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Abstract— In this article, an adaptive two-degrees-of-freedom
current control algorithm for solenoids is presented comprising
an adaptive pole placement controller in combination with a reg-
ularized least-squares parameter estimation law. An additional
adaptive feedforward controller takes advantage of the estimated
plant parameters to further enhance the tracking performance.
The stability of the overall closed-loop system is rigorously
proven. The proposed solution differs from existing approaches
by the adaptive feedforward controller and the way the para-
meter estimation is performed. The control concept is applied
with the same controller parametrization to three solenoids from
different applications, with substantially differing parameters.
The experimental results show high tracking performance and
fast parameter convergence even with poor initial estimates and
despite the nonlinear dependence of the inductance on the current
and position. The experimental results are also compared to two
benchmark control design paradigms known from the literature,
i.e. a second-order sliding mode controller and a nonlinear model
reference adaptive control solution, which are both outperformed
by the proposed controller.

Index Terms— Adaptive control, least-squares identification,
solenoid control, two-degrees-of-freedom control.

I. INTRODUCTION

ADAPTIVE control can be used to mitigate control per-
formance degradation due to manufacturing tolerances.

In contrast to robust control, adaptive control aims at achiev-
ing high control performance even with varying, uncertain,
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or unknown system parameters. Moreover, adaptive control
allows for the same controller to be employed within a
class of structurally comparable systems. Due to the adaptive
scheme, no manual adjustment of the controller parameters is
necessary.

Parameter variations are common for solenoids, which are
widely used in pneumatic and hydraulic drive systems for
utility vehicles such as excavators and cranes as well as in
vehicle powertrains and braking systems, see, e.g., [1], [2],
[3], [4], [5]. In these applications, an adaptive controller can
be employed to alleviate individual tuning procedures for
different types of solenoid valves without compromising the
tracking performance.

In the literature, different control approaches such as clas-
sical proportional integral (PI) or PI derivative (PID) control,
internal model control (IMC), or sliding mode control (SMC)
were investigated for the current control problem of solenoid
valves. PID control and IMC are well-known standard control
methods, which result in equivalent output control structures
and are thus comparable in terms of their robustness and
tracking performance. The main idea of SMC is the robust
control of a system using a discontinuous feedback law, see,
e.g., [6], [7], [8], [9]. This approach can robustly handle
parameter variations, but typically requires a tailored tuning
for a given system to meet the high demands on the closed-
loop performance. High performance without individual tuning
can be achieved by using adaptive control.

The adaptive output feedback control design problem for
linear systems is well established and was solved in the late
90 s, see, e.g., the textbooks [10], [11], [12], [13]. Therein,
three main approaches are distinguished: The first one is model
reference adaptive control (MRAC) which is the adaptive
version of the well-known model reference control (MRC)
design. Here, the objective is to design a feedback controller
that seeks to eliminate the output error between a reference
model and the plant. The other two main approaches refer
to direct and indirect adaptive control [10]. In direct adaptive
control, the control parameters are adjusted directly to improve
the control performance. Direct adaptive control approaches
have the drawback that the parameters typically used for
adaptation can hardly be interpreted from a physical point
of view. In contrast, in indirect adaptive control, the plant
parameters are estimated online and the control parameters
are adjusted based on these estimates. These estimated plant
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parameters are not only instrumental for the parametrization
of the controller but can also be employed for fault diagnosis
and monitoring. New advances in hybrid and event-triggered
adaptive control have targeted specific system classes such as
systems with exogenous inputs in [14] or provided nonlinear
methods which are numerically more expensive compared
to classical control schemes, including the adaptive control
strategy proposed in this article, see, e.g., [15].

The main purpose of adaptive control is to achieve high
tracking performance despite unknown and/or changing sys-
tem parameters. A well-known strategy to improve tracking
performance is based on the idea of adding a feedforward
path to an existing feedback control algorithm. Feedforward
control is widely adopted, in particular in nonlinear adaptive
control based on feedback linearization, see, e.g., [12], [16].
In these approaches, the parameter adaptation is mostly based
on Lyapunov’s theory, which guarantees convergence from
a theoretical point of view but often results in an unsatis-
factory slow convergence behavior in practical applications.
Parameter adaptation based on least-squares methods ensures a
balanced convergence rate across all parameters, see, e.g., [15].
These methods exhibit faster (second-order) convergence than
typical Lyapunov-based approaches. Regularized recursive
least-squares algorithms, see, e.g., [17], [18], mitigate the
effect of noise on the parameter estimates by modifying
the objective function and thus the gain matrix update to
prevent the blow-up due to insufficient excitation [19], [20].
In recent works on robust least-squares system identification,
non-asymptotic confidence intervals were computed [21], [22],
[23], [24]. In addition, modifications of the least-squares
algorithm known from the literature can be used to account for
problem-specific challenges, such as structural uncertainties or
unknown constraints, see, e.g., [18], [25], [26].

A. Contribution

This article aims at presenting a flexible and high-
performance current control method for solenoids without
position measurements at low computational costs. In par-
ticular, an indirect adaptive two-degrees-of-freedom control
scheme for solenoids is presented. It consists of an adaptive
feedforward and feedback path to fully take advantage of
the estimated plant parameters. The plant parameters are
estimated using a regularized least-squares adaptation law.
Here, a reformulation and a modification of an adaptive
control scheme are proposed to avoid the practical prob-
lems encountered when using the classical approach known
from the literature, i.e. indirect adaptive control, see, e.g.,
[11], [12]. These modifications ultimately lead to a significant
improvement in the control performance while maintaining the
flexibility and ease of tuning of the original method.

The flexibility and the performance of the control scheme
are experimentally demonstrated using three different solenoid
types. Moreover, the proposed current control method is
experimentally compared to other benchmark control meth-
ods known from the literature. It is shown that a robust
second-order sliding mode controller requires retuning to
achieve adequate control performance across multiple solenoid

types. Furthermore, a nonlinear model reference adaptive
control method serves as a benchmark for the assessment of
the proposed control concept. It is demonstrated by the exper-
imental results that this benchmark controller is outperformed
by the proposed control scheme in both parameter convergence
and control performance.

