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Agent-Based Decentralized Model Predictive
Control for Plants With Multiple Identical Actuators

Sandro Kofler , Elisabeth Luchini, Alexander Schirrer , Markus Fallmann , Oliver König , Martin Kozek,

Christoph Hametner , and Stefan Jakubek

Abstract— This article proposes a decentralized model pre-
dictive control (DMPC) algorithm without communication for
systems consisting of multiple identical, independent actuators
acting on a single central plant. The particular system design is
relevant for applications where modularity is paramount and for
highly dynamic systems, e.g., battery emulator systems controlled
by multiple dc–dc converter modules. Each agent, consisting of an
actuator and a DMPC, controls a virtually scaled version of the
plant to implicitly consider the effects of other agents. The set of
DMPCs achieves the same plant performance as a corresponding
centralized model predictive controller (CMPC) in unconstrained
operation. Also, the states of the independent agents converge
toward the globally optimal CMPC solution. This is obtained
by dividing the CMPC’s objective function into local objective
functions related to the subsystems. The optimality and stability
of the DMPC in unconstrained operation are shown analytically.
The stability of control input-constrained operation is analyzed
by computing the region of attraction. Numerical studies of a
battery emulator system compare the performance of the DMPC
with the global optimum in detail.

Index Terms— Decentralized control, power electronics, pre-
dictive control for linear systems.

I. INTRODUCTION

DECENTRALIZED model predictive control (DMPC) has
been investigated intensively since the early 2000s [1],

[2], [3]. It offers the possibility to apply model predictive
control with its strengths to systems that cannot be con-
trolled by a centralized instance. Two of the main issues
of centralized model predictive control (CMPC) are: 1) the
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complexity of solving centralized problems grows with the
number of considered states and 2) measurement data of the
entire system must be communicated to the central processing
unit and control signals must be transmitted back to the
decentralized actuators [4]. Both aspects become even more
critical if highly dynamic systems involving short sampling
intervals are treated. To overcome these obstacles, DMPC
approaches divide the centralized control problem into several
less complex tasks, each of which is solved by a local
controller. In general, the cost of this decentralization is the
loss of performance with respect to the CMPC. Therefore,
most of the DMPC approaches introduce different kinds of
communication between local controllers in order to improve
the global performance [5]. However, noncooperative com-
munication strategies, where each local controller optimizes a
local objective function, do not necessarily improve the control
performance and might even cause closed-loop instability [6],
[7]. Moreover, communication requires additional infrastruc-
ture and can also be technologically restricted, e.g., in earlier
mentioned highly dynamic systems [8].

Decentralization is based on decomposing the overall sys-
tem into smaller subsystems. The majority of publications on
DMPC focus on networked systems comprised of intercon-
nected subsystems [9], where the decomposition of the overall
system is rather clear. However, in some applications, there are
systems with fundamentally different structure, where a single
plant or central system is controlled by several self-contained,
dynamic actuators. Due to the completely different roles of
the actuators and the central system in the overall system, the
formulation of subsystems is not straightforward.

Addressing a specific class of those applications, the main
contribution of this work is a DMPC algorithm without
communication that achieves global CMPC optimality regard-
ing central system states in unconstrained operations. Each
actuator is equipped with a DMPC, which is together defined
as an agent (see Fig. 1). The proposed algorithm targets
the aforementioned applications, where a central system is
controlled by multiple actuators. All actuators are identical,
work independently of each other, and are not directly coupled.
However, states of the central system generally imply a feed-
back effect on actuator states, which means that the actuators
are indirectly coupled through the states of the central system
(see Fig. 1). This makes controlling the overall system in a
decentralized manner challenging.

The special system design with identical actuators is
often found in the literature as it involves some important
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Fig. 1. System structure: the central system with disturbance w is controlled
by M identical agents.

advantages, such as improved performance, modularity, scal-
ability, efficiency, and cost. Compared to a single actuator,
multiple smaller actuators are potentially able to respond
faster to rapidly changing loads as parallel-connected dc–dc
converters show [10]. Modular design allows to adapt easily
to changing plant requirements by just adding or remov-
ing actuators. Under this perspective, a control strategy for
parallel-connected inverters for uninterruptible power supplies
is presented in [11]. Also, efficiency during operation benefits
from modularity. Adjusting the number of active actuators
depending on the actual load is generally better than run-
ning a large actuator under partial load. This can be seen
in [12], where an optimal control strategy for redundant
refrigeration circuits acting on a cooling chamber is presented.
Similarly, multiple parallel compressors can be installed in
a compressed air system [13]. From an economic point of
view, using multiple identical actuators “off the shelf” is more
efficient than designing a single one that fits the scale of the
application [14].

The overall control problem of the investigated class
of systems comprises two objectives, namely, load sharing
among the participating actuators and controlling the central
system output. In particular, control methods for parallel-
connected dc–dc converter systems are widely represented in
the literature. Besides the conventional droop control, various
active current sharing approaches have been proposed, includ-
ing sophisticated control concepts [15], [16], [17]. DMPC
approaches without communication between local controllers
have also been reported: The method presented in [18] aims at
parallel converters controlling the voltage at a central capacitor
and particularly focuses on converter interleaving, a parallel-
converter-specific topic. In [19], subsystems for the DMPC
are composed of the central system, the local actuator, and a
fictitious actuator representing all other actuators. In contrast,
each agent controls the voltage at its own local capacitor
in [20], i.e., no actual central system exists, and the subsystems
are therefore directly derived.

An alternative decentralized control framework often found
in practice and literature is the decentralized proportional–
integral–derivative (PID) controller. Although numerous
methods for designing decentralized PID controllers for mul-
tivariable systems have been developed, the implementation is

rather complicated, requires high tuning effort, or is simply
based on heuristics [21], [22], [23]. Moreover, loop inter-
actions can cause sacrifices in performance or even lead to
instability and therefore impede the implementation of this
control concept [24], [25]. Another drawback of decentralized
PID controllers is that predictive consideration of constraints
is not directly possible.

This work proposes a DMPC method that is based on
creating virtual subsystems by assigning a scaled version of the
central system to each agent to implicitly consider the effects
of other agents. The method works without communication,
and to set up local controllers, the number of agents is the
only necessary information. The local objective functions are
based on an exact division of the CMPC objective function.
This allows to compare the performances of the proposed
DMPC and the corresponding, equally weighted CMPC in
a fair manner. Although agents do not communicate, the
proposed DMPC performs with the global optimality of the
CMPC regarding all central system states in unconstrained
operation, and the agent states converge to the solution of
the CMPC. In control input-constrained operation, the DMPC
deviates from the CMPC optimality but stays close to it and
converges when control input constraints become inactive.

The remainder of this article is structured as follows.
In Section II the system description is presented. A detailed
description of the DMPC is given in Section III, and in
Section IV, the structure of the CMPC can be found. The opti-
mality and stability of the approach are analyzed in Section V.
Section VI demonstrates the performance of the method by
applying the proposed controller to a battery emulator system
and illustrates the results of the stability analysis. A discussion
and a conclusion finalize this article. The optimality of the
DMPC in unconstrained operation is shown analytically in
the Appendix.

II. SYSTEM DESCRIPTION

A. Overview

Several identical agents act in parallel on a central plant.
The agents are not directly coupled; nevertheless, due to the
feedback of the central plant, the agents affect each other
indirectly. The main target is to control the central system
output yc while compensating the effects of the measurable
disturbance w, which has a direct influence on the central
system. The central system has no direct control inputs and
can only be manipulated by means of the agents (see Fig. 1).

B. Dynamic Model

The overall system consists of a set of M linear, dynamical
actuators of order na , and a linear central system of order nc.
The number of inputs per actuator is denoted by ma . There is
no direct state or input coupling between actuators, which is
a necessary condition for the proposed DMPC method.

