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Abstract— People with type 1 diabetes (T1D) face the chal-
lenge of administering exogenous insulin to maintain blood
glucose (BG) levels in a safe physiological range, so as to
avoid (possibly severe) complications. By automatizing insulin
infusion, the artificial pancreas (AP) assists patients in this
challenge. While insulin can decrease BG, having another input
inducing glucose increase could further improve BG control.
Here, we develop a model predictive control (MPC) algorithm
that, in addition to insulin infusion, also provides suggestions of
carbohydrates (CHOs) as a second, glucose-increasing, control
input. Since CHO consumption has to be manually actuated,
great care is paid in limiting the extra burden that may be
caused to patients. By resorting to a mixed logical-dynamical
MPC formulation, CHO intake is designed to be sparse in time
and quantized. The algorithm is validated on the UVa/Padua
T1D simulator, a well-established large-scale model of T1D
metabolism, accepted by Food and Drug Administration (FDA).
Compared with an insulin-only MPC, the new algorithm ensures
increased time spent in the safe physiological range in 75%
of patients. The improvement is limited for those already well
controlled by the state-of-art strategy but relevant for the others:
the 25th percentile of this metric is increased from 74.75% to
79.06% in the population. This is achieved while simultaneously
decreasing time spent in hypoglycemia (from 0.5% to 0.12% in
median) and with limited manual interventions (2.86 per day in
median).

Index Terms— Artificial pancreas (AP), carbohydrates (CHOs)
suggestion, diabetes, mixed-integer programming, model predic-
tive control (MPC).

I. INTRODUCTION

BECAUSE of the immune-mediated destruction of pan-
creatic beta cells, patients with type 1 diabetes (T1D)

are unable to produce insulin endogenously. The lack of this
hormone leads to an impaired blood glucose (BG) regulation,
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which may result in severe complications and, overall, in a
reduced life expectancy [1]. T1D care represents de facto a
control problem, where the goal is to maintain BG levels in
the nearly normal range between 70 and 180 mg/dL [2]. This
range is known as euglycemia: lower glucose levels, referred
as hypoglycemia, represents an immediate threat to patient
health, since they can quickly lead to coma or seizure and even
to death if not treated in time; high glucose levels, referred as
hyperglycemia, may instead cause micro- and macro-vascular
damages if prolonged in time that can result in blindness,
foot ulceration, limb loss, kidney failure, and many other
pathologies [2].

The most common therapy for managing T1D consists
of several daily insulin manual administrations, frequent BG
monitoring by fingerstick BG measurement devices, diet, and
physical exercise (PE). Although this routine aims to prevent
acute complications and to reduce the risk of long-term
chronic dysfunctions, its practice is burdensome for patients
and harshly affects their lifestyle.

Artificial pancreas (AP) systems are an emerging tech-
nology that combines different devices to automatize and
optimize insulin administration: a continuous glucose moni-
toring (CGM) sensor measures subcutaneous glucose concen-
tration; a closed-loop control algorithm, fed by CGM readings,
computes the optimal insulin dosing; finally, an infusion pump
automatically delivers insulin into the interstitium [3]–[6].

In the first generation of AP established in the last decade,
a large spectrum of control techniques has been explored:
proportional-integrative-derivative control (PID), described in
[7] and later equipped in [8] with a mechanism to mitigate
insulin absorption delays (called “insulin feedback”); control
law emulating pancreatic beta-cell secretion [9] or medical
doctor reasoning [10]; and fuzzy logic [11]. Model predictive
control (MPC) technique appears to be particularly suited for
glucose control in view of its capability to handle constraints
(insulin delivery is bounded to be positive) and to mitigate for
insulin absorption delay by employing predictive reasoning.
For this reason, MPC was the technique of choice in sev-
eral applications [12]–[23], as reviewed more in detail in
Section II.

In the AP mentioned earlier, glycemia is controlled exclu-
sively by modulating insulin infusion [24]. Insulin induces
a reduction of glucose levels, and no other control variable
is available to produce the opposite effect. State-of-the-art
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systems may suggest the ingestion of fast-acting carbohy-
drates (CHOs) when glucose levels drop (or are predicted
to drop) below a certain threshold, but this is done as an
emergency measure to avoid potentially fatal hypoglycemic
events, not as part of a coordinated control plan. Therefore,
state-of-the-art control algorithms have to carefully avoid
insulin overdosing, and this limits their ability to aggressively
tackle postprandial hyperglycemia [6].

