitations on the
valve opening and closure and are therefore implemented as
hard constraints. The matrix Qss can be used to assign different
weights to the distance of the steady-state outputs δhss from
their desired setpoints δhsp, for different controlled nodes.
Finally, in the case of multiple equilibria yielding the same
steady state/setpoint distance, the presence of Rss favors the
choice of the minimum norm steady-state input and guarantees
the uniqueness of the choice [21].

3) Model Predictive Control: Once a feasible steady-state
target is available, a constrained MPC scheme is used to
enforce optimal regulation. The MPC is based on an aug-
mented version of the LPV process model 6s,d , where an
integral action is introduced at the system input. This allows
weighting the derivative of δξ in the cost function, thus
providing a better measure of the energy required to perform
regulation and of the wear of the PCV [6]. Let 1ξ denote
the discrete-time derivative, and let 6MPC be the augmented
system included in the MPC

6MPC


δxMPC(k + 1) = AMPC(Qv(k))δxMPC(k)

+ BMPC1ξ(k)

δh(k) = CMPCδxMPC(k) + d(k) (33)
δxMPC0 = δxMPC(0), k ≥ 0

where

δxMPC =
[
δx′

s δξ
]′ (34)

and where the system matrices are

AMPC(Qv(k)) =

[
As Bs(Qv(k))

01×n 1

]
(35)

BMPC =

[
0n×1
Ts

]
(36)

CMPC = Cs (37)

with Ts the controller sampling time.

The following cost function is considered:

J (δxMPC(k), 1ξ[k,...,k+N−1], N )

=

N−1∑
i=0

(
∥δh(k + i) − δhss(k + i)∥2

Qy
+ ∥1ξ(k + i)∥2

R(α(k))

)
+ ∥δxMPC(k + N ) − δxM PCss(k + N )∥2

S(Qv(k),α(k)) (38)

where 1ξ[k,...,k+N−1] = [1ξ(k), . . . ,1ξ(k + N − 1)] is the
future control sequence defined from instant k, δxMPCss =

[δx′
ss δξss]

′ is the steady-state reference for the state of the
augmented system 6MPC, Qy = Q′

y ≥ 0 is the weight
for the regulation error, R(α(k)) > 0 is the (parameter-
varying) weight for the control variable, S(Qv(k), α(k)) =

S′(Qv(k), α(k)) > 0 is the (parameter-varying) weight for the
terminal state, and N > 0 is the prediction horizon. In this
work, the weight for the control variable varies according to
the following scheduling law:

R(α(k)) = (Rmax − Rmin)

(
−1

1 + e−(α(k)−cR)/ lR
+ 1

)
+ Rmin

(39)

where Rmax > 0, Rmin > 0, cR > 0, and lR > 0 are design
parameters. As an example, the scheduling law adopted in this
work is shown in Fig. 6.

As far as the terminal weight S(Qv(k), α(k)) is con-
cerned, a gain-scheduled version of the infinite-horizon linear
quadratic regulator (LQR) is considered, with associated
parameter-varying, optimal cost PLQR(Qv(k), α(k)). Specif-
ically, at each time instant k, PLQR(Qv(k), α(k)) can be
computed by solving the stationary Riccati equation reported
in (42), where the LQR weights, QLQR and R(α(k))LQR, are
chosen to match instant by instant those of the MPC [21], i.e.,

QLQR = C′

MPCQyCMPC (40)
R(α(k))LQR = R(α(k)) (41)

PLQR(Qv(k), α(k))

= A′

MPC(Qv(k))PLQR(Qv(k), α(k))AMPC(Qv(k))

+ QLQR+

− A′

MPC(Qv(k))PLQR(Qv(k), α(k))BMPC

×

[
R(α(k))LQR + B′

MPCPLQR(Qv(k), α(k))

× BMPC

]−1
B′

MPCPLQR(Qv(k), α(k))

× AMPC(Qv(k)). (42)

To sum up, the following FHOCP is solved at each time
instant k:

min
1ξ[k,...,k+N−1]

J (δxMPC(k), 1ξ[k,...,k+N−1], N ) (43)

subject to the dynamics of 6MPC (33) and subject to the
following constraints:

