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Nonlinear Hierarchical MPC With Application to
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Abstract— A nonlinear hierarchical model predictive control
(MPC) framework is proposed and applied to maximize the
thermal endurance of aircraft. Effectively controlling the fuel
temperatures in a nonlinear multitimescale aircraft fuel thermal
management system (FTMS) requires controllers capable of
long-term planning and fast update rates. In this article, a two-
level hierarchical MPC controller is formulated using successive
linearization (SL) that directly accounts for the multitimescale
and nonlinear system dynamics to achieve accurate predictive
capabilities and computational efficiency. Detailed simulation
results show that the proposed hierarchical structure can increase
aircraft thermal endurance by at least 21% compared to a cen-
tralized approach while significantly reducing the computational
cost. The results also show that SL provides a valuable framework
for efficiently accounting for nonlinear system dynamics within
both levels of the hierarchical MPC formulation.

Index Terms— Fuel thermal management system (FTMS),
hierarchical model predictive control (MPC), successive
linearization (SL).

I. INTRODUCTION

THE fuel thermal management system (FTMS) plays a
major role in the overall thermal energy management

of high-performance aircraft by using fuel to: 1) absorb heat
from multiple heat sources; 2) remove heat from the aircraft
through the combustion of fuel; and 3) store excess heat in the
fuel tanks. When the total heat load exceeds the heat rejection
capabilities of the FTMS, the temperature of the fuel in the fuel
tanks increases and can eventually reach a limit where it is no
longer safe to operate the aircraft. The thermal endurance of
an aircraft refers to the period in which an aircraft can operate
before reaching this unsafe fuel temperature limit. A properly
designed FTMS controller can maximize the aircraft’s thermal
endurance, avoiding early temperature violations due to poor
control decisions.

Previous research has shown that FTMS operating decisions
at the beginning of a mission can significantly affect the
thermal endurance of the aircraft [1], [2], and therefore,
an effective FTMS controller requires a long planning horizon.
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Fig. 1. Placement of the existing literature with respect to major areas
relevant to this work.

However, long-term planning may not be effective if the
prediction model does not accurately capture the nonlinear
dynamics of the system. As shown in [1], the use of a lin-
earized model over a long prediction horizon can result in large
prediction errors and reduced thermal endurance. Moreover,
when considering the dynamics of fast states or high-frequency
disturbances, the controller must simultaneously have a long
planning horizon and a fast control update rate. Therefore,
this work draws from results in three major areas, as shown
in Fig. 1, to achieve a control strategy that can handle these
requirements properly.

Capable of predicting state trajectories and directly impos-
ing operational constraints, model predictive control (MPC)
is well suited to maximizing thermal endurance subject to
the predicted heat loads of the aircraft while accounting for
the actuator and state constraints in the FTMS. However, the
combination of long prediction horizons, fast control updates,
and nonlinear system dynamics prevents most centralized
MPC formulations from being implemented in real time.
Hierarchical MPC [8] provides a good alternative to handle the
multitimescale nature of the problem and has long been devel-
oped and implemented in diverse applications, such as control
of microgrids [23], path planning [24], [25], and actuator
controls [11], [26]. However, this article primarily considers
hierarchical MPC approaches where MPC is used at multiple
levels of the hierarchy, making coordination between MPC
controllers critical. Hierarchical control with multiple levels
of MPC controllers has been investigated for applications
such as coordination of electricity generators [12], energy
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management in electric or hybrid vehicles [18], and thermal
management [27], in particular for aircraft [6], [7]. It should
be noted that the vast majority of existing works in theoretical
hierarchical MPC formulations are limited to linear system
models [7], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18] to provide guarantees such as recursive feasibility [10],
[12], [13] and stability [11], [13], [14], [15] and, thus, are not
directly applicable to this work considering nonlinear system
models.

One of the most distinguishing features among hierarchical
MPC approaches is the coordination mechanism used to ensure
coherent action between the upper and lower levels of the
hierarchy. A common choice is to have the upper level
controller compute reference trajectories to be tracked by the
lower level controllers. In [11], [13], [14], and [17], the lower
level deals with actuator dynamics, and therefore, the upper
level computes reference input trajectories that are states to be
tracked by the lower level. The work in [15] differs slightly
from this paradigm in that the upper level sends to the lower
level a piecewise constant reference signal that is part of the
lower level control input, augmented with the output of a
stabilizing linear controller. In [6] and [7], the upper level
MPC computes reference state trajectories to be tracked by
a lower level MPC. The reference tracking mechanism is
changed to waypoint tracking in [10], where the optimal state
computed by the upper level for its next time step is used
by the lower level MPC as a terminal state constraint. The
rationale behind this approach is to give the lower level more
freedom to optimize the short-term operation of the system
as opposed to the full reference tracking mechanism. This
rationale is extended in [9] by replacing the waypoints with
waysets as terminal constraints, which are computed online.
Here, the system is guaranteed to have a feasible trajectory
following the upper level reference trajectory if the lower
level terminal states lie within these waysets. This motivated
the work in [16], where each point in the wayset has an
associated terminal cost, efficiently computed online, which
removed some greedy behavior from the lower level controller
seen in [9].

Nonlinear MPC (NMPC) [28] is distinguished from linear
MPC (LMPC) by directly considering the nonlinear sys-
tem dynamics in the optimization problem formulation and
is mainly used in cases where an LMPCdoes not provide
satisfactory performance due to strong nonlinearities in the
system dynamics. The resulting nonlinear programs (NLPs)
are harder to solve compared to linear programs (LPs) or
quadratic programs (QPs) typically found in LMPC, for which
very efficient solvers exist. Therefore, NMPCalgorithms can
be classified according to the numerical optimization strategy
used to solve the underlying NLPs. In the so-called sequential
approach, only the control input trajectory is discretized,
and the states are obtained by simulation of the discrete
nonlinear system dynamics. Since the size of the resulting
NLP is considerably reduced, off-the-shelf NLP solvers, such
as Interior Point OPTimizer (IPOPT) [29], often can be
used [20]. However, such algorithms can behave poorly for
unstable or highly nonlinear systems and do not scale well
with the prediction horizon and the number of inputs [30].

Conversely, the simultaneous approach, where both the state
and input trajectories are part of the decision variables in
the NLP, tends to generate much larger and sparser NLPs
but can also handle unstable or highly nonlinear systems.
This approach also allows algorithms to leverage the structure
of the resulting NLPs. As pointed out in [20], numerous
techniques developed in the last decades, which explore the
structure of the resulting NLPs, have been essential to the
improvement of the speed and accuracy of NMPCalgorithms,
so as to enable their deployment in real time. However, the
implementation of many of these techniques is not trivial,
which is evidenced by the various software toolkits developed
by the research community to facilitate the use of efficient
NMPCmethods [21].