The dynamics of the i th actuator can be described by the
linear, time-invariant state equation

ẋi = Aaxi + Baui + Eaxc (1a)

zi = Caxi (1b)
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where Aa ∈ R
na×na , Ba ∈ R

na×ma , Ea ∈ R
na×nc , and Ca ∈

R
1×na are the system, input, disturbance, and output matrix of

the actuator, respectively. The disturbance matrix Ea describes
the feedback of the central system to the actuator. The actuator
output zi is the i th input of the central system.

The central system is described by the linear, time-invariant
state equation

ẋc = Acxc + Bc

�
i∈M

zi + Ecw (2a)

yc = Ccxc (2b)

where Ac ∈ R
nc×nc , Bc ∈ R

nc×1, Ec ∈ R
nc×1, and Cc ∈ R

1×nc

are the system, input, disturbance, and output matrix of the
central system, respectively. The input matrix Bc describes the
influence of the actuator outputs on the central system. The set
of actuators is defined by M = {1, . . . , M}.

The dynamics of the overall system, comprised of all
actuators and the central system, is described by

ẋ = Ax + Bu + Ew (3a)

y = Cx (3b)

where the system matrix A ∈ R
(Mna+nc)×(Mna+nc), the input

matrix B ∈ R
(Mna+nc)×(Mma), the disturbance vector E ∈

R
(Mna+nc)×1, the output vector C ∈ R

1×(Mna+nc), the state
vector x ∈ R

(Mna+nc)×1, and the control vector u ∈ R
(Mma)×1

are composed as follows:⎡
⎢⎢⎢⎢⎢⎣

ẋ1

ẋ2
...

ẋM

ẋc

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Aa 0 · · · 0 Ea

0 Aa
. . .

...
...

...
. . .

. . . 0 Ea

0 · · · 0 Aa Ea

Gc · · · Gc Gc Ac

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1

x2
...

xM

xc

⎤
⎥⎥⎥⎥⎥⎦ +

+

⎡
⎢⎢⎢⎢⎢⎢⎣

Ba 0 · · · 0

0 Ba
. . .

...
...

. . .
. . . 0

0 · · · 0 Ba

0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u1

u2
...

uM

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

Ec

⎤
⎥⎥⎥⎥⎥⎦w

y = 	
0 . . . 0 Cc



x.

The coupling matrix Gc = BcCa describes the effect of
actuator states on central system states.

The discretization of the continuous-time model of the
overall system in (3) assuming a zero-order hold for the inputs
and the sampling time Ts gives the discrete-time model of the
overall system

xk+1 = Adxk + Bd uk + Edwk (4a)

yk = Cxk . (4b)

C. Load Distribution

The primary objective is to control the central system such
that the output y follows the corresponding reference yref,
which generally varies over time. In addition, the disturbance
w, which can be seen as load on the central system, must
be compensated. In comparison to applying a single actuator,

Fig. 2. DMPC scheme with M agents, where each DMPC only requires
measurements (dashed lines) of the corresponding actuator and the central
system.

having several parallel actuators acting on the central system
implies additional degrees of freedom. Restrictions are neces-
sary in order to distribute the central system demands over the
actuators in a controlled way. For this reason, references for
the actuator outputs are defined. The reference zref

i for the i th
actuator is based on the measured load by

zref
i = κiw (5)

where κi ≥ 0 are load distribution factors with
�

i∈M
κi = 1.

This ensures that the sum of all actuator outputs compensates
for the load in steady state.

III. DECENTRALIZED MPC

In a DMPC scheme, the overall optimization problem is
divided into several subproblems, which are solved in a
decentralized manner. The control problem is optimized within
the prediction horizon Np resulting in an optimal trajectory of
control inputs. According to the receding horizon principle,
only the first step of the optimal control trajectory is applied
to the plant. At the next sampling instant, state measurements
are updated and the procedure repeats.

Each actuator is equipped with a DMPC based on an
appropriate subsystem model, which in combination is defined
as an agent (see Fig 2). Since there are no direct agent-
to-agent couplings in continuous time, subsystems can be
derived by merging the corresponding actuators with the
central system. Provided that each subsystem has access to
state measurements of all agents, the entirety of subsystems is
an exact representation of the overall system in (3)�

ẋi

ẋc



=

�
Aa Ea

Gc Ac


�
xi

xc



+

�
Ba

0



ui +

�
0

Ec



w

+
�

j∈M\{i}

�
0

Gc



x j (6a)

y = 	
0 Cc


�xi

xc



. (6b)

However, the approach does not include the communication
between agents. Therefore, the state information of other
agents, i.e., the last term in (6a), cannot be considered. Not
considering the influence of other agents entails problems.
Each agent assumes to be solely responsible for the central
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system reference tracking and the load compensation. In fact,
(M − 1) further agents contribute to the central system.
This affects the control performance and provokes stability
issues.

Therefore, virtual subsystems are created, consisting of the
corresponding actuator and a scaled version of the central
system

˙̃xi =
�

Aa Ea

G̃c Ac



x̃i +

�
Ba

0



ui +

�
0

Ẽc



κiw (7a)

yi = 	
0 Cc



x̃i (7b)

where x̃i = [xT
i , xT

c ]T , yi denotes the virtual central

system output, and G̃c and Ẽc denote scaled matrices.
Scaling includes two aspects: 1) the effect of the agent and

the load on the central system is virtually amplified, which
is equivalent to a reduction of the central system size, and
2) only a part of the load, which is defined by the agent’s
load distribution factor κi , is considered. Consequently, each
agent only deals with a virtual portion of the central system.
Scaling principally targets the matrices Gc and Ec, which are
amplified by M for the virtual subsystem, G̃c = MGc and
Ẽc = MEc. If the central system is a higher order system,
additional scaling measures might be necessary. This includes
postmeasurement scaling of certain central system states by
κi M . An example is given in the simulation results.

To be used by the DMPC, the virtual subsystem model in
(7) is discretized by assuming a zero-order hold for the inputs
and the sampling time Ts , which gives

x̃k+1
i = Ãd x̃k

i + B̃d uk
i + Ẽdκiw

k (8a)

yk
i = 	

0 Cc


x̃k

i . (8b)

The local objective function Ji considers the deviation of the
virtual central system output from the corresponding reference,
the load distribution, and a penalty on the control inputs

Ji =||Yref − Yi ||2QY,D
+ ||Zref

i − Zi ||2QZ ,D
+ ||Ui ||2RD

(9)

where ||·||2Q denotes the square of the Q-weighted Euclidean
norm. The matrices QY,D ∈ R

Np×Np and QZ,D ∈ R
Np×Np are

positive definite weighting matrices, and RD ∈ R
ma Np×ma Np

is a positive semidefinite weighting matrix used for tuning.
All agents apply the same weightings. The vectors Yi ∈
R

Np×1, Zi ∈ R
Np×1, and Ui ∈ R

ma Np×1 denote the predicted
trajectories of the virtual central system output and the i th
agent output, and the input sequence of the i th actuator,
respectively

Yi =
�

yk+1
i · · · y

k+Np

i

�T
(10)

Zi =
�
zk+1

i · · · z
k+Np

i

�T
(11)

Ui =
�
uk

i
T · · · uk+Np −1

i

T
�T

. (12)

Note that predictions of the central system output Yi are
virtual and vary between agents during transients if the
load is unevenly distributed. The vector Yref ∈ R

Np×1 is
the output reference trajectory associated with (10), which is
the same for all agents. According to (5), the agent output

Fig. 3. Overall system controlled by a CMPC, where measurements (dashed
lines) of all system states are transmitted to the CMPC.

reference trajectory Zref
i ∈ R

Np×1 is defined by the steady-state
load distribution

Zref
i = κi W f (13)

where W f ∈ R
Np×1 is the trajectory of future disturbances

W f = 	
wk+1 · · · wk+Np


T
. (14)

The i th agent minimizes Ji in (9), which yields the optimal
sequences of control inputs Ui

∗

Ui
∗ = arg min

Ui

Ji (15a)

s.t. uk+s
i ∈ Ui , s = 0, . . . , Np − 1 (15b)

where Ui is the set defining the control input constraints of
the i th actuator. The first step of the optimal control sequence
is applied to the associated actuator. State constraints are
not included because agent predictions deviate from actual
trajectories in general.

