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Detector Threshold Tuning
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Abstract— In threshold-based anomaly detection, we want
to tune the threshold of a detector to achieve an acceptable
false alarm rate. However, tuning the threshold is often a
non-trivial task due to unknown detector output distributions.
A detector threshold that provides an acceptable false alarm
rate is equivalent to a specific quantile of the detector output
distribution. Therefore, we use quantile estimators based on order
statistics to estimate the detector threshold. The estimation of
quantiles from sample data has a more than a century-long
tradition and we provide three different distribution-free finite
sample guarantees for a class of quantile estimators. The first
is based on the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality,
the second utilizes the Vysochanskij–Petunin inequality, and the
third is based on exact confidence intervals for a beta distribution.
These guarantees are then compared and used in the detector
threshold tuning problem. We use both simulated data as well as
data obtained from an experimental setup with the Temperature
Control Lab to validate the guarantees provided.

Index Terms— Detector threshold tuning, fault detection, finite
sample guarantees, quantile estimation.

I. INTRODUCTION

IN A HIGHLY automated society the automatic detection of
anomalies is of utmost importance. The failure of detecting

anomalies can have dire consequences, especially when the
anomaly occurs in infrastructures critical to our daily life such
as power grids and water distribution networks. Two notable
incidences of undetected anomalies in critical infrastructures
are the Northeast Blackout in 2003 [1], where the software
did not notify the operators about an anomaly, which then led
to a cascading failure of the power grid, and the attack on the
Ukrainian power grid [2], where attackers managed to take
over a distribution power grid.

A detector needs to not only be able to detect anomalies,
but to not trigger on nominal behavior. Alarms during nominal
behavior are called false alarms. False alarms increase the
cost of detectors and make detectors unreliable. For example,
in the survey [3], out of 460 anesthesists who stated that they
deliberately turned off an alarm device, 68.2 % named too
many false alarms as a reason for turning off the alarm device.
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Therefore, both the detection rate of anomalies as well
as the false alarm rate need to be taken into account when
tuning the anomaly detector. One tool to evaluate the per-
formance of a detector is the receiver-operator-characteristic
(ROC) curve [4]. The ROC curve plots the detection rate
over the false alarm rate for different detector tuning and
the higher the detection rate is for a smaller false alarm rate
the better the detector performs. With the emerging threat
of cyber-attacks on cyber-physical systems in recent years,
Urbina et al. [5] argue that the impact of an attacker should
also be taken into account when tuning the detector threshold.

Often we do not have exact knowledge about the statistics of
the nominal and the anomalous behavior, but we have access
to data which can be used to both design and tune the detector.
Three different approaches are presented in [6] for this task.
The first approach is supervised learning, where data from
both nominal and anomalous behavior are used to tune the
detector. The second approach is unsupervised learning, where
data is available but the algorithm has to determine, what is
anomalous and what is normal behavior. The third approach
provides a middle ground since it is a semi-supervised learning
approach, which uses only nominal data to tune the detector.
A method to evaluate the performance of semi-supervised
tuning of detectors is proposed in [7].

In this work, we utilize a semi-supervised learning approach
and use independent and identically distributed (i.i.d.) samples
of the detector output under nominal behavior to estimate a
detector threshold that leads to a false alarm rate, which is
close to the acceptable false alarm rate with a high probability.
Since the threshold that guarantees a pre-defined acceptable
false alarm rate is equivalent to a certain quantile of the
detector output distribution, we utilize a sample-based quantile
estimator to estimate a detector threshold. These quantile
estimators typically use one- or two-order statistics of the
sample data to determine the quantile and are simple to
implement. Therefore, these quantile estimators are commonly
used in statistical software packages [8].

It is not clear though how many samples of the detector
output are needed to be close to the acceptable false alarm
rate when using a threshold estimate based on sample data.
Therefore, the contribution of this work is twofold. First,
we provide three different finite guarantees to determine the
sample size needed to be close to the acceptable false alarm
rate with high probability. The first finite guarantee, which we
proposed in [9], is based on the Dvoretzky–Kiefer–Wolfowitz
(DKW) inequality [10], the second finite guarantee is based
on the Vysochanskij–Petunin inequality [11], and the third
finite guarantee is based on exact confidence intervals of beta
random variables [12]. All three finite guarantees are based
on samples from the detector output only and the results
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are distribution-free and independent of how the anomaly
detector determines its output. Since we use a quantile
estimator to estimate the threshold these distribution-free
finite guarantees are also finite guarantees for the estimation
of quantiles. Second, we perform a thorough validation of the
finite guarantees with both simulated, and real data obtained
from an experimental setup.