In searching for fast NMPCalgorithms that balance imple-
mentation complexity, ease of use, and computational speed,
this article explores the use of successive linearization (SL) as
an alternative method for the efficient solution of NLPs. SL has
found successful application in optimal control problems in
aerospace applications [31], [32], [33], [34], which often
involves the solution of problems with nonlinear dynamics
and nonconvex constraints in real time. The reader is referred
to [35] for a thorough review of SL concepts and algorithms.
One advantage of SL over some of the existing efficient
NMPCimplementations is that SL is relatively simple to imple-
ment and requires only the use of an efficient LP or QP solver.

As for the existing literature on FTMS control, the work
in [2] is particularly relevant for the careful thermodynamic
analysis of the potential advantage of considering a dual-
tank system, showing how this topology can extend thermal
endurance compared to a single-tank topology. The proposed
linear quadratic regulator (LQR) relies on the realization that
keeping the temperature of the fuel sent to the engine as close
as possible to the upper fuel temperature limit maximizes
heat rejection and, therefore, maximizes thermal endurance.
A more recent work [5] considered a dual tank topology
similar to the one adopted in this work, with an additional
valve that allows recirculation fuel to bypass the recirculation
tank and be directly mixed with the fuel from the reservoir
in the feed line. Huang et al. [5] propose a controller that
switches between four configurations optimized for specific
plant conditions, aided by PI controllers to accommodate for
uncertainties. The controllers in [2] and [5] have the advantage
of being less computationally expensive than MPC controllers.
However, in [3], it was shown how using LMPCcontrollers
supplied with a preview of future disturbances can make the
controllers act proactively and extend the thermal endurance,
such as precooling the fuel tank when a future increase in heat
load is expected, even if the preview is not perfect.

It is also important to note the contributions of works that
lie at the intersection of the major areas in Fig. 1. Huang and
Doman [4] extend the work in [2] by showing the advantages
of using a nonlinear optimal control formulation over the
LQR controller. Similar to this work, El Chamie and Lin [22]
used SL for NMPCof an aircraft FTMS but considered a
single-tank topology. Though the controller in [22] can be
considered as part of a hierarchy, only the lowest level
is considered, while, in this work, the complete hierarchy
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is considered, i.e., the upper and lower level controllers.
In addition, the two-tank FTMS model used in this work,
based on the model from [2], considers states in multiple
time scales, which adds to the complexity of the optimization
problems being solved. It should be noted though that El
Chamie and Lin [22] considered a time-varying mass flow
rate of fuel sent to the engine, whereas this work considers a
constant flow rate. Pangborn et al. [6] used linear hierarchical
MPC for coordinated control of several aircraft subsystems
including the FTMS. The authors show that the hierarchical
controller achieves far fewer constraint violations compared
to PI controllers while needing less control effort. Fewer
constraint violations were also reported in a similar work [7],
which includes the control of electrical subsystems, adding
to the multitimescale nature of the problem, and proposes
a modified MPC architecture, where the nonlinear system
dynamics for the upper level is replaced by a switched linear
system. The work in [19] is also closely related to this work,
where a two-level nonlinear hierarchical MPC was used for
the battery thermal management of an electric vehicle. The
focus of that study though was not to explore the use of
more efficient solution alternatives for the resulting NLPs,
and therefore, a general-purpose NLP solver, IPOPT [29], was
used.

The review of existing work in the major areas shown in
Fig. 1 shows that there is room for improvement of FTMS
control strategies for maximization of thermal endurance.
Given the requirements for fast update rates, long prediction
horizons, and systems constraints, hierarchical MPC is partic-
ularly well suited for this task. However, the use of linearized
system models limits the ability to maximize closed-loop
control performance. This work seeks to fill this gap by
proposing the use of NMPCat both levels and using an SL
algorithm to solve the related NLPs efficiently. This work is
an extension of [1], where the lower level controller considered
linearized dynamics. In addition, a more complete model of
the FTMS is used, which includes additional states and an
actuator. The new model contains a fast state, which adds to
the multitimescale nature of the problem, reinforcing the need
for a hierarchical control structure.

Therefore, the main contributions of this article are:
1) presenting a fully nonlinear hierarchical MPC framework
for systems with multiple timescales that uses SL to compute
solutions to the underlying NLPs in real time and 2) demon-
strating that the aircraft FTMS thermal endurance maximiza-
tion problem can be solved in real time using a controller
architecture that takes into account the full nonlinear behavior
of the system model, i.e., without resorting to linearized
models. The proposed control formulation is applied to an
aircraft FTMS, but the authors believe that the same concept
can be applied to other control applications with timescale
separation and nonlinear dynamics, such as the control of
microgrids, coordination of electricity generators, and energy
management in electric or hybrid vehicles.

The remainder of this article is organized as follows.
Section II introduces the FTMS model. Section III presents
the proposed nonlinear hierarchical MPC and other controller
formulations considered in this article. Section IV details

Fig. 2. Dual-tank FTMS architecture modified from [2].

the SL approach used for nonlinear optimization. Section V
presents numerical results comparing the proposed hierarchical
control framework with the alternative approaches. Finally,
conclusions and directions for future work are provided in
Section VI.

Notations: Subscript k is used for indexing times steps
within the prediction horizon of the optimization problems.
Superscript j refers to the value of a variable at the j th
iteration of the SL algorithm. When not followed by a sub-
script, N refers generically to the prediction horizon of an
MPC controller, as applicable to the context where it appears.
Likewise, �t without a subscript refers generically to the
sampling time used in a controller formulation. The variable
X = {x0, x1, . . . , xN+1}, with xk ∈ Rn, refers to a state
trajectory, U = {u0, u1, . . . , uN }, with uk ∈ R

nu , to a sequence
of inputs, D = {d0, d1, . . . , dN }, with dk ∈ R, to a disturbance
trajectory, and S = {s0, s1, . . . , sN }, with sk ∈ Rn , to a slack
variables trajectory. The variables n and nu refer to the state
and input dimensions, respectively.

II. FUEL THERMAL MANAGEMENT SYSTEM MODEL

While different FTMS architectures have been studied, each
system: 1) uses pumped fuel flow to collect thermal energy
from various heat sources; 2) removes part of the thermal
energy from the aircraft by burning a portion of the heated
fuel in the aircraft’s engine(s); and 3) can cool some of
the remaining fuel flow before returning to the fuel tank(s),
which serve as thermal energy storage. The specific FTMS
architecture used in this article is shown in Fig. 2 and has
similar dynamic behavior to the dual-tank system from [2].
In this architecture, fuel drawn from a recirculation tank
(Tank 1) and a reservoir tank (Tank 2) is sent to the feed line
and absorbs heat from the heat exchanger, which represents
heat loads from the full authority digital engine controller
(FADEC), the vapor cycle system (VCS), engine, and fuel
pump. Some of the heated fuel is sent to the engine, while
the remaining is fed to the recirculation loop. Finally, fuel can
be either sent to the Ram air cooler or bypass the cooler to
return to Tank 1 or Tank 2. The derivation of the dynamic
FTMS model in this section largely follows the development
in [2] with the following differences: one additional actuator
and two additional states are considered, corresponding to the
return fuel mass flow rate to Tank 2, the fuel temperature in
Tank 2, and the temperature of fuel exiting the heat exchanger.
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The proposed model has five states corresponding to the
mass of fuel in the recirculation tank, M1, the mass of fuel in
the reservoir tank, M2, the fuel temperature in the recirculation
tank, T1, the fuel temperature in the reservoir tank, T2, and the
fuel temperature at the output of the heat exchanger, Tho . The
pumped fuel mass flow rate ṁ f and the mass flow to the engine
ṁe are assumed constant, and the recirculation flow rate ṁr

is given by ṁr = ṁ f − ṁe. While the assumption of constant
flow rates may seem restrictive, it allows the numerical results
in Section V to best highlight the effects of control decisions
made by different controllers without the complications of
time-varying engine mass flow rates.