Summarizing, the main contribution of this article is three-
fold: First, an indirect adaptive control strategy known from
the literature is reformulated to account for practical problems
and enhance parameter convergence. Second, the adaptive con-
trol strategy is extended by an adaptive feedforward controller.
The stability of the overall closed-loop system is proven.
Third, an experimental validation underlining the practical
value of the proposed control scheme is demonstrated by
comparing the performance with two benchmark controllers
from the literature.

B. Outline

The remainder of this article is organized as follows.
In Section II, the problem is stated and the model of the
solenoid current dynamics is presented. The adaptation frame-
work and the necessary filtering are discussed in Section III-A,
and the adaptive control law is given in Section III-B.
The main stability theorems are summarized in Section IV.
In Section V, two benchmark control approaches for the
considered application are presented. Experimental validation
and a comparison of the proposed control scheme with the
benchmark controllers are presented in Section VI, followed
by concluding remarks in Section VII. In Appendix A, the
stability proof of the adaptive two-degrees-of-freedom con-
troller is given and Appendix B contains the discrete-time
implementation of the constrained bounded-gain forgetting
least-squares algorithm, which is used for the parameter
adaptation.

II. PROBLEM FORMULATION

An adaptive current controller for solenoids is designed.
A key concern is the achievable control performance without
knowledge of the solenoid parameters. To reduce the costs,
only the current i is measured, whereas the plunger position
is not measured. Furthermore, since the nonlinear effects of a
solenoid strongly depend on the respective design, these effects
are not modeled.

Fig. 1 shows the simplified mechanical and electrical
schematics of a solenoid. The setup comprises the mov-
ing plunger and the magnetic core with the associated
coil. Both the plunger and the magnetic core are made
of highly-permeable material with a relative permeability
μr � 1. The coil of the electromagnet is attached to the core
and has N windings. Applying a voltage v to the terminals of
the coil results in a current i , which in turn yields a magnetic
field in the air gap g between the core and the position
of the plunger. The coil voltage is typically provided by a
high-side driver circuit. The generated pulsewidth modulated
(PWM) voltage signal switches between the supply voltage
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Fig. 1. Mechanical (a) and electrical (b) schematics of a solenoid.

vbat and 0 V. Mathematically, the PWM voltage reads as

v(t) =
{
vbat for, kTpwm < t ≤ (

k + δ
)
Tpwm

0 V for,
(
k + δ

)
Tpwm < t ≤ (

k + 1
)
Tpwm

(1)

for k = 1, 2, 3, . . . where 0 ≤ δ ≤ 1 is the duty cycle and
Tpwm is the fixed modulation period.

For the magnetic flux linkage

ψ = L
(
g, i

)
i. (2)

Faraday’s law yields

dψ
(
g, i

)
dt

= v−Ri (3)

with the inductance L(g, i) and the electrical terminal resis-
tance R. Substituting (2) in (3) results in the current dynamics(

L
(
g, i

) + ∂ L
(
g, i

)
∂i

i

)
︸ ︷︷ ︸

L̄

di

dt
= v −

(
R + ∂ L

(
g, i

)
∂g

ġ

)
︸ ︷︷ ︸

R̄

i .

(4)

In practice, L̄ and R̄ are unknown nonlinear functions of the
current i and the air gap g, which depend on the specific
solenoid design. Recall that the objective of this article is to
design an adaptive control strategy for (4) that exhibits the
same closed-loop performance independent of L̄ and R̄. Since
we do not have any information about the exact characteristics
of L̄ and R̄, we assume for the controller design that L̄ and
R̄ are unknown but constant. Note that this is a common
assumption in the context of adaptive control in the literature,
see, e.g., [27], [28] and the references therein. Thus, in the
following, we focus on the simplified controller design model

L̄
d y

dt
= u − R̄y (5)

with the average input voltage u(t) = vbatδ(t), the unknown
constant parameters L̄ and R̄, and the measured output current
y(t), which corresponds to the current i(t) averaged over one
modulation period.

Remark 1: It is worth noting that an adaptive controller
that ensures stability and the desired closed-loop performance
for (5) does not guarantee that this also holds true for (4).
However, in this work an adaptive two-degrees-of-freedom
control concept is presented where the feedforward part
strongly predominates over the feedback part of the control
input signal, see also the experimental results in Section VI-C.

Fig. 2. Overall adaptive control structure with the filter �a , the adaptive
feedfoward controller Cff , and the feedback controller Cfb.

This shows that the simplified model (5) together with the
proposed parameter estimation approach is able to closely
capture the dynamics of the original system (4). Note that it is
well known from the literature, see, e.g., [29], [30], that para-
meter estimation schemes based on least-squares concepts with
exponential forgetting exhibit certain robustness to unmodeled
nonlinear dynamics and time-varying parameters.

III. ADAPTIVE CONTROL CONCEPT

The proposed overall adaptive control structure is depicted
in Fig. 2. The input u and the output y are filtered by the linear
low-pass filter �a to generate the signals for the parameter
adaptation. The reference signal r , which is assumed to be
two-times continuously differentiable, specifies the desired
time evolution of the output current y. The estimated para-
meters ϑ are fed back to parametrize the feedforward and
feedback controller, denoted by Cff and Cfb, respectively. Note,
that we do not consider any disturbances affecting the plant
in our setting, shown in Fig. 2.

