
772 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 2, MARCH 2023

Robust Simultaneous Localization and Mapping
Using Range and Bearing Estimation of Radio

Ultra High Frequency Identification Tags
Fabrizio Romanelli , Francesco Martinelli , and Emidio Di Giampaolo

Abstract— In this article, we consider an indoor simultaneous
localization and mapping (SLAM) problem for a mobile robot
measuring the phase of the signal backscattered by a set of passive
radio ultra high frequency identification (ID) tags, deployed in
unknown position on the ceiling of the environment. The solution
approach is based on the introduction, for each radio frequency
identification (RFID) tag observed, of a multihypothesis extended
Kalman filter (MHEKF) which, based on the measured phases
and on the wheel encoder readings, provides an estimate of the
range and of the bearing of the observed tag with respect to the
robot. This information is then used in an extended Kalman filter
(EKF) solving the SLAM problem. Since an effective range and
bearing estimate is available only after some steps, a resilient
module is added to the algorithm to evaluate the reliability of
the position estimate of each observed tag. As shown through
numerical and experimental results, this makes the proposed
approach robust with respect to several kinds of unmodeled
disturbances, like multipath effects or even the unexpected
change of the position of a tag.

Index Terms— Resilient sensor fusion, radio frequency identifi-
cation (RFID) localization, robust Kalman filtering, simultaneous
localization and mapping (SLAM), ultra high frequency - radio
frequency identification (UHF-RFID).

I. INTRODUCTION

IN THE last years, the radio frequency identification (RFID)
technology is becoming more and more popular as a

promising framework for robot localization applications. This
is due to many reasons: among the others the fact that the
RFID technology can be successfully used when other kinds
of sensors may fail, due to harsh or bad light conditions, and
especially when considering passive tags as in this article,
these are cheap and almost maintenance free. Moreover, the
identification (ID) of the RFID tags is known and this provides
a straightforward hardware solution to the data association
problem, which may afflict other kinds of sensors. Finally, the
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use of the RFID technology, as pointed out in [1], is already
widespread in industrial environments for inventory purposes
(see, e.g., [2]), so the localization algorithms based on this
technology could potentially come with an almost negligible
additional equipment cost.

There is a vast literature dealing with the use of the RFID
technology for the localization of a mobile vehicle. Several dif-
ferent approaches have been proposed in the years which rely
on various kinds of RFID measurements available, like, among
the others, the received signal strength indication (RSSI), the
time of arrival (TOA), the phase shift in the backscattered
RFID signal or simply the information associated with the
tag detection. Also, the use of the RFID technology has
been sometimes considered in combination with other kinds
of proprioceptive or exteroceptive sensors. A comprehensive
survey on this subject has been recently presented in [1],
where it is observed that the most investigated and relevant
approach in this framework is the one where phase mea-
surements coming from passive ultra high frequency - radio
frequency identification (UHF-RFID) systems are combined
with proprioceptive sensors. This is actually also the context
considered in this article, where a reader, installed on board a
mobile robot, measures the phase shift coming from a set of
passive UHF-RFID tags deployed in unknown position on the
ceiling of the environment.

There are several reasons for considering as RFID mea-
surements the phase shift in the backscattered signal: phases
are in fact very sensitive to the tag-reader distance and
provide, as a consequence, a very precise measurement of this
quantity. They are usually available in off-the-shelf systems
based on passive tags and provide a more reliable and precise
sensing of the distance variation with respect to other kinds
of RFID measurements, even in the case of signals affected
by undesired phenomena, like multipath.

The problem with the phases is their periodicity, since a
given phase shift corresponds to several possible tag-reader
distances. To deal with this ambiguity, several approaches have
been proposed in the literature, some of them based on the
simultaneous use of different signal frequencies, like, e.g., [3].
This kind of approaches is effective even if has to fight with
the limited allowed range of RFID frequency dictated by Fed-
eral Communications Commission (FCC) regulations, which
motivates the interesting approach proposed in [4]. Another
possible solution is the one based on measurements taken
from different positions, whose relative displacement must be
known [5], [6], [7]. The ambiguity in phase measurements can
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also be solved in an indirect way by using multihypotheses
filters where wrong hypotheses (e.g., on the robot pose, like
in [8]) are pruned according to the phase measurements which
become available during the reader (or the tag) motion.

In this vein, several approaches have been presented in the
last years to localize a robot with an RFID reader installed
on board, which measures the phase shift in the RFID signal
backscattered by a given set of passive RFID tags located in
the environment. In many cases, the position of these tags is
assumed known, like, e.g., in [8], [9], [10] and in [11], which
also performs an observability analysis of the problem. In [12]
a similar problem is considered even if the situation is in
some sense reversed with respect to the previous works since
a tagged object is moving and there is a set of reader antennas
in known position to estimate the tagged object motion.

The assumption that the position of the reference tags is
known may be too optimistic for many reasons. First of all, this
knowledge may require a long and laborious preparation of the
environment. Moreover, an exact knowledge of the RFID tag
position is actually not possible, both for practical reasons and
also for technological aspects, like the one due to the uncer-
tainty in the antenna phase center [13]. Notice, at this regard,
that, in view of the high sensitivity of the phase measurements,
a precise information regarding the position of the tags is
usually needed to make the localization process effective.
In addition, phase measurements are characterized by at least
one more unknown parameter, namely the phase offset, which
depends, e.g., on the hardware of the system. It could be quite
inconvenient, if not impossible, to evaluate this parameter for
each tag, especially in the case of a very large number of tags.
At this regard, it could be important to mention the analysis
presented in [14], where it is shown how the offset can not
be considered a constant parameter but may depend on the
tag-reader relative position. This observation may invalidate
a common practice adopted in several approaches, consisting
in subtracting from phase measurements the phase measured,
e.g., in the starting position of the robot, practice characterized
also by other problems, like a general increase in the noise,
especially if the reference measurement is strongly perturbed.

For all these reasons, it appears important, if not mandatory,
to develop localization approaches where the tag positions,
together possibly with other unknown parameters (like the
offset), are included in the estimation algorithm. This can be
required also in view of possible disturbances which could
affect the environment and perturb the tag locations [15].

The tag positions can be refined starting from an initial
rough information on their value, like, e.g., in [16] and [17],
which also deal with the problem associated with the unknown
offsets. But they can be also completely unknown at the
beginning, with the consequence that they should be estimated
together with the robot pose: a simultaneous localization and
mapping (SLAM) problem then arises, where also the effect
of the unknown offset must be taken into account.