The openings of the three three-way proportional valves
create three control inputs: α that denotes the fraction of
pumped fuel coming from Tank 1 such that ṁ1 = αṁ f ; β
that determines the fraction of fuel in the recirculation loop
that goes through the Ram air cooler; and γ that is the fraction
of the fuel in the recirculation loop that returns to Tank 1 such
that the inlet mass flow rates to Tank 1 and Tank 2 are given
by

ṁ1,i = γ (ṁ f − ṁe)

ṁ2,i = (1 − γ )(ṁ f − ṁe).

From the conservation of mass, the ordinary differential equa-
tions (ODEs) governing the mass of fuel stored in each of the
two tanks are

Ṁ1 = (γ − α)ṁ f − γ ṁe

Ṁ2 = (1 − γ )(ṁ f − ṁe) − (1 − α)ṁ f .

From the conservation of energy and the modeling assump-
tions from [2], the ODEs governing the fuel temperatures in
Tanks 1 and 2 are

Ṫ1 = γ
(ṁ f − ṁe)

m1
· [Tho − T1 − β(1 − eNTU/β)(Tho−Tw)

]
Ṫ2 = (1 − γ )(ṁ f − ṁe)

m2

·[Tho − T2 − β
(
1 − eNTU/β

)
(Tho−Tw)

]
where NTU is the negative of the number of heat transfer units
for the Ram air cooler and Tw is the cold side wall temperature.
Both NTU and Tw are assumed constant.

The ODE for the temperature of the fuel at the output of
the heat exchanger, Tho , is

Ṫho = − ṁ f

Mhx

[
Tho + αT1 + (1 − α)T2

] + Q̇in

Mhxcv

where Mhx is the mass of fuel present in the hot side of the
heat exchanger, which is assumed constant.

As described in [2], Q̇in is the total heat load from several
sources and is defined as

Q̇in = Q̇F + Q̇hv
+ Q̇he + (

Pp + KQh ṁ f
)

where Q̇F , Q̇hv
, and Q̇he are the heat loads from the FADEC,

the VCS, and the engine lubrication system, respectively. The
term (Pp + KQh ṁ f ) refers to the heat from the fuel pump,
assumed to be a linear function of ṁ f .

Fig. 3. (a) Centralized and (b) hierarchical closed-loop control schemes with
corresponding sampling time �t and prediction horizon N . XMPC refers
to any of the centralized controllers: LMPC, NMPC, or SLMPC. In the
H-SLMPC, UPPER refers to the upper level controller and LOWER to the
lower level controller.

Combining these equations, the overall nonlinear dynamics
of the system can be generically written as

ẋ = f (x, u, d) (1)

where x = [M1 M2 T1 T2 Tho ]� and u = [α β γ ]�. The
disturbance d = Q̇hv

is defined to allow for a time-varying
heat load from the VCS, which will be used in Section V.

III. CONTROLLER FORMULATIONS

This work proposes a new hierarchical NMPCformulation,
which is based on SL (H-SLMPC), to solve the thermal
endurance maximization problem. In Section V, the perfor-
mance of the proposed H-SLMPC controller is compared to
three baseline controllers: a centralized NMPC, a centralized
LMPC, and a centralized SL MPC (SLMPC). Fig. 3 shows a
schematic representation of each controller, while the remain-
der of this section details the overall structure of the controllers
and the corresponding optimization problem formulations.

The MPC controllers presented in this section are for-
mulated with a receding horizon for notational simplicity.
However, the results shown in Section V are based on a
slightly modified controller implementation that considers a
shrinking horizon. Mission-driven control problems, such as
the FTMS thermal endurance maximization, can benefit from a
shrinking horizon since the controller is expected to operate for
a limited amount of time, i.e., for the duration of the mission,
and cannot operate indefinitely due to the monotonically
decreasing mass of fuel. The technical details for formulating
an MPC controller with a shrinking horizon are provided
in [10].

A. Baseline Controllers

1) NMPC: This controller solves the following centralized
NMPCoptimization problem at each time step.

Problem 1 [NMPC (Baseline Controller)]:

min
X,U,S

�(U, S) (2a)

s.t. ∀k ∈ [0, N1 − 1]

xk+1 = xk + �t1 f (xk, uk, dk) (2b)

u ≤ uk ≤ ū (2c)

x − sk ≤ xk ≤ x̄ + sk (2d)

0 ≤ sk ≤ sk+1. (2e)
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Here, the total cost is given by

�(U, S) =
N1−1∑
k=0

�1(uk, uk+1) +
N1∑

k=0

�2(sk)

where

�1(uk, uk+1) =
{

||u0 − u−1||1, k = 0

||uk+1 − uk ||1, k > 0
(3a)

�2(sk) = ws ||sk ||1 (3b)

with ws as a weight applied to prioritize minimizing the
slack variables relative to the rate-of-change of the inputs.
The variable u−1 is the control action taken at the previous
time step. Equation (2b) refers to the nonlinear dynamics
model described in Section II discretized using a forward Euler
approximation, (2c) constrains the inputs, and (2d) introduces
slack variables on the state constraints that are penalized
in the objective function. Inequality constraint (2e) ensures
that the slack variables are monotonically increasing, which
encourages the controller to delay the constraint violations as
much as possible, thereby maximizing the thermal endurance.
Due to (2b), the resulting problem is an NLP. It should be
noted that the objective function �(U, S) is tailored to the
FTMS thermal endurance maximization problem, but the SL
method used in this work is applicable to problems with
general objective function definitions [35].

2) LMPC: The LMPC uses a linear time-invariant (LTI)
version of the dynamics (2b) used by the NMPC. The LTI
model used in (4b) is obtained by linearizing (1) around a
specific point and discretizing using a forward Euler approxi-
mation, to be consistent with the discretization approach used
in (2b). The resulting centralized linear optimization problem
is shown as follows.