One of the most promising alternative developments of
AP is represented by the bihormonal AP [25], [26], which
employs a second infusion pump to administer glucagon (i.e.,
the antagonist hormone of insulin) as an additional mean
to control BG levels. This further control input allows the
algorithm to stimulate BG rise, thus offering new possibilities
for producing a better BG control. Bihormonal AP systems
have proved their potential to improve BG control with respect
to conventional insulin therapy and to their single-hormonal
counterpart in outpatient settings [27]. Despite these promising
results, it is still unclear how to take the best advantage of
the additional degree of freedom offered by glucagon. One
option is to make a more aggressive use of insulin given
the possibility to perform glucagon-based correction, but there
are concerns on the safety of this approach. Glucagon action
stimulates hepatic extraction, that is, the release in the blood
stream of glucose stored in the liver in the form glycogen.
Unfortunately, the hepatic extraction mechanism may fail in
case of depleted glycogen storage (e.g., in due to repeated
glucagon stimulation) or may be inhibited by substances,
such as alcohol. As a consequence, there is no consensus
on whether glucagon should be used only as an emergency
safety measure, replacing CHO, or if it can be safely used as
a true additional control variable. Furthermore, liquid glucagon
forms and analogs that are stable at room temperature have just
appeared [28]. Albeit very positive, only early evidences are
available on the absence of the typical glucagon side effects,
such as nausea, while long-term studies on sustained glucagon
administration are still missing [26].

The introduction of a glucose-increasing control input was
shown to be beneficial also to BG control in the intensive care
unit (ICU), where Sun et al. [29] considered smart modulation
of intravenous glucose infusion. Unfortunately, this solution is
suited only for hospitalized patients and cannot be adopted in
a system meant to be used in daily life.

A. Paper Contribution

Inspired by the rationale of the abovementioned solutions,
where a glucose-lowering control input is combined with a
glucose-increasing control input, in this work, we propose a
control algorithm that resorts to two inputs for controlling the
system: insulin and CHO. With respect to state-of-the-art algo-
rithms, CHOs will not be used just as an emergency measure,
but rather proactively employed as a second control variable.
Smart proactive planning of future CHOs consumption enables
a more aggressive tackling of hyperglycemia and, hence, has
the potential to grant tighter BG regulation.

This approach faces a major challenge, namely, that CHOs
cannot be automatically administered (subcutaneous infusion

is not an option), meaning that patients have to be heavily
involved in the loop, being in charge of manually actuating
this control action.

To make this approach practically viable, great care has to
be paid on patient’s extra burden. For this reason, we designed
a control algorithm that only seldom resorts to CHO sugges-
tion, with the possibility of defining “do-not-disturb” zones
during night or working hours and to cap the maximum patient
actions requested per day. Furthermore, the suggested CHO
amount should be quantized among a few values to facilitate
the assumption. As an example of the quantization importance,
consider that CHO for T1D management comes often in the
form of glucose tabs or sugar/gel packets. Each tab and packet
have a predetermined amount of CHO, and patients can easily
(and reliably) ingest an integer number of these tabs or packets.
Ingesting a fraction of a tab or a partial dose of a sugar/gel
packet is instead practically cumbersome and prone to errors.

MPC offers a powerful opportunity to embed both sparsity
and quantization of the CHO control input in the control
algorithm reasoning, by means of ad hoc linear inequality
and integer constraints. In fact, Bemporad and Morari [30]
proposed a framework for the modeling and control of systems
that intertwine physiological laws, logical rules, and operating
constraints (the so-called “mixed logical dynamical systems”).
By doing so, the optimization problem within MPC will be
formulated as a mixed-integer program (MIP).

To build the new MIP-based MPC for AP and to investigate
the impact of the CHO suggestion strategy, our starting point
is the Pavia/Padua modular MPC [22], [23]. This single
hormone, MPC-based AP is one of the most extensively
validated in clinical trials [31]–[35], where it proved to be safe
and effective. The Pavia/Padua MPC is expanded with the MIP
reasoning to create a dual-action MPC that can propose sparse
and quantized carbohydrate suggestions. We then compare the
performance achieved by the state-of-art algorithm with those
achieved by its modified versions, to determine the impact of
the new MIP module included without confounding factors.

Many AP systems already embed a safety module that trig-
ger CHO-intake suggestions when patients reach or approach
hypoglycemia, to promptly rise BG levels. The CHO-intake
suggestions proposed by our novel control strategy are not
intended as a substitute to these emergency mechanisms, but
rather as a tool for proactively improving BG regulation. As a
matter of fact, an emergency CHO suggestion algorithm will
be implemented in both the classic Pavia/Padua MPC and in its
modified version. This algorithm for emergency CHO intake
will be based on the guidelines proposed by the American
Diabetes Association and will be discussed more in-depth in
Section IV-B.

The comparison between the two control strategies is per-
formed on a large-scale model of T1D metabolism [36].
This tool is well established in the scientific literature and
accepted by the U.S. Food and Drug Administration (FDA)
as a substitute for animal testing in preclinical T1D therapies
evaluation.

While we chose as a starting point the Pavia/Padua MPC,
it should be noted that the proposed MIP modification can
be included in several other MPC formulations of the AP
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control problem proposed in the literature, such as in zone
MPC [16]–[18] or individualized MPC [16]–[23]. Notably, the
proposed MIP extension could also be included in a dual-
hormone AP, to build a device that can resort to glucagon or,
alternatively, to seldom quantized CHO suggestion to increase
patients’ BG.