A solution to a SLAM problem in this context is pre-
sented in [18], which extends the approach of the range
only SLAM technique proposed in [19] to consider the phase
periodicity. The SLAM algorithm presented in [18] is based

on a Rao–Blackwellized particle filter, where the robot pose
is estimated through a set of particles, each one containing,
in addition to the robot pose guess, also, for every tag detected,
a set of extended Kalman filter (EKF) instances associated
with all the candidate positions of that tag with respect to the
robot. The problem considered in [18] is roughly 2-D (tags
are placed on the ceiling which has an approximately known
height). So, when a tag is detected for the first time, a set
of EKF instances is initialized along a number of concentric
circles around the robot pose guess at that moment associated
with the considered particle. When new phase measurements
arrive, these EKF instances are weighed according to the
agreement between actual and expected measurements and are
possibly pruned if their weight falls below a given threshold.
The approach provides a satisfactory solution to the SLAM
problem since also the offset is handled as part of the esti-
mation of the ceiling height, which is assumed only roughly
known at the beginning. It presents however two major limits.
The first one is the computational complexity, large at the
beginning of the estimation process, due to the large number
of candidate EKF instances associated with each new observed
tag in each particle. The second problem is that pruning is
not reversible: once an EKF instance disappears, it cannot be
restored anymore. This may concern also good EKF instances
which may be wrongly pruned due to measurement noise and
to other kinds of disturbance.

A more efficient and robust solution is presented in this
article. Preliminary results on this approach have been pre-
sented in [20]. It exploits the multihypothesis EFK (MHEKF)
developed in [21] which, based on the wheel encoder readings
and on the phase measurements coming from a given tag,
is able to provide an estimate of the range and of the bearing
of that tag with respect to the robot. Once the range and the
bearing of the tags is available, standard SLAM approaches
can be considered. Since the ID of the tags is available,
an EKF-SLAM-based algorithm is adopted in this article as a
valid solution to the problem. This approach presents several
interesting features, as described below.

First of all the time complexity is much lower with respect
to the approach proposed in [18]. In fact, even if there is
a MHEKF running for each tag, every MHEKF contains a
limited number of EKF instances (typically between 10 or 20,
depending on the maximum detection range of the reader) and
each instance is a 3-D EKF (it estimates the range, the bearing,
and the phase offset of the tag).

Another interesting feature is the intrinsic robustness of the
approach against disturbances, since, in this case, hypotheses
are not pruned and the algorithm is able to restore a good
behavior after possible unreliable periods, where strong per-
turbations could have compromised the effectiveness of the
approach, or of part of the approach, for a while. This has been
obtained by providing the algorithm with a resilience module,
formulated on a robust residual-based adaptive estimation EKF
(as described in [22] and [23]), which may decide to switch
off the measurements coming from a given tag if the position
estimate of this tag appears not reliable enough, according
to certain metrics defined in the article. When the position
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Fig. 1. Indoor environment with the robot in its initial position and six
tags placed on the ceiling. The triplet (x, y, z) defines the absolute reference
frame. The robot reference frame (x(r), y(r), z(r)) is also a static frame which
is defined by considering the initial pose of the robot.

estimate of the switched off tag returns reliable, this tag may
be restored and included in the estimation process. As shown
through numerical results, the algorithm may also handle
situations where a tag position is changed at some unknown
time during the experiment.

It is interesting to observe that, even under multipath effects
or other perturbations, a wrong but stable estimate of a tag
position could provide a virtual landmark which helps in any
case the robot pose estimation process. Clearly, in that case,
the tag position estimate will be wrong but it can be corrected
if the robot reaches an area where the disturbance, causing the
wrong tag estimate, decreases.

Finally, being the phase offset included in the estimation
process, also the problem of an unknown and possibly non-
constant offset as mentioned in [14], may be handled to some
extent by the proposed algorithm.

II. NOTATION AND PROBLEM FORMULATION

The system setup considered in this article is an indoor
environment with a certain number L of RFID tags located
on the ceiling, as depicted in Fig. 1. The (x, y, z) absolute
reference frame is defined by assuming that the floor is the
z = 0 plane, with the z-axis pointing toward the ceiling. Unless
otherwise specified, everything will be described with respect
to this frame. However, in the SLAM algorithm, the robot
will reconstruct its path and the tag coordinates with respect
to another frame defined with the origin in the initial robot
position and with the x-axis oriented along the initial motion
direction. The robot frame is also a static frame related to the
global frame through a roto-translation in the xy plane.

The robot is a unicycle-like vehicle with a differential drive
kinematics. If pt = (xr,t , yr,t , θt ) denotes the robot pose at
time t , with (xr,t , yr,t ) the robot position and θt its orientation,
the discrete time dynamics of the robot is as follow:

pk+1 =
⎡
⎢⎣

xr,k + uR,k +uL ,k

2 cos(θk)

yr,k + uR,k +uL ,k

2 sin(θk)

θk + uR,k −uL ,k

d

⎤
⎥⎦ (1)

with u R,k and uL ,k representing the distance covered in the
interval (kδt , (k +1)δt) (i.e., at time step k, with discretization
step δt ) by the right and left wheels, respectively, and d is the
distance between the two wheels. The distance u R,k covered
at time step k by the right wheel is related to a noisy encoder
reading ue

R,k by the relation ue
R,k = u R,k + nR,k , where the

noise term nR,k is assumed a 0-mean Gaussian random variable

with variance given by K R|ue
R,k |, being K R a positive constant.

A similar argument can be applied to the left wheel. In order to
simplify the notation, the following definitions can be adopted:

uk = u R,k + uL ,k

2
, ue

k = ue
R,k + ue

L ,k

2

ωk = u R,k − uL ,k

d
, ωe

k = ue
R,k − ue

L ,k

d
. (2)

A reader installed onboard the robot collects the phases of
the RFID signals backscattered by L tags located in unknown
positions (xT1 , yT1), . . . , (xTL , yTL ). The collected signal at
time k from the j th tag is as follow:

Vk, j (on/off) = Ak, j (on/off)e jφk, j (on/off) (3)

where Ak, j (on/off) and φk, j (on/off) are the amplitude and
phase of the signal modulated by the tag’s binary (on/off)
data sequence. In ideal conditions, the phase φk, j accounts for
the round trip of wave propagation between the vehicle and the
tag. In practical conditions, a commercial RFID reader extracts
the differential received signal between the two modulating
states of the tag as follow:

θk, j = arg
�
Vk, j (on) − Vk, j (off)