IV. CENTRALIZED MPC

The CMPC works with the discrete-time model of the
overall system according to (4). Measurements of all system
states are transmitted to a central unit, which optimizes the
global control problem and transmits the optimal control
variables back to the actuators (see Fig. 3).

The objective function J of the CMPC has a structure
analog to Ji in (9) and is defined by

J =||Yref − Y||2QY
+ ||Zref − Z||2QZ

+ ||U||2R (16)

where QY ∈ R
Np×Np and QZ ∈ R

M Np×M Np are positive

definite weighting matrices and R ∈ R
Mma Np×Mma Np is a

positive semidefinite weighting matrix used for tuning. The
set of DMPCs includes the output reference tracking term M
times, whereas the CMPC does only once. In order to ensure
J = �

i∈M
Ji , which is necessary for a fair performance com-

parison, the following relation between the reference tracking
weighting matrices of DMPC and CMPC must be fulfilled:

QY = MQY,D . (17)

The matrices QZ and R are block diagonal matrices with
the main-diagonal blocks being QZ,D and RD , respectively.
This means that QZ and R contain the same weightings
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as their DMPC counterparts. The vector Y ∈ R
Np×1 is

the predicted output trajectory of the overall system. The

vectors Z ∈ R
M Np×1, Zref ∈ R

M Np×1, and U ∈ R
Mma Np×1

contain sequences of the actuator outputs, the corresponding
references, and the control inputs of all actuators, respectively

Z = 	
Z1

T · · · Zi
T · · · ZM

T

T

(18)

Zref =
�
Zref

1
T · · · Zref

i
T · · · Zref

M
T
�T

(19)

U = 	
U1

T · · · Ui
T · · · UM

T

T

. (20)

Minimizing J according to (16) gives the optimal sequence
of control inputs U∗ for all actuators

U∗ = arg min
U

J (21a)

s.t. uk+s ∈ U, s = 0, . . . , Np − 1 (21b)

xk+Np ∈ O∞ (21c)

where the set U covers the control inputs constraints of all
actuators and O∞ is the terminal set. The first step of each
control sequence is applied to the corresponding actuator.

V. OPTIMALITY AND STABILITY

A. Optimality in Unconstrained Operation

The virtual subsystem model defined in (7) and the overall
system model according to (3) are discretized assuming a
zero-order hold for the inputs. Due to the scaling of the virtual
subsystem, relations between blocks of the system matrix of
the discrete-time virtual subsystem in (8a)

Ãd = eÃTs =
�

Ãd
a Ãd

e

Ãd
g Ãd

c

�
(22)

where Ã is the system matrix of the continuous-time vir-
tual subsystem, and blocks of the system matrix of the
discrete-time overall system in (4a)

Ad = eATs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ad
a Ad

o · · · Ad
o Ad

e

Ad
o Ad

a

. . .
...

...
...

. . .
. . . Ad

o Ad
e

Ad
o · · · Ad

o Ad
a Ad

e

Ad
g · · · Ad

g Ad
g Ad

c

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(23)

can be found, namely, Ãd
a = Ad

a + (M − 1)Ad
o , Ãd

c = Ad
c ,

Ãd
g = MAd

g , and Ãd
e = Ad

e . Similar relations can be shown for
the control and disturbance input vectors. Note that mentioned
relations between the subsystem and overall system matrices
given here are only valid for the stated, simple central system
dynamics. General extensions for higher order central system
dynamics are out of scope here. An illustrative example is
given in the simulation results.

Regarding the DMPC, predicted trajectories of the central
system output Yi and the actuator output Zi can be expressed
as

Yi = F̃
�

xk
i

xk
c



+ �̃Ui + �̃W (24)

Zi = F̃Z

�
xk

i

xk
c



+ �̃Z Ui + �̃Z W (25)

where the matrices F̃, �̃, �̃, F̃Z , �̃Z , and �̃Z are derived
from the discrete-time model as described in [26]. In con-
trast to W f , the disturbance trajectory W is shifted by one
sample

W = 	
wk · · · wk+Np−1


T
. (26)

The matrices F̃ = [F̃a F̃c] and F̃Z = [F̃Z,a F̃Z,c] can be
decomposed into blocks related to actuator states and central
system states.

The CMPC predictions of the central system output Y and
the actuator outputs Z are defined analogously but include
all actuators. Decomposing the corresponding matrices F,
�, �, FZ , �Z , and �Z into actuator-related and central
system-related blocks, similarly as in (23), one can show
that aforementioned relations with respect to the subsystem
matrices are maintained.

Assuming the unconstrained operation, the local DMPC
objective functions and the global CMPC objective function
can be optimized analytically. The optimal sequence of control
inputs U∗

i for the DMPC is obtained by inserting (24) and (25)
into the objective function Ji according to (9) and setting the
first derivative with respect to Ui to zero, ∂ Ji/∂Ui = 0. With
(13), this results in

U∗
i = �

�̃T QY,D�̃ + �̃T
Z QZ,D�̃Z + RD

�−1

×
�
�̃T QY,D

�
Yref − 	

F̃a F̃c


�xk
i

xk
c



− κi�̃W

�
+ �̃T

Z QZ,D
�
κi W f − 	

F̃Z,a F̃Z,c


�xk
i

xk
c



− κi�̃Z W

��
.

(27)

Adding up all U∗
i over the agents considering

�
i∈M

κi =
1 gives�
i∈M

U∗
i = �

�̃T QY,D�̃ + �̃T
Z QZ,D�̃Z + RD

�−1

×
�
�̃T QY,D

�
MYref − 	

F̃a MF̃c


��
i∈M

xk
i

xk
c



− �̃W

�
+ �̃T

Z QZ,D
�
W f − 	

F̃Z,a MF̃Z,c



×

��
i∈M

xk
i

xk
c



− �̃Z W

��
.

(28)

Expressing the optimal sequence of all control inputs U∗ of
the CMPC accordingly by analytically optimizing the global
objective function J in (16) and considering the relations
between subsystem and overall system matrices, such as
Fa = MF̃a , it can be shown that the CMPC solution for
the sum of optimal control inputs

�
i∈M

U∗
i is exactly the

same as for the DMPC in (28). Since all actuators are
identical and linear, it can be shown that, consequentially,
also the DMPC solutions of the resulting sum of actuator
outputs

�
i∈M

Z∗
i and, therefore, all central system states,

including the central system output Y∗
i , are exactly the same

as for the CMPC. The complete derivation can be found in
the Appendix.

Note that in general, individual agent inputs, states, and
outputs differ from the corresponding CMPC solutions during
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transients and are therefore globally suboptimal. The DMPC
achieves global optimality regarding individual actuator vari-
ables only in steady state because agents operate solely with
measurements of the own actuator and the central system.
In contrast, the CMPC possesses measurements of the overall
system and operates globally optimal.

The load distribution can be adapted in steady state. In this
case, the agent outputs converge to the adapted references
preserving the optimality of the central system states. If the
load distribution is changed during transients, the optimality
is lost in general.

B. Stability Analysis

Assuming the output reference and the disturbance to
be constant within the prediction horizon, i.e., Yref =
[yref, . . . , yref]T and W f = W = [w, . . . , w]T , a linear state
vector feedback control law for the optimal control input at
the current step can be derived from (27)

uk
i
∗ = −k̃x

�
xk

i

xk
c

�
+ k̃y yref + k̃wκiw (29)

where the gains k̃x , k̃y, and k̃w are identical for all agents.
Combining the local control laws yields the linear state
vector feedback control law of the DMPC in the centralized
formulation

uk∗ = −K̃xxk + K̃y yref + K̃ww. (30)

Analogously, a linear state vector feedback control law can be
derived for the CMPC

uk∗ = −Kxxk + Ky yref + Kww. (31)

Because of the central system scaling in the virtual subsystems
of the DMPC, the gain vectors K̃y and Ky are identical.
However, the feedback gain matrices K̃x and Kx are different
because the DMPC considers only the measurements of the
own actuator and the central system for the computation of
the control input of the i th actuator, whereas the CMPC
considers the measurements of all actuators. Also, the gain
vectors K̃w and Kw are different. Since the DMPC gains
differ from the CMPC gains, individual control inputs resulting
from (30) and (31) are different. Nevertheless, both feedback
control laws yield the same sum of control inputs, as shown
in Section V-A.