A. Adaptation Scheme

To compute the time derivative of the current y = x and
to mitigate high-frequency measurement noise and unmodeled
effects, (5) is filtered by the linear low-pass filter

�a(s) = λa

s + λa
(6)

with the Laplace variable s and the filter constant λa > 0. The
input-output behavior of the plant is preserved by filtering both
signals

ua = �au and ya = �a y . (7a)

To apply a recursive least-squares algorithm, the model (5)
is rewritten in the standard form with ua as the scalar least-
squares output, namely

ua = ϕTϑ∗ =
[

d
dt ya ya

][ L̄
R̄

]
(8)

where ϑ∗ ∈ R
2 is the true parameter vector and ϕ ∈ R

2 is the
regression vector

ϕ =
[

d
dt ya ya

]T
, ϑ∗ =

[
L̄ R̄

]T
. (9)
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Remark 2: In the classical formulation of adaptation algo-
rithms, the highest derivative of the system is chosen as the
adaptation output, i.e. ϕTϑ∗ = (d/dt)ia, see, e.g., [11], [12],
which simplifies the mathematical treatment. In this case,
the parameter vector reads as ϑ∗ = [1/L̄, R̄/L̄]T. Practical
experiments showed that the resulting coupling between the
inductance and resistance parameters drastically degrades the
estimation performance. Compared to other formulations,
in ϑ∗ of (9) the resistance and inductance can be estimated
independently. In particular, since the resistance can be esti-
mated in steady-state conditions, this formulation leads to a
significant improvement in the robustness of parameter drifts
caused by low excitation. Additionally, projection methods
can be employed to guarantee strict bounds on the individual
parameters.

Using the estimated parameter vector

ϑT =
[

L̂ R̂
]

(10)

the estimation error ε can be introduced, based on (8) and (10),
as

ε = ϕTϑ∗ − ϕTϑ

m2
= ua − ϕTϑ

m2
(11)

with the normalization factor m2 = 1 + ϕTϕ, see, e.g., [11].
Note that the normalization can be omitted if ϕ ∈ L∞, i.e.,
the vector function ϕ is essentially bounded. However, using
the normalization factor m the adaptation speed is normalized,
which facilitates parameter tuning of the adaptation algorithm.
In addition, to guarantee feasible limits of the parameter
estimates, such as positive values for the inductance and resis-
tance estimates, projection allows handling convex parameter
constraints ϑ ∈ S. Given a convex set S, the orthogonal
projection of ϑ on the set S is the solution to the optimization
problem

Pϑ
(
ϑ
) = arg min

v∈S
‖v − ϑ‖2

2 . (12)

One can define the projection of a vector z by, see [31]

�ϑ

(
ϑ, z

) = lim
η→0

Pϑ
(
ϑ + ηz

) − ϑ

η
(13)

with the convex set S = {ϑ ∈ R
2|g(ϑ) ≤ 0}, its boundary δS

and interior S◦. Herein the inequality g(ϑ) ≤ 0 describes the
set S in the parameter space. To estimate the parameter vector
ϑ , the so-called continuous-time constrained bounded-gain
forgetting least-squares algorithm from [17] is augmented with
the projection algorithm described above. Following similar
steps to those in [18], this yields

d

dt
ϑ = �ϑ

(
ϑ,Pϕε

)
, ϑ(0) = ϑ0 (14a)

d

dt
P = �P

(
ϑ, βP − P

ϕϕT

m2
P

)
, P(0) = P0I (14b)

with

�P
(
ϑ, ·) =

⎧⎨
⎩·, ifϑ ∈ S◦or

(
ifϑ ∈ δS and

(
Pϕε

)T∇g ≤ 0
)

0, otherwise .

(14c)

Herein, P is the positive definite gain matrix, ϑ0 and P0I > 0
are the initial conditions, and I denotes the identity matrix.
The (time-dependent) forgetting factor

β = βmax

(
1 − ‖P‖

Pmax

)
(14d)

with Pmax being an arbitrary positive constant, in (14b)
guarantees an upper and lower bound on the gain matrix P
and a maximum forgetting factor of βmax, see [17]. For a more
detailed analysis of least-squares adaptation algorithms, see,
e.g., [18], [32], further a practical implementation is given in
Appendix B. The upper bound on the norm of the gain matrix
can be specified by Pmax > 0. The parameters βmax, Pmax, and
the filter constant λa in (6) allow for an independent tuning of
the adaptation algorithm. Hence, strong filtering can be used to
suppress noise and filter unmodeled system dynamics. Anal-
ogous to a conventional discrete-time least-squares forgetting
factor λ ∈ (0, 1], see, e.g., [33], the continuous-time forgetting
factor can be found by βmax = (1 − λ)/Ts , with the sampling
time Ts , cf. (48e). The maximum gain Pmax allows limiting
the gradient of the estimated parameters.

B. Feedback and Feedforward Control

Using the certainty equivalence principle, adaptive pole
placement control, see, e.g., [11], allows to derive the adaptive
PI-feedback controller

ufb = k̂ pe + k̂i xc (15a)

ẋc = e (15b)

with the control error

e = r − y (16)

and the known reference signal r . The adaptive feedback
controller (15) constitutes a PI controller with time-varying
proportional and integral gains parametrized by adaptive pole
placement according to

k̂ p = L̂α∗
1 − R̂ and k̂i = L̂α∗

0 (17)

respectively, with constant coefficients α∗
1 > 0 and α∗

0 > 0.
To enhance the tracking performance, the adaptive feedforward
controller

uff = L̂ṙ + R̂r (18)

is introduced. Finally, the adaptive two-degrees-of-freedom
control input is given by

u = uff + ufb . (19)

Applying (19), with (15)–(18), to (5) and assuming that the
certainty equivalence holds, i.e. the estimated parameters L̂
and R̂ correspond to their real values L̄ and R̄, respectively,
the closed-loop error system

ë + α∗
1 ė + α∗

0 e = 0 (20)

is obtained. Clearly, with the constants α∗
0 and α∗

1 the
closed-loop poles of the error dynamics (20) can be chosen to
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achieve an exponentially stable behavior with a desired rate
of decay.

Now the feedforward and feedback control (19) with
(15)–(18) is combined with the parameter adaptation algo-
rithm (14) to form the overall adaptive control scheme of
Fig. 2.