	
(4)

that includes bias hardware noise and the interference of the
signal with the environment. In indoor environments and in
presence of scattering objects as furniture, benches, appliances,
etc., the signal scattered by the tag feels the effects of the
electromagnetic coupling of antennas with the environment,
so its intensity and phase differ from that of ideal conditions.
In particular, there are positions where the signal is so weak
that it is not received (i.e., it is below the hardware noise
threshold) and positions where the intensity is higher than the
noise threshold but the phase is perturbed, i.e., the measured
phase θk, j differs from the value calculated considering only
the round trip path. This effect is particularly noticeable in case
of standard tags as inlay tags based on dipole-like antennas and
a matching network. They are sensitive to multipath (i.e., the
bouncing of the signals from the surfaces of the environment)
and to the material of the surface where they are placed
on, since they suffer from impedance mismatch and loss of
efficiency that affect, moreover, the phase offset. For these
reasons, the phase measurement at time k collected by the
reader onboard the robot for each tag can be defined as follow:

φk = mod
�−2K Dk + φo + φm,k + nφ,k, 2π

	
(5)

where K = 2π/λ (with λ the wavelength of the electromag-
netic signal), Dk is the (unknown) tag-reader distance, φo is
an unknown offset depending on the hardware and nφ,k is,
at each time k, a 0-mean Gaussian noise and φm,k is a disturb
of the phase that accounts for effects (i.e., multipath) of the
environment.

We define the range ρi,k and the bearing βi,k of a tag i as
follows:

ρi,k =

�

xr,k − xTi

	2 + �
yr,k − yTi

	2
(6)

βi,k = θk − atan2
�
yTi − yr,k, xTi − xr,k

	
(7)

where (xTi , yTi ) are the unknown coordinates of tag Ti .
According to this definition, the distance Dk in (5) when
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the i th tag is observed, is given by (ρ2
i,k +h2)1/2, where h is the

ceiling height, approximately known. When the robot moves
(the tag is assumed fixed in its unknown position (xTi , yTi )),
the range ρi,k and the bearing βi,k change over time. Knowing
the wheel displacements u R,k and uL ,k , it is possible to
derive the equations which describe the dynamics of the
variables (ρi,k, βi,k). We obtain, after discretization:

ρi,k+1 = ρi,k − uk cos(βk) (8)

βi,k+1 = βi,k + ωk + uk

ρi,k
sin

�
βi,k

	
(9)

where uk and ωk have been defined in (2). Each tag position
with respect to the robot is estimated with a MHEKF that
fuses the phase measurements with the odometry readings,
as proposed in [21]. The objective of this article is to solve
a SLAM problem so that both the robot pose and the tags
position (which represent the unknowns of the problem) could
be estimated at the same time while resisting the effects
of outliers in the measurements. The known quantities in
the problem are the encoder readings, the phases of the
signal backscattered by the RFID tags on the ceiling and an
approximate value of the ceiling height h with respect to the
reader on the robot.

III. SOLUTION APPROACH

A. Schematic of the Overall Algorithm

The SLAM problem formulated in Section II is solved
through an EKF SLAM algorithm which uses the range and
the bearing estimation of each detected tag provided by a set
of MHEKF, one for each tag. The main steps of the approach
are summarized as follows.

1) Initialization: Initialize for each tag a MHEKF as
described in Section III-B and initialize the EKF SLAM
as described in the initialization step of Algorithm 1.

2) Step k (MHEKF): Perform the MHEKF Algorithm as
reported in Section III-B for the L tags, obtaining range
and bearing estimates (ρ̂1,k, β̂1,k), . . . , (ρ̂L ,k, β̂L ,k).

3) Step k (Instance Instability Detection and Update):
Perform the instability detection step described in
Section III-D1 and update state and covariance accord-
ing to the state and covariance update step reported in
the same section.

4) Step k (Outlier Detection): Perform the global outliers
detection step described in Section III-E. Update fault
and reliability factors according to (28), (29), and (30).

5) Step k (SLAM Prediction): Perform the prediction step
of Algorithm 1.

6) Step k (SLAM Correction With Robust Kalman Gain):
Perform the correction step of Algorithm 1 with the
Kalman gain modified as in (27).

7) Set k = k + 1 and return to item 2. �

B. Range and Bearing Estimation

Based on the work in [21], each tag position with respect
to the robot is estimated through a MHEKF that fuses the
phase measurements with the odometry readings. The pro-
posed algorithm, for each tag i , initializes nM EKF instances

 = 1, 2, . . . , nM , each one with a different value of the

Fig. 2. MHEKF execution: triangles represent the estimates produced by
the different EKF instances, the selected instances are depicted as bigger
triangles and the circle with the segment represents the robot position and
heading. A switch between instances is visible from time step 146 (brown
instance selected) to time step 147, where the blue instance selected provides
an effective estimate of the true tag position, indicated by a red star in (2, 1).

range, since for the periodicity of the RFID phases, several
ranges correspond to the same value of a given measured
phase. Then, in each EKF instance 
, the a priori estimate for
range and bearing and the corresponding covariance matrix
is computed. The correction step of the EKF algorithm is
applied independently in each instance and finally for each
instance 
 two metrics are created and then used to compute
its weight. Instances with a too small weight are moved
to cycles corresponding to the current phase measurement
not covered by other instances. Finally, the estimates ρ̂i,k

and β̂i,k are taken from the best EKF instance (i.e., by the
EKF instance with larger weight). The algorithm is described
here only considering the range and bearing estimation, while
the phase offset φo estimation can be easily included in the
MHEKF, as described in [21]. Moreover, the offset estimation
compensates possible errors in the knowledge of the ceiling
height h. The best EKF instance can be seen as a sensor able
to measure the range and the bearing of a certain tag with a
certain noise and fault rate associated with it, throughout this
article.

Using the best EKF instance 
 however leads to problems
related to the choices of 
 that can change from one time step
to another, given that the weight of the instances change over
time. One problem is that these switches between instances
strongly affect range and bearing estimations as shown in
Fig. 2. This can introduce big differences between consecutive
measurements and a method to cope with this problem, and
with the problem related to the frequent switches between
instances with similar weight, must be designed. This will be
considered in Section III-D.