1ξmin(α(k)) ≤ 1ξ(k + i) ≤ 1ξmax(α(k)) (44)
δξmin ≤ δξ(k + i) ≤ δξmax (45)
δhmin ≤ δh(k + i) ≤ δhmax (46)
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with

δxMPC(k) =
[
δ̂x′

s(k|k − 1) δξ(k)
]′ (47)

d(k) = d̂(k|k − 1) (48)

and where it is assumed

δxMPCss(k + i) = δxMPCss(k) (49)
δhss(k + i) = δhss(k) (50)

d(k + i) = d(k) (51)
Qv(k + i) = Qv(k) ∀i = 0, . . . , N . (52)

The closed-loop control action, 1ξ ⋆(k), is then obtained as
the first element of the optimal control sequence, according
to the RH principle.

Finally, the actual local head loss coefficient to be achieved
at time k, ξ ⋆(k), is computed as

ξ ⋆(k) = (1ξ ⋆(k)Ts + 1ξ ⋆(k − 1)) + ξ (53)

and the corresponding valve closure value, α⋆(k), is computed
by inverting the valve curve ξ(α) and evaluating it at ξ ⋆(k).
If necessary, the integration should be suitably saturated to
account for the presence of bounds acting on δξ(k).

It should be remarked that the proposed MPC scheme
belongs to the class of suboptimal LPV MPC schemes, due to
the assumption of a frozen guess for the scheduling parameter
along the horizon N . As already introduced in Section I, this
allows formulating an FHOCP belonging to the class of QPs,
thus easily solvable in real time, even with long horizons.
This comes at the price of (possibly nonnegligible) mismatch
between plant dynamics and model prediction, which is,
however, well compensated by the RH nature of the control
scheme in terms of control performances.

In addition, note that the state constraints acting on the
local head loss coefficient (45) should be consistent with their
steady-state counterparts (31), while the output constraint (46)
may assume different values from their steady-state coun-
terparts (32). Moreover, in order to ensure its feasibility of
the FHOCP, output constraints (46) are implemented as soft
constraints.

To mirror the presence of the valve speed limit, (44) is
introduced to impose upper and lower bounds on the time
derivative of the local head loss coefficient. It should be
remarked that the straightforward implementation of the valve
speed limit as bound on the local head loss coefficient would
result in a nonlinear constraint, due to the nonlinear relation
linking the two variables. To overcome this limitation and
maintain a QP formulation of the FHOCP, the constraints are
implemented as linear, parameter-varying bounds. Specifically,
at each time instant k, the upper and lower bounds (1ξmax(k)

and 1ξmin(k), respectively) are obtained by computing the
approximate derivative (right and left, respectively) of the ξ(α)

curve via finite difference. The finite difference discretization
steps are chosen equal to the maximum (positive and negative)
variation allowed for α, according to its speed limits (opening
and closure).

Finally, the nonlinearity of the valve curve also motivates
the choice of introducing the scheduling law for R, defined
in (39). In particular, when the operating point of the WDN

moves toward high flow values, α assumes values close to
zero. In this region, the curve ξ(α) becomes almost flat,
meaning that even a small control signal 1ξ requires a
wide variation of α to be realized, thus resulting in strong
oscillations in the valve closure. As demonstrated in [38],
a proper scheduling policy can be effective in balancing the
tradeoff between controller aggressiveness and cost of control
across a wide range of operating conditions.

4) Low-Pass Filtering of Scheduling Parameters: Recall
that the process static gain dependence on the flow at the valve
site Qv(t) arises steady-state considerations about the process
under control [17], [38]. However, in real-life situations, the
behavior of the WDN is mainly driven by the demand at the
different nodes, which show daily patterns as those shown
in Fig. 2(a). For this reason, it is necessary to introduce a
low-pass filter to remove the oscillations in Qv(t) arising
from both high-frequency demand oscillations and from the
water hammer effect in the WDN pipes. In addition, a part
of such oscillations are transferred to α(t), and thus, the
same considerations hold for the scheduling of the MPC
weight R(α(t)). In both cases, the gain scheduling is therefore
implemented by relying on QvLP(t) and αLP(t), the low-pass
filtered versions of, respectively, Qv(t) and α(t).