In the literature, it is quite common to use nominal data or
make assumptions on the nominal behavior when determining
the threshold that guarantees an acceptable false alarm rate.
For example, under the assumption of a Gaussian distribu-
tion for the detector input, Murguia and Ruths [13] give a
closed-form solution to tune a χ2 detector and approximations
of solutions to a cumulative sum (CUSUM) detector with
resetting for an acceptable false alarm rate. Since the true
nominal detector distribution is often not known, in [14] a
distributionally robust approach is proposed, which makes
assumptions on the finiteness of the moments of the input
to a χ2 detector.

More recently attention has turned to sample-based methods
that can detect anomalies without requiring a formal model
of behavior. Although having more samples is intuitively
better, it is important to establish the minimum number of
samples necessary for detector tuning so that the detector
threshold might be adjusted adaptively over time. Sample
guarantees also provide characterizations that show how detec-
tion confidence can be improved if the detector has access
to more than the minimum number of samples required.
Li and Martínez [15] propose a new detector based on
the Wasserstein distance, which uses a sample-based tuning
approach to achieve an acceptable false alarm rate. The tuning
method uses the detector inputs under nominal behavior and
assumes a light-tailed distribution for the detector inputs.
Another approach to learn detectors from nominal behavior
based on M-estimation is provided in [16]. Our approach has
the advantage that no certain detector structure needs to be
assumed and no knowledge about distributions is necessary
such as in [13], [14], and [15] because the approach is purely
based on samples.

Notation: Let R and Q denote the set of real and rational
numbers, respectively. We call γ = n1/n2 the irreducible
fraction of γ ∈ Q if and only if n1 and n2 are coprime
integers. Let x ∈ R, then |x |, �x�, and �x� denote the absolute
value of x , the smallest integer larger than or equal to x , and
the largest integer smaller than or equal to x , respectively.
Given a set {xi}N

i=1, the i th order statistic, x(i) is the i th largest
element in {xi}N

i=1, such that the set of order statistics {x(i)}N
i=1

is mini xi = x(1) ≤ x(2) ≤, . . . ,≤ x(N) = maxi xi . A random
variable X that follows a beta distribution with parameters
m and n is denoted as X ∼ Beta(m, n). Given an event
E , its probability, expected value, variance, and the indicator
function of E are given by prob{E}, E{E}, Var{E}, and 1E ,
respectively.

II. PROBLEM FORMULATION

In this section, we present the detector tuning problem, how
it relates to the quantile of a random variable, and formulate

the problem of determining a sample-based threshold, which
with high probability guarantees only a small deviation from
the acceptable false alarm.

A. Tuning Detector Thresholds

The problem of anomaly detection occurs in many different
fields. For example, in healthcare when devices monitor a
patient or in governmental agencies to detect tax fraud. In this
work, we look at anomaly detection in the context of a
control system, where the feedback system is equipped with
an anomaly detector on the controller side (see Fig. 1). The
input to the anomaly detector can depend both on the mea-
surements received as well as the actuator signals determined
by the controller, which are not necessarily scalar variables.
For example, if a Kalman filter is used the input to the
anomaly detector are the actuator signals and the sensor
measurements, which are used to determine the difference,
r , between the received and predicted measurements. This
difference can be further processed to determine the output yD,
e.g., yD = r	r .

In the control system example, a small detector output
yD ∈ R typically indicates that the system works as predicted,
while large outputs indicate an unpredicted behavior. However,
in other applications, the detector output can also be a similar-
ity measure, where a small value for yD indicates anomalous
behavior (see, for example, [16]). In this work, we use the
interpretation that a large output indicates anomalous behavior.
Therefore, an alarm is triggered when yD exceeds a threshold
JD ∈ R, i.e., yD > JD , and no alarm is triggered when
yD ≤ JD . Due to random processes, such as measurement
noise, the detector output is also of a stochastic nature.

Assumption 1: In the nominal case, the detector output, yD,
is a random variable with a continuous cumulative distribution
function F(yD).
For the sake of simplicity, we assume a continuous CDF for
the detector output. In an industrial process control context, the
process is often controlled around a desired steady-state value,
which can be seen as stationary. Hence, assuming that the
detector output is a random variable with a fixed distribution
is a reasonable choice. Furthermore, if the plant has linear
dynamics and the noise processes are Gaussian, a Kalman filter
converges to a stationary distribution for its residual signals,
which are often used as the input of the anomaly detector.
If the anomaly detector has no internal dynamics, such as a
neural network or norm-based detector, then the output of the
detector is also a random variable with a fixed distribution.

The stochasticity of yD leads to alarms in the nominal case,
so-called false alarms, where the rate of false alarms depends
on the threshold. Since false alarms incur unnecessary costs
and too many false alarms make a detector unreliable, we can
choose a large threshold to avoid too many false alarms.
However, a too large threshold leads usually to a smaller
detection rate of anomalies. Hence, there is a trade-off between
the detection rate of anomalies and the false alarm rate in
the nominal case when tuning the threshold. Furthermore,
Urbina et al. [5] point out that there is also a trade-off between
the impact an attacker can have that wants to keep yD below
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Fig. 1. Plant is controlled with a controller and the controller side is equipped
with an anomaly detector that utilizes both the measurements and the actuator
signals to determine its output yD .

the threshold and the false alarm rate when choosing the
detector threshold.