Inserting the control law in (30) into the overall system
model in (4) defines the closed-loop system dynamics of the
unconstrained DMPC

xk+1 = �
Ad − BdK̃x

�
xk + Bd K̃y yref + �

Bd K̃w + Ed
�
w

(32)

which includes an affine term as a function of yref and w.
The polytopic control input constraints U and physical state

constraints X are defined by

U = �
u ∈ R

Mma | Huu ≤ hu
�

(33)

X = �
x ∈ R

Mna+nc | Hxx ≤ hx
�
. (34)

With the knowledge of the control law in (30), the control
input constraints can be expressed in the form of state con-
straints, which allows to write a polytopic set P̃ covering
physical state constraints and control input constraints

P̃ = �
x ∈ R

Mna+nc | H̃px ≤ h̃p
�

(35)

with

H̃p =
�

Hx

−HuK̃x



, h̃p =

�
hx

hu − Hu
�
K̃y yref + K̃ww

�
.

Note that P̃ depends on yref and w.
Having P̃, positive-invariant sets for the closed-loop system

under the action of the DMPC can be derived. A set Õ ⊆ P̃
of initial states is called positive invariant for the closed-loop
system (32) subject to the constraints in (35) if resulting
trajectories will never violate those constraints at any time

xk ∈ Õ ⇒ xk+s ∈ Õ ∀s ∈ N
+. (36)

The maximal positive-invariant set or terminal set Õ∞ ⊆ P̃ is
defined to be the invariant set containing all positive-invariant
sets in P̃ [27]. This means that within Õ∞, it is guaranteed
that the DMPC operates without running into the control
input constraints and without violating any state constraints.
Consequently, the closed-loop stability of the DMPC is char-
acterized by the eigenvalues of (Ad − Bd K̃x) in (32) within
Õ∞. For asymptotic stability, all eigenvalues must have a
magnitude strictly less than unity [28]. Regarding algorithms
for computing the maximal positive-invariant set, the reader is
referred to the literature [27], [29], [30].

Analogously, the terminal set O∞ of the CMPC and the
closed-loop stability of the CMPC within O∞ are determined
by the corresponding closed-loop system dynamics

xk+1 = �
Ad − Bd Kx

�
xk + Bd Ky yref + �

Bd Kw + Ed
�
w

(37)

subject to constraints (33) and (34).
Since the CMPC considers the measurements of all actua-

tors and the central system in the optimization of the global
objective function, the volume of O∞ is expected to be larger
than the volume of Õ∞, which holds true in general. However,
Õ∞ is not a subset of O∞. In certain areas of Õ∞, the
CMPC runs into the control input constraints, whereas the
DMPC operates unconstrained. The sum of control inputs of
the unconstrained DMPC and CMPC would still be the same,
but individual control inputs of the CMPC would exceed the
boundaries.

Within the set R, which is the intersection of the terminal
sets of the DMPC and the CMPC

R = Õ∞ ∩ O∞ (38)

it is ensured that both the DMPC and the CMPC operate
without violating any constraints. The stability of both control
concepts is determined by the eigenvalues of the closed-loop
systems. The sum of control inputs, the sum of agent outputs,
and all central system states under the control of the DMPC
are identical to the CMPC, as shown in Section V-A.

Outside R, input constraints of the DMPC, the CMPC,
or both potentially become active. Then, the sum of control
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inputs, and therefore the sum of agent outputs, and the central
system states differ between the DMPC and CMPC in general.

To analyze the stability outside the terminal set, an Np-step
admissible set can be computed for the CMPC, which has a
global view of the system and includes terminal set constraints.
The admissible set is the set containing all initial states that
can be driven into the terminal set without violating constraints

NNp (O∞) = {xk ∈ R
Mna+nc | ∃U

s.t. uk+s ∈ U,

xk+s ∈ X , s = 0, . . . , Np − 1

xk+Np ∈ O∞}. (39)

It can be developed in a backward step-by-step procedure
beginning at the terminal set N0 = O∞

Ns+1(Ns) = {xk ∈ X | ∃uk ∈ U s.t. xk+1 ∈ Ns}. (40)

For more details, the reader is referred to the literature [27].
In contrast to the CMPC, the DMPC optimizes the control

inputs locally and does not include terminal set constraints.
Consequently, an admissible set cannot be derived for the
DMPC. To analyze the stability outside the terminal set,
the Np-step region of attraction ÑNp can be computed for
the DMPC. In analogy to the admissible set of the CMPC,
it is defined by the set of initial states that are driven into the
terminal set in Np steps but under the optimal control inputs of
the DMPC according to (15), which are optimized in each step

ÑNp

�Õ∞
� = {xk ∈ X | xk+Np ∈ Õ∞

xk+s+1 = Ad xk+s + Bd uk+s ∗ + Edw

uk+s ∗
acc. to (15), s = 0, . . . , Np − 1}. (41)

The receding horizon principle must be considered, i.e., the
whole sequence of optimal control inputs resulting from (15)
cannot be applied directly, because of the deviation of the
agents’ virtual predictions from the actual trajectories. Based
on (41), ÑNp can be determined numerically by exploring the
state space. A simple algorithm is proposed in Section VI-D.

Both the admissible set of the CMPC and the region of
attraction of the DMPC assume the same constant yref and w
as in the computation of the corresponding terminal sets.

VI. SIMULATION STUDY

In this section, the application use case and controller
setup are defined (Sections VI-A and VI-B), followed by
a stability analysis of both unconstrained and constrained
operation (Sections VI-C and VI-D). Then, a challeng-
ing test case is simulated and control performance is
assessed both in unconstrained and constrained conditions
(Sections VI-E–VI-G). Finally, test case extensions are dis-
cussed (Sections VI-H and VI-I).

A. Application
Consider the output stage of a battery emulator system

for automotive testbeds. With the objective of increasing the
emulator performance and handling higher load currents, two
identical actuators are installed in parallel (M = 2) in order
to control the central system (see Fig. 4).

Fig. 4. Two parallel actuators manipulate the voltage v2 across the central
capacitor C2 and compensate for the load current i p .

The central system consists of the capacitor C2, where the
voltage v2 is controlled by the actuators and the measured
load current i p acts as a disturbance. The i th actuator consists
of the filter capacitor C1,i and a connection cable modeled in
the form of a series connection of the inductance L1,i and
the resistance R1,i . Each actuator equipped with a DMPC
represents an agent. The demanded input currents i1,i of the
agents are provided by dc–dc step-down converter stages, one
for each actuator. For the control of the converter stage, it is
beneficial to use the time derivative of the actuator input
current di1,i/dt as control input instead of using i1,i directly,
and more details can be found in [31].

By defining the actuator state vector xi = [i2,i , vc,i , i1,i ]T ,
the actuator input ui = di1,i/dt, and the actuator output
zi = i2,i , the linear state-space model of the i th actuator can
be written as

ẋi =
⎡
⎢⎣

− R1,i

L1,i

1
L1,i

0

− 1
C1,i

0 1
C1,i

0 0 0

⎤
⎥⎦xi +

⎡
⎣0

0
1

⎤
⎦ui +

⎡
⎣− 1

L1,i

0
0

⎤
⎦xc (42a)

zi = 	
1 0 0



xi (42b)

where i ∈ {1, 2}.
With the central system state xc = v2, which is also the

central system output yc, and the disturbance w = i p, the
first-order state-space model of the central system is given by

ẋc = 1

C2

2�
i=1

zi − 1

C2
w (43a)

yc = xc. (43b)

By defining the state vector x = [x1
T , x2

T , xc]T and the
control input vector u = [u1, u2]T , the state-space model of
the overall system can be written as

ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− R1,1

L1,1

1
L1,1

0 0 0 0 − 1
L1,1

− 1
C1,1

0 1
C1,1

0 0 0 0
0 0 0 0 0 0 0
0 0 0 − R1,2

L1,2

1
L1,2

0 − 1
L1,2

0 0 0 − 1
C1,2

0 1
C1,2

0
0 0 0 0 0 0 0
1

C2
0 0 1

C2
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x
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+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
1 0
0 0
0 0
0 1
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

u +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

− 1
C2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

w (44a)

y = 	
0 0 0 0 0 0 1



x. (44b)

The system matrix in (44a) shows that the actuator states are
not directly coupled. Nevertheless, the agents influence each
other indirectly through xc.