F. Offset-Free Regulation of Average Pressure

As discussed earlier in this article, the typical setup for
MN-RTC consists of a single PCV and a set of p controlled
nodes, with p > 1. The number of control variables is,
therefore, lower than the number of controlled variables;
thus, the system does not fulfill a necessary condition to
guarantee an offset-free regulation [21], [52] of pressure at
every controlled node.

However, it is sometimes desirable to favor an offset-
free regulation of the average of pressure, to ease higher
level management of pressure distribution across the WDN.
This goal can be achieved by defining the average pressure
deviation from the WP one as follows:

δhavg(k) = Zδh(k) (54)

with

Z =
1
p

11×p (55)

where 11×p ∈ Rp is the one vector.
The following constraint is then included in the SSATC

Zδhss(k) = 0. (56)

In this way, at each time instant k, the SSATC tries to com-
pute an admissible steady state associated with null average
pressure deviation. As discussed in Section III-E2, to preserve
the feasibility of the associated QP, also (56) should be
implemented as soft constraint. However, priority should be
given to the relaxation of (56) with respect to the relaxation
of output constraints (32).

IV. RESULTS

This section describes the application of the MN-RTC
methodology proposed in this work to the case study of the
Castelfranco Emilia WDN, as described in Section II.
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A. Selection of Controlled Nodes

The first step of the methodology consists of the choice of
controlled nodes, as discussed in Section III-B. To this end,
a whole-day simulation is performed by considering realistic
users’ demand and source pressure head profiles, while the
PCV is set to a constant value. The minimum daily pressure
is recorded for each WDN demanding node and is shown in
Fig. 4(a).

With the help of a topological representation of the WDN
[Fig. 4(b)], it is possible to identify two main areas of the
network characterized by low-pressure values. Specifically, the
first one is covered by nodes 1–3, while the second one is
covered by nodes 24 and 25.

The application of the critical node criterion to the two
areas leads to the choice of nodes 1 and 24 as controlled
nodes. Note that the aforementioned areas could be extended
to include nodes 14–17, which are anyway associated with
slightly higher pressures and would not alter the choice of the
controlled nodes.

B. Working Point Definition and Process Model Identification

Once the choice of controlled nodes is carried out, it is
necessary to define a working point for the system under con-
trol. Note that the system outputs correspond to the measured
pressures at the controlled nodes, arranged in increasing order
of node labels. Following the directions given in Section III-C,
the working point WP results:

WP =



ξ = 151.55 (i.e. α = 0.61)

H = 39.6 m
D = [0.0014, . . . , 0.0007]

′ m3/s
h = [25.3 25.7]

′ m
Q = 0.06 m3/s.

(58)

Different step response experiments are then performed
around WP, to build up a dataset for the identification of a
linear, local process model. At this stage, data are sampled at a
sampling rate of 1 Hz, assumed as the maximum sampling rate
available for the system. A continuous-time transfer matrix
G(s), linking δξ to δh, is identified with the prediction
error method from MATLAB Identification Toolbox [48]. The
structure of the two transfer functions composing G(s) is
characterized by a relative degree equal to 1 and by the
presence of a transport delay term [41], [45].

In order to define the best model order for each of the
two transfer functions, the original dataset is first split into
identification and validation subsets, and a set of candidate
models is identified using the former dataset and tested on the

Fig. 7. Comparison of data (blue dashed line) and model predicted (red solid
line) measured pressure δh(t) in case of a negative step variation of δξ(t). Top:
pressure variation δh1 (t) (node 1). Bottom: pressure variation δh2 (t) (node 24).

Fig. 8. Bode diagrams representing the frequency response of the transfer
functions G1(s) (blue solid line) and G2(s) (green dashed line), which
compose the overall transfer matrix G(s).

latter. The model resulting in the best performances on the
validation dataset is then chosen as the definitive one. In
the case of models delivering similar performances, the most
parsimonious one is chosen. In particular, all the goodness-
of-fit metrics adopted in this work (root-mean-square error
(RMSE), coefficient of determination (COD), and FIT) [47]
support the choice of order equal to 7 for both transfer
functions.

The overall transfer matrix G(s) is reported as in (57),
shown at the bottom of the page. Fig. 7 shows a comparison of
data and model prediction in the case of negative step variation
of δξ . The frequency response associated with each transfer
function is shown in Fig. 8 as a Bode diagram. As expected,
both frequency responses show prominent resonance peaks in
the frequency range [0.1; 1] rad/s. Moreover, it is interesting
to underline that both models show a very similar static gain.