In addition to that, the nature of anomalies is in most
cases unknown. Take, for example, a complex large-scale
system such as the power grid, where many different types
of anomalies, such as sensor and generator failures or attacks,
can occur. Therefore, we often do not know which anomalies
will occur and what detection rate we will obtain for a certain
threshold JD . Since it is simpler to focus only on the nominal
case instead of trying to consider all possible anomalous
behaviors, we will focus on finding a threshold that guarantees
an acceptable false alarm rate. More specifically, we want to
find the smallest threshold JD such that

prob{yD ≤ JD} ≥ γ (1)

holds, where γ ∈ (0, 1). The threshold JD will result in a
false alarm probability of at most 1 − γ. We want to find the
smallest threshold because a trivial solution to guaranteeing
an acceptable false alarm rate is to choose an arbitrarily large
threshold, which in turn will also reduce the detection rate of
anomalies.

In special cases, a closed form solution for the threshold
exists, see, for example, [13], or the detector threshold can
be approximated in a distributionally robust fashion, see [14].
If the output of the detector depends on the threshold as well,
such as for the CUSUM detector with resetting, it is more
difficult to determine a threshold that guarantees a desired false
alarm rate. Detectors whose output depends on the threshold
are one avenue of future work and will not be considered in
this work.

Assumption 2: The detector output yD does not depend on
the threshold JD .

B. Problem of Guaranteeing a False Alarm Rate

Before we formulate the problem we consider, we want to
define the notion of a γ -quantile.

Definition 1: The γ -quantile JD of a probability distribu-
tion is defined as

JD = inf{yD : F(yD) ≥ γ}
where γ ∈ (0, 1).

Note that JD in Definition 1 is unique and finite because
of the infimum operator and the fact that γ ∈ (0, 1). Since
F(JD) = prob{yD ≤ JD}, we can immediately see that

the threshold we are looking for in (1) is equivalent to
the γ -quantile of the detector output distribution. Further,
γ -quantiles can be obtained as optimizers of convex opti-
mization problems (see [17]), which theoretically makes them
efficient to calculate. However, it is often not possible to find
an expression for the probability distribution of the detector
output. A reason for that is that either the plant dynamics, the
controller dynamics, the detector dynamics or all of them are
highly nonlinear, such that the distribution of yD does not have
a closed-form solution. Samples from the monitored process
under nominal conditions are usually available, such that we
can obtain samples from the detector output under nominal
conditions. Due to the equivalence with γ -quantiles, we use
sample-based quantile estimators for a sample-based estimate
J̃D of the threshold JD . In this work, we use N independent
and identically distributed (i.i.d.) samples of yD , {yD,i }N

i=1,
to estimate the detector threshold as

J̃D = βyD,(�Nγ �) + (1 − β)yD,(�Nγ �+1) (2)

where β ∈ (0, 1). Note that (2) has the form of common
quantile estimators used in software packages [8]. In our
previous work, we showed how the quantile estimators can
be derived from a sample approximation of the conditional
value-at-risk [9].

Although the true threshold JD can be approximated via (2),
an open problem is to determine how many samples we need
to get a good approximation. A good approximation is often
characterized by assuming that |JD − J̃D| is small with high
probability. Distribution-free bounds on the bias of quantile
estimates can be found in [18], where these bounds are
always fulfilled and not only with high probability. However,
depending on the shape of the probability distribution even
small deviations from the threshold JD can lead to large
deviations in the false alarm rate. Therefore, we are more
interested in how close the false alarm rate 1 − F( J̃D) is to
the acceptable false alarm rate 1 − F(JD) = 1 − γ , since the
acceptable false alarm rate is an important variable for the
system operator.

Problem 1: Determine the number, N , of i.i.d. detector
output samples needed such that

prob
{∣∣F( J̃D

)− γ
∣∣ ≤ �

} ≥ 1 − ρ

holds, where γ ∈ (0, 1), � ∈ (0, 1), ρ ∈ (0, 1), and J̃D is an
estimator of the form given in (2).

Enforcing that the false alarm rate is close to the acceptable
false alarm rate with a high probability, which means that � and
ρ are close to zero, will intuitively lead to threshold estimates
that are not just trivially large to guarantee the acceptable false
alarm rate.

III. FINITE SAMPLE GUARANTEES

In this section, we use three different approaches to obtain
distribution-free finite sample guarantees that solve Problem 1
and compare the finite guarantees with each other.

A. Finite Guarantees From the DKW Inequality

The first sample guarantee is based on the DKW inequal-
ity [10], which gives us probabilistic bounds on how close the
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empirical distribution function FN (yD) = 1/N
∑N

i=1 1{yD,i≤yD}
is to the true cumulative distribution function F(yD)

prob{|F(yD) − FN (yD)| ≤ �} ≥ 1 − 2e−2N�2
. (3)

While the DKW inequality gives us bounds for the whole
CDF, we will evaluate it only at the point of interest, which is
yD = J̃D, to obtain our finite guarantees. Note that the result
was presented in our previous paper [9], but is restated for the
sake of completeness.