C. Simultaneous Localization and Mapping

For each tag i in the environment, the algorithm described
in Section III-B is initialized and executed. As an output
at each time step k, the estimated ranges and bearings
(ρ̂1,k, β̂1,k), . . . , (ρ̂L ,k, β̂L ,k) are computed for the L features
(i.e., tags). These estimations are then available to perform
a SLAM algorithm with a note: each estimated range and
bearing couple can come uniquely from its corresponding tag.
This leads to a main simplification for the data association
as (ρ̂i,k, β̂i,k) (i = 1, 2, . . . , L), regarded to as a measurement
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of feature i , is uncorrelated to any other feature j ( j �= i ).
The SLAM algorithm adopted in this work uses an EFK. The
robot pose at time k is (xr,k, yr,k , θk), so the state vector, also
including tag positions to map the features in the environment,
is as follow:

xk = �
xr,k, yr,k, θk, xT1,k , yT1,k , . . . , xTL ,k , yTL ,k

�T
.

The dynamics of the system is as follow:

xk+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xr,k + uk cos(θk)

yr,k + uk sin(θk)

θk + wk

xT1,k

yT1,k

...
xTL ,k

yTL ,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

and will be synthetically referred to in this article by

xk+1 = f
�
xk, ue

k, w
e
k, nR,k, nL ,k

	
(11)

where ue
k and we

k come from (2) and nR,k and nL ,k have been
already defined before (2). The (3 + 2L) × (3 + 2L) Jacobian
matrix Fk of the state dynamics with respect to the state is
defined as follows:

Fk = ∂ f

∂xk
|x=x̂k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 −ue
k sin

�
θ̂k

	
0 0 0

0 1 ue
k cos

�
θ̂k

	
0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

. . . 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

The (3 + 2L) × 2 Jacobian matrix with respect to the encoder
noises nR,k and nL ,k is as follow:

Wk = ∂ f

∂uk
|x=x̂k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 cos
�
θ̂k

	
0.5 cos

�
θ̂k

	
0.5 sin

�
θ̂k

	
0.5 sin

�
θ̂k

	
1

d
− 1

d
0 0

...
...

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

When a new range and bearing measurement with the robot
in state (xr,k, yr,k , θk) and the tag in position (xTi,k , yTi,k ) is
available, it can be expressed as follows:

h(xk) =
 
�

xr,k − xTi,k

	2 + �
yr,k − yTi,k

	2

θk − atan2
�
yTi,k − yr,k, xTi,k − xr,k

	
�
. (14)

When measurements from L tags are available, (14)
becomes a vector whose 2L elements contain the range
and bearing from the L tags. The Jacobian Hk of this mea-
surement funct-ion with respect to the state is a 2L × (3+2L)

matrix:
Hk = ∂h

∂xk
|x=x̂−

k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

d1

b1

d1
0 −a1

d1
−b1

d1
0 · · · 0 0

b1

d2
1

− a1

d2
1

1 − b1

d2
1

a1

d2
1

0 · · · 0 0

...
...

...
...

...
...

. . .
...

...

aL

dL

bL

dL
0 0 0 0 · · · −aL

dL
−bL

dL

bL

d2
L

−aL

d2
L

1 0 0 0 · · · −bL

d2
L

aL

d2
L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

Algorithm 1 Extended Kalman Filter for Simultaneous
Localization and Mapping
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Algorithm 1 (Continued.) Extended Kalman Filter for
Simultaneous Localization and Mapping

where

ai = x̂−
r,k − x̂−

Ti,k

bi = ŷ−
r,k − ŷ−

Ti,k

di =
��

x̂−
r,k − x̂−

Ti,k

�2 +
�

ŷ−
r,k − ŷ−

Ti,k

�2
.

The EKF-based SLAM algorithm is summarized in
Algorithm 1.

D. Dealing With MHEKF Instance Changes

As already mentioned in Section III-B, the MHEKF works
with a certain number of EKF instances (10 or 20 are enough
to cover the set of all possible cycles), each one initialized on a
different cycle corresponding to the initial phase measurement.
The instance with larger weight will be chosen to provide the
estimates ρ̂i,k and β̂i,k (i.e., the i th tag measurements used
by the EKF-SLAM algorithm). At each timestep, the choice
of the instance could change. When this happens, the range
and bearing estimates may be affected by a sudden change.
These instance changes are usually caused by an instance
stabilization process intrinsically operated by the multiple
EKF while selecting the hypothesis which best fits with the
measurements. From a SLAM point of view, this behavior can
be seen as a condition to initialize a new feature (i.e., another
possible tag position in the map) and should be managed with
a proper algorithm for partial reinitialization. In order to do so,
a methodology to determine if an instance can be considered
as stable is proposed in this article. For a single MHEKF, given
the 
 = 1, 2, . . . , nM instances, let 
̂ be the instance with the
largest weight at time k, 
̂ is stable at time k if

î j = 
̂ ∀ j ∈ [k − st + 1, k] (22)

where î j is the instance with the largest weight at time j and
st is a positive integer to be properly selected.

The instance 
̂ is considered unstable if (22) is not satisfied
for it. This method is applied for all the L MHEKFs.

1) EKF-SLAM With Selective Tag State Estimation Reset:
a) Instability detection step: Perform a check on the

stability over the L MHEKF instances with the largest weight
according to (22). If one or more unstable instances are
there, then proceed to the next step, otherwise cycle over the
instability detection step.

b) State and covariance update step: If the instance i
is marked as unstable at time step k, the state vector
and the covariance matrix of the EKF-SLAM must be updated
according to the following:

x̂Ti,k = x̂r,k + ρTi,k cos
�
θk − βTi,k

	
ŷTi,k = ŷr,k + ρTi,k sin

�
θk − βTi,k

	
. (23)

The other elements of the state vector are left unchanged
as no reset is needed neither in the robot state nor in the
tag states which are not affected by instance instability. For
the covariance matrix the assumption that ρTi,k and βTi,k are
considered as real measurements has been made. These mea-
surements have their own covariance matrix taken from the
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multiple EKF and we can assume that they are independent
both from the robot pose and the other tags coordinates. Given
the previous assumptions, we can define z̃ = [ρTi,k , βTi,k ]T as
the range and bearing estimation vector for the Ti tag that has
to be reinitialized. Furthermore, if x̃k is the EKF-SLAM vector
without the coordinates of tag Ti and ỹ = [x̂Ti,k , ŷTi,k ]T is the
vector of the estimate of the tag coordinates, we can define
the covariance matrix of the extended state vector [x̃, z̃, ỹ]T

as follows:

Pext =
⎡
⎣ Px̃ x̃ 0[3+2(L−1)]×2 Px̃ ỹ

02×[3+2(L−1)] Pz̃z̃ Pz̃ ỹ

Pỹx̃ Pỹz̃ Pỹ ỹ

⎤
⎦

where:
Px̃ x̃ [3 + 2(L − 1)] × [3 + 2(L −

1)] covariance matrix of x̃
obtained by the covariance
matrix P of the EKF SLAM
algorithm by deleting the two
rows and columns referred
to the tag which has to be
reinitialized.