IV. STABILITY PROOF IN A NUTSHELL

In this section, the main points of the stability proof of the
overall closed-loop system comprising adaptation, controller,
and plant are outlined. The only assumptions made are that the
ideal parameter vector ϑ∗ is constant and that the reference
signal r is sufficiently smooth, i.e., r, ṙ , r̈ ∈ L∞. Under
these assumptions, we can state Theorem 1, which guarantees
bounds on certain signals of the adaptation algorithm.

Theorem 1: The least-squares algorithm (14) guarantees
that

1) ε, ϑ̇,ϑ, εm,P ∈ L∞
2) ε, ϑ̇, εm ∈ L2

3) g(ϑ) ≤ 0 ,
with L2 being the space of quadratically integrable functions
and L∞ the space of essentially bounded functions.

Proof: The proof of Theorem 1 is similar to what
is shown in [11] and follows by analyzing the function
V = (ϑ − ϑ∗)TP−1(ϑ − ϑ∗). �
Finally, Theorem 2 establishes the asymptotic stability of the
overall adaptive control scheme of Fig. 2.

Theorem 2: For the parameter estimation algorithm pre-
sented in (14), all signals in the closed-loop adaptive two-
degrees-of-freedom control system (14)–(19) are uniformly
bounded and the control error e converges asymptotically to
zero.

Proof: The proof of Theorem 2 is performed in four steps.
1) First, the estimation error and control law are expressed

as a linear time-varying (LTV) system.
2) Second, exponential stability of the LTV system is

shown.
3) Third, the boundedness of all signals in the closed-loop

system is established by using the Bellman-Gronwall
lemma.

4) Finally, the control error convergence is proven using
Barbalat’s lemma.

More details of the proof are given in Appendix A. �
Remark 3: Assuming the persistence of excitation of the

regression vector ϕ, the adaptation algorithm converges expo-
nentially to the ideal parameter vector, see [18]. However,
for the convergence of the control error e neither persistence
of excitation nor convergence of the parameters to the ideal
parameter vector are necessary, as stated in Theorem 2.

V. BENCHMARK APPROACHES FROM THE LITERATURE

In the following sections, two benchmark control
approaches from the literature are presented and their
performance is compared with the adaptive two-degrees-of-
freedom control algorithm presented in this article. First,
in Section V-A, a second-order sliding mode controller is
given as an example of a robust control method commonly

Fig. 3. Photographs of the solenoids used for the experimental validation.

TABLE I

NOMINAL PARAMETERS OF THE SOLENOIDS OF FIG. 3

TABLE II

PARAMETERS USED FOR THE SLIDING MODE

CONTROLLER EXPERIMENTS

employed in solenoid control. Second, a model reference
adaptive controller serving as a benchmark for an adaptive
control method is discussed in Section V-B. In industrial
applications, further measures are taken to avoid practical
problems like parameter drift under steady-state conditions,
e.g. deadzone, dynamic normalization, or anti-windup, see,
e.g., [11, chap. 8] for more details. In the following, for
the sake of a fair and meaningful comparison, we refrain
from implementing such measures because they can be used
independently of the respective control method.

A. Second-Order Sliding Mode Controller

A second-order sliding mode controller with dynamic pole
placement is proposed in [6]. The control input

u = α1

√|σ(t)| sign
(
σ(t)

) + α0

∫ t

0

3
√|σ(τ)| sign

(
σ(τ)

)
dτ

(21a)

with the constant tuning parameters α0 > 0 and α1 > 0 and
the control error e(t) = r(t) − y(t) is used to stabilize the
sliding surface

σ(e) =
(

d

dt
+ λ0 − λ1|e|

)
e (21b)

with the constant tuning parameters λ1 > 0 and λ0 > 0. The
bounds |e| < emax and λ0 > λ1emax guarantee a stable closed-
loop system.
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Fig. 4. Experimental results of the sliding mode controller for solenoid A.
The values are normalized to iA and vbat , respectively.

B. Model Reference Adaptive Controller

As a benchmark for a well-known adaptive controller, the
nonlinear model reference adaptive control scheme from [12],
see also e.g., [34], is applied to (5), which yields

ϑ̇ = −λ
[

y
R̂y + L̂

(
ṙ + K pe

)]e (22a)

u = R̂y + L̂
(
ṙ + K pe

)
(22b)

with the control error e = r − y, the parameter estimate vector
(see Remark 2)

ϑT =
[
1/L̂ R̂/L̂

]
(23)

and the constant tuning coefficients K p > 0 and λ > 0,
respectively. The control law (22b) consists of a feedforward
part using the time derivative of the reference signal ṙ , a static
compensation of the estimated voltage caused by the resistance
of the solenoid, and a proportional control term. As stated in
the introduction, the control law is typically augmented by
an adaptation algorithm to guarantee a decreasing Lyapunov
function. Here, the commonly used quadratic functions lead
to a gradient-type adaptation law. Note, however, that in this

Fig. 5. Experimental results of the sliding mode controller for solenoid B.
The values are normalized to iA and vbat , respectively.

case the adaptation (22a) is driven by the control error e, rather
than the estimation error ε.

VI. EXPERIMENTAL VALIDATION

In this section, experimental results of the benchmark con-
trol approaches from Section V are presented and compared
with the adaptive control scheme proposed in this article.
For this purpose, three different solenoids, henceforth referred
to as solenoids A, B, and C, are used for the experiments,
see Fig. 3. The nominal current of solenoid A is denoted
by i A.

The three solenoids were taken from different fields of
application and feature different mechanical and electromag-
netic designs. In particular, solenoid A is used in a pres-
sure control valve, solenoid B is part of a pilot valve of
a hydraulic two-stage valve, and solenoid C is employed
in an automatic transmission gear. Hence, there are signif-
icant differences in their nominal resistance and inductance
parameters. Their nominal parameter values are given in
Table I.

All experiments were conducted on a dSpace MicroLab
Box at a sampling time of Ts = 1 ms and a modulation
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Fig. 6. Experimental results of the nonlinear model reference adaptive control
scheme for solenoid A. The values are normalized to iA .

period of Tpwm = 50μm. The current is sampled at a rate
of 10 μs and averaged over 100 measurements in order to
mitigate the effects of the current ripple caused by switching
the transistor. The battery voltage vbat is used with a calibrated
power electronics circuit to generate the PWM voltages across
the solenoid terminals.