Proposition 1 (Proposition 3 in [9]): Assume we have N
i.i.d. samples, {yD,i }N

i=1, of the detector output yD and γ ∈ Q

such that γ = n1/n2 is an irreducible fraction. A solution to
Problem 1 is given by N = �ln(2ρ−1)/(2�2n2)�n2 if β ∈ [0, 1)
in (2).

Proof: First, we choose N = kn2, where k ∈ N, such that
Nγ = kn1 is an integer as well. Further, with β ∈ [0, 1) we
obtain that FN ( J̃D) = γ. Evaluating the DKW inequality (3)
at yD = J̃D leads then to

prob
{∣∣F( J̃D

)− γ
∣∣ ≤ �

} ≥ 1 − 2e−2kn2�
2
.

Finally, we set ρ = 2e−2kn2�
2

and solving for k leads to
k = �ln(2ρ−1)/(2�2n2)�, which concludes the proof.

Since the DKW inequality takes the whole CDF into
account, this finite guarantee can be conservative. Here, we are
only interested in the point yD = J̃D and not the complete
probability distribution. Therefore, we propose two more finite
guarantees that evaluate the CDF at yD = J̃D in the following.

B. Finite Guarantees From Vysochanskij–Petunin Inequality

Instead of focusing on the whole probability distribu-
tion as in the previous section, we now use the statistics
of order statistics to determine a finite sample guarantee
which utilizes the Vysochanskij–Petunin inequality [11]. The
Vysochanskij–Petunin inequality is given by

prob{|X − E{X}| ≥ �} ≤ 4Var{X}
9�2

(4)

if 3�2 ≥ 8Var{X}, where X is a unimodal random
variable with a finite mean and variance. Since for the
Vysochanskij–Petunin inequality the expected value and vari-
ance of a random variable are needed, we introduce the
expected value and variance of the CDF of a random variable
evaluated at the mth order statistic.

Lemma 1: Let yD,(m) be the mth order statistics of N i.i.d.
samples with CDF F(·). Then F(yD,(m)) has a unimodal
beta distribution with parameters m and N + 1 − m, i.e.,
F(yD,(m)) ∼ Beta(m, N + 1 − m), and the expected value and
the variance of F(yD,(m)) are given by

E
{

F
(
yD,(m)

)} = m

N + 1
(5)

and

Var
{

F
(
yD,(m)

)} = m(N + 1 − m)

(N + 1)2(N + 2)
(6)

respectively.
Proof: From Chapter 2 in [19], we know that F(yD,(m)) ∼

Beta(m, N +1−m). Hence, (5) and (6) are the expected value

and variance of the beta distribution with parameters m and
N + 1 − m, respectively. Further, since m ∈ {1, . . . , N}, both
parameters of the beta distribution are larger than or equal to
one, which indicates that the beta distribution is unimodal (see
Chapter 2 in [20]).
Interestingly, neither the expected value nor the variance of the
CDF at the mth order statistic depend on the distribution itself.
This is used in the following to determine a distribution-free
finite sample guarantee.

Theorem 1: Assume we have N i.i.d. samples {yD,i }N
i=1 of

the detector output yD and let γ ∈ Q such that γ = n1/n2 is
its irreducible fraction. A solution to Problem 1 is given by
N = kn2 − 1, where

k =
⌈

1

n2

(
4γ (1 − γ )

9ρ�2
− 1

)⌉
(7)

if 4γ (1 − γ ) > 9ρ�2, 6ρ ≤ 1, and J̃D = yD,(�Nγ �+1).
Proof: Let J̃D = yD,(m). Then the false alarm rate of this

threshold is given by 1−F(yD,(m)), which is a random variable
that depends on the samples obtained. Hence, we use the
Vysochanskij–Petunin inequality (4) and Lemma 1 to obtain

prob

{∣∣∣∣F(yD,(m)

)− m

N + 1

∣∣∣∣ ≥ �

}
≤ 4m(N + 1 − m)

9�2(N + 1)2(N + 2)
.

Next, with k ∈ N we set N = kn2 − 1 and m = �Nγ � + 1 =
kn1 such that m/(N + 1) = γ , which leads to

prob
{∣∣F(yD,(�Nγ �+1)

)− γ
∣∣ ≥ �

} ≤ 4γ (1 − γ )

9�2(kn2 + 1)
.