Finally, it should also be noted that the problem considered
in this manuscript is a human in the loop problem, where the
effective orchestration of two control actions, one automati-
cally performed by the control algorithm and one manually
implemented by the patient, is needed. The solution proposed
extends to other control problems where human intervention
to help the controller is possible but costly or burdensome.
This is the case in a number of biomedical problems of smart
drug delivery, where a clinician, a patient, or another caregiver
can be sporadically requested to intervene in assistance of the
algorithm.

B. Paper Organization

This article will be structured as follows. Section II-A
reviews different MPC formulations for AP systems, while
Section II-B focuses on AP systems using both insulin and
CHO to control glycemia. Section III focuses on the methods.
In Section IV, we present the experimental setup, from the
description of the simulator and simulation scenario to the
choice of most of the metrics employed to assess the qual-
ity of the controllers. In Section V, we discuss the tuning
strategy for the hyperparameters of the cost function of MPC.
In Section VI, we train and test the newly synthesized control
law by comparing its performances with a benchmark, state-of-
the-art MPC. Some final remarks are reported in Section VII.

II. STATE OF THE ART

A. MPC for AP

One of the main aspects that encouraged the adoption of
MPC in AP systems is the flexibility that this control technique
offers in the problem formulation. Different objectives can be
easily considered in the optimization problem. A common
choice is to minimize the square distance of BG from a
glycemic reference, as done in [21] and [37]–[39] and in the
Pavia/Padua MPC considered in this work [22], [23]. Other
studies employed instead a zone-MPC strategy, penalizing
BG levels predicted to fall outside of a target zone (the
normoglycemic range) [13], [16]–[18]. In some studies, the
distance from the glycemic reference [19], [20] or the values
outside of the target range [19] are penalized by an asymmetric
cost function, to account for the higher threat of hypoglycemia
on the short term with respect to hyperglycemia. In [40] and
[41], the objective is instead to control BG levels toward a
desired risk of hypoglycemia.

A key ingredient of an MPC algorithm is the model adopted:
while most contribution resorted to linear patient models [16],
[21], [22], [37], [39], [42], a notable example of nonlinear
MPC is [43]. Average/population models [23], [44] as well as
individualized models using both white-box [16], [21], [37]
and black-box approaches [42], [45] have been considered.

Glucose prediction uncertainty is accounted in [46] by intro-
ducing a trust index to adjust insulin delivery. In [47] and [48],
insulin delivery is constrained based on estimations of plasma
insulin concentration. In [49], the information on the time of
the day and time of the last meal, meal announcement, and
sleep announcement is used to make discrete switches between
different models to improve BG prediction.

The ability of MPC to incorporate MIMO system was lever-
aged in bihormonal AP systems [39], [42], where a second
hormone is included as a control input; Turksoy et al. [45]
propose a multi-input AP exploiting galvanic skin response
and energy expenditure to handle PE. Garcia-Tirado et al. [21]
also focus on PE management, by proposing an ensemble
MPC that is informed by an anticipatory exercise signal
computed from patients’ exercise records.

Other studies exploited the knowledge that certain inputs,
such as meal consumption, are a function of time. For instance,
in [37], [38], and [50], the reference signal for BG concen-
tration includes a “learning” term that is updated every day
based on the meal consumption of the previous days.

More and more studies are considering adaptive formula-
tions for MPC. Adaptation is key to handle intra- and inter-
day patients’ variability and can be achieved by recursively
updating model parameters [42], [51], therapy parameters [52],
or the weights in the MPC cost function [47], [48].

B. AP With CHO Suggestion

As anticipated, the ingestion of CHOs is commonly used in
state-of-the-art AP as safety measure to avoid hypoglycemia,
identified either by glucose crossing a critical threshold [53],
[54] or through predictive models [55], [56].

To the best of our knowledge, the only study to date where
CHOs are used proactively to improve glycemic control is
the one by Moscardó et al. [57]. In this work, the authors
propose a proportional–derivative controller for a bihormonal
AP, using either glucagon or CHOs as a counter-regulatory
action to insulin. CHOs intake is proposed in multiples of
15 g by quantizing control actions a posteriori and by accu-
mulating residual CHO (details in [57]). The differences with
our approach include the fact that quantization is imposed
downstream of the computation of the control action, and
sparsity is not enforced. On the contrary, we aim to embed
both sparsity and quantization within the control reasoning.

III. METHODS

Patient’s BG concentration, BG(k), is the variable we aim
to control. In free living conditions, AP only disposes of a
proxy of patients’ BG, that is, the measurement of patients’
glucose concentration in the interstitial fluid provided by the
CGM sensor, g(k). We aim to keep this variable as close
as possible to a suitable target value, g0. A key challenge
in this regulation problem is that glucose concentration is
susceptible to a significant, exogenous disturbance, i.e., meal
consumption d(k). Meal consumption can be considered as
a measured disturbance, since in the current AP, patient is
requested to inform the system about incoming CHO intake
(meal announcement), to trigger suitable feedforward control
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actions. Unfortunately, patient-provided CHO estimate, d̂(k),
is affected by possibly large errors.