Problem 2 [LMPC (Baseline Controller)]:

min
X,U,S

�(U, S) (4a)

s.t. ∀k ∈ [0, N1 − 1]

xk+1 = xk + �t1[Axk + Buk + Wdk + c] (4b)

u ≤ uk ≤ ū (4c)

x − sk ≤ xk ≤ x̄ + sk (4d)

0 ≤ sk ≤ sk+1. (4e)

Here

A = ∂ f (x, u, d)

∂x

∣∣∣∣
(x0,u−1,d0)

(5a)

B = ∂ f (x, u, d)

∂u

∣∣∣∣
(x0,u−1,d0)

(5b)

W = ∂ f (x, u, d)

∂d

∣∣∣∣
(x0,u−1,d0)

(5c)

c = f (x0, u−1, d0)−Ax0−Bu−1−Wd0. (5d)

Note that, to improve the LMPC’s prediction capabilities, the
matrices in (5) are recomputed at every iteration based on the
currently available state, input, and disturbance vectors.

The linearized dynamics (4b) make Problem 2 an LP,
which can be solved much more efficiently than the NLP from

Problem 1. However, as shown in [1], an LTI model of the
FTMS may generate very large prediction errors in tempera-
ture. For the three-state model considered in [1], temperature
prediction errors on the order of 70 K were reported over a
long prediction horizon. Even if, in some cases, the prediction
errors may cause the LMPC to act conservatively such that
the resulting thermal endurance is satisfactory, in other cases,
the errors may lead the controller to achieve very poor and
unacceptable performance. In [1], the thermal endurance
achieved by a similar LMPC was approximately 28% less than
that achieved by a similar NMPC in a scenario with a known
time-varying disturbance.

3) SLMPC: Following the approach from [36], as described
in more detail in Section IV, the SLMPC controller iteratively
solves the following centralized linear optimization problem
at each time step.

Problem 3 [SLMPC (Baseline Controller)]:

min
X,U,S

�(U, S) (6a)

s.t. ∀k ∈ [0, N1 − 1]

xk+1 = xk + �t1[Ak xk + Bkuk + Wkdk + ck] (6b)

u ≤ uk ≤ ū (6c)

x − sk ≤ xk ≤ x̄ + sk (6d)

0 ≤ sk ≤ sk+1 (6e)∥∥xk,s − x∗
k,s

∥∥∞ ≤ δ( j). (6f)

Here

Ak = ∂ f (x, u, d)

∂x

∣∣∣∣
(x∗

k ,u∗
k ,dk )

(7a)

Bk = ∂ f (x, u, d)

∂u

∣∣∣∣
(x∗

k ,u∗
k ,dk )

(7b)

Wk = ∂ f (x, u, d)

∂d

∣∣∣∣
(x∗

k ,u∗
k ,dk )

(7c)

ck = f (x∗
k , u∗

k , dk)−Ax∗
k −Bu∗

k−Wdk (7d)

where x∗
k and u∗

k are vectors of the reference state (X∗) and
input (U∗) trajectories, while dk are vectors of the disturbance
trajectory D provided to the controller. The variable xk,s refers
to the scaled version of the state trajectory at time step k,
and x∗

k,s is the corresponding variable from the reference state
trajectory. The variable δ( j) is the trust radius at iteration j of
the SL algorithm. The use of scaled variables in (6f) ensures
that each dimension of the state vector has approximately
the same weight in the computation of the infinity norm.
This, in turn, ensures that deviations from the reference state
trajectory are constrained uniformly. The variables X∗, U∗, D,
and δ( j) are given as input parameters to Problem 3, and the
details of how they are computed are given in Section IV.

Note the two differences between Problem 2 and
Problem 3: 1) the linearized dynamics from (6b) and (7)
are now time-varying over the prediction horizon and
2) Problem 3 contains a trust-region constraint (6f). The
resulting optimization problem is an LP, solved once at each
iteration, and, therefore, benefits from the availability of effi-
cient solvers. Even so, it is important to note that the iterative
procedure adopted by this controller aims at finding a solution
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that is also a local minimum of Problem 1. That is, the
iterative procedure seeks a solution to an NLP by solving a
sequence of much simpler to solve LPs.

B. Proposed Controller—H-SLMPC

The H-SLMPC differs from other controllers by applying
a hierarchy of two controllers, as shown in Fig. 3. Each
controller in the hierarchy uses the same iterative procedure as
the SLMPC to solve a nonlinear optimization problem based
on Problem 1.

The upper level controller updates at a relatively slow rate
compared to the lower level, which allows it to use a long
prediction horizon. While solving Problem 3 exactly as the
SLMPC, the upper level controller does not apply the resulting
control action directly to the system. The role of the upper
level controller is to provide the lower level with guidance
on regions of the state space that should be achieved in
the short-term such that long-term optimality and constraint
satisfaction is preserved. This guidance is provided through
a waypoint, which is typically the first predicted point in
the state trajectory of the optimal solution computed by the
upper level controller [10]. If X∗ is the state trajectory from
the solution obtained by the upper level controller, then the
waypoint is given by

xwp = x∗
1 . (8)

Since the upper level computes a new solution at every �t1, the
currently active waypoint is updated accordingly. The actual
implementation in the following numerical simulations uses a
waypoint defined as xwp = x∗

2 , which is slightly different from
(8) for reasons discussed in detail in Section V-C2.

The lower level controller updates at a faster rate, which pro-
vides better high-frequency disturbance rejection compared to
the upper level controller. The fast update rate usually requires
the lower level controller to use a short prediction horizon.
Since the actual control action applied to the plant comes
from the lower level, there is a clear need for guidance from
the upper level through the waypoint mechanism. This allows
the H-SLMPC as a whole to be able to reject high-frequency
disturbances while seeking optimal operation in the long term.
To compute the control action at each time step, the lower level
controller applies the SL algorithm to solve a slightly modified
version of Problem 3, with an additional waypoint-tracking
terminal constraint, as detailed in the following.

Problem 4 [H-SLMPC (Proposed Controller)]:

min
X,U,S

�(U, S) + wwp||swp||1 (9a)

s.t. ∀k ∈ [0, N2 − 1]

xk+1 = xk + �t2[Ak xk + Bkuk + Wkdk + ck] (9b)

u ≤ uk ≤ ū (9c)

x − sk ≤ xk ≤ x̄ + sk (9d)

0 ≤ sk ≤ sk+1, (9e)

||xk,s − x∗
k,s ||∞ ≤ δ( j) (9f)

− swp ≤ (
xN2 − xwp

) ≤ swp. (9g)

Here, swp is the slack from the terminal state to the current
waypoint xwp, and wwp is a weighting term that penalizes

these deviations. Note the use of a different prediction horizon
N2 and sampling time �t2 compared to the upper level
controller and centralized controllers. More details on the
waypoint coordination mechanism and its implementation with
a shrinking horizon can be found in [10].