G(s)=
[

G1(s)
G2(s)

]

=


−0.01041 s6

+ 0.004366 s5
− 0.005436 s4

−0.000641 s3
−0.0001841 s2

− 1.612 × 10−5s − 1.07 × 10−6

s7 + 0.4442 s6 + 0.5235 s5 + 0.1352 s4+0.0287 s3 + 0.003883 s2 + 0.0003255 s + 1.671 × 10−5 e−19s

−0.07011 s6
− 0.0196 s5

− 0.007476 s4
−0.002396 s3

−0.0001758 s2
− 3.52 × 10−5s − 4.215 × 10−7

s7 + 1.71 s6 + 0.5419 s5 + 0.212 s4+0.04139 s3+0.00479 s2 + 0.0005734 s + 6.492 × 10−6 e−17s

 (57)
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This has to be expected since the static behavior of the plant
is mainly due to the pressure loss at the valve site, which is
in turn generated by the same PCV.

A zero-order-hold (ZOH) discretization is applied to G(s)
to obtain a discrete-time representation. The sampling time is
relaxed to Ts = 3 s. This choice still provides a sufficiently
detailed characterization of the high-frequency behavior of the
system while allowing for further time for the computation
of the control action. The transport delay terms are then
transformed into poles at z = 0, and a state-space representa-
tion for the discrete-time process model is computed. Finally,
the static dependence on the flow at the valve site Qv is
included by parameterizing the system matrix Bs , as discussed
in Section III-A. This defines the LPV process model 6s

adopted for the design of the overall control algorithm. In
particular, 6s has n = 21 states and p = 2 outputs.

C. Control Design

This section discusses the design of the main components
of the MN-RTC scheme for the specific case study analyzed in
this work. In particular, the tuning of the design parameters is
carried out as follows. First, a rough estimate of disturbances
acting on the measured pressure is obtained by performing
a simulation of the WDN, with the valve closure set at its
working point value. The disturbance estimate is computed at
each time instant as the difference of the recorded pressure
heads and the corresponding working point values. At this
point, the closed loop based on the identified LPV model
and the disturbance estimates can be simulated to evaluate
the desired performance metrics. This allows for a trial-
and-error tuning of the main parameters of the algorithm.
Note that this approach does not require any closed-loop
simulation involving the complex hydraulic model discussed
in Section III-A. The results of the tuning phase are described
in the rest of this section.

1) State and Disturbance Estimation: As discussed in
Section III-E1, a PVKF is designed by considering integrat-
ing disturbances acting at the system outputs and properly
augmenting 6s to provide their estimate, together with the
estimate of nonmeasurable states. The design parameters for
the PVKF are set to

Q̃ =

[
I21×21 021×2
02×21 0.1I2×2

]
, R̃ = I2×2. (59)

Note that, due to the black-box nature of 6s , no specific
tuning was carried out on the elements of Q̃ corresponding to
the states of the system. On the contrary, the tuning process
focused on the elements corresponding to the disturbances.

2) Steady-State Auxiliary Target Calculation: Next, the
SSATC is setup according to the following design parameters:

Qss = I2×2, Rss = 10−5 (60)
δξmin = −146.1, δξmax = 5181 (61)

δhssmin = [−4.24 − 4.56]
′ m, δhssmax = [7.76 7.44]

′ m.

(62)

In particular, δξmin and δξmax correspond to a saturation of
valve closure, which is restricted to the interval α ∈ [0; 0.9],

while δhssmin and δhssmax are chosen as 0.8δhmin and δhmax,
respectively. Finally, with the aim of favoring an offset-free
regulation of the average pressure, the SSATC is setup accord-
ing to the procedure discussed in Section III-F.

3) Model Predictive Control: Following the approach
described in Section III-E3, the system 6s,d is extended
to include an integral action on the control variable, and
the FHOCP is formulated according to the following design
parameters:

N = 60, Qy = I2×2 (63)
Rmax = 100, Rmin = 10 (64)

cR = 0.3, lR = 0.035 (65)
δξmin = −146.1, δξmax = 5181 (66)
δhmin = [−5.3 − 5.7]

′ m, δhmax = [9.7 9.3]
′ m.