In this study, we consider two different strategies to design
an MPC for an AP. The first strategy is the Pavia/Padua
MPC [22], [23], a state-of-the-art single-hormone approach
(singleMPC in the following), where the only variable used
as a control input is insulin i(k). Total insulin administration
must be constrained to be non-negative, i(k) ≥ 0.

In the second approach, we introduce the use of a second
manipulated variable, that is, extra-CHOs intake c(k). Here-
after, we will call this control strategy dual-action MPC AP
(dualMPC in short). In this case, extra-CHO intake is also
bounded to be non-negative (c(k) ≥ 0), and as aforementioned
in Section I, it will also be constrained to be sparse in time
and quantized.

By comparing the performance achieved by singleMPC and
dualMPC, the impact of the CHO suggestion strategy proposed
in this manuscript can be deduced.

The Pavia/Padua MPC is usually embedded in a modular
architecture [44], which includes also a safety module that
has the authority to reduce or suspend the insulin infusion
proposed by the MPC when a hypoglycemic event is approach-
ing. This modular architecture was not introduced in this work,
as additional modules operate as confounding factors in the
assessment of the CHO suggestion strategy.

A. Benchmark: Single-Action AP

Following [22] and [23], the single-action MPC will be
based on a linearized, averaged, and discretized (Ts = 5 min)
version of the model of insulin–glucose dynamics used in
the UVa/Padua T1D simulator [36]. The model is linearized
around the steady-state operating point xeq reached with basal
insulin infusion (i(k) = ib(k)) and with no disturbance
(d(k) = 0). The resulting model can be represented in a state-
space form as{

x̄(k + 1) = Ax̄(k) + Bī(k) + Md̂(k)

ḡ(k) = Cx̄(k)
(1)

where the sampling period Ts was omitted for sake of read-
ability, and the following hold.

1) x̄ ∈ R
13 is the state vector.

2) ḡ ∈ R (mg/dL) is the deviation of CGM readings g(k)
from a patient’s specific fictitious equilibrium point,
called basal glucose (Gb).

3) ī ∈ R (pmol/Kg/min) is the deviation of insulin infusion
i(k) from patient’s specific basal insulin [ib(k)], normal-
ized by patient’s body weight (BW), i.e.,

ī(k) = i(k) − ib(k)

BW
. (2)

4) d̂ ∈ R (mg) is the announced meal consumption.

The system in (1) is both stabilizable and detectable.
The optimal sequence of insulin infusions is computed by

the MPC at each control instant; by minimizing with respect

to ī(k), the following quadratic cost function:

J
(
x̄(k), k, ī(·)) =

N−1∑
j=0

q‖ḡ(k + j) − ḡ0(k + j)‖2
2 +

+r
∥∥ī(k + j) − ī0(k + j)

∥∥2
2+‖x̄(k + N)‖2

P

(3)

that considers a finite prediction horizon (PH) of N steps.
The first term of (3) penalizes the �2-norm of the deviation

of ḡ from the set point ḡ0 = g0 − Gb. The variable g0 is set to
115 mg/dL, except for an increase to 160 mg/dL for 90 min
after a meal consumption to avoid insulin overdosing.

The second term of (3) is introduced to discourage large
deviations of the control actions from the suitable reference
insulin signal ī0(k). This signal is obtained starting from the
patient manual therapy imanual(k) that consists of the basal
insulin infusion, ib(k), plus a meal bolus, imeal(k)

imanual(k) = ib(k) + imeal(k).

The signal imeal(k) is always zero, except at meal time when
it takes the value [58]

imeal(k) = d̂(k)

C R
+ g(k) − Gb

C F
− I O B(k)

where CR is the CHO-to-insulin ratio, a subject-specific
parameter representing the number of grams of CHO that are
covered by 1 U of fast-acting insulin; CF is the correction
factor, another subject-specific parameter defining the glucose
drop due to the administration of 1 U of insulin. The signal
IOB(k) is the insulin-on-board, that is, the quantity of insulin
still active in the organism, computed as described in [59].

Before using the manual therapy insulin imanual(k) in the
cost function (3), it has to undergo the same normalization
used for ī(k) in (2)

ī0(k) = (imanual(k) − ib(k))/BW = imeal(k)/BW.

Therefore, ī0(k) is always zero except at meal times when,
to promote a meal compensation, a suitably normalized meal
bolus is provided as a reference insulin signal to the MPC. The
MPC has the authority to modify insulin at any time, including
at meal time when it can manipulate the standard meal bolus
by increasing or decreasing it, based on its predicted impact
on the PH.

The third term of (3) represents a terminal cost, with ||x̄(k+
N)||2P = x̄(k + N)T Px̄(k + N).