By introducing ρ = (4γ (1 − γ ))/(9�2(kn2 + 1)) and solving
for k we obtain (7) by making sure that k is an integer. Next,
to guarantee that k ≥ 1, we need to introduce the condition
4γ (1 − γ ) > 9ρ�2. Finally, for the Vysochanskij–Petunin
inequality (4) to hold we need 3�2 ≥ 8Var{yD,(�Nγ �+1)} for
the determined sample size N . Let us look at an upper bound
for the variance first

Var
{

yD,(�Nγ �+1)

} = γ (1 − γ )⌈
1
n2

(
4γ (1−γ )

9ρ�2 − 1
)⌉

n2 + 1

≤ γ (1 − γ )

1
n2

(
4γ (1−γ )

9ρ�2 − 1
)

n2 + 1
= 9

4
�2ρ.

From this upper bound we obtain that if 6ρ ≤ 1 then
3�2 ≥ 8Var{yD,(�Nγ �+1)} holds.

We would like to point out that the condition ρ ≤ 1/6 is
not too restrictive, since ρ is typically chosen to be small to
achieve guarantees with high probability. Instead of using the
Vysochanskij–Petunin inequality one could also use Cheby-
shev’s inequality [21], which leads to more relaxed conditions
on ρ and � at the expense of having more conservative sample
guarantees.

C. Finite Guarantees From Confidence Intervals of the Beta
Distribution

In the previous section, we determined finite guarantees
based on the Vysochanskij–Petunin inequality, which uses the
expected value and variance of F(yD,(m)). In this section,
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we will use that F(yD,(m)) has a beta distribution and deter-
mine sample guarantees based on confidence intervals of the
beta distribution. We begin by introducing a result on the
confidence interval of a beta-distributed random variable.

Lemma 2: Let X be distributed according to a beta
distribution with parameters m and N + 1 − m, i.e.,
X ∼ Beta(m, N + 1 − m), and let γ̂ = m/N ∈ (0, 1). Then

prob{γ̂ − �l ≤ X ≤ γ̂ + �u} ≥ 1 − ρ

where ρ ∈ (0, 1)

�u =
√

γ̂ − γ̂ 2

√
N

z ρ
2
+

2(0.5 − γ̂ )z2
ρ
2

− 1 − γ̂

3N

�l =
√

γ̂ − γ̂ 2

√
N

z ρ
2
−

2(0.5 − γ̂ )z2
ρ
2

− 1 − γ̂

3N

up to order O(N−3/2), and zρ/2 is the upper ρ/2-quantile of
the standard Gaussian distribution.

Proof: From Lemma 1 and Theorem 1 in [12], we obtain
that prob{X ≤ γq} = ρq holds for

γq = γ̂ −
√

γ̂ − γ̂ 2

√
N

zρq + 2(0.5 − γ̂ )z2
ρq

− 1 − γ̂

3N

up to order O(N−3/2). Using ρq = ρ/2 and ρq = 1 − ρ/2 to
obtain γL and γU , respectively, we determine that

prob{γL ≤ X ≤ γU } = 1 − ρ.

Finally, since z1−ρ/2 = −zρ/2, we obtain �l and �u by
arithmetic operations, which concludes the proof.
Note that the bounds �l and �u in Lemma 2 are functions
of γ̂ , ρ, and N . For the sake of readability, we omit the
parameters of these bounds. Further, note that Lemma 2
provides a potentially asymmetric confidence interval, i.e.,
�l �= �u , depending on the value of γ̂ and ρ.

Theorem 2: Assume γ ∈ [0.5, 1) is a rational number,
such that γ = n1/n2 is the irreducible fraction of γ , and
that we have N i.i.d. samples of yD, {yD,i }N

i=1. Under these
assumptions, a solution to Problem 1 is given by N = kn2,
and (8), as shown at the bottom of the page, if J̃D = yD,(Nγ ),
where zρ/2 is the upper ρ/2-quantile of the standard Gaussian
distribution.

Proof: First, recall that F(yD,(m)) ∼ Beta(m, N + 1 −
m) from Lemma 1 and note that by setting m = Nγ we
have γ̂ = γ , since N = kn2. Next, by assuming that γ ∈
[0.5, 1), we determine that �l ≥ �u . This shows us that [γ −
�l, γ + �u] ⊆ [γ − �l , γ + �l] for γ ∈ [0.5, 1). Therefore, with
J̃D = yD,(Nγ ), the true probability of triggering no alarm is
given by F( J̃D) such that we obtain the confidence interval
prob(|F( J̃D) − γ | ≤ �l) ≥ 1 − ρ from Lemma 2. By setting

N = kn2 and �l = � in Lemma 2 we solve for
√

k and obtain

√
k = z ρ

2

√
γ − γ 2

2�
√

n2

±
√√√√( z ρ

2

√
γ − γ 2

2�
√

n2

)2

+
2(γ − 0.5)z2

ρ
2

3n2�
+ 1 + γ

3n2�
. (9)

Since
√

k ≥ 0, we discard the solution with a negative sign.
After squaring and rounding up to the next larger integer,
we obtain (8). This concludes the proof.