The control inputs are constrained with −1 A µs−1 ≤ ui ≤
1 A µs−1, and the physical state constraints that apply to the
system are −800 A ≤ i1,i ≤ 800 A, −800 A ≤ i2,i ≤ 800 A,
and 0 V ≤ v2 ≤ 800 V.

The nominal parameter values of the actuators and the
central system are C1,1 = C1,2 = 425 μF , L1,1 = L1,2 =
25 μH , R1,1 = R1,2 = 0� (neglectable cable resistances),
and C2 = 2.3 m F . The sampling time Ts is 100 μs.

B. Controller Setup

The subsystem model of the DMPC is derived according
to (7). Considering G̃c = 2Gc and Ẽc = 2Ec, the virtual
subsystem model of the i th agent can be written as

�
ẋi

ẋc



=

⎡
⎢⎢⎢⎣

− R1,i

L1,i

1
L1,i

0 − 1
L1,i

− 1
C1,i

0 1
C1,i

0
0 0 0 0
2

C2
0 0 0

⎤
⎥⎥⎥⎦

�
xi

xc




+

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ui +

⎡
⎢⎢⎣

0
0
0

− 2
C2

⎤
⎥⎥⎦κiw (45a)

yi = 	
0 0 0 1


�xi

xc



. (45b)

The weighting matrices are QY,D = 5 V−1I, QZ,D = 0.1 A−1I,
and RD = 0.1 ns A−1I, where I denotes the identity matrix
of appropriate order. The prediction horizon is chosen to
be Np = 6.

The CMPC, which is used as a benchmark to evaluate the
performance of the DMPC, is based on the model defined in
(44). The weighting matrix regarding the central system output
tracking is scaled according to (17) giving QY = 10 V−1 I,
whereas QZ = 0.1 A−1 I and R = 0.1 ns A−1 I are only
adapted with respect to the dimension.

The load distribution is chosen unevenly with κ1 = 0.7 and
κ2 = 0.3 in order to demonstrate the capability of the DMPC.

C. Stability Analysis of Unconstrained Operation

By analytically optimizing the objective functions, linear
state vector feedback control laws can be derived for the
DMPC and the CMPC, see (30) and (31), where the resulting
DMPC gains are

K̃x =
�−0.27 4.49 1.47 0 0 0 1.04

0 0 0 −0.27 4.49 1.47 1.04



× 104

Fig. 5. Eigenvalues of the closed-loop systems of the unconstrained DMPC
and CMPC.

K̃y =
�

5.53
5.53



× 104, K̃w =

�
8.36
3.58



× 103

and the CMPC gains are

Kx =
�−0.34 4.03 1.41 0.06 0.46 0.06 1.04

0.06 0.46 0.06 −0.34 4.03 1.41 1.04



× 104

Ky =
�

5.53
5.53



× 104, Kw =

�
7.89
4.06



× 103 (units omitted).

The off-diagonal blocks of zeros in K̃x indicate that the DMPC
does not consider states of other actuators for computing
individual control inputs. One can verify that, apart from
rounding errors in this rough presentation, K̃xx and Kx x yield
the same result if the states of both actuators in x are identical.
This is a result of the central system scaling and shows that
each DMPC implicitly assumes the states of other actuators
to be the same as the own states for the consideration of
coupling effects. With an uneven load distribution, the actuator
states, however, differ from each other if the load is not zero.
The arising deviation in steady state is compensated by the
difference between K̃w and Kw.

Both control laws stabilize the system. As shown in Fig. 5,
all eigenvalues of the closed-loop systems defined in (32) and
(37) lie inside the unit circle of the complex plane.

Considering the control input constraints and physical state
constraints, terminal sets can be computed for the closed-loop
systems of the DMPC and CMPC for each pair of yref

and w. Figs. 8 and 9 show projections of the 7-D terminal
sets onto the reduced 3-D state space of the two actuator
outputs and the central system output for yref = 100 V and
w = 600 A. As the projections suggest, the volume of O∞ is
with 5.6 × 1014 clearly larger than the volume of Õ∞, which
is 3.5×1014 (units are omitted). Nevertheless, certain areas of
Õ∞ are not part of O∞, which is demonstrated for a vertex
of Õ∞. For x = [190.3 A, 126.1 V, 207.8 A, 297.5 A, 84.2 V,
160.2 A, 130.6 V]T , the control law of the unconstrained
DMPC yields u = [1 A µs−1, 1 A µs−1]T , whereas the
control law of the unconstrained CMPC gives u =
[0.86 A µs−1, 1.14 A µs−1]T . The sum of control inputs is the
same in both cases, but the CMPC control law would violate
the input constraints regarding u2. Consequently, x is not part
of O∞.



KOFLER et al.: AGENT-BASED DECENTRALIZED MODEL PREDICTIVE CONTROL FOR PLANTS 849

Fig. 6. Projections of the six-step region of attraction of the DMPC and the
six-step admissible set of the CMPC in the reduced state space in comparison
to the projection of the terminal set of the CMPC.

For computing and plotting the polytopic terminal sets, the
MATLAB-based Multi-Parametric Toolbox 3.0 was used [32].

D. Stability Analysis of Constrained Operation

Because of the high dimensionality of the system’s state
space, the step-wise procedure for determining the Np-step
admissible set of the CMPC, see (40), is computationally
extremely demanding and could not be executed. Therefore,
N6 was approximated numerically with a simple algorithm.

Step 1: Define an empty set V , where vertices of the
admissible set will be stored. Define search directions and a
starting point that satisfies the definition of the admissible set
of the CMPC (39).

Step 2: From the starting point, go in a direction with a
predefined step size until the first infeasible point is found,
i.e., where (39) is not satisfied.

Step 3: Apply the bisection method over the range of the last
feasible and the infeasible point to approximate the border of
the admissible set. Add the last feasible result of the bisection
method to V .

Step 4: Go to step 2 and repeat until all predefined search
directions were explored.

Step 5: Compute the convex hull of the vertices in V to
estimate the admissible set.

The algorithm was initially executed for the steady state
defined by yref and w as starting point and then repeated for
all found vertices in a second iteration. The same algorithm
was used to approximate the six-step region of attraction of
the DMPC but using the corresponding definition according
to (41).

Projections of the DMPC’s region of attraction and the
CMPC’s admissible set are shown in Fig. 6. Both are supersets
of the corresponding terminal sets. The CMPC’s admissible
set is clearly larger than the DMPC’ region of attraction as
expected. However, considering that the agents of the DMPC
operate only with local measurements and do not include
terminal set constraints, the DMPC’s region of attraction
covers a remarkable part of the CMPC’s admissible set.

E. Simulation
The control performance of the DMPC is compared to

the performance of the CMPC in a simulation covering four
events.

1) The simulation is initialized with an output reference
voltage of 20 V and a load current of 600 A but with the
system not being in a steady state. While actuator 1 pro-
vides the target output current according to the specified
load distribution with xinit

1 = [420 A, 20 V, 420 A]T , the
currents of actuator 2 are arbitrarily chosen too high with
xinit

2 = [300 A, 20 V, 240 A]T .
2) The output reference voltage steps up from 20 to 100 V

at t = 1.5 ms.
3) Between t = 3 ms and t = 4.2 ms, the load current

changes dynamically with a gradient of ±500 A ms−1.
4) At t = 5 ms, the load current increases abruptly from

400 to 600 A.
Future trajectories of the output reference voltage and the

load current are assumed to be unknown to analyze the
interaction between agents and the closed-loop stability for
unpredicted events. Current values are kept constant within
the prediction horizon.