The weights q , r ∈ R in (3) determine the trade-off between
the different penalty terms in the cost function. P ∈ R

13×13

depends on the other two and is computed as the unique non-
negative solution of the discrete algebraic Riccati equation

P = AT P A − (
AT P B

)(
r I + BT P B

)−1(
BT P A

) + q I (4)

where I is the identity matrix. It is easy to see that the
optimization is impacted only by the ratio r̃ = r/q , which
will be tuned specifically for each patient. This patient-specific
tuning (called individualization) is discussed in Section V.

The state vector at the current instant, x̄(k), is estimated
via Kalman filter (KF), by employing the available information
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TABLE I

VALUES OF THE HYPERPARAMETERS FOR SINGLE-ACTION
AND DUAL-ACTION MPC

about CGM reading and past insulin infusion and CHO intake.
Further details are provided in Appendix I or in [23].

With respect to [22] and [23], here, the MPC optimization
problem accounts for the constraints on the minimal and
maximal dose of insulin that can be administered at each
sample time due to the actuator physical limits

0 ≤ i(k) ≤ imax

that are readily translated into constraints on the normalized
insulin ī(k)

īmin(k) ≤ ī(k) ≤ īmax

with īmin(k) = −ib(k)/BW and īmax = (imax − ib(k))/BW .
The MPC optimal control problem

min
ī s.t.

īmin≤ī(·)≤īmax

J
(
x̄(k), k, ī(·)) (5)

is equivalent to a quadratic program

uo(k) = arg min
u s.t.

Imin≤u≤Imax

1

2
uT Hsu + hT

s u (6)

with suitable matrices Hs and hs [22], and where the variable
u(k) is a vector in the form

u(k) =
⎡
⎢⎣

ī(k)
...

ī(k + N − 1)

⎤
⎥⎦ ∈ R

N (7)

and

Imin(k) =
⎡
⎢⎣

īmin(k)
...

īmin(k)

⎤
⎥⎦ ∈ R

N , Imax(k) =
⎡
⎢⎣

īmax(k)
...

īmax(k)

⎤
⎥⎦ ∈ R

N .

(8)

Following the MPC receding horizon policy, only the first
action of this optimal control sequence is applied to the plant.
The optimal sequence is then computed again in the following
control instant.

All the numerical values used for the controller parameters
are reported in Table I.

B. Dual-Action AP

With respect to our benchmark, the dual-action MPC will
introduce a new control variable c(k) ∈ R (mg) in the model,
representing MPC-suggested CHO intake{

x̄(k + 1) = Ax̄(k) + Bī(k) + Md̂(k) + Mc(k)

ḡ(k) = Cx(k).
(9)

The variable c(k) is a function of two Boolean support
variables

c(k) = γ1c1(k) + γ2c2(k) (10)

with c1, c2 ∈ {0, 1} and γ1 (mg), γ2 (mg) suitable CHO
quantities. Further constraints will bound only one of the
Boolean variables to be active at the same time. Such a
formulation quantizes extra-CHOs intake c(k) to three possible
values: 0, γ1, or γ2. Here, we set γ1 = 1000 mg/min and
γ2 = 2000 mg/min (thus corresponding to an ingestion of
γ1 · Ts = 5 g and γ2 · Ts = 10 g). This formulation is easily
adaptable, and an arbitrary number of CHO levels, Nbool, can
be obtained by introducing new auxiliary Boolean variables

c(k) =
Nbool∑

i

γi ci(k). (11)

It should be noted that increasing the number of Boolean
variables Nbool increases for solving a mixed-integer quadratic
program (MIQP) in worst case scenarios. Nevertheless, the
time needed to solve the problems in standard instances is
more affected by their overall structure of the problem than by
the number of Boolean variables, that is often a poor indicator
of their practical difficulty. An analysis of the computational
cost is reported in Section VI-A.

The new cost function for the dual-action MPC will be

J (x̄(k), k, x̄(·), c(·))
=

N−1∑
j=0

q‖ḡ(k + j) − ḡ0(k + j)‖2
2

+r
∥∥ī(k + j) − ī0(k + j)

∥∥2
2 + s1‖c1(k + j)‖2

2

+s2‖c2(k + j)‖2
2 + ‖x̄(k + N)‖2

P . (12)

Equation (12) penalizes the use of c(k) by introducing two
penalty terms on the norms of c1(k) and c2(k).

Since c1(k) and c2(k) are Boolean ∀k, by setting s1 = γ 2
1 ·

s and s2 = γ 2
2 · s, for some s ∈ R

+
0 , the resulting penalty

corresponds to a standard penalty on the �2-norm of c(k),
which discourages the suggestion of large amount of CHO in
the PH.

Alternatively, if s1 = s and s2 = s, the resulting penalty
corresponds to a penalty on the �0-“norm” of signal c(k) in
the PH, that is, the number of non-zero values of c(k) in this
time window. This penalizes the number of CHO suggestions,
independently of the amount of CHO of these suggestions.
By resorting to Boolean variables, the �0-“norm” of c(k) is
reformulated as a linear combination of two �2-norms, and it
becomes practically solvable with optimization solvers.