Note that it is not restrictive to only consider γ ∈ [0.5, 1)
in Theorem 2. This is because

prob
{∣∣F( J̃D

)−γ
∣∣ ≤ �

} = prob
{∣∣1 − F

(
J̃D
)− (1 − γ )

∣∣ ≤ �
}

= prob
{∣∣F( ĴD

)− (1 − γ )
∣∣ ≤ �

}
where ĴD is the threshold that approximates a false alarm rate
of γ, which exists due to the continuity of the CDF. Thus, the
integer k obtained from (8) for a certain γ ∈ [0.5, 1) is the
same as for 1 − γ.

D. Discussion and Comparison of the Bounds

In this section we will discuss the three finite sample
guarantees obtained previously, investigate their scaling in the
parameters � and ρ, and compare the sample sizes. For a
given γ, �, and ρ, let NDKW, NVP, and Nbeta be the sample
sizes obtained from Proposition 1, Theorem 1, and Theorem 2,
respectively. First, we want to discuss how to choose �.
A reasonable bound for � is � ≤ min(γ, 1 − γ ), because this
choice results in [γ − �, γ + �] ⊆ [0, 1]. This means that
the ±�-band around the acceptable false alarm rate contains
only reasonable false alarm rates, i.e., false alarm rates in
[0, 1]. Further, with that choice we have (4/9)γ (1 − γ ) ≥
(4/9) min(γ, 1 − γ )2 ≥ (4/9)�2 > (1/6)�2 ≥ ρ�2 if ρ ≤ 1/6.
Hence, if ρ ≤ 1/6 the condition on both ρ and � in Theorem 1
is fulfilled for this bound of �.

Next, we want to investigate the scaling of each guarantee
in the parameters � and ρ. All finite guarantees scale with
�−2, while they differ in their scaling in ρ. The guarantee
scales with ln(ρ−1), ρ−1 and zρ/2 when it is obtained from
Proposition 1, Theorem 1, and Theorem 2, respectively. Typ-
ically, we desire high probability guarantees such that ρ is
close to zero. It follows that Theorem 2 has the best scaling
for ρ ∈ (0, 0.5] since then zρ/2 < ln(ρ−1) < ρ−1.

Now, we compare the sample sizes from the three different
finite guarantees when ρ = 0.05 and � = 0.01 for γ ∈
[0.01, 0.99]. Fig. 2 shows the results of the comparison.
We see that the required sample size obtained from the DKW
inequality is almost constant for different γ. This is expected
because the DKW inequality applies for the whole cumulative
distribution function. Further, we observe that Theorem 2
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Fig. 2. We compare the sample sizes obtained from the DKW inequality
(dash-dotted line), from the Vysochanskij–Petunin inequality (dashed line)
and from the beta confidence intervals (solid line), where γ ∈ [0.01, 0.99],
ρ = 0.05, and � = 0.01.

produces the smallest sample sizes out of the three finite
guarantees for all investigated γ. We also observe that NVP ≤
NDKW if γ �∈ (0.294, 0.706). So only for γ close to 0 and
1 the finite guarantees from Theorem 1 perform better than
the finite guarantees from Proposition 1.

Both Fig. 2 and the scaling in ρ and � show us that the
sample sizes we obtain from Theorem 2 are smaller than
the sample sizes from Proposition 1 and Theorem 1 for all
investigated γ. Furthermore, according to [12], the confidence
bounds �u and �l are (nearly) exact if N ≥ 40, since the
influence of the higher order terms disappears.

IV. NUMERICAL EXAMPLES

In the first part of section, we evaluate the sam-
pling guarantees numerically for three different detector
output distributions. In the second part, we use detec-
tor output data from an experimental setup to tune
the threshold of a CUSUM detector without resetting.
The code to reproduce these results can be found at
https://github.com/DavidUmsonst/FiniteSampleGuarantees
ForQuantileEstimation.

A. Evaluation of Sample Guarantees

We begin by evaluating the finite sample guarantees. The
idea is to approximate the threshold of the anomaly detector
with (2) based on N samples, {yD,i}N

i=1, of the detector output
and we do this approximation NT = 1000 times to obtain NT

different approximations J̃D of JD . Then we draw 106 new
samples of the detector output and calculate the empirical false
alarm rate of each threshold.

Here, we investigate three different cases. First, we assume
that the detector output has a χ2(4) distribution, where we
have four degrees of freedom. The samples are then taken i.i.d.
from a χ2(4) distribution. Second, we assume that the detector
output has a Lévy distribution and obtain i.i.d. samples for the
output from a Lévy distribution. Third, we assume the samples
are taken from the trajectory of a non-parametric CUSUM
detector [13] without resetting, given by

yD(k + 1) = max
(
0, yD(k) + ||r(k)||22 − δ

)
(10)

where yD(0) = 0, δ = 6, and r(k) is the input of the
detector and is drawn i.i.d. from a four-dimensional, zero-
mean, multivariate Gaussian distribution at each time step k.