(67)

Fig. 6 shows the value of R as a function of α for
this specific tuning. Specifically, the tuning parameters are
chosen to smoothly raise the value of R as the valve closure
approaches α = 0, starting from α ≈ 0.5. In this interval, the
curve ξ(α) gets flatter (see Fig. 3), and a wide movement of
the valve shutter is required to produce a small variation in the
valve head loss coefficient. The proposed tuning is therefore
chosen to reduce the controller aggressiveness and reduce the
associated valve motion. For this case study, no specific tuning
is carried out for each of the two controlled variables. The
prediction horizon N is selected so as to cover the whole
open-loop settling time of the plant, as shown in Fig. 7. As
for constraints, δξmin and δξmax correspond to the valve satu-
ration, while δhmin and δhmax correspond to the minimum and
maximum pressure heads of hmin = 20 m and hmax = 40 m,
respectively, for both controlled nodes. As already discussed in
Section III-E3, 1ξmax(k) and 1ξmin(k) are computed online,
at each time instant k, to fulfill the constraint on the valve
speed ∣∣∣∣α(k + 1) − α(k)

Ts

∣∣∣∣ ≤
1

300
Hz. (68)

4) Low-Pass Filtering of Scheduling Parameters: Let LP(s)
be the transfer function of the low-pass filters used to remove
oscillations in Q(t) and α(t)

LP(s) =
1

1 + sTLP
. (69)

Based on the analysis performed in [38], a filter time constant
TLP = 180 s is used in this work. Both filters are implemented
in discrete time, with a sampling time of 3 s.

D. Closed-Loop Tests

With the aim of evaluating the performances of the pro-
posed MN-RTC scheme, whole-day, closed-loop simulations
are performed with demand profiles A and B. The results
of closed-loop simulations are evaluated according to the
following metrics.

1)
∑K

k=1 |e(k)|/K (m), where e(k) = h(k) − hsp. The
regulation error evaluates the proximity of pressure head
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Fig. 9. Closed-loop simulations with the MN-RTC algorithm. Top: pressure head at node 1 h1(t) (dark blue line), pressure head at node 24 h24(t) (cyan
line), pressure setpoints h1sp (red dashed line), and h24sp (red dotted line). Middle: flow at the valve site Qv(t). Bottom: valve closure α(t). (a) Whole-day,
demand profile A. (b) Whole-day, demand profile B. (c) Daytime hydrant opening at node 3, demand profile A. (d) Nighttime hydrant opening at node 3,
demand profile A. (e) Daytime hydrant opening at node 13, demand profile A. (f) Nighttime hydrant opening at node 13, demand profile A.

to the desired setpoint at each controlled node of the
WDN.

2)
∑

|1α(k)|(−), where 1α(k) = α(k) − α(k − 1). The
control cost impacts on the energy required to perform
regulation and on the wear of actuators.

Note that, for the sake of performance evaluation, all signals
are sampled at the minimum sampling time assumed for the
system (1 s). Moreover, to further evaluate the applicability
of the proposed approach to a real WDN, both average
and maximum computing times required for all closed-loop
operations (i.e., filtering, state and disturbance estimation,

auxiliary target, and closed-loop control action computation)
are recorded for both simulations. In particular, simulations
are carried out on an Intel2 Core3 i7-10700 CPU 2.90 GHz
processor. Optimization problems are implemented with the
help of YALMIP [53] and solved by means of MOSEK [54].

Fig. 9(a) shows the results of a whole-day, closed-loop
simulation with demand profile A. For the sake of comparison,
Fig. 10(a) shows the results of a simulation performed with the

2Registered trademark.
3Trademarked.
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Fig. 10. Closed-loop simulations with the SN-RTC algorithm from [38]. Top: pressure head at node 1 h1(t) (dark blue line), pressure head at node 24 h24(t)
(cyan line), pressure setpoints h1sp (red dashed line), and h24sp (red dotted line). Middle: flow at the valve site Qv(t). Bottom: valve closure α(t). Note that
h1sp is actually used as a setpoint in the control loop, while h24sp is only depicted as a reference for comparison with the MN-RTC algorithm. (a) Whole-day,
demand profile A. (b) Whole-day, demand profile B.