In this article, we opt for the second option, since we want
to penalize the number of times the MPC requests a patient
intervention more than the total amount of CHO ingested.
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Analogously to the single-action MPC, it is easy to see
that that the optimization is impacted only by the ratios
r̃ = r/q and s̃ = s/q . In Section V, we will tune these
hyperparameters.

Beside promoting sparsity of extra-CHO intake in the
PH with the �0 penalty, we enforce a minimal distance �s

between two consecutive extra-CHO suggestions, to prevent
multiple closed-in-time requests of patient intervention. This
is achieved by employing inequality constraints on the Boolean
variables c1 and c2 in a time window of �s . Let us consider a
single Boolean vector Ci(k) = [ci(k), . . . , ci (k + N − 1)]T ∈
R

N , bound by the following linear inequality constraint:
F̃Ci(k) ≤ f̃ (13)

where

F̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

�s︷ ︸︸ ︷
1 · · · 1

N−�s︷ ︸︸ ︷
0 · · · · · · 0

0 1 · · · 1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · 0 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎦ ∈ R

N×(N−�s+1)

f̃ = [
1, . . . , 1

]T ∈ R
N−�s+1.

The first inequality of (13) can be rewritten as

�s∑
j=1

ci(k + j − 1) ≤ 1.

Since the elements of Ci are Boolean, at most one ci (k +
j − 1) in the interval j ∈ [1,�s] can be equal to 1. The
second inequality poses a similar constraints on the interval
j ∈ [2,�s+1]. The only possible combination of two non-zero
actions satisfying both constants is the one that has ci(k) =
1 and ci(k + �s) = 1. This consideration holds in the whole
horizon, so that two elements of Ci can be equal to 1 only if
they are at least �s elements apart. In our dual-action MPC,
this sort of constraints is posed simultaneously to both Boolean
support variables

j+�s−1∑
i= j

(c1(k + i) + c2(k + i)) ≤ 1 ∀ j = 0, . . . , N − �s

and it can be written in a matrix form straightforwardly
extending (13).

Due to the receding horizon policy, the abovementioned
constraints restrict only the planned CHO, not the ones that are
actually consumed. As an example, suppose that the optimal
solution at time k −1 includes one extra CHO at the beginning
of the PH. The planned extra CHO is consumed at time k.
Then, at time k, a new optimization problem is formulated,
and a CHO suggestion at the beginning of the new horizon
would not be excluded by (13). To exclude this possibility and
add memory of previously consumed CHO actions, we include
another (time-varying) constraint, forcing all Boolean variables
to be zero at less than �s samples from previously consumed
CHO. To this purpose, denote with klast the time of the

last extra-CHO suggestion consumed and consider the time-
varying constraint⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1(k)
...

c1(k + �s)
c2(k)

...
c1(k + �s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cmax(k)
...

cmax(k + �s)
cmax(k)

...
cmax(k + �s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

with cmax(k + i) = 0 when k + i − klast ≤ �s and
cmax(k+i) = 1 otherwise. Similarly, extra-CHO suggestions are
turned off for �m samples after the last meal announcement,
that we assume to occur at time kmeal

last . This can be easily
included in the previous set of constraints by defining

cmax(k + i) =

⎧⎪⎨
⎪⎩

0, if k + i − klast ≤ �s

or, ifk + i − kmeal
last ≤ �m

[1.5ex]1, otherwise.

Finally, we include two other practically relevant features
in our framework.

The first feature allows to bound the maximum number of
extra-CHO suggestion in one day, forcing it to be smaller than
nmax. This is done through a the time-varying constraint

N−1∑
i=0

(c1(k + i) + c2(k + i)) ≤ nres(k)

where nres(k) is the residual number of possible extra-CHO
suggestion for a certain day, a variable that is reset to nmax

every day at 06:00 A.M. and decreased of one unit every time
an extra CHO is suggested.

The second feature allows the introduction of “do-not-
disturb” time portions, where the dual-action MPC is not
allowed to suggest extra CHO. As an example, in this work, a
“do-not-disturb” portion is set from 00:00 to 06:00 A.M. every
day, so that the patient is not requested to perform manual
control actions during the night. This can easily be achieved
by forcing nres(k) to be zero during these time portions.

In conclusion, defining the optimization variable u(k) as

u(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ī(k)
...

ī(k + N − 1)
c1(k)

...
c1(k + N − 1)

c2(k)
...

c2(k + N − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
3N (14)

the new optimization problem becomes

uo(k) = arg min
u s.t.