Fig. 3. Empirical false alarm rate from NT = 1000 thresholds is evaluated
over a dataset of 106 samples for a χ2(4) distribution (upper plot), a Lévy
distribution (center plot), and samples obtained from a CUSUM detector
(lower plot).

Furthermore, we use yD,i = yD(i) to obtain the samples, that
is, the samples are the trajectory of the CUSUM detector.
Therefore, the i.i.d. assumption on the samples is not fulfilled
in this case.

For our simulation, we choose γ = 0.95, � = 0.01, and
ρ = 0.05, which means that the empirical false alarm rate
should be in the interval [0.04, 0.06] with a probability of
95 %. Moreover, Section III-D showed us that for these values
of γ, �, and ρ, Nbeta < NVP < NDKW. Therefore, we investigate
only the smallest and largest sample sizes, Nbeta and NDKW,
respectively, for the sake of clarity. In addition to that, we set
β = 0 when approximating the threshold with (2).

Fig. 3 shows the histogram of the empirical false alarm rate
for the χ2(4) distribution (upper plot), the Lévy distribution
(center plot), and samples obtain from the CUSUM detector
(lower plot) for each of the two sample sizes investigated.
The two upper plots confirm our theoretical results, where
the empirical false alarm rate lies inside the desired interval
with a probability larger than 95 %. More specifically, when
N = Nbeta and yD has a χ2 distribution only 4.2 %, that is,
42 out of 1000, of the empirical false alarm rates are outside of
the desired interval. Similarly, when N = Nbeta and yD has a
Lévy distribution only 2.4 % of the empirical false alarm rates
are outside of the desired interval. If N = NDKW none of the
empirical false alarm rates are outside of the desired interval.
Therefore, we see that the sample size provided by Theorem 2
are very close to the desired guarantees of at most 5 % of
false alarm rates being outside the desired interval, while
the sample size provided by Proposition 1 has much better
probabilistic guarantees but has also a conservative amount
of samples. Furthermore, the two upper plots in Fig. 3 verify
that the guarantees hold for both light-tailed and heavy-tailed
distributions.

However, in the lower plot, where the samples are not
i.i.d., we observe that 34.1% of the empirical false alarm
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rates lie outside of the desired interval when N = Nbeta is
used. For N = NDKW only 0.3% of the empirical false alarm
rates lie outside the desired interval. Hence, we see that the
probabilistic guarantees are not fulfilled, when N = Nbeta .
Although in this case, the choice of N = NDKW provides
enough conservatism to outweigh the effect of the non-i.i.d.
sampling, in principle, there is no guarantee in either case.
Therefore, the sample size obtained in Theorem 2 is the
smallest sample size that fulfills the probabilistic guarantees
given Nbeta i.i.d. samples, but it is sensitive to violations of
the i.i.d. assumption.

One reasonable approach to deal with correlated data is to
collect more data than the minimum amount for i.i.d. data
and randomly sample an approximately i.i.d. subset of the
correlated data. Proposition 1, Theorem 1, and Theorem 2
can help with determining the size of the approximately i.i.d.
subset of correlated data, but not the minimum size of the
correlated data needed. This approach of dealing with corre-
lated data is used in the next section, when we obtain samples
from our experimental setup. Determining the minimum size
of the correlated dataset for threshold estimation needs further
investigation and is an avenue for future work.

B. Tuning With Real Data

In this last section, we evaluate the sample guarantees pro-
vided by Theorem 2 with data obtained from an experimental
setup, where a real process is controlled. The process used
is the Temperature Control Lab (TCLab), which consists of
two heaters and one temperature sensor for each heater (for
more details see [22]). In the experimental set up, we control
both heaters to have a temperature of 40 ◦C. We implement
an LQG controller, which is based on a linearized and
discretized model around the steady-state temperature 40 ◦C
for both heaters. Here we use a sampling time of 1 s to
obtain measurements. From the TCLab’s sensors we obtain
two measurements, y(k) ∈ R2, and with the predicted sensor
measurements ŷ(k) from the steady-state Kalman filter inside
the LQG controller the residual signal is r̄(k) = y(k) − ŷ(k).
Here, r(k) = �̂−1/2(r̄(k)−μ̂) serves as the input to (10), where
μ̂ and �̂ are approximations of the mean and the covariance
matrix of the residual signal, respectively, used to normalize
r̄(k), δ = 3 in (10), and the initial state of the CUSUM detector
is again set to zero. Note that, to the best of our knowledge,
there exists no closed-form solution for the threshold of a
CUSUM detector that guarantees an acceptable false alarm
rate 1−γ. Therefore, we will use Nbeta samples of the detector
to approximate the threshold according to (2) with β = 0 for
an acceptable false alarm rate of 1 − γ.