Px̃z̃ = PT
z̃x̃ = 0[3+2(L−1)]×2 covariance matrix of x̃ and

z̃ that is considered null as
the measurements are inde-
pendent of the state.

Px̃ ỹ = PT
ỹx̃ = Px̃ x̃ FT

x̃ [3+2(L −1)]×2 covariance
matrix of x̃ and ỹ.

Pỹz̃ = PT
z̃ ỹ 2 × 2 covariance matrix of ỹ

and z̃.
Pỹ ỹ = Fx̃ Px̃ x̃ FT

x̃ + Fz̃ Pz̃z̃ FT
z̃ 2×2 covariance matrix of ỹ.

Pz̃z̃ 2 × 2 covariance matrix of z̃
given by the MHEKF.

where Fx̃ and Fz̃ are the Jacobian matrices of the relations (23)
with respect to x̃ and z̃, respectively,

Fx̃ =
�

1 0 −ρTi,k sin
�
θk − βTi,k

	
0 · · · 0

0 1 ρTi,k cos
�
θk − βTi,k

	
0 · · · 0

�

Fz̃ =
�

cos
�
θk − βTi,k

	
ρTi,k sin

�
θk − βTi,k

	
sin

�
θk − βTi,k

	 −ρTi,k cos
�
θk − βTi,k

	 �
.

The EKF-SLAM covariance matrix P , after the reinitialization
of tag Ti position estimate, is as follow:

P =
�

Px̃ x̃ Px̃ ỹ

Pỹx̃ Pỹ ỹ

�
where the order of rows and columns could be different
from the previous formula according to the Ti tag coordinates
positions in the EKF-SLAM state vector. The state and covari-
ance update step shall be run for all the instances marked as
unstable. �

E. Resisting the Effects of Outliers With Resilient EKF-
SLAM Through Hypothesis Test and Robust Estimation

The range and bearing estimation through MHEKF is
affected by outliers that do not fulfill the assumed stochastic
model of EFK, so this can be a potential problem for parame-
ters estimation as also mentioned in [25]. In order to resist the
effects of the outliers, a resilient EFK has been designed. The

novel filter includes a module to detect the presence of one
or more outliers in the measurements. If outliers are there,
the robust estimation is designed using a modified version
of scheme III of the Institute of Geodesy and Geophysics of
China (IGGIII) scheme based on statistic test of the normalized
residual. Furthermore, a fault detection algorithm has been
implemented in order to exclude potentially faulty sensors (i.e.,
wrong MHEKF estimates) from the SLAM algorithm.

Global outliers detection. According to Section III-C, the
observation is modeled by a Gaussian distribution with mean
and covariance ẑ−

k and Cobs,k , respectively. So the probability
density function can be written as follow:

P(zk) = N
�
zk; ẑ−

k , Cobs,k
	

=
exp

�
− 1

2

�
zk − ẑ−

k

	T �
Cobs,k

	−1�
zk − ẑ−

k

	�



(2π)2L |Cobs,k |
(24)

where |Cobs,k | is the determinant of Cobs,k . If some outliers
in the observation are there or if the Gaussian distribution
of the observation noise is contaminated with some other
distributions, (24) will no longer hold and this means that
some violations to the assumption or modeling errors could
exist. Against a potential measurement outlier, a check if the
actual observation is compatible with the assumed model has
to be done. The null hypothesis H0 test is as follow:

H0 : No observation zi, i = 1, . . . , 2L is affected by outliers.

Equation (24) is used as the relevant null distribution which
holds under the assumed model and twice the minus exponent
in (24) represents the relevant test statistic. The test statistic
term is the judging index to detect the modeling errors and this
is the square of the Mahalanobis distance from observation zk

to its mean ẑ−
k as deduced in [26] as follow:

γk = M2
k =

�
�
zk − ẑ−

k

	T �
Cobs,k

	−1�
zk − ẑ−

k

	�2

= �
zk − ẑ−

k

	T �
Cobs,k

	−1�
zk − ẑ−

k

	
(25)

where Mk is the Mahalanobis distance at time step k. The
distribution of the test statistic under the null hypothesis is
decided so, assuming the null hypothesis is true, γk should be
Chi-square distributed with 2L degrees of freedom. In order
to design the statistical test a probability threshold α is
needed, below which the null hypothesis will be rejected. The
α-quantile χα of the Chi-square distribution is predetermined
so that

P(γk > χα) = α (26)

where P(γk > χα) is the probability of γk being larger than
χα and this should be small as α. Substituting the actual
observation z̃k , we obtain the actual judging index γ̃k , and
if this is larger than the α-quantile, the null hypothesis can
be rejected and we are confident that one or more outliers
occur in the observation as also described in [27]. The null
hypothesis H0 test, being a statistic test, is always accom-
panied by the probability errors (Type I and Type II errors)
with respect to the significance level and the power of a test as
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TABLE I

HYPOTHESIS TEST

in Table I as suggested in [28]. These kinds of errors cannot
be minimized at the same time: studying how to balance these
two types of errors is a good tuning parameter for the filter
resiliency.

1) Kalman Gain Scaling: The global outliers detection
gives a methodology to understand if the model does not
conform with the specifications, although it does not find
which are the outliers in the measurements. The alternative
hypothesis to H0 is that there is at least one outlier in one
known observation [29]:

H(i)
A The observation zi for some fixed i is an outlier.

The decision can be based on the value of the normalized
measurement residual for the observation i at the time step k:

wk,i = nk,i√
cni ni

where nk,i is the i th element of the measurement residual as
in (17), cni ni denotes the i th diagonal element of Cobs,k given
in (19). If H0 holds true, then wk,i ∼ N(0, 1) as derived
in [29]. If an observation i at timestep k is affected by an
outlier, the covariance should be inflated and this can be done
acting on the Kalman gain Kk . The robust gain matrix factor
of Kalman filter K̃ j i (where the time step k has been omitted
to make clearer notations from now on) is as follow:

K̃ j i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K ji , wi ≤ a0

K ji
a0

wi

�
a1 − wi

a1 − a0

�3

, a0 < wi ≤ a1

0, wi > a1

(27)

where j is the j th element in the state vector and a0,
a1 are the robust constants of the Kalman gain, usually deter-
mined based on the objective requirements. In (27) the factor
(a1 −wi)/(a1 −a0) is raised to third power, which differs from
the implementation of the IGGIII scheme presented in [25]
where the same factor is raised to the second power. The
reason for this choice is that we want to further decrease the
robust Kalman gain factor when the normalized measurement
residual is in the range (a0, a1]. Moreover, the measurement
vector is composed of range and bearing per each tag, esti-
mated by one MHEKF as reported in Section III-C. This leads
to the assumption that if the measurement residual related
to the range or bearing measurement of the same tag (same
multiple EKF) is such that wi > a1, we set K ji to 0.