A. SMC Experiments

In this section, experimental results of the SMC law
from [6], as outlined in Section V-A, are presented as a
baseline for comparing the proposed method with a common
approach in solenoid control. Figs. 4 and 5 show the experi-
mental results achieved by the control input (21a) applied to
the solenoids A and B. The tuning parameters are listed in
Table II for both cases.

The peaks in the current error at 3.1 and 5.7 s in Fig. 4
are a consequence of the lack of a feedforward part in this
control approach. This leads to a significant delay between
the reference and the controlled current, which causes large
control errors. The general performance of the well-tuned
sliding mode controller for solenoid A, however, is very
good. In contrast, Fig. 5 shows the experimental result for
the same sliding mode controller applied to solenoid B.
Even though the sliding mode controller is a robust control
approach, the control performance is severely degraded by
the poor tuning for this solenoid. In particular, the smaller
inductance results in overshoots and persistent oscillations
of the current. Furthermore, the nonlinearity of the solenoid
inductance leads to a larger control error at higher current
levels. It becomes clear from Figs. 4 and 5 that the sliding
mode controller provides good results when properly tuned,
but the performance may degrade significantly if retuning is
not possible.

Fig. 7. Estimated parameters of the nonlinear model reference adaptive
control scheme for solenoid A. The values are normalized to L A and RA ,
respectively.

B. Model Reference Adaptive Control Experiments

In this section, experimental results of the nonlinear model
reference adaptive control scheme from [12], as outlined in
Section V-B, are presented. Fig. 6 shows the solenoid current
and the control error of the algorithm from (22a) and (22b)
applied to solenoid A. The tuning parameters used in the
experiment can be found in Table III. The nominal parameters
of the solenoid are given in Table I. The reference trajectory
was selected to show the performance of the algorithm for
rapid setpoint changes and for periods with insufficient exci-
tation. During these periods at about 6 and 10 s the reference
signal is constant, hence, the inductance and the resistance
cannot be identified simultaneously. Additionally, the induc-
tance varies significantly with the different current levels of
the reference signal. This current- and position-dependence
of the inductance is an unmodeled nonlinear effect. The
current trajectory in Fig. 6 clearly shows that the adaptation
algorithm cannot estimate the inductance and the resistance
of the solenoid to achieve a satisfactory tracking performance.
During periods of low excitation, the gradient-based adaptation
law only converges slowly. Hence, in a steady state, the control
error is slowly reduced, but the reference is not reached even
after 1 s. The control error shows a large mean error with peaks
over 0.2 i A. Furthermore, the repeating reference signal at 11 s
is not improved as compared to the tracking performance with
the initial parameters at 0.1 s. Both cases show a peak error
of 0.15 i A.

Fig. 7 shows the estimated parameters of this experiment.
Note that according to (22a), the parameter vector is updated
proportionally to the control error. Hence, large control errors
are necessary for the parameters to converge, which makes this
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Fig. 8. Experimental results of the indirect adaptive two-degrees-of-freedom
control algorithm for solenoid A. The values are normalized to iA and vbat ,
respectively.

TABLE III

PARAMETERS USED FOR THE NONLINEAR MODEL
REFERENCE ADAPTIVE CONTROL EXPERIMENT

approach sensitive to model uncertainties such as the nonlinear
inductance effects. Furthermore, the parameter update has a
constant gain λ. These two properties lead to a fluctuating
update of the estimated parameters and rapid changes, when-
ever a large control error occurs. The estimated inductance
values and the lack of dynamic feedback lead to high current
overshoots.

As discussed in Section III-A, projection bounds cannot
be formulated tightly for the coupled parameter vector (23)
which leads to estimates exceeding the desired bounds Lmax

and Rmax. At 3 s the resistance exceeds the desired bound
of Rmax = 1.36 RA. During periods of low excitation at
6 and 10 s both parameters are used by the algorithm to
counteract the steady-state error. During this time, however,
only one independent parameter can be identified, i.e. there

Fig. 9. Parameter estimates of the indirect adaptive two-degrees-of-freedom
control algorithm for solenoid A. The values are normalized to L A, RA , and
vbat , respectively.

TABLE IV

PARAMETERS USED FOR THE EXPERIMENT WITH

THE PROPOSED INDIRECT ADAPTIVE CONTROLLER

is no persistence of excitation. Hence, the parameters drift on
a 1-D subspace of the parameter space. This drift is caused
by the loss of observability of the parameters and methods
such as the dead-zone have been proposed to mitigate the drift.
However, it will be shown that the drift is much slower for the
proposed method. Note that the estimated parameters strongly
depend on the control error and therefore exhibit a very similar
trajectory.

C. Proposed Indirect Adaptive Control Scheme

In this section, the proposed indirect adaptive two-degrees-
of-freedom control strategy is experimentally validated for
all three investigated solenoids. To this end, the controller is
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Fig. 10. Control signals of the indirect adaptive two-degrees-of-freedom
control algorithm for solenoid B. The values are normalized to iA and vbat ,
respectively.

initialized with the same parameters for all three solenoids
depicted in Fig. 3. The constrained forgetting least-squares
adaptation algorithm in (14) was discretized following [13],
[35], [36] as detailed in Appendix B. The control parameters
and initial values can be found in Table IV. The controller
parameters α∗

0 and α∗
1 were chosen for a time constant of

10 ms and a damping ratio of 0.5 for the closed-loop error
system (20). The initial parameters R0 and L0 were set to
typical nominal values within the parameter range of the
considered solenoids. The time constant λa of the low-pass
filter (6) is essentially determined by the measurement noise
when calculating the time derivative of the current y. The
initial and maximum gain matrix, P0 and Pmax, and the
forgetting factor βmax were tuned according to the procedure
presented in [18] and can be treated similar to the classical
least-squares tuning factors. The bounds for the inductance
estimate, Lmin and Lmax, and for the resistance estimate, Rmin

and Rmax, reported in Table IV, are selected to restrict the
parameters to physically meaningful values. These bounds
do not influence the transient performance of the overall
algorithm.