SN-RTC algorithm from [38]. In this case, node 1 is chosen
as the only controlled node in the WDN. Both algorithms
share similar performances, while the industrial demand is
not active. However, in the presence of industrial demand,
the SN-RTC algorithm does not properly compensate for
the strong pressure loss at node 24. This can be expected,
as node 24 is not monitored with the SN-RTC scheme, and
the effect of the industrial demand on the controlled node
is negligible for the control loop to adequately raise the
corresponding pressure head. On the contrary, the MN-RTC
immediately reacts to the activation of the industrial demand
by allowing an increase in the pressure head at node 1 and
preventing that at node 24 to fall down to undesirable values.

Fig. 9(b) shows the results of a whole-day closed-loop
simulation with demand profile B, which is designed to test the
behavior of the control loop over a wider range of operating
points. As a result, the valve spans from almost completely
open to almost completely closed during the day. As in the
previous scenario, the MN-RTC scheme quickly reacts to the
activation of the industrial demand at node 24 and finds a
balanced compromise for pressure at nodes 1 and 24. Again,
the SN-RTC algorithm [see Fig. 10(b)] ignores the sudden
pressure loss occurring at node 24, and keeps regulating the
controlled pressure at the usual value. A similar situation
occurs during the main demand peak around 9 a.m., with the
MN-RTC algorithm allowing for a slightly higher reduction of
pressure at node 1, in order to keep pressure at node 24 at a
lower value, with respect to the SN-RTC algorithm.

For both demand profiles, the MN-RTC algorithm manages
to deliver satisfactory performances across all operating points
and quickly reacts to the activation of the industrial demand
at node 24. It is also interesting to note that, in both cases, the
choice of the steady-state auxiliary targets satisfactorily fulfills
the offset-free requirement of the average pressure deviation
(see Fig. 11).

For a quantitative assessment, Table I summarizes the
performance metrics for whole-day closed-loop simulations.

Fig. 11. Steady-state auxiliary targets δhss. Top: whole-day, closed-loop sim-
ulations with demand profile A. Bottom: whole-day, closed-loop simulations
with demand profile B.

TABLE I
CLOSED-LOOP PERFORMANCE METRICS OF THE MN-RTC ALGORITHM

(DENOTED AS (MN]) AND THE SN-RTC ALGORITHM
FROM [38] (DENOTED AS [SN])

In general, note that both regulation error at each node and
control cost values are aligned with the results obtained with
SN-RTC schemes, with the MN-RTC approach trading some
regulatory performance at node 1 to improve it at node
24 while maintaining similar control costs. This is quite
interesting since the proposed scheme controls two nodes with
a single control variable. Moreover, for MN-RTC, it is also
interesting to note that the regulation error is extremely similar
at both nodes, as favored by the choices of Qss and Qy as
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identity matrices. Finally, despite the long prediction horizon
and the high number of states, the computing times are well
below the sampling time of 3 s chosen for the loop elements.
Note that no specific implementation was carried out to speed
up the computations.

To further assess the ability of the proposed MN-RTC
scheme to respond to sudden variations of the demand across
the WDN, several tests are performed by simulating a sudden
opening of a fire hydrant, combined with demand profile A.
For all simulations, a fire hydrant is kept open for 1600 s.
In particular, Fig. 9(c) shows the results of a closed-loop
simulation where the fire hydrant at node 3 is activated during
daytime. Note that this coincides with the time of the day
when the industrial demand is also present, and thus, the
overall flow reaches very high values. This in turn results in
the PCV to operate close to saturation. Due to this physical
constraint, the output constraint regarding pressure at node
1 is slightly violated. However, the pressure at node 24 is
properly regulated to its setpoint. As far as transients are
concerned, a quick settling time (about 180 s) is obtained both
at hydrant opening and closure. Fig. 9(d) shows the results of
a closed-loop simulation where the fire hydrant at node 3 is
activated during nighttime. In this second case, both pressure
heads are properly regulated at their setpoints, again with
a settling time in the order of few minutes. Similar results
are obtained with the activation of the fire hydrant at node
13. Results are reported in Fig. 9(e) and (f), which depict a
daytime and a nighttime simulation, respectively.