2) Sensor Fault Detection: The robust gain matrix factor of
Kalman adjustments allows a further consideration regarding
the measurement reliability associated with a certain sensor
providing the couple (ρ̂i,k, β̂i,k). From this point of view (27)
can give a further information regarding the number of outliers
detected and one can relate its frequency to the reliability of
the sensor itself. In particular for the tth tag sensor, one can

define the number of times an outlier is detected subsequen-
tially, weighing the outlier whose normalized measurement
residual wi falls within the range (a0, a1) with a smaller
weight compared to the one falling in the range [a1, ∞):

η f,t (k) =
k�

n=k̄

gn (28)

with k̄ being the first timestep when the outlier is detected
(with k > k̄) and

gn =

⎧⎪⎨
⎪⎩

1, a0 < wi < a1

ḡ, wi ≥ a1

0, otherwise

(29)

where ḡ is a proper weight with ḡ > 1. The expression in (28)
can be used in order to assess how much a sensor is faulty.
Based on this fault factor and on the reliability factor defined
as follows:

ηr,t (k) = k − k̃ (30)

when no faults are there ∀k ∈ [k̃, k] with k̃ the first timestep
when the sensor presents no faults, a policy can be designed
in order to shutdown the sensor or to restart it when its faults
stop increasing. When a tag sensor presents a first fault, the
weighted number of faults is computed according to (28).
When η f,t (k) becomes greater than the threshold T f , that
tag sensor t is shutdown. Similarly, after a shutdown when
a tag sensor becomes reliable for a proper amount of time Tr

(i.e., ηr,t (k), computed as in (30), becomes greater than the
threshold Tr ), that tag sensor t is restarted. �

IV. NUMERICAL INVESTIGATION AND EXAMPLES

This section comprises two sets of simulations, one with
synthetic UHF-RFID data corrupted only by a Gaussian noise
and the other with UHF-RFID data generated by means
of a numerical calculation based on suitable beam-tracing
algorithms [31], [32], [33]. The scenario considered in the
first case is a 2 × 2 m2 indoor environment without multipath
effects whilst, in the second case, a 6 × 6 m2 room containing
some furniture is considered, as detailed below. The robot
performs random paths of the type reported in Fig. 3. These
paths are generated by randomly selecting the initial position
and orientation of the robot and with the odometry readings
numerically generated with a Gaussian error. When going
straight, the robot proceeds at constant speed covering about
1 cm in each time step. When performing a turn, the robot
covers about 5◦ per time step. The duration T of the simula-
tions considered in this section is 2000 steps, corresponding
to an average of about 15 m of traveled distance (depending
on the number of turns performed). The parameters of the
robot are as follows: d = 26 cm, K R = KL = 0.01 cm.
In the two simulation sets the UHF-RFID tags are located
at a height of 2.5 m with respect to the robot antenna and
the estimated height is perturbed over each simulation with
a random error of ±3 cm (this error is due to the fact that
the ceiling height is known with a certain approximation).
Moreover, the unknown offset φo on the phase measurements
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Fig. 3. Simulation scenario considered in Section IV-B, with the tags in
position (0.5, 0.5), (1.5, 0.5), (0.5, 1.5), (1.5, 1.5) and one possible random
robot trajectory. The small square box represents the starting point of the
considered trajectory, which is 14.63 m long and is covered in 2000 simulation
steps. The small circle represents where the robot stops.

depending on the hardware, as stated in Section II, is also
considered in the simulations as a random value from 0◦ to
360◦ and different in each simulation.

After discussing in Section IV-A some issues related to
the choice of the main parameters appearing in the algo-
rithms, a set of simulations is reported in Section IV-B to
illustrate the behavior of the proposed approach in a noisy
environment, where phase measurements are characterized
by a Gaussian noise with standard deviation σφ = 10◦.
Furthermore, in Section IV-C a set of simulations is reported
where the phase measurements are generated by numerical
calculation based on beam-tracing algorithms, adding the
Gaussian noise, considering a 6 × 6 m2 indoor environment
with some furniture to also consider the effect of multipath on
the system, shown in Fig. 4.

The numerical model we have used takes into account
the materials of the environment and the propagation effects.
In particular, the model has been developed for the cen-
tral frequency of the allowed European band for RFID
(i.e., 867 MHz), walls are considered made of concrete having
relative permittivity 6 and loss tangent 0.25, while furniture
are supposed made of wood with relative permittivity 1.7
and loss tangent 0.001. The wave propagation algorithms
account for multiple reflections from walls and furniture
and wedge diffraction. Since the interactions (i.e., reflections
and diffractions) with the environment may be mitigated by
particular radiation properties of the reader’s and tag’s antenna
(e.g., directive antennas may mitigate multipath effects),
we use a half-space isotropic model of antennas in order to test
the SLAM algorithms in the most possible general conditions.
Considering the reader’s antenna is near the floor and points
toward the ceiling, while the tag’s antenna is on the ceiling
and points toward the floor, both reader’s and tag’s antenna
are modeled as isotropic sources in the half-space they are
pointing. A half-space isotropic source accounts for multipath
coming from all directions in that half-space consequently it

Fig. 4. Indoor scenario with four tags located in position (1.5, 1.5),
(1.5, 2.5), (2.5, 1.5), (2.5, 2.5). The robot moves in the dashed red
2 × 2 square area, close to wood furniture, which introduce multipath.
The 4 insets show the phase of the four tags measured in the 2 × 2 considered
area: multipath effects, which perturb phases and create voids (white spots
on the diagrams where the signal is not received), are clearly visible (in ideal
conditions we would obtain concentric circles). The vertical bar indicates the
phase value in degrees.

models the most general multipath condition. Throughout in
Sections IV-A–IV-C, the results of the presented methodology
have been compared to those of the methodology proposed
in [18], showing the overall performance improvements both
in terms of SLAM estimates and computational complexity.

A. Parameter Tuning

The proposed algorithm relies on the following parameters
to be properly tuned as follow.