Umin≤u≤Umax

Fu≤ f

uN+1,...,3N ∈{0,1}

1

2
uT Hdu + hT

d u (15)
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with Hd and hd are suitable matrices straightforwardly repre-
senting, in a matrix form, the cost function (12) and

Umin(k) =

⎡
⎢⎢⎢⎣

Imin(k)
0
...
0

⎤
⎥⎥⎥⎦ ∈ R

3N

Umax(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Imax(k)
cmax(k)

...
cmax(k + P H − 1)

cmax(k)
...

cmax(k + P H − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
3N

F =
[

0, . . . , 0 F̃ F̃
0, . . . , 0 1, . . . , 1 1, . . . , 1

]
∈ R

(N−�s+2)×3N

f =
[

f̃
nres(k)

]
∈ R

(N−�s+2).

Again, for the receding horizon policy, we only apply to
the plant the elements of uo(k) corresponding to ī(k), c1(k),
and c2(k). The optimal sequence is then computed again in
the following control instant.

To minimize the risk of omitted CHO ingestion, the patient
is requested to confirm the consumption of c(k) = γ1c1(k) +
γ2c2(k) suggested by the controller. If the controller does
not receive the confirmation, the system will repropose the
CHO ingestion until the CHO consumption has been con-
firmed. At difference with meals, confirmed CHO ingestion in
response to a controller suggestion does not trigger an insulin
bolus. If the patient feels she/he will not be in the condition
for eating a suggested CHO, she/he can set a temporary “do-
not-disturb” zone.

Finally, it should be remarked that the MIQP solver is
granted to find the global optimum, provided that sufficient
time is granted for the search. Although the preliminary
results in Section VI-A are reassuring regarding the possibility
to solve the optimization problem within a fraction of the
sampling period, backup mechanisms have to be envisioned to
handle the cases in which this should not happen. A straight-
forward yet appealing option is the use of the control action
computed by singleMPC or by an unconstrained version of
its optimization problem, saturated a posteriori. This former
possibility, because of the existence of a closed form solution,
is ensured to have minimal computational cost.

IV. EXPERIMENTAL SETUP

A. UVA/Padua T1D Simulator

The control algorithms we described in Section III are
tuned and validated in silico by means of the UVa/Padua T1D
simulator. This simulator consists of 13 nonlinear differential
equations, accurately describing the metabolism of a T1D
subject. These equations contain more than 30 parameters,
and to capture the large variability in glucose dynamics
among the individuals with T1D (inter-patient variability), the
simulator provides 100 different realizations of the parameters

TABLE II

MINIMAL AND MAXIMAL VALUES OF THE POSSIBLE CHO AMOUNT AND
TIME OF CONSUMPTION FOR THE DIFFERENT MEALS

set, thus enabling the simulation of 100 “virtual patients.”
The parameters realization is sampled from a joint distribution
inferred from unique clinical data [60], therefore respecting the
correlation among the parameters occurring in real subjects.
Moreover, to account for the fact that even in the same
individual glucose dynamics change over time (intra-patient
variability), a subset of these parameters are time-varying.

Because of its reliability in describing the T1D metabolism,
a first version of this large-scale computer model was accepted
by the FDA (2008) as a substitute to animals trials in
preclinical testing of closed-loop control algorithms. In this
study, we employ an updated version of the FDA accepted
UVa/Padua T1D simulator S2013 [60], which presents several
additional features to increase the realism of the testing scenar-
ios: a model of the so-called “dawn phenomenon,” suboptimal
patients’ therapy parameters, and models of patients’ behavior
and CGM sensor noise [61].

B. Simulation Scenario

We simulated multiple days of use of both the state-of-art
MPC and the dual-action MPC. Simulations start at 00:00 A.M.

Each day of simulation is characterized by the consumption
of three meals: a breakfast, a lunch, and a dinner. Times
and quantities of meal consumption vary between subjects
and days. They are drawn from uniform distributions reported
in Table II, whose values are chosen to match the range
of the data reported in [62]. Announced meals d̂(k) are
also affected by the carb-counting error (CCE) committed by
patients, which means that the controllers have only access to
inaccurate information about the real CHO content of the meal.
In this version of the simulator, CCE is modeled according
to [63].

To increase the reality of the simulations, we set suboptimal
values of CR and ib(k). These suboptimal values are computed
following clinical guidelines.

We ensured that all realizations of random factors described
so far are equal when comparing different control algorithms,
using the same seed in the random number generator for each
patient in every different simulation.

In clinical practice, whenever the controller fails to avoid
hypoglycemia, the patient eats rescue carbs (RCs) to quickly
restore safe glucose levels. This safety intervention, called
hypotreatment (HT), is included when simulating both single-
action and dual-action controllers. Therefore, in the follow-
ing, we will distinguish between RCs for HT and planned
carbs (PCs) proposed by the dual-action MPC. Details on the
HT generation mechanism can be found in [63], and here,
we only mention that they are triggered when CGM reading
drops below pre-established hypoglycemia threshold levels.
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C. Evaluation Metrics

Given the large number of studies in AP systems, a panel
of international experts standardized in a consensus meeting
the metrics to be adopted for AP system evaluation [64], [65].