The results of the simulation are shown in Fig. 7. One can
distinguish between unconstrained and constrained operations,
the analysis of which is covered in the following. Note that
the specified physical state constraints are not violated at any
time of the simulation.

F. Performance Analysis of Unconstrained Operation

During events 1) and 3), both DMPC and CMPC operate
unconstrained. Individual agent output currents of the DMPC
differ slightly from the corresponding CMPC solutions during
transients, as shown in the second plot of Fig. 7. Despite that,
the sum of the agent output currents of the DMPC is the same
as of the CMPC even though the local DMPCs do not include
measurements of the other actuator’s states. As shown in the
third plot, the DMPC consequently achieves exactly the same
control performance as the CMPC regarding the central system
output (see Section V-A).

The fifth plot compares the objective function values of
the DMPC and the CMPC throughout the simulation, where
for the DMPC, the sum of the two local objective function
values J1 and J2 is shown. At the beginning of transients,
the objective function of the DMPC increases only to slightly
higher values than its CMPC counterpart, indicating that
the DMPC remains close to the global CMPC optimality.
Afterward, the objective function values of both DMPC and
CMPC decrease de facto exponentially over time, whereby the
value of the DMPC converges toward the CMPC solution. In a
steady state, where each agent compensates for the specified
part of the load current, the DMPC operates with the global
optimality of the CMPC.

G. Performance Analysis of Constrained Operation
Event 2), which is a large output voltage step, and event 4),

which is a large load current step, represent two fundamen-
tal events in which the control input constraints get active.
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Fig. 7. Simulation results of the DMPC (D) and the CMPC (C) in comparison
for unpredicted events. Note the logarithmically scaled ordinate of the plot
showing J .

Fig. 8. Trajectory of event 2) in the reduced state space together with
projections of the terminal sets of DMPC and CMPC. Steady states are
characterized by K.

The interaction between agents and the convergence during
constrained operation are analyzed based on those two events.

Fig. 8 shows the trajectory of event 2) in the reduced state
space of the two actuator output currents and the central
system voltage. The transition begins and ends on a plane
determined by the specified steady-state load distribution

K =
�

x̄ ∈ R
3 | i2,1

i2,2
= κ1

κ2

�
(46)

Fig. 9. Trajectory of event 4) in the reduced state space together with
projections of the terminal sets of DMPC and CMPC. Steady states are
characterized by K.

where x̄ = [i2,1, i2,2, v2]T . The initial state is outside the
terminal sets of DMPC and CMPC. With both controllers,
the two actuators contribute equally to follow the output
voltage reference, i.e., the deviations of the actuator output
currents from the steady-state currents specified by the load
distribution are the same. Consequently, the control inputs are
set synchronously and therefore run into the constraints at the
same time. The state-space trajectories of DMPC and CMPC
coincide and lie within a plane perpendicular to the i2,1–i2,2

plane. The plane is characterized by one of the complex
eigenmodes of the closed-loop systems. With monotonically
decreasing objective function values, see fifth plot of Fig. 7,
both DMPC and CMPC drive the system into the corre-
sponding terminal sets, where closed-loop stability is proven
(see Section VI-C).

The state-space trajectory of event 4) is shown in Fig. 9.
Unlike the projected sets in the reduced state space indicate,
the initial state lies outside the terminal sets of DMPC and
CMPC. Initially, both controllers aim for compensating the
higher load according to the specified load distribution, which
results in different control inputs for the actuators. Since the
load cannot be compensated instantaneously, the central sys-
tem voltage v2 drops. Consequently, the control task includes
returning v2 to the reference value besides compensating for
the higher load current. Therefore, the resulting state-space
trajectories of both DMPC and CMPC do not lie in K as they
are affected by the aforementioned complex eigenmode.

The initial control input of actuator 1, which is higher
than the control input of actuator 2 because κ1 > κ2, runs
into the constraint. The CMPC amplifies the contribution of
actuator 2, see the first plot of Fig. 7, whereas the DMPC
does not because agent 2 is not aware of the active control
input constraint of agent 1. The sum of actuator output
currents differs between DMPC and CMPC, and therefore,
the DMPC does not preserve the CMPC optimality regarding
the central system state, as shown in the third plot of Fig. 7.
Nevertheless, both DMPC and CMPC decrease the objective
function values monotonically and drive the system into the
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Fig. 10. Simulation results of the DMPC (D) and the CMPC (C) in
comparison for accurately predicted events. Note the logarithmically scaled
ordinate of the plot showing J .

terminal sets, where the corresponding closed-loop systems
are asymptotically stable (see Section VI-C).

H. Simulation With Predicted Events
The simulation results shown so far showed the closed-loop

behavior for unpredicted events. If predictions of the output
reference voltage and the load current are, however, available
and utilized in the MPCs, the performances of both DMPC and
CMPC improve significantly, in particular with respect to the
output voltage. Fig. 10 shows the simulation results, including
the same events, as in Section VI-E.

Because both controllers are able to prepare for the
predicted events, control inputs stay within the specified
constraints. The DMPC achieves the CMPC performance
regarding the output voltage throughout the entire simulation,
including the abrupt load step at t = 5 ms. Since the difference
between actuator states of DMPC and CMPC is remarkably
small, the overall DMPC performance is close to the global
optimum, see the last plot of Fig. 10.

I. Higher Order Central System
In order to demonstrate the capability of the DMPC for

higher order central systems, the central system of the applica-
tion described in Section VI-A is extended by an LC filter with
the parameters L2 = 250 μH, R2 = 0 �, and C3 = 4.6 mF
(see Fig. 11). The two actuators used to control the central
system are the same as in Section VI-A. The central system
output is the voltage v3. Defining the central system state

Fig. 11. Third-order central system with i2 representing the sum of actuator
output currents i2 = �

i∈M
i2,i .

vector xc = [v2, i3, v3]T , the central system model and the
overall system model for the CMPC are derived analogously
as in Section VI-A.

The virtual subsystem model for the DMPC of the i th
actuator is derived by adapting the matrices Gc and Ec by
M as before

�
ẋi

ẋc
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�xi
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. (47b)

In addition, the intermediate current i3 of the central system
must be scaled after measurement, ĩ3 = κi Mi3. This is
necessary to hold the balance between currents since the
actuator output and the load current are virtually amplified
through the central system scaling (see Section III). For
closed-loop stability, the prediction horizon must be longer,
Np = 15. Apart from that, the same controller settings and
load distribution as in Section VI-B are chosen. The output
reference and load trajectories are assumed to be predicted.

The simulation is initialized in steady state. At t = 3 ms,
the output reference voltage steps up from 20 to 100 V, and
starting from t = 10 ms, the load current increases from 200 to
600 A with a gradient of 500 A ms−1. Despite the considerable
deviation of the individual DMPC actuator output currents
from the corresponding CMPC solutions, see the second plot
of Fig. 12, the sum of the actuator output currents is the
same for both controllers throughout the entire simulation.
Consequently, the trajectories of the DMPC and the CMPC
coincide regarding all three central system states, namely,
v2, i3, and v3, as shown in the third and fourth plots. This
demonstrates that the DMPC method achieves the global
optimality of the CMPC regarding all central system states.
In a steady state, the agents share the load current according
to the specified load distribution.