IV. SUCCESSIVE LINEARIZATION

SL, which can be considered part of a broader class of
NLP algorithms known as sequential convex programming
(SCP) [34], is a technique for solving the NLP resulting from
an NMPCformulation. This is done by iteratively linearizing
the nonlinear constraints and objective function around a
given candidate system trajectory and solving the resulting
convex program (Problem 3 or Problem 4) until convergence
is achieved. While there are different variants of SL-based
algorithms, the approach used in this work is most closely
related to the SCvx algorithm in [36]. Algorithm 1 formalizes
the specific implementation used in this work at a high level,
while the details are discussed throughout this section.

In the remainder of this section, the superscript ∗ refers to
the variable value from the last valid iteration, which is an
iteration for which the solution to Problem 3 or Problem 4
was not rejected. Reference input and state trajectories are the
results of valid iterations and, therefore, are designated by
U∗ and X∗, respectively. The objective function value of the
solution to the linearized problem (Problem 3 or Problem 4)
at the current iteration is given by L. The variables Xl and
Sl refer to the state and slack trajectories obtained from the
solution to the linearized problem, while Xnl and Snl refer
to the corresponding trajectories obtained from the original
nonlinear dynamics. The objective function value computed
using the actual input and state trajectories of the current
iteration, (Unew, Xnl), is given by J . The initial guess for the
reference input trajectory is U0.

A. Computation of a Reference System Trajectory

Algorithm 1 (Lines 2 and 9): In this step, the pre-
dicted system trajectory is computed based on the nonlin-
ear discrete-time dynamics (2b) given an initial state x0,
a sequence of inputs U, and a sampling time �tref. This
results in a corresponding state trajectory X, a slack variables
trajectory S, which captures the state constraint violations at
each time step, and the associated true objective function
cost J ∗ (Line 2) or J (Line 9). Note that �tref used to
compute the reference trajectory must be small enough, such
that the forward Euler discretization is still stable, and does
not necessarily match the controller sampling time. See the
Appendix for more details. In this work, a value of �tref = 2 s
was used for SL-based controllers.

Much like any other algorithm for solving NLPs, the SL
method might converge to a local minimum, which depends
on the initial guess provided. In this case, the initial guess is
given by the initial reference trajectory U0, which, together
with x0, allows the computation of the initial reference state
trajectory and slack variables.
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Algorithm 1 SL

B. Computation of Linear Time-Varying (LTV) System
Matrices From a Reference Trajectory

Algorithm 1 (Line 6): In this step, the current refer-
ence state and input trajectories (X∗, U∗) are used to obtain
the discrete-time LTV system matrices based on (7). The
discrete-time LTV model matrices are grouped as follows:

A = {Ak, k = 0, . . . , N} (10a)

B = {Bk, k = 0, . . . , N} (10b)

W = {Wk, k = 0, . . . , N} (10c)

C = {ck, k = 0, . . . , N}. (10d)

If the sampling time �tref used to obtain the reference state
and input trajectories is smaller than the controller’s sampling
time, the procedure outlined in the Appendix is used to obtain
the LTV model matrices for the controller.

C. Solving the LP

Algorithm 1 (Line 8): In this step, the algorithm calls an
external LP solver using the current reference state trajectory
X∗, the matrices that represent the LTV model (A, B, W,
and C), and the current trust radius δ( j). The solver will
return the new input Unew, the computed state trajectory
for the linearized system Xl , and slack variables Sl for this
trajectory. These result in the new objective function value L
for the linearized problem. Though these values are exact for
the linearized system dynamics, they are approximations of the
original nonlinear dynamics. The actual values, considering the
nonlinear dynamics, will be obtained in Line 9 using Unew and
(2b) to compute Xnl, Snl, and J .

D. Stopping Condition
Algorithm 1 (Line 10): One of the factors that distinguish

different SCP algorithms is the condition used to decide
when iterations have converged to an acceptable solution and,
therefore, stop the iterative process [35]. In this work, the
following stopping condition is used:

C1 AND (C2 OR C3 OR C4) (11a)

where

C1 = j ≥ jmin (11b)

C2 = max
k

||x∗
k,s − xk,s ||∞ ≤ ε3, k = 1, . . . , N (11c)

C3 = J ∗ ≤ ε1 (11d)

C4 = |�L| ≤ ε2 (11e)

where �L = J ∗ − L measures the improvement predicted by
the linear optimizer. Here, (11b) ensures that the algorithm
will run a minimum number of iterations. Condition (11c)
detects whether changes in the state trajectory at the current
iteration are sufficiently small to stop and is suggested in [35]
when the cost function depends on the inputs. Conditions (11d)
and (11e) were included to handle cases where numerical
precision issues could lead to inconsistency: if the algorithm
were allowed to proceed to the next iteration with very low
values of J ∗ or |�L| at the current iteration, numerical errors
in the model or in the solver solution at the next iteration could
have created situations where �L < 0, causing the algorithm
to fail. The values used for the parameters jmin, ε1, ε2, and
ε3 are provided in Section V-D.

E. Trust-Region Update

Algorithm 1 (Line 13): For SL methods, iteratively solving
the optimization problem using LTV models can effectively
identify local optima of the original nonlinear optimization
problem as long as solutions to the linearized problem do
not deviate significantly from the reference trajectory used
for the linearization. Therefore, deviations are bounded by
the parameter δ in (6f) and (9f). The trust-region created by
δ should be small, to minimize linearization error, but large
enough to achieve convergence in a few iterations. Since this
tradeoff depends on the nonlinearity in the system model and
the effect of this nonlinearity on the cost function, Line 13
implements Algorithm 2, using the formulation defined for
the SCvx algorithm in [36], to adapt the trust-region size δ( j)

used in (6f) and (9f) at each iteration of the SL algorithm.



1172 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 3, MAY 2023

Algorithm 2 Trust-Region Update

Based on the latest solution (Xl, Unew) to the linearized
optimization problem (Problem 3 or Problem 4), the improve-
ment over the last valid solution is computed. This is done for
the improvement planned by the solver, �L, and for the actual
improvement, �J = J ∗ − J . Except when numerical errors
are significant, which are handled according to the procedure
described in Section IV-D, the definition of the linearized
optimization problems ensures that �L ≥ 0 at every iteration.
This fact results from an important characteristic of the LTV
approximation of the nonlinear dynamics: if uk = u∗

k , then the
approximation is exact, and xk = x∗

k for all k = 0, . . . , N .
Therefore, in the worst case, the solver can find a solution
where this condition holds and L = J ∗. Otherwise, a better
solution is found where �L > 0. This fact, though, does
not guarantee that the actual improvement �J is nonnegative.
In Algorithm 2, with ρ0 = 0, when �J < 0, the current
iteration is rejected since the linearized problem does not
seem to approximate the original problem well enough. If,
otherwise, �J > 0, this is considered a valid iteration, where
a better solution, considering the nonlinear dynamics, was
found, and the current valid objective function value J ∗ is
updated, as well as the current reference trajectories (X∗, U∗).
Meanwhile, the trust radius δ is updated according to ρ,
the relative magnitude between �J and �L. If ρ < ρ1,
it is considered that the actual improvement is low enough
compared to �L such that a reduction in the trust radius is
necessary to avoid “overstepping” in the next iteration [35].
If ρ1 < ρ < ρ2, �J and �L are close enough to justify
maintaining the current trust radius. Finally, if ρ ≥ ρ2, the
actual improvement was considerably greater than expected by
the optimizer, and the trust radius can be increased to allow
for larger steps and faster convergence.