1) st , which is a constant used to decide if the current
instance for a tag estimation in the MHEKF is stable
or not, as number of timesteps.

2) α-quantile χα in (26).
3) a0 and a1 (with a0 < a1) constants, appearing in (27).
4) ḡ constant, weighing the outliers whose normalized

measurement residual is greater than a1.
5) T f is the threshold beyond which the sensor is consid-

ered faulty.
6) Tr is the threshold beyond which the sensor is considered

reliable.
As for st , a too small value of this parameter (e.g., st less

than 5 steps) makes the instance stable even if it is switching
quite frequently and this should be avoided. On the other hand
a high value of st (e.g., st greater than 40 steps) implies that
the instance is seen as stable after a considerable amount of
time, and going beyond this value could lead to evaluate the
instance as unstable continuously. Based on numerical results,
a good tradeoff has been obtained by taking st = 20 steps.

For the outlier detection, α-quantile χα in (26) is cho-
sen from the Chi-square distribution table for 8 degrees of
freedom, as four tags are considered in the scenario and
each tag has 2 (for range and bearing measurements). For
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the 8 degrees of freedom Chi-square distribution with the
significance level being 1%, it is 20.09.

The robust Kalman filter gain relies upon the constants a0

and a1 (with a0 < a1), appearing in (27). Based on the work
in [30], a0 ranges in [1.0, 2.5] and a1 ranges in [3.0, 8.0].
For the simulations, a0 = 1.5 and a1 = 3.5 have been
chosen in order to achieve a good tradeoff between marking
an observation as an outlier and integrating it as a correct
measurement (eventually adjusting it).

The sensor fault detection method in Algorithm III-E relies
upon the constant ḡ weighing the outliers whose normalized
measurement residual is greater than a1, as previously fixed.
The value ḡ = 2 has been chosen as it allows the algorithm to
weigh twice the outliers that zero the Kalman gain elements
K̃ j i with respect to the outliers that reduces the Kalman gain
elements K̃ j i according to (27). Furthermore, T f and Tr are
two important parameters for the fault/reliability detection,
T f being the threshold beyond which the sensor is considered
faulty. If a too small value is chosen for this threshold
(e.g., T f < 5), then the system will shutdown the sensors
even if they are still working with reduced quality. On the
other hand if its value is too high (e.g., T f > 20), the system
will only catch few faulty situations. Given that, a good trade
off has been obtained by taking T f = 10, which means that the
system is capable of shutting down the malfunctioning sensor
in the worst case after 10 timesteps. A similar argument applies
to parameter Tr which has been set to 8.

B. Numerical Examples

In this section multipath effects are not considered and
only a Gaussian noise has been added to the ideal phase
measurements. The scenario is the one described in Fig. 3. The
execution of the robust EKF-SLAM algorithm is depicted in
Fig. 5. The path traveled by the wheeled robot is reported
in Fig. 6, where the ground truth trajectory (in blue) is
shown together with the trajectory estimated by the robust
EKF-SLAM (in red). The same set of simulations has been
run with the SLAM algorithm presented in [18], in order to
compare their performances with the indexes proposed in the
same article.

As for the robot position estimation, we first compute the
difference between the true and the estimated distance of the
robot from the position of the four tags in the various steps k
of the simulation, i.e.,

eri,k =
����

�

xr,k − xTi

	2 + �
yr,k − yTi

	2

−

�

x̂r,k − x̂Ti,k

	2 + �
ŷr,k − ŷTi,k

	2
����.

Then, an average robot position estimation error is computed
by averaging the previous quantity over the four tags and
considering the last 1000 steps of the simulation as follow:

er = 1

4

4�
i=1


1

1000

T�
k=T −999

eri,k

�

with T = 2000 the duration of each simulation.

Fig. 5. Illustration of the algorithm during the execution: the green circles
highlight the MHEKF selected instance (i.e., the measurement feeding the
EKF-SLAM algorithm), while the small black triangles represent the MHEKF
instances. The robot ground truth pose is depicted with a red circle and its
orientation with an arrow pointing out of the circle whilst the robot estimated
pose is represented by a green x mark and its orientation with an arrow
pointing out of the mark. The red stars represent the real tags position.

Fig. 6. Ground truth robot trajectory (blue) and the trajectory estimated
through the EKF-SLAM algorithm (red).

As for the tag position estimation, we similarly define the
difference between the true and the estimated distance among
the four tags in the various steps k of the simulation, i.e.,

etij,k =
����

�

xTi − xTj

	2 + �
yTi − yTj

	2

−

�

x̂Ti,k − x̂Tj,k

	2 + �
ŷTi,k − ŷTj,k

	2
����

with i = 1, 2, 3 and j = i + 1, . . . , 4. Then, an average
tag position estimation error is computed by considering the
average of the various estimation errors in the last step of the
simulation as follow:

et = 1

6

3�
i=1

4�
j=i+1

etij,T
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Fig. 7. This figure shows the trend of the errors for both robot (er ) and
tags (et ) position estimation for the EKF-SLAM presented in this article (top)
and for the particle filter proposed in [18] (bottom).

TABLE II

ROBOT AND TAGS POSITION AVG ESTIMATION ERRORS

WITH STANDARD DEVIATIONS (IN cm)

where six is the total number of distance errors etij,T , i =
1, 2, 3 and j = i + 1, . . . , 4.

The results of the simulations for the two algorithms are
depicted in Fig. 7 where the errors er and et , previously
defined, for 100 simulations for the method presented in this
article (top) and the results for the algorithm proposed in [18]
(bottom) are showed. This figure shows how both the errors
for the robot and tags position estimation with the presented
EKF-SLAM are smaller compared to the SLAM approach
in [18]. Table II shows the estimation errors average over all
the simulations for the two methods. A further simulation has
been carried out in order to assess the performance of the
resilience module; in particular, the tag (1.5, 1.5) has been
shifted instantly from its original position to (0, 1.5) from
time-step 1000. Over the 100 simulations, the average error
er is 0.039 m for the presented method and 0.097 m for the
approach in [18]; et is 0.026 m for the presented method
and 0.209 m for the approach in [18]. The tag perturbation
heavily affects the SLAM approach in [18] as its average error
for tag position estimate for the shifted tag is 0.945 m while
is 0.034 m with the presented approach.