In direct comparison with the MRC and the SMC scheme,
Fig. 8 shows experimental results of the indirect adaptive

Fig. 11. Parameter estimates of the indirect adaptive two-degrees-of-freedom
control algorithm for solenoid B. The values are normalized to L B , RB , and
vbat , respectively.

control algorithm (14)–(19) applied to solenoid A. Here, the
control error decays quickly after an initial convergence of
the estimated plant parameters. The large contribution of
the feedforward controller uff to the overall control input
u suggests that the parametrized model accurately describes
the physical plant. Hence, the feedback controller is used
around the reference trajectory and can be tuned independently
of the reference tracking control task. The repeated pattern
of the reference signal at 11 s underlines the improvement of
the control performance achieved by the adaptation. Here,
the control performance is significantly improved compared
to the reference signal controlled using the initial parameters
at 0.1 s. At 3 s the feedback controller shows an increased
activity caused by the high current, which entails a decrease
in the inductance. This effect is compensated by the feed-
back controller and does not significantly impact the con-
trol performance. Hence, the interaction between adaptation
and integral feedback control combines fast convergence of
the parameters with robustness to model uncertainties and
unmodeled effects. Additionally, the least-squares adaptation
algorithm from (14) uses the estimation error and can be
adapted even without a control error. Thus, control errors due
to disturbances are compensated by the feedback controller,
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Fig. 12. Control signals of the indirect adaptive two-degrees-of-freedom
control algorithm for solenoid C. The values are normalized to iA and vbat ,
respectively.

whereas the parameters are updated when an estimation error
occurs.

The estimated parameters, the normalized estimation
error (11) and the norm of the gain matrix are depicted in
Fig. 9. The large estimation error and gain matrix norm in the
first second of the experiment leads to a rapid convergence
of the resistance and inductance estimates. The high initial
gain value is used to reduce the estimation error quickly,
while after this convergence phase the gain matrix of the
estimation algorithm (14) adapts to the current excitation.
During periods of low excitation at 6 and 10 s, the gain matrix
is increased again by the exponential forgetting. Hereby, any
parameter errors accumulated during this period are rapidly
compensated for as soon as the parameters are excited again,
as indicated by the estimation error. In contrast, a least-squares
algorithm without exponential forgetting cannot neglect faulty
measurements, even if new correct data is collected afterward.
Furthermore, the estimated parameters show only negligible
drift in the steady state. In applications with long periods of
insufficient excitation, modifications like a dead zone can be
added to account for the lack of excitation in the reference
signal, see, e.g., [11].

Fig. 13. Estimated parameters of the indirect adaptive two-degrees-of-
freedom control algorithm for solenoid C. The values are normalized to LC ,
RC , and vbat , respectively.

Solenoid B has approximately half the resistance and a
drastically smaller inductance, as compared to solenoid A.
However, Fig. 10 shows that the adaptation algorithm of
the same controller as the one used for solenoid A applied
to solenoid B rapidly converges and establishes a small
control error throughout the whole reference trajectory. Here,
again, the nonlinear effect of the change in inductance at
3 s is compensated by the feedback control term ufb. The
feedforward part already achieves precise reference tracking
after the initial convergence period. This is illustrated by the
small feedback control action ufb after about 5 s. Thereafter,
the control error stays well below 0.1 i A even with rapid
changes in the reference signal and periods of low excitation.
Caused by the strong deviations of the initial conditions of the
parameters from the real values, the controller shows some
overshoots until the parameters have converged. Similar to
the results with solenoid A, the parameters quickly converge
and after 3 s excellent tracking performance and a low control
error are achieved, see Fig. 11. The experimental results for
solenoid C are depicted in Fig. 12. The large initial value of
the estimated inductance parameter causes overshoots during
the first second of the experiment and around 3 s due to the
nonlinear inductance. However, from Fig. 13 it can be seen
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that the inductance estimate decreases and eventually leads
to excellent control performance. Furthermore, it should be
noted that the estimated resistance parameter changes between
3 and 4 s, due to the excitation of the reference signal. The
small feedback control action ufb, again, shows a good match
between the adaptively parametrized model and the controlled
solenoid after the initial convergence phase.

VII. CONCLUSION

An indirect adaptive two-degrees-of-freedom control algo-
rithm for the current control of solenoids is proposed. The
contribution of this article is threefold. First, the indirect
adaptive pole placement scheme known from the literature
is extended by an adaptive feedforward part and the for-
mulation is modified to improve its robustness. A thorough
stability proof is provided for the overall closed-loop system
comprising the plant, the constrained bounded-gain forgetting
least-squares parameter estimation scheme, and the adaptive
two-degrees-of-freedom control concept, both described in
detail in Section III. For rapidly changing reference trajec-
tories, the adaptive feedforward part turns out to essentially
improve the tracking performance also for time-varying para-
meters. The constrained bounded-gain forgetting least-squares
parameter estimation scheme ensures fast convergence of the
parameters and does not suffer from excessive drift during
periods of low excitation. Since the control design model does
not account for the nonlinearity of the inductance and the time-
varying parameters, the derived stability proof does not ensure
stability for the nonlinear plant (4). However, the achieved
closed-loop control performance in the experiments justifies
the proposed approach.

Further research is to be conducted to improve the parameter
convergence in situations of low excitation, which is an active
field of research, see, e.g., [28]. The proposed adaptive control
scheme strongly benefits from its property that the control
error convergence does not rely on the convergence of the
parameters. This alleviates the need for the persistence of the
excitation assumption and yields a good control performance
without the persistence of excitation in the presented experi-
ments.