We let the experiment run for 15 379 s to gather data.
Since the detector output is assumed to be a random variable
with a fixed distribution (see Assumption 1), we only work
with samples from the steady state of the system, which is
approximately reached for k ≥ 780. We obtain μ̂ and �̂ from
the first 1000 samples of the residual signal in steady state,
i.e., the dataset Dμ� = {r(k)}1779

k=780. With μ̂ and �̂ available
we determine the detector output yD(k + 1) such that we use
the dataset D = {yD(k)}15 379

k=1779 of detector outputs to estimate

Fig. 4. Box plot of the empirical false alarm rate over the acceptable false
alarm rate 1 − γ when NT = 10 000 threshold estimates with corresponding
their empirical false alarm rates are obtained from the dataset D via repeated
training/test splits.

the threshold, where yD(1779) = 0, and validate the empirical
false alarm rate of the threshold estimate.

In the following, we apply the approach outlined at the
end of the previous section. This means that, for a given γ,
we randomly choose Nbeta samples from D without replace-
ment to obtain an approximately i.i.d. dataset for determining
J̃D . Since we only have a finite amount of samples in D,
the remaining samples of D are compared to the threshold to
produce the empirical false alarm rate induced by J̃D . Repeat-
edly applying this approach is known as repeated training/test
splits [23], which lets us simultaneously estimate and evaluate
J̃D with a finite dataset D. This is done repeatedly to obtain
NT = 10 000 empirical false alarm rates for a given γ . For
tuning the detector, we choose � = 0.01 and ρ = 0.05 and
investigate nine different values for γ , that is, {γi}9

i=1, where
γi = 0.95 + (i − 1) · 0.005. For these values of � and ρ, the
amount of samples for testing is at least 11 421 for each of
the investigated values of γ.

Fig. 4 shows a box plot of the empirical false alarm
rates over the investigated acceptable false alarm rates 1 − γ.
We observe that the median value of the empirical false alarm
rate is almost exactly located at the acceptable false alarm rate
for all investigated values of γ . Furthermore, the box plots are
concentrated around the acceptable false alarm rate. Only 5 %
of the empirical false alarm rates should lie outside of the
±�-band (shaded area in Fig. 4) around the acceptable false
alarm rate, since ρ = 0.05. Here, the largest percentage of
empirical false alarm rates outside the ±�-band is 4.77 % for
an acceptable false alarm rate of 0.045, i.e., γ = 0.955. Hence,
although the data in D is strongly correlated due the CUSUM
detector dynamics (10), we achieve the desired guarantees
with the number of samples determined from Theorem 2. The
reason for that is that due to the random selection of Nbeta

samples from D to determine J̃D , it is unlikely that several
adjacent samples, e.g., yD(2000), yD(2001), and yD(2002),
are chosen such that the samples in the training set are not
highly correlated anymore.
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Fig. 5. Empirical false alarm rate from NT = 10 000 thresholds is evaluated
over a dataset D when repeated training/test splits are used to determine J̃D ,
where the area between the vertical dash-dotted lines represents the desired
±�-band.

Note that the samples in the test set are still strongly
correlated. This shows that the guarantees for the threshold
determined from the uncorrelated samples holds for the cor-
related samples in the test set as well.

Finally, we look at the histogram of the empirical false alarm
rates for γ = 0.95 (see Fig. 5). We observe that in contrast
to the lower plot in Fig. 3 the histogram for N = Nbeta is
now concentrated around 1 − γ = 0.05 and only 4.64 %
of the empirical false alarm rates are located outside of the
desired interval marked by the vertical dash-dotted lines. This
demonstrates that by selecting training data using random
sampling (as opposed to sequential sampling) we are able to
employ the sample guarantees in Theorem 2 to find a threshold
for the highly correlated output of the CUSUM detector.

V. CONCLUSION

In this work, we considered the tuning of detector thresholds
and pointed out the equivalence of the detector threshold and a
specific quantile of the detector output distribution. We derived
three different finite guarantees for the estimation of a quantile.
The first is based on the DKW inequality, which takes the
whole cumulative density function into account. The second
is based on the Vysochanskij–Petunin inequality and uses the
expected value and variance of the CDF evaluated at a specific
order statistic to determine the sample guarantees. The third is
based the confidence interval of a beta distribution and utilizes
a closed-form solution of the confidence interval bounds.

When comparing the three guarantees, we saw that the third
guarantee has the best scaling in the confidence parameter and
leads to the smallest sample size. Simulations showed that
the i.i.d. assumption is important and can lead to violations
of the guarantees. However, we showed in our experimental
setup that using random instead of sequential samples to tune
a threshold can be an effective way to mitigate the adverse
effects of a non-i.i.d detector output without changing the
sequential implementation of the detector operation.

Avenues for future work involve relaxing the assumptions
we have made in this work. We aim to develop extended results
to directly take the non-i.i.d. nature of the detector output into

account rather than to use the indirect random sampling
approach we propose here. We would also like to be able to
address non-stationary detector output distributions, including
results that provide guidance on real-time threshold selection.
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