V. DISCUSSION

The results presented in Section IV highlight the effec-
tiveness of the proposed control scheme and suggest that it
can be effectively applied to a real WDN. As a matter of
fact, it should be stressed that the methodology proposed in
this work is ready to be carried out directly on the plant,
with no need for a detailed hydraulic model of the WDN
nor for any estimate of users’ demand signals. As already
introduced in Sections III-C and III-D, both working point and
process model identification phases can be in fact carried out
in situ, due to the approach discussed in [41]. Moreover, the
same tuning procedure adopted in this work and discussed in
Section IV-C can be applied when directly working in situ, as it
is only based on the LPV model and a data-driven estimate of
disturbances. In addition, it is worth stressing that the proposed
control methodology can be applied to an arbitrary number of
controlled nodes and that the computational complexity of this
methodology scales as that of LPV model, rather than that of
the hydraulic one. This makes it suitable for large WDNs.
Finally, the low computational complexity of the optimization
problems involved in the computation of the control action
allows for an online implementation of the control algorithm.

While the possibility of directly applying it to a real WDN is
indeed a strong advantage, some of the steps of the proposed
methodology leave room for further research. For example,
the aforementioned tuning procedure could be optimized and
automated, by formulating it as an optimization problem.
Moreover, the estimate of disturbances, on top of which the

tuning is based, could be further refined, e.g., by means of a
further experimental session and the use of an observer (as the
PVKF introduced in this work). A periodic [55] model of the
disturbance could also be combined with the MPC algorithm
for tracking periodic trajectories (e.g., [56], [57]), which are
successfully applied in the context of high-level manage-
ment of WDNs [58]. In addition, while this work focuses
on underactuated pressure control system, future works can
investigate possible issues arising from square or overactuated
systems, for which LASSO-MPC could be a useful tool [59].
Another interesting research direction would be the design of
a data-driven algorithm for the choice of controlled nodes.
As a matter of fact, the guidelines proposed in this work
require a domain-expert decision-making process, carried out
by visual analysis of the WDN topology. An automated
approach for controlled node selection would therefore ease
the application of the proposed methodology to large WDNs.
Finally, as the control algorithm investigated in this work
explicitly targets some very specific needs of the application
(weighting of system outputs, gain scheduling of input weight,
and time-varying input rate constraints), a complete robust
stability proof would require widely conservative arguments.
Therefore, the possibility to guarantee robust stability by
means of specific output feedback, LPV-MPC algorithms,
could be investigated in future works, to discuss whether the
associated performances could compare with those achieved
with the present control scheme.

VI. CONCLUSION

This work focuses on MN-RTC of service pressure in
WDNs. Standard RTC is in fact based on closed-loop control
of pressure at a single node of the WDN. Specifically, the
node characterized by the minimum daily pressure (critical
node) is typically chosen as a controlled node. Service pressure
at all other nodes is instead controlled in an open loop.
This unavoidably leads to conservative setpoint values for
the controlled pressure. Moreover, as discussed in this article,
multiple nodes may simultaneously play the role of critical
nodes or several critical nodes can alternate during the day,
e.g., due to spatially unbalanced users’ demand through the
WDN. The proposed MN-RTC scheme allows for simultane-
ous control of pressure at several WDN nodes and overcomes
these issues. The scheme is based on three main elements:
a Kalman Filer for state and disturbance estimation, an SSATC
to compute admissible references for the nonsquare system
under control, and a constrained model predictive controller to
regulate the system at the admissible setpoint. The proposed
approach is tested on a detailed hydraulic model of an existing
WDN, and the results obtained in simulations highlight the
effectiveness of the approach. In particular, the novel MN-
RTC scheme provides good disturbance rejection at all the
considered nodes, in the presence of spatially unbalanced
users’ demand. Moreover, the proposed scheme is well-suited
for online implementations due to its low computational com-
plexity. Finally, the methodology can be directly applied to
a real WDN, with no need for a hydraulic simulator of the
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plant, since both model identification and regulator tuning can
be performed based on input–output data collected in situ.

CODE AVAILABILITY

The MATLAB code for the design of the MN-RTC control
scheme discussed in this work is available at https://github.
com/GiacomoGaluppini/Multi-Node-Real-Time-Control-of-
Pressure-in-Water-Distribution-Networks-via-Model-
Predictive-Control.
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