C. Numerical Analysis With Multipath Affected Signals

This section refers to the case described in Fig. 4, where
phase measurements are generated using the ray tracing soft-
ware mentioned above and are corrupted with a Gaussian
noise with standard deviation 10◦. 100 simulations have been
run with both the approach described in this article and
the one presented in [18]. Fig. 8 shows the results of the
simulations for both methodologies. From Fig. 8 and from
Table III it is clear how the presented EKF-SLAM method-
ology outperforms the approach presented in [18] both in

Fig. 8. Error trends for both robot (er ) and tags (et ) position estimation for
the EKF-SLAM (top) and for the particle filter approach (bottom) in the case
of multipath affected measurements.

TABLE III

ROBOT AND TAGS POSITION AVG ESTIMATION ERRORS WITH
STANDARD DEVIATIONS, UNDER MULTIPATH EFFECTS (IN cm)

terms of performance and, also, from a computational point of
view. In fact, the simulations ran on a AMD Ryzen 7 3800x
8-core processor 3.9 GHz with 32 GB RAM on Linux Ubuntu
20.04 with MATLAB R2021a, showed an average computation
time per simulation of 12.82 s for the presented method and
91.59 s for the method in [18]. The difference of the com-
putation times would have been even more pronounced with
more tags, as the approach in [18] needs about 1000 initial
instances for any new tag, while the presented method needs
a few dozen. For the presented method, the computation time
for each time step (taking into account that each simulation
consists of 2000 time steps) is 0.0064 s: this low computation
time allows an implementation on a real robot even with small
computational power with a real-time fashion.

V. EXPERIMENTAL RESULTS

A set of experimental tests has been performed in the office
room depicted in Fig. 9. The robot used in the experiments
is a custom unicycle-like vehicle with a differential drive
kinematics where the distance between the left and right wheel
is 38.2 cm. The robot mounts a Raspberry Pi 4 with a Linux
Ubuntu 20.04 OS where a motion planner has been developed
for the high-level control. An Arduino Mini is also installed in
order to control the low-level references to the motors and the
encoder readings. The reader antenna is placed on board the
robot at a height of 32 cm from the floor, it is a right-hand
circularly polarized microstrip patch antenna with 7 dBi of
gain. The reader (M6e ThingMagic), wireless controlled by
means of a remote PC and a Raspberry Pi 4 on board the robot,
supplies the antenna with a power of 25 dBm and collects
measured data with a rate of 15 Hz while the robot moves
with a speed of 0.2 m/s. Measurements have been performed
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Fig. 9. Experimental setup, with three tags on the ceiling, the robot during
its mission and the (x, y, z) frame adopted by the robot to solve the SLAM
problem, selected according to the initial pose of the robot.

with UHF-RFID wave at the frequency of 868 MHz. Tags
have right-hand circular polarized antennas similar to that of
the reader, they have been realized with a stacked annular
ring microstrip antenna as described in [8]. Their low profile
(the thickness is less than 1 cm) is well suited to be mounted
on the ceiling by means of a small metallic ground plane as
shown in Fig. 9. The distance between the plane of placement
of the tags and the plane of placement of the reader antenna is
about 2.5 m.

The experiments have been conducted with the robot mov-
ing autonomously along a path while collecting data from the
encoders and from the UHF-RFID reader. The data collected
during the runs have been used offline to feed the developed
algorithms and to assess their performances. A map of the
environment is reported in Fig. 10 together with the estimated
robot trajectory for the experiment described in this section.
Nominally the robot is requested to cover a rectangular path
performing two turns in the area under the tags. The requested
trajectory is followed open loop by the robot. Due to several
kinds of disturbance, the actual trajectory was quite different
from the nominal rectangular one, as witnessed by the trajec-
tory reconstructed by the SLAM algorithm. The ground truth
of the overall trajectory is not available in this experiment:
we only measured the final position of the robot at the end
of its mission, which allowed to compute the performance
indexes considered in this article. In particular, we report in
Tables IV and V the true and the estimated distances di j

among tags (i, j ∈ {1, 2, 3}) and, respectively, the true and
the estimated distance di of the final robot position from the
projection on the floor of the three tags (i = 1, 2, 3). Fig. 11
reports the map reconstructed by the algorithm.

Fig. 10. Map of the considered environment, with the robot in its initial
position and orientation (defining the global frame adopted) and the (x, y)
position of the three tags considered in the experiment. The path estimated
by applying the proposed SLAM algorithm is also reported.

TABLE IV

TRUE AND ESTIMATED INTERTAG DISTANCES (IN cm)

TABLE V

TRUE AND ESTIMATED DISTANCES (IN cm) OF

THE ROBOT FROM THE ESTIMATED TAGS

Fig. 11. Map realized by the proposed algorithm: black and red stars
represent, respectively, the true and the estimated position of the three tags.
The black square and the red circle represent the true and, respectively, the
estimated final position of the robot.

The proposed methodology appears effective also in this
experimental case even if the estimation errors increase with
respect to the simulation scenario. This mainly depends on
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various unmodeled disturbances acting on the system, like,
e.g., the effect of the relative tag-reader position on the phase
measurements, which appears to produce the most relevant
perturbation. According to this effect, as also observed in the
literature [14], the offset in the phase measurements cannot
be considered a constant quantity, as assumed in the model.
Nevertheless, since this quantity is subject to estimation, the
proposed algorithm is in part able to adapt to this change
and to produce an acceptable behavior. Other unmodeled phe-
nomena include multipath effects, which produce quite wrong
or even missing measurements, and systematic errors like
the approximate knowledge of system parameters, including
the wheel and the robot dimension. Due to these unmodeled
phenomena and to other systematic sources of error, the
approach in [18] was not able to produce effective estimation
results in this experimental context, with the filter diverging
after some steps.

VI. CONCLUSION

A robust solution to the SLAM problem in a RFID context
has been proposed in this article. An EKF-SLAM algorithm,
endowed with a resilience module, fuses odometry data of a
mobile robot with the phase of the signal backscattered by a
set of UHF-RFID passive tags deployed in unknown position
on the ceiling of the environment. The reader is installed
onboard the robot. The solution is based on a set of MHEKFs,
one for each tag, which allow to dynamically estimate the
range and the bearing of the different tags. The approach is
robust against several kinds of disturbances and improves, also
from this point of view, the performance of other methods
presented in the literature in this context. The approach does
not require the knowledge of the phase offset characterizing
the RFID measurements and, for this reason, does not need a
preliminary calibration procedure. This characteristic, together
with the relative limited computational complexity, makes
it appealing and comparable to more popular approaches
where other kinds of sensors, directly providing range and
bearing measurements but requiring the solution of a data
association problem (like cameras or laser range sensors), are
considered.
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