The second contribution of this article refers to experimental
validation. The feasibility and the good performance of the
proposed approach are demonstrated by applying the control
concept with one nominal controller tuning to three different
solenoids from various applications, with strongly differing
parameters. Thus, for a whole range of different solenoids,
only a single controller tuning is required and the proposed
adaptation scheme shows a robust and high-performance
operation without further adjustments. This saves time and
costs, in particular during commissioning, and ensures high
performance also under changing loads and environmental
conditions.

As a third point, experimental results of the performance
of the proposed solution are compared with two well-known
benchmark methods for solenoid control, taken from the
literature, i.e. a robust second-order sliding-mode controller
and a nonlinear model reference adaptive control approach.

The sliding mode controller requires retuning for every
solenoid and the model reference adaptive controller exhibits
a poor adaptation performance.

APPENDIX

A. Proof of Theorem 2

The proof proceeds similar to the proof presented
in [11, p. 471]. However, there are essential differences from
the original proof, such as the integral feedback path, the
feedforward controller, and the formulation of the least-squares
problem. Therefore in the following, the main aspects of the
proof are sketched.

The filtered system input and output can be written with (7)
as

u̇a = −λaua + λau ua
(
0
) = u0 (24a)

ẏa = −λa ya + λa y ya
(
0
) = y0 (24b)

with initial conditions u0 and y0.
Consequently, the least-squares estimation error is given by,

cf. (11)

ε = ua − L̂ ẏa − R̂ya

m2
(25)

with the normalization factor m2 = 1 + y2
a + ẏ2

a and the
estimated parameters L̂ and R̂. In addition, the control input
from (19) can be written as

u = k̂ p
(
r − y

) + k̂i xc + L̂ṙ + R̂r (26)

with the integral control error xc from (15b). The reference
trajectory has to be chosen such that r, ṙ ∈ L∞, which is
satisfied by the assumptions in Section IV.

The proof of Theorem 2 is performed in the four steps listed
in Section IV. Rearrangement of (24), (25), and (26) yield the
system

ψ̇ = A(t)ψ + b1(t)εm
2 + b2(t)r + b3(t)ṙ (27)

where

ψ =
⎡
⎢⎣ua

ya

xc

⎤
⎥⎦, b1(t) = 1

L̂

⎡
⎢⎣ k̂ p

−1
1
λa

⎤
⎥⎦ (28)

b2(t) =

⎡
⎢⎢⎣λa

(
k̂ p + R̂

)
0
1

⎤
⎥⎥⎦, b3(t) =

⎡
⎢⎣λa L̂

0
0

⎤
⎥⎦ (29)

and

A(t) =

⎡
⎢⎢⎣

−λa − k̂ p

L̂
−λak̂ p + R̂

L̂
k̂ p λak̂i

1
L̂

− R̂
L̂

0

− 1
λa L̂

R̂
L̂λa

− 1 0

⎤
⎥⎥⎦ . (30)

The input and output of the plant can be written as an
output of this system by substituting (27) into (24a), and (24b),
yielding[

u
y

]
= C(t)ψ + d1(t)εm

2 + d2(t)r + d3(t)ṙ (31)
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with the output matrix and vectors

C(t) =
⎡
⎣− k̂ p

λa L̂

k̂p R̂

λa L̂
− k̂ p k̂i

1
λa L̂

1 − R̂
λa L̂

0

⎤
⎦, d1(t) =

⎡
⎣ k̂ p

λa L̂

− 1
λa L̂

⎤
⎦

(32)

d2(t) =
[

R̂ + k̂ p

0

]
, d3(t) =

[
L̂
0

]
. (33)

Due to the projection the adaptation algorithm (14) ensures
that R̂ and L̂ are bounded from below and above. In particular
0 < Lmin ≤ L̂, which guarantees that A(t),bi (t),C(t), and
di (t) i = 1, 2, 3 are bounded.

Next, it will be shown that the homogeneous part of (27)
is exponentially stable. This will be done by showing that
the eigenvalues of A(t), for all times t , are negative and the
induced norm ‖Ȧ(t)‖ ∈ L2. The characteristic polynomial of
A(t) reads as

det
(
A(t)− sI

) = (
s + λa

)(
s2 + α∗

1 s + α∗
0

)
. (34)

Thus, the first pole of the system is determined by the filter
of the adaptation algorithm and the remaining two poles by
the desired closed-loop dynamics. If the poles of (20) are
chosen to be in the open left half-plane and λa > 0, then
the eigenvalues of A(t) have a negative real part for all
times t .

According to Theorem 1, L̂, ˙̂L, R̂, ˙̂R ∈ L∞ and ˙̂L, ˙̂R ∈ L2.
This together with the bound 0 < Lmin ≤ L̂, which is guaran-
teed by the projection (14), implies that ‖Ȧ(t)‖ ∈ L∞

⋂L2.
Thus, based on [11, Th. 3.4.11, p. 124] the homogeneous part
of (27) is exponentially stable.

In the next step, these results are used to establish bound-
edness of the system signals using the truncated exponen-
tially weighted L2δ norm and the Bellman-Gronwall Lemma.
Here, the procedure is similar to what is shown in [11,
p.472]. Thus, by applying the Bellmann-Gronwall Lemma
[11, Lemma 3.3.9, p. 103] we conclude that m, ya, ẏa ∈ L∞,
for all times t > 0. Substituting into (25) and using ε ∈ L∞
(by Theorem 1) leads to ua ∈ L∞. It then follows that
ψ, ψ̇, y, u ∈ L∞.

In the last step, the convergence of the control error will
be addressed. Here, the parameter estimator properties, the
boundedness of the system signals, and the plant dynamics
are used to prove the convergence of the control error by
using Barbalat’s lemma. Given a vector signal t �→ a(t) ∈ R

n

filtered componentwise by an LTI filter with the transfer
function W (s), we denote by W [a] the corresponding output
signal. With this notation, the following lemma is a corollary
of the swapping lemma [11, Lemma A.1, p. 774].