Note that if the third-order central system is damped with
R2 > 0 �, the entry on the main diagonal of Ac with respect to
the central system state i3 must be scaled by (κi M)−1 in order
to derive the virtual subsystem model. The system matrix of
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Fig. 12. Comparison of the DMPC (D) and CMPC (C) simulation results
for the third-order central system.

the virtual subsystem model is consequently

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− R1,i

L1,i

1
L1,i

0 − 1
L1,i

0 0

− 1
C1,i

0 1
C1,i

0 0 0
0 0 0 0 0 0
2

C2
0 0 0 − 1

C2
0

0 0 0 1
L2

− 1
κi M

R2
L2

− 1
L2

0 0 0 0 1
C3

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (48)

Relations between subsystem and overall system, as discussed
in Section V-A, are not applicable in this case. The optimality
of the DMPC regarding central system states is lost. Neverthe-
less, simulations show that the central system performance of
the DMPC still remains close to the optimum of the CMPC.

VII. DISCUSSION

It has been shown that the set of DMPCs exactly achieves
the optimal control performance of the CMPC with respect to
all central system states. In the case of even load distribution,
κi = M−1, all agents apply the same actuator control inputs.
Since the sum of actuator control inputs is unchanged in
comparison to the CMPC, it follows that in this case, the
DMPC achieves the CMPC optimality also for individual
actuator states and, thus, the overall system.

The incorporation of state constraints requires additional
measures. As mentioned in Section III, virtual predictions
vary between agents depending on κi and deviate from actual
trajectories resulting from the superposition of all agents’
actions. The investigation of solutions is a potential topic of

future research. If the load is evenly distributed and the agents
operate in a synchronized manner, the consideration of state
constraints is possible.

VIII. CONCLUSION

A DMPC method without communication for plants con-
trolled via multiple, identical actuators is presented. Each
DMPC is based on a virtual subsystem model consisting of
the corresponding actuator and a scaled version of the central
system. In this way, each agent, an actuator equipped with a
DMPC, virtually deals only with a portion of the central sys-
tem. An analytical derivation shows that in the unconstrained
operation, the set of DMPCs generates exactly the same sum
of control inputs as an equivalently tuned CMPC and that the
DMPC consequently achieves the optimal performance of the
CMPC with respect to all central system states. Agent outputs
generally differ from corresponding CMPC solutions during
transients but converge afterward. If the load of the plant is
evenly distributed over the agents, the DMPC operates with
the overall optimality of the CMPC. Stability in unconstrained
operation is determined analytically.

In constrained operation regarding the control inputs, the
stability is analyzed by computing the region of attraction,
which is compared to the CMPC’s admissible set. The inter-
action between agents and the convergence is investigated
based on numerical studies of a battery emulator system. The
simulation results of this application show that the DMPC
achieves the central system optimality for a range of events
in ideal operation, where predictions are accurate. If abrupt
transients are, however, not predicted, the DMPC preserves
stability and operates closely to the optimum considering the
control input constraints.

APPENDIX A
OPTIMALITY OF THE SUM OF CONTROL INPUTS IN

UNCONSTRAINED OPERATION

The local objective function of the i th DMPC [see (9)] is

Ji = �
Yref − Yi

�T
QY,D

�
Yref − Yi

�
+ �

Zref
i − Zi

�T
QZ,D

�
Zref

i − Zi
� + UT

i RDUi

with Zref
i = κi W f [see (13)]. The predicted trajectories of

the central system output Yi and the agent output Zi can be
written as

Yi = 	
F̃a F̃c


�xk
i

xk
c



+ �̃Ui + κi�̃W

Zi = 	
F̃Z,a F̃Z,c


�xk
i

xk
c



+ �̃Z Ui + κi�̃Z W

where the matrices F̃, �̃, �̃, F̃Z , �̃Z , and �̃Z are derived from
the discrete-time model as described in [26]. The matrices
F̃ and F̃Z are shown decomposed into blocks related to the
actuator and the central system states. Inserting the expressions
for Yi and Zi and analytically optimizing the local objective
function by ∂ Ji/∂Ui = 0 give�

�̃T QY,D�̃ + �̃T
Z QZ,D�̃Z + RD

�
U∗

i

= �̃T QY,D

�
Yref − 	

F̃a F̃c


�xk
i

xk
c



− κi�̃W

�
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+ �̃T
Z QZ,D

�
κi W f − 	

F̃Z,a F̃Z,c


�xk
i

xk
c



− κi�̃Z W

�

and finally results in the optimal sequence of control inputs
U∗

i for the i th agent

U∗
i =

�
�̃T QY,D�̃ + �̃T

Z QZ,D�̃Z + RD

�−1

×
�
�̃T QY,D

�
Yref − 	

F̃a F̃c


�xk
i

xk
c



− κi�̃W

�

+ �̃T
Z QZ,D

�
κi W f − 	

F̃Z,a F̃Z,c


�xk
i

xk
c



− κi�̃Z W

�

.

Adding up over all M agents considering
�

i∈M
κi = 1 yields

the sum of optimal control inputs of the DMPC

�
i∈M

U∗
i =

�
�̃T QY,D�̃ + �̃T

Z QZ,D�̃Z + RD

�−1

×
�
�̃T QY,D

�
MYref−	

F̃a MF̃c


��
i∈M

xk
i

xk
c



− �̃W

�

+ �̃T
Z QZ,D

�
W f − 	

F̃Z,a MF̃Z,c


��
i∈M

xk
i

xk
c




− �̃Z W
�


.

The objective function of the CMPC [see (16)] is

J = �
Yref − Y

�T
QY

�
Yref − Y

�
+ �

Zref − Z
�T

QZ
�
Zref − Z

� + UT RU

where the weighting matrices QZ and R can be expressed by
means of their DMPC counterparts

QZ =

⎡
⎢⎢⎢⎢⎣

QZ,D 0 · · · 0

0 QZ,D
. . .

...
...

. . .
. . . 0

0 · · · 0 QZ,D

⎤
⎥⎥⎥⎥⎦ R =

⎡
⎢⎢⎢⎢⎣

RD 0 · · · 0

0 RD
. . .

...
...

. . .
. . . 0

0 · · · 0 RD

⎤
⎥⎥⎥⎥⎦,

and Zref can be written as follows with Ki = κi I:

Zref = 	
KT

1 KT
2 · · · KT

i · · · KT
M


T
W f .

The predicted trajectories of the central system output Y and
the actuator outputs Z can be expressed analogously as for the
DMPC but including all actuators

Y = 	
Fa Fa · · · Fa Fc



⎡
⎢⎢⎢⎣

xk
1
...

xk
M

xk
c

⎤
⎥⎥⎥⎦

+ 	
�a �a · · · �a



⎡
⎢⎢⎢⎣

U1

U2
...

UM

⎤
⎥⎥⎥⎦ + �W

Z =

⎡
⎢⎢⎢⎣

Z1

Z2
...

ZM

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

FZ,a FZ,o · · · FZ,o FZ,c

FZ,o FZ,a
. . .

...
...

...
. . .

. . . FZ,o FZ,c

FZ,o · · · FZ,o FZ,a FZ,c

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xk
1

xk
2
...

xk
M

xk
c

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

�Z,a �Z,o · · · �Z,o

�Z,o �Z,a
. . .

...
...

. . .
. . . �Z,o

�Z,o · · · �Z,o �Z,a

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

U1

U2

...
UM

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

�Z,a

�Z,a
...

�Z,a

⎤
⎥⎥⎥⎦W

where the matrices F, �, FZ , �Z , and �Z are again decom-
posed into blocks related to the actuators, the central system.

Inserting the expressions and analytically optimizing the
objective function by ∂ J/∂U = 0 yield

�
⎡
⎢⎢⎢⎣

�T
a

�T
a
...

�T
a

⎤
⎥⎥⎥⎦QY

	
�a �a · · · �a


 +

⎡
⎢⎢⎢⎢⎣

�T
Z,a �Z,o

T · · · �T
Z,o

�T
Z,o �T

Z,a

. . .
...

...
. . .

. . . �T
Z,o

�T
Z,o · · · �Z,o �T

Z,a

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

QZ,D 0 · · · 0

0 QZ,D
. . .

...
...

. . .
. . . 0

0 · · · 0 QZ,D

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

�Z,a �Z,o · · · �Z,o

�Z,o �Z,a
. . .