It should be noted that the trust-region has an important
role in addressing the issues of “artificial unboundedness” and
“artificial infeasibility” introduced by the linear approximation

TABLE I

SYSTEM PARAMETERS

of the dynamics in Problem 3 and Problem 4. The reader is
referred to the excellent tutorial on SCP methods in [35] for
a discussion on these issues and how they motivate the use
of the trust region. The values used for the parameters ρ0, ρ1,
ρ2, α, and δ0 are provided in Section V-D.

V. NUMERICAL EXAMPLES

All the numerical results in this article were generated
using MATLAB and YALMIP [37] on a desktop computer
with a 3.2-GHz i7-8700 processor and 16 GB of RAM. NLP
problems for the NMPC were solved with IPOPT [29], while
all LP optimization problems were solved with Gurobi [38].
Based largely on the model used in [2], Table I shows the
values of the FTMS model parameters in the equations leading
to (1).

A. Test Cases
Three different test cases are proposed to compare the

controllers’ performance. In Case 1, the controllers are simu-
lated with the nominal conditions from Table I. In Case 2,
the large low-frequency disturbance shown in Fig. 4(a) is
applied. Here, a perfect preview of the entire disturbance
profile is provided to the controllers. This is intended to
test long-term planning abilities under changing conditions.
Case 3 is used to test the controllers’ ability to reject high-
frequency measured disturbances, i.e., the controllers are
only aware of the current disturbance value, considering the
disturbance constant and persistent for the entire prediction
horizon. In the high-frequency disturbance case, the Qhv

heat
load assumes random values ranging from 20% to 170% of
the nominal value and changes every 10 s. A sample from this
disturbance profile is shown in Fig. 4(b).

It should be noted that, although the disturbance profiles
in Case 2 and Case 3 were artificially generated and real
disturbance profiles may look very different, the simulated
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Fig. 4. Profile of the low-frequency disturbance in Case 2 (upper) and sample
of the high-frequency disturbance in Case 3 (lower).

profiles here capture some of the core characteristics of the
disturbances expected in real missions. Average heat loads in
different mission phases can be drastically different, as sim-
ulated in Case 2, while rapid changes in heat loads can also
occur within a mission phase, as simulated in Case 3.

B. Performance Measure
While the ultimate goal of studying the proposed controllers

is the maximization of thermal endurance, this measure alone
may not fully capture the capabilities of each controller for
that purpose. A complementary metric is proposed here.

Average Temperature Violation (ATV):

ATV =
∑Nsim

k=0 �tsimvk

Tsim
(12a)

vk = |vT1,k | + |vT2,k | + |vTho ,k | (12b)

where Nsim is the total number of steps in the simulation, �tsim

is the simulation sampling time, and Tsim is the total simulation
time. The actual constraint violations for the temperatures at
time step k are given by vk . Each component is computed as

vTi ,k = max
(
(Ti − T̄i ), 0

) + max
(
(T i − Ti ), 0)

)
(13)

with Ti as a placeholder for T1, T2, or Tho and T̄i , T i for the
corresponding upper and lower bounds, respectively.

Fig. 5 shows an example that illustrates the usefulness of
the ATV. Here, Controller A has a smaller ATV compared to
Controller B, which is better, but also a misleadingly shorter
thermal endurance tA due to small constraint violations early
in the mission. Therefore, both thermal endurance and ATV
will be considered when comparing controller performance.

C. Control Horizon and Sampling Time Considerations
1) Centralized Controllers: Two factors determine the sam-

pling time to be used by the controllers, namely, the ability
to handle the high-frequency disturbance from Case 3 and
the stability and accuracy of the discretization scheme used
in the optimization problem formulation. In this application,
the high-frequency disturbance calls for a sampling time

Fig. 5. Illustrative example of how the thermal endurance alone may not
fully capture a controller’s capability in minimizing constraint violations.

TABLE II

CONTROLLER PARAMETERS

Fig. 6. Effect of increasing the prediction horizon N1 on the performance
of the SLMPC and NMPC when the high-frequency disturbances are applied
to the system (Case 2).

�t1 ≤ 10 s. Simulations performed with the complete FTMS
model in (1) show that significant discretization errors are
introduced when using �t1 > 2 s based on the forward Euler
discretization (2b) used in this work. This limit is imposed by
the heat exchanger output temperature state, Tho , which has
dynamics much faster than the other system states. This results
in the need for control of dynamics at different timescales,
which requires both a fast sampling time and a long prediction
horizon for good performance. However, for the LMPC and
SLMPC, the matrices of a model with a small sampling time,
�tref, can be combined to obtain a model with a sampling
time, �t1, larger than the limit imposed by the discretization,
as shown in the Appendix. Table II summarizes the values
used in the simulations.

For the prediction horizon, Fig. 6 shows the processing
times and performance of the SLMPC and NMPC considering
the sampling time defined for each for the most computation-
ally demanding scenario, Case 3. The controllers’ computation
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time exceeds their sampling times for N1 > 100 and N1 >
10 for the SLMPC and NMPC, respectively. Moreover, for
both controllers, there is a reduction in constraint violations
as N1 increases. Therefore, N1 = 100 will be used for the
SLMPC and N1 = 10 for the NMPC. Fig. 6 also suggests
that SL is indeed a better option for solving the NLPs arising
in NMPCcompared to the use of generic NLP solvers, such
as IPOPT, since the SLMPC seems to scale better with the
prediction horizon length. For the LMPC, even using a horizon
covering the whole mission profile, N1 = 1130, the maximum
computation time never exceeded the sampling time, and
therefore, this value was used in the simulations.

2) Hierarchical Controller—H-SLMPC: From Fig. 6, it can
be seen that solving Problem 3 with N1 = 100 takes less
than 10 s. Since this problem is also solved by the upper level
controller in the H-SLMPC, a sampling time �t1 = 100 s
will be used for this controller with a horizon N1 = 113. This
allows the upper level controller in the H-SLMPC to predict
through the whole duration of the mission while keeping the
computation times low enough for computation in real time.