Lemma 1: Given a stable proper transfer function W (s) and
two differentiable signals t �→ a(t) and t �→ b(t) such that
b ∈ L∞ and ȧ ∈ L∞

⋂L2, there exists a signal ρ ∈ L∞
⋂L2

such that

W
[
aTb

]
= aTW

[
b
] + ρ . (35)

Using the aforementioned assumptions and theorems
the estimation error equation will now be bounded.

Rearranging (25) and taking the time derivative results in

d

dt

(
εm2

)
= u̇a − d

dt

(
L̂ ẏa + R̂ya

)
= u̇a − L̂ ÿa − R̂ ẏa + ρ1 (36)

with the rest term ρ1 ∈ L∞
⋂L2. Application of the filter

W = λas

s + λa
(37)

to (26) yields

u̇a = W

⎡
⎣[

L̂ R̂
][ṙ

r

]⎤
⎦ + W

⎡
⎣[

k̂ p k̂i

][ e
xc

]⎤
⎦ . (38)

Rewriting this expression using Lemma 1 yields

u̇a =
[

L̂ R̂
]
W

⎡
⎣[

ṙ
r

]⎤
⎦ +

[
k̂ p k̂i

]
W

⎡
⎣[

e
xc

]⎤
⎦ + ρ2 + ρ3

(39)

with ρ2, ρ3 ∈ L∞
⋂L2. Substituting (39) into (36) and

using (17) gives

d

dt

(
εm2

)
= L̂ A∗�ae + ρ̄ (40)

where A∗ = (d/dt)2 +α∗
1(d/dt)+α∗

0 refers to the desired pole-
placement polynomial, see (20), and ρ̄ = ∑3

i=1 ρi ∈ L∞
⋂L2.

Rearranging for the control error e and using the product rule
yields

e = 1

�a A∗

(
d

dt

(
1

L̂
εm2

)
+

˙̂L
L̂2
εm2 − ρ̄

L̂

)
. (41)

Since L̂ ∈ L∞ as well as ˙̂L, εm2 ∈ L∞
⋂L2, and A∗(s) is a

Hurwitz polynomial by design, it follows that e ∈ L∞
⋂L2.

Additionally from a special case of Barbalat’s lemma [11,
Lemma 3.2.5, p. 76] it follows that ė ∈ L∞ and

lim
t→∞ e(t) = 0 . (42)

We will now show that the parameter rates converge to zero.
Equation (36) can be expanded to

d

dt

(
εm2

)
= u̇a − ˙̂L ẏa − L̂ ÿa − ˙̂Rya − R̂ ẏa . (43)

Due to (6) ÿa ∈ L∞ holds and since ψ, ψ̇, R̂, L̂, ˙̂R, ˙̂L ∈ L∞,
it can be concluded that (d/dt)(εm2) ∈ L∞. This together with
εm2 ∈ L∞

⋂L2 and the uniform continuity of (43) leads via
Barbalat’s Lemma to εm2 → 0, as t → ∞. Because m2 ≥ 1,
it can be further concluded that ε → 0 as t → ∞. By using
the structure of the estimator in (14) and since the gain matrix
P ∈ L∞, it can be concluded that ˙̂R, ˙̂L → 0 as t → ∞.
It follows from (17) that ˙̂ki → 0 and ˙̂k p → 0 as t → ∞. This
concludes the proof.

Remark 4: It is guaranteed that the estimation error ε and
the plant and control parameter rates ˙̂R, ˙̂L, ˙̂k p,

˙̂ki converge to
zero. It is not guaranteed that the plant and control parameters
R̂, L̂, k̂ p, k̂i will converge to the true values of R̄, L̄, k̄ p, k̄i .
Indeed it is not ensured that the signals used in the estimation
algorithm are persistently exciting.
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B. Discrete-Time Constrained Bounded-Gain Forgetting
Least-Squares Algorithm

Next, the discrete-time implementation of the con-
strained bounded-gain forgetting least-squares algorithm from
Section III-A is summarized. We apply a time discretization
for t = kTs with the sampling time Ts and k ∈ 1, 2, . . . , N .
Subsequently, the index k refers to the sampling instant at time
kTs , i.e. fk = f (kTs). For the given application, we consider
box constraints of the form

S = [
Lmin, Lmax

] × [
Rmin, Rmax

]
(44)

with lower limits Lmin and Rmin and upper limits Lmax and
Rmax. In this case, an analytical solution to the orthogonal
projection of (12) is given by

Pϑ
(
ϑ
) =

⎡
⎢⎣PL

(
L̂
)

PR

(
R̂
)
⎤
⎥⎦ (45)

with

PL

(
L̂k+1

)
=

⎧⎪⎪⎨
⎪⎪⎩

Lmin, if L̂k+1 < Lmin

Lmax, if L̂k+1 > Lmax

L̂k+1, if Lmin ≤ L̂k+1 ≤ Lmax

(46)

and

PR

(
R̂k+1

)
=

⎧⎪⎪⎨
⎪⎪⎩

Rmin, if R̂k+1 < Rmin

Rmax, if R̂k+1 > Rmax

R̂k+1, if Rmin ≤ R̂k+1 ≤ Rmax .

(47)

Hence, the parameters are constrained by using the
Goldstein-Levitin-Polyak projection algorithm, see, e.g., [36].
The discrete-time constrained bounded-gain forgetting least-
squares algorithm, with ϑ k = ϑ(kTs) and Pk = P(kTs), reads
as [35, p. 365] and [13, Chapter 3.7, p. 91]

Lk = Pk−1ϕk

λk + ϕT
k Pk−1ϕk

(48a)

P′
k = 1

λk

(
Pk−1 − Lkϕ

T
k Pk−1

)
(48b)

ϑ k = Pϑ
(
ϑk−1 + Lk

(
zk − ϕT

kϑ k−1

))
(48c)

Pk = �p
(
ϑk,P′

k

)
(48d)

with the discrete-time forgetting factor

λk = 1 − Tsβmax

(
1 − ‖Pk‖

Pmax

)
(48e)

and the gain matrix projection operator

�p
(
ϑ k, ·

) =
{

P′
k, if ϑk ∈ S

Pk−1, otherwise.
(48f)
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