...
...

. . .
. . . �Z,o

�Z,o · · · �Z,o �Z,a

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

RD 0 · · · 0

0 RD
. . .

...
...

. . .
. . . 0

0 · · · 0 RD

⎤
⎥⎥⎥⎥⎦

�
⎡
⎢⎢⎢⎣

U∗
1

U∗
2
...

U∗
M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

�T
a

�T
a

...

�T
a

⎤
⎥⎥⎥⎥⎦

×QY

�
Yref − 	

Fa Fa · · · Fa Fc


⎡
⎢⎢⎢⎢⎢⎢⎣

xk
1

xk
2

...
xk

M

xk
c

⎤
⎥⎥⎥⎥⎥⎥⎦

− �W
�

+

⎡
⎢⎢⎢⎢⎣

�T
Z,a �Z,o

T · · · �T
Z,o

�T
Z,o �T

Z,a

. . .
...

...
. . .

. . . �T
Z,o

�T
Z,o · · · �Z,o �T

Z,a

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

QZ,D 0 · · · 0

0 QZ,D
. . .

...
...

. . .
. . . 0

0 · · · 0 QZ,D

⎤
⎥⎥⎥⎥⎦

×
�

⎡
⎢⎢⎢⎣

K1

K2
...

KM

⎤
⎥⎥⎥⎦W f −

⎡
⎢⎢⎢⎢⎣

FZ,a FZ,o · · · FZ,o FZ,c

FZ,o FZ,a
. . .

...
...

...
. . .

. . . FZ,o FZ,c

FZ,o · · · FZ,o FZ,a FZ,c

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xk
1

xk
2
...

xk
M

xk
c

⎤
⎥⎥⎥⎥⎥⎥⎦
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−

⎡
⎢⎢⎢⎣

�Z,a

�Z,a
...

�Z,a

⎤
⎥⎥⎥⎦W

�
.

Adding up all rows on both sides by left multiplication
of

	
I I · · · I



and considering the relation between blocks of

the CMPC matrix �Z and the DMPC matrix �̃Z , namely,
�Z,a + (M − 1)�Z,o = �̃Z , give�	

M�T
a QY �a M�T

a QY �a · · · M�T
a QY �a



+ 	

�̃T
Z QZ,D�̃Z �̃T

Z QZ,D�̃Z · · · �̃T
Z QZ,D�̃Z




+ 	
RD RD · · · RD


�
⎡
⎢⎢⎢⎣

U∗
1

U∗
2
...

U∗
M

⎤
⎥⎥⎥⎦

= M�T
a QY

�
Yref − 	

Fa Fa · · · Fa Fc


⎡
⎢⎢⎢⎢⎢⎢⎣

xk
1

xk
2
...

xk
M

xk
c

⎤
⎥⎥⎥⎥⎥⎥⎦

− �W
�

+ 	
�̃T

Z QZ,D �̃T
Z QZ,D · · · �̃T

Z QZ,D


�
⎡
⎢⎢⎢⎣

K1

K2
...

KM

⎤
⎥⎥⎥⎦W f

−

⎡
⎢⎢⎢⎢⎣

FZ,a FZ,o · · · FZ,o FZ,c

FZ,o FZ,a
. . .

...
...

...
. . .

. . . FZ,o FZ,c

FZ,o · · · FZ,o FZ,a FZ,c

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xk
1

xk
2

...
xk

M

xk
c

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

�Z,a

�Z,a
...

�Z,a

⎤
⎥⎥⎥⎦W

�
.

Considering further relations between CMPC and DMPC
matrices, namely, FZ,a + (M − 1)FZ,o = F̃Z,a , �a = 1/M�̃,
Fa = 1/MF̃a, Fc = F̃c, FZ,c = F̃Z,c, � = 1/M�̃, and �Z,a =
1/M�̃Z ; moreover,

�
i∈M

Ki = I and (17), QY = MQY,D ,
yields�

�̃T QY,D�̃ + �̃T
Z QZ,D�̃Z + RD

��
i∈M

U∗
i

= M�̃T QY,D

�
Yref − 	

1
M F̃a F̃c


��
i∈M

xk
i

xk
c



− 1

M
�̃W

�

+ �̃T
Z QZ,D

�
W f − 	

F̃Z,a MF̃Z,c


��
i∈M

xk
i

xk
c




− M
1

M
�̃Z W

�
.

The sum of optimal control inputs of the CMPC is finally

�
i∈M

U∗
i =

�
�̃T QY,D�̃ + �̃T

Z QZ,D�̃Z + RD

�−1

×
�
�̃T QY,D

�
MYref − 	

F̃a MF̃c


��
i∈M

xk
i

xk
c



− �̃W

�

+ �̃T
Z QZ,D

�
W f − 	

F̃Z,a MF̃Z,c


��
i∈M

xk
i

xk
c




− �̃Z W
�


which is exactly the same solution as for the DMPC.

APPENDIX B
OPTIMALITY OF THE SUM OF AGENT OUTPUTS IN

UNCONSTRAINED OPERATION

The trajectory of agent outputs resulting from optimal
control inputs is

Z∗ =

⎡
⎢⎢⎢⎣

Z∗
1

Z∗
2
...

Z∗
M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

FZ,a FZ,o · · · FZ,o FZ,c

FZ,o FZ,a
. . .

...
...

...
. . .

. . . FZ,o FZ,c

FZ,o · · · FZ,o FZ,a FZ,c

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xk
1

xk
2

...
xk

M

xk
c

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎣

�Z,a �Z,o · · · �Z,o

�Z,o �Z,a
. . .

...
...

. . .
. . . �Z,o

�Z,o · · · �Z,o �Z,a

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

U∗
1

U∗
2
...

U∗
M

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

�Z,a

�Z,a
...

�Z,a

⎤
⎥⎥⎥⎦W.

The relations between CMPC and DMPC matrices that are
stated above follows:

�
i∈M

Z∗
i = 	

F̃Z,a F̃Z,a · · · F̃Z,a MF̃Z,c



⎡
⎢⎢⎢⎢⎢⎢⎣

xk
1

xk
2
...

xk
M

xk
c

⎤
⎥⎥⎥⎥⎥⎥⎦

+ 	
�̃Z �̃Z · · · �̃Z



⎡
⎢⎢⎢⎣

U∗
1

U∗
2
...

U∗
M

⎤
⎥⎥⎥⎦ + �̃Z W

and finally�
i∈M

Z∗
i = 	

F̃Z,a MF̃Z,c


��
i∈M

xk
i

xk
c



+ �̃Z

�
i∈M

U∗
i + �̃Z W.

The trajectory of the sum of optimal agent outputs only
depends on the current states, the disturbance trajectory, and
the sequence of the sum of optimal control inputs, but not
on the sequence of individual control inputs. As

�
i∈M

U∗
i

is the same for DMPC and CMPC, it follows that also,�
i∈M

Z∗
i is the same for DMPC and CMPC.

APPENDIX C
OPTIMALITY OF THE CENTRAL SYSTEM STATES IN

UNCONSTRAINED OPERATION

The trajectory of the central system output resulting from
optimal control inputs can be written as

Y∗ = 	
Fa Fa · · · Fa Fc



⎡
⎢⎢⎢⎣

xk
1
...

xk
M

xk
c

⎤
⎥⎥⎥⎦
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+ 	
�a �a · · · �a



⎡
⎢⎢⎢⎣

U∗
1

U∗
2
...

U∗
M

⎤
⎥⎥⎥⎦ + �W

Y∗ = 	
Fa Fc


��
i∈M

xk
i

xk
c



+ �a

�
i∈M

U∗
i + �W.

The trajectory of the optimal central system output only
depends on the current states, the disturbance trajectory, and
the sequence of the sum of optimal control inputs, but not on
the sequence of individual control inputs. As

�
i∈M

U∗
i is the

same for DMPC and CMPC, it follows that also, Y∗ is the
same for DMPC and CMPC. This also holds for any other
central system state.
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