Conversely, the lower level requires a small sampling time
and a short prediction horizon to cope with fast dynamics and
high-frequency disturbances. In [10], the prediction horizon
of the lower level (N2) is set such that the lower level
controller predicts up to the next update of the upper level
controller, i.e., N2 = (�t1/�t2), and the lower level controller
is formulated such that it follows a waypoint given by the
upper level by means of a terminal constraint. However,
Raghuraman et al. [16] show how a waypoint coordination
mechanism between the upper and lower level controllers
can induce greedy, short-sighted, behavior in the lower level
controller. An example is shown in Fig. 7(a), where the highly
oscillating behavior of the control inputs in some periods of
the simulation can be explained by the greedy behavior of the
lower level.

In [16], waysets with coordinating terminal costs computed
online are used to overcome such greedy behavior issues and
shown to work for linear systems, but the efficient online
computation of waysets is not yet possible for nonlinear
systems in general. In this work, this issue is handled with
the use of an extended horizon. Here, a shrinking horizon
is also used but with N2 = 2(�t1/�t2), and the waypoint
corresponds to the state predicted by the upper level two steps
ahead with xwp = x∗

2 [different from (8)]. This way, when
the lower level reaches the point where the upper level sends
a new waypoint, the lower level still has half of its original
shrinking horizon remaining, i.e., (N2/2) steps. At this point,
the lower level horizon is reset to the original length N2 and
starts to steer the system toward the new waypoint. This way,
any significant changes between subsequent waypoints can be
handled more smoothly since the lower level still has (N2/2)
steps to make the necessary adjustments to the control action.
Fig. 7(b) shows the response when using the extended horizon
for the same scenario simulated in Fig. 7(a). It can be seen that
the control response now is smooth, and effective coordination
between controllers is still achieved. A natural side effect of
using the extended control horizon in the lower level is the
increased computational effort associated with approximately

Fig. 7. Profile of H-SLMPC control inputs with (a) nonextended horizon
and (b) extended horizon when no disturbances are applied to the system.

twice as many decision variables in the optimization problem.
All H-SLMPC results in Section V-D make use of the extended
horizon for the lower level controller.

D. Controllers’ Performance Evaluation

This section compares the performance of all four con-
trollers in the test cases described in Section V-A. The
MPC-related controller parameters used are summarized in
Table II. It should be noted that, for the NMPC and SL-based
controllers, the initial guess provided by IPOPT and the SL
algorithm can have a considerable effect on the computation
time. To minimize the effect of the initial guess on the results,
for k > 0, the result from the previous time step is used
as the initial guess for the current step for both algorithms.
For the NMPC, IPOPT was called once before simulating the
first time step to obtain a reasonable initial guess. For the
SL-based controllers, a rough initial guess with a constant
input trajectory with uk = [0.7 0.7 0.7]T was used. Also, the
following SL-related parameters for the SL-based controllers
were used: jmin = 2, ε1 = 10−3, ε2 = 10−3, ε3 = 5 · 10−2,
ρ0 = 0, ρ1 = 0.25, ρ2 = 0.9, α = 2, and δ0 = 0.4.

Fig. 8 shows the trajectories obtained for the controllers
in each scenario. The columns of this figure correspond to
the three different test cases, while the rows correspond to
the four different control approaches. Each set of results
has three subplots, where the control decisions of the three
three-way valves are present on top, the fuel mass in the two
tanks in the middle, and the fuel temperatures in the tanks
and outlet of the heat exchanger on the bottom. Consistent
with the results in [2], in general, the H-SLMPC tries to
increase the temperature T1 up to the upper limit early in the
mission. This allows the system to send a larger fraction of
the hotter fuel from Tank 1 to the engine most of the time,
maximizing heat rejection. This behavior is reproduced by
the LMPC, which also has a prediction horizon that spans
the whole mission. Conversely, the NMPC and SLMPC, with
their short horizons, cannot predict far enough to make good
decisions and, therefore, have temperature violations much
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Fig. 8. State and input trajectories of all four controllers for the three test cases. The horizontal dashed lines in the temperature plots show the upper limits
of 421 K for Tho and 333 K for T1 and T2, while the vertical dashed lines show the thermal endurance.

earlier. This difference between the controllers with short and
long horizons can also be seen with respect to how they use
the Ram air cooler: the H-SLMPC and LMPC tend to keep

β = 1.0 throughout the mission, while the NMPC and SLMPC
controllers waste the opportunity to remove heat from the
system at the beginning of the mission by leaving β with a
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Fig. 9. Number of SL iterations until convergence for Cases 1–3.

Fig. 10. Performance comparison of the controllers for Cases 1–3. The computation times are normalized with respect to each controller’s sampling time.

lower value. Also, in Cases 1 and 2, toward the end of the
mission, the H-SLMPC controller decreases γ to direct more
of the hot fuel in the recirculation loop to Tank 2. This prevents
T1 from violating the constraint early. A very undesirable
feature of the LMPC is the highly oscillatory behavior that
occurs once constraints are violated although it uses the same
control input smoothing term in the objective function as used
by the other controllers.

In Case 2, the H-SLMPC plans and reacts to the foreseen
large changes in the heat load. Around 3000 s, when the
first large increase in the load hits the system, the controller
decreases α, thereby drawing more fuel from Tank 2. This
causes the mix of fuel being sent to the heat exchanger to
be cooler than before since, at this moment, T2 < T1, which
helps keep the temperatures below the predefined limit. The
SLMPC, in contrast, already has T2 > T1 when this first
increase in heat load is approaching. The controller does
slightly increase α and γ , drawing more fuel from Tank 1 and
increasing the amount of hot fuel sent to Tank 1. The small
prediction horizon though prevents the SLMPC from making
these changes more aggressively, and soon, around 5000 s,
the temperature constraints are violated. When the disturbance
switches to a low level around 4000 s, the H-SLMPC increases
α again to increase the fraction of hotter fuel from Tank 1 to be
sent to the engine. This compensates for the lower thermal load
and keeps T1 close to the limit, maximizing the heat rejection
of the system. Finally, before the heat load is increased again
at 8000 s, the controller reduces α to increase the fraction
of the cooler fuel from Tank 2 in the recirculation loop and
so precool the fuel in Tank 1, anticipating and avoiding a
temperature violation due to the sudden increase in the heat
load. The failure of the SLMPC in maximizing the thermal

endurance in Case 1 and Case 2 is highlighted by the almost
identical controller responses even though the heat load profile
from Q̇hv

changes drastically from one case to the other. For
Case 2, the LMPC presents a similar behavior to the
H-SLMPC, though with a less pronounced precooling around
8000 s, which seems to cause the early constraint violation
when the heat load is increased again. Overall, the same trends
observed for each controller in Case 1 and Case 2 are also
present in Case 3. With the high-frequency disturbance present
now, the control inputs from the controllers change more
frequently. The inputs from the SLMPC are less aggressive
compared to the H-SLMPC likely due to the fact that the
H-SLMPC tends to keep T1 closer to the upper limit, which
requires stronger actions to prevent a temperature violation.
Here, the LMPC, though with a long prediction horizon, fails
to prevent a constraint violation early in the simulation when
subject to the high-frequency disturbance. Fig. 8 shows how
keeping Tho below its upper bound does not seem to pose a
big challenge to the controllers. Constraint violations of this
state happen but, in general, well after the controllers are not
anymore capable of keeping T1 or T2 close to their upper
bound.

For the SL-based controllers, Fig. 9 shows the number of
iterations that the SL algorithm requires converging at each
time step for the three test cases. As the algorithm uses the
solution from the previous iteration as the initial guess for
the next iteration, in many time steps, very few iterations are
required for convergence, particularly in Cases 1 and 2. The
unknown disturbances in Case 3 naturally cause an increase in
the number of iterations since the optimal trajectory frequently
deviates considerably from the initial guess due to the frequent
disturbances.
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The overall performance of the controllers is summarized
in Fig. 10. The NMPC, with a very low prediction horizon,
consistently performs worse than other controllers. The LMPC
performs better than the SLMPC, except for the thermal
endurance in Case 3. Apparently, the much shorter horizon
of the SLMPC nullifies the potential benefits of solving an
NLP, as opposed to solving an LP with a long horizon with the
LMPC. Notably, the H-SLMPC has a better performance in all
aspects for all test cases: the difference in thermal endurance
compared to the next best controller ranges from 21% to 84%
through all test cases. For the ATV, the H-SLMPC performs
better by 37%–67%. As discussed earlier, the sampling time
of each controller was chosen such that they are real-time
implementable, which is confirmed in Fig. 10 (the only
exception is with the NMPC for Case 3, which has a maximum
computation time slightly above the sampling time). Fig. 10
essentially shows how the H-SLMPC captures the best char-
acteristics of the other controllers: it has a prediction horizon
covering the whole mission, solves optimization problems with
the full nonlinear model at each iteration, and uses very little
of the available computation time.

VI. CONCLUSION

A nonlinear hierarchical MPC framework was presented to
maximize the thermal endurance of aircraft through control
of the FTMS. Due to the multitimescale nonlinear dynamics
of this system and the need for long prediction horizons and
fast controller updates, an NMPCformulation solved using
general-purpose nonlinear programming solvers fails to effec-
tively maximize thermal endurance. Therefore, a nonlinear
hierarchical approach was proposed, where SL is used to
solve the nonlinear optimization problems for both the upper
and lower level controllers through iteratively linearizing
the dynamics and solving LPs. In a series of simulated
scenarios, the SL hierarchical MPC outperforms centralized
linear, nonlinear, and SLMPCcontrollers in terms of larger
thermal endurance, fewer constraint violations, and reduced
computational cost. Motivated by the practical performance
of SL hierarchical MPC, future work will focus on devel-
oping theoretical guarantees for robust constraint satisfaction
and additional applications exhibiting multitimescale nonlinear
dynamics.

APPENDIX

DERIVATION OF LINEAR MODEL WITH

SLOW SAMPLING TIME

This section shows how an LTV model with a slow sampling
time can be obtained from the matrices of a model with a
fast sampling time. Here, the superscripts s and f are used
for variables related to a model with slow and fast sampling
times, respectively.

Consider a discrete-time LTV model with slow sampling
time �t s , with k = 0, . . . , Ns

xk+1 = xk + �t s
[
As

k xk + Bs
k uk + W s

k dk + cs
k

]
= Ās

k xk + B̄s
k uk + W̄ s

k dk + c̄s
k (14a)

where Ās
k = (I + �t s As

k), B̄s
k = �t s Bs

k , W̄ s
k = �t s W s

k , and
c̄s

k = �t scs
k .

Similarly, consider the model of the same system with fast
sampling time �t f , with k = 0, . . . , N f

xk+1 = Ā f
k xk + B̄ f

k uk + W̄ f
k dk + c̄ f

k (15)

with Ā f
k = (I + �t f A f

k ), B̄ f
k = �t f B f

k , W̄ f
k = �t f W f

k , and
c̄ f

k = �t f c f
k .

Let r = (�t s/�t f ) be the ratio of the slow to the fast
sampling time, with r ∈ Z+. If, for the fast model, uk is
considered to be constant between corresponding updates of
the slow model, i.e., uk can only change its value at every r
step of the fast model, then the following relations are true:

Ās
k =

(k+1)·r−1∏
i=k·r

A f
i (16a)

B̄s
k = B̄ f

(k+1)·r−1

+
r−1∑
i=1

⎛
⎝ (k+1)·r−1∏

m=(k+1)·r−i

Ā f
m

⎞
⎠B̄ f

(k+1)·r−i−1 (16b)

W̄ s
k = W̄ f

(k+1)·r−1

+
r−1∑
i=1

⎛
⎝ (k+1)·r−1∏

m=(k+1)·r−i

Ā f
m

⎞
⎠W̄ f

(k+1)·r−i−1 (16c)

c̄s
k = c̄ f

(k+1)·r−1

+
r−1∑
i=1

⎛
⎝ (k+1)·r−1∏

m=(k+1)·r−i

Ā f
m

⎞
⎠c̄ f

(k+1)·r−i−1 . (16d)
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non-convex optimal control problems and its convergence properties,”
in Proc. IEEE Conf. Decis. Control (CDC), Dec. 2016, pp. 3636–3641.

[37] J. Löfberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in Proc. IEEE Int. Symp. Comput. Aided Control Syst.
Design, Sep. 2004, pp. 284–289.

[38] Gurobi Optimizer Reference Manual, Gurobi Optim., Houston, TX,
USA, 2021.

Daniel D. Leister (Graduate Student Member,
IEEE) received the B.Sc. degree in electrical engi-
neering and the M.Sc. degree in chemical engineer-
ing from the Universidade de São Paulo, São Paulo,
Brazil, in 2007 and 2014, respectively. He is cur-
rently pursuing the Ph.D. degree in mechanical
engineering with The University of Texas at Dallas,
Richardson, TX, USA.

From 2007 to 2019, he worked on industrial
automation systems at ABB Ltda, São Paulo. His
current research involves the development of hierar-

chical and robust nonlinear model predictive control techniques.

Justin P. Koeln (Member, IEEE) received the
B.S. degree in mechanical and aerospace engineer-
ing from Utah State University, Logan, UT, USA,
in 2011, and the M.S. and Ph.D. degrees in mechan-
ical science and engineering from the University
of Illinois at Urbana–Champaign, Champaign, IL,
USA, in 2013 and 2016, respectively.

He was an NSF Graduate Research Fellow and a
Summer Faculty Fellow with the Air Force Research
Laboratory, Wright-Patterson Air Force Base, OH,
USA. He is currently an Assistant Professor with

the Mechanical Engineering Department, The University of Texas at Dallas,
Richardson, TX, USA. His research interests include dynamic modeling and
control of thermal management systems, model predictive control, set-based
methods, and hierarchical and distributed control for electrothermal systems.

Dr. Koeln was a recipient of the 2022 Office of Naval Research Young
Investigator Award.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