Following these indications, we included the percentage
of time spent in different glycemic ranges: in the range
[70–180] mg/dL, i.e., time-in-range (TIR); below 70 mg/dL,
i.e., time-below-range (TBR); above 180 mg/dL, i.e., time-
above-range (TAR); below 55 mg/dL, i.e., time in deep
hypoglycemia (TDh); above 250 mg/dL, i.e., time in deep
hyperglycemia (TDH). Furthermore, we consider the mean of
the CGM signal, μCGM, and use the standard deviation σCGM

to assess glucose variability.
We also consider the so-called area under the curve in

hyperglycemia (AUCH ), defined as the area between the
glucose trace g(k) and the hyperglycemic threshold BGH =
180 mg/dL

AUCH =
Nsim∑
k=1

(max(g(k) − BG H , 0))Ts

with Nsim being the number of simulated CGM samples. With
respect to the percentage of time spent in hyperglycemia,
which considers only the duration of the hyperglycemic
episode, this metric also accounts for the magnitude of the
hyperglycemic excursions.

Analogously, we consider the area under the curve in
hypoglycemia (AUCh), defined as

AUCh =
Nsim∑
k=1

(max(BGh − g(k), 0))Ts

with BGh = 70 mg/dL being the threshold for hypoglycemia.
Further relevant input-related metrics are the total daily

insulin (TDI) administration and the number and amount
CHO-intake suggestions. Suggestions are distinguished as
RCs, PCs, and total CHO (TC) intake. These latter metrics are
useful to evaluate the burden of our novel therapy on patients’
lifestyle. A summary of these metrics is reported in Table III.

For each of this metrics, we report the median and the inter-
quartile range computed over the specific pool of subjects
under exam. The statistical significance of possible improve-
ments obtained with dualMPC, with respect to singleMPC,
will be evaluated by means of a paired-sample t-test or a
Wilcoxon signed rank test, depending on whether the pop-
ulations are Gaussian or not. Either way, we will set the test
significance level to 5%. The Gaussianity of the distributions
is evaluated by means of a Lilliefors test with a significance
level of 5%.

V. ALGORITHMS TUNING

In this section, we discuss the tuning of the hyperparameters
of the control algorithms. Specifically, r̃ in (3) remains to be
chosen for the singleMPC, whereas in the dualMPC, there are
two hyperparameters: r̃ and s̃ in (12). These hyperparameters
regulate how aggressively the algorithm uses each input.

Because of the significant variability in each persons’
metabolism, finding a fixed value for these hyperparameters

TABLE III

LIST OF THE METRICS ADOPTED IN THIS WORK FOR ASSESSING THE
PERFORMANCES OF THE CONTROLLER

that is suitable for anyone is hardly possible. For this reason,
these weights are optimized for each subject, thus achieving
a basic level of individualization.

In silico, hyperparameters individualization can be done by
testing several possible points in the hyperparameter space and
choosing the one that achieves the best control performance
(assessed by a suitably defined scalar function). Unfortunately,
this approach cannot be performed in real subjects, as some
of the hyperparameters tested in the exploration could lead to
unsafe BG levels, hence posing patients at risk.

To overcome this difficulty, Patek et al. [44] showed that
the optimal value of the hyperparameter for in-silico subjects
can be inferred via statistical regression from other subjects’
parameters, such as BW or CR. Since these parameters are
also available in real patients, the regression law trained in
silico can then be used to compute effective personalized
hyperparameters on a real subject.

To implement and evaluate this approach, we proceed as
follows.

1) The cohort of 100 virtual patients is split in a training
and a testing set (50 subjects each).

2) Training Phase:

a) The optimal hyperparameters are obtained on the
training set by means of a hyperparameters opti-
mization algorithm.

b) The optimal weights are used to infer regression
models that link them to patients’ physiological
and therapeutics values.

3) Testing Phase:

a) The regression models are used to compute sub-
optimal hyperparameters for the subjects in the
testing set.

b) The control achieved with these hyperparameters
is evaluated on the subjects in the testing set.

The control performance achieved is discussed in
Section VI, both for the training and test phases. The detailed
descriptions of the tuning phase and the description of the
regression model can be found in Appendixes II-A and II-B,
respectively.
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TABLE IV

MEAN, STANDARD DEVIATION, AND MAXIMUM OF THE COMPUTATIONAL
TIME FOR SOLVING THE HARDEST INSTANCES OF THE OPTIMIZATION

PROBLEM IN dualMPC, AS A FUNCTION OF NBOOL

VI. RESULTS

A. Computational Cost

The optimization problem (15) was solved using MATLAB
and ILOG CPLEX Optimization Studio (v. 12.9) [66]. On aver-
age, the time needed to solve the hardest instances of the
problem (i.e., when CHO intake was allowed in any instant of
the PH) was <1 s on a desktop PC, which is two orders of
magnitude smaller than the sampling time Ts = 5 min. The
solver was always able to find an optimal solution.

Since the size of the problem (as a number of Boolean
variables) is often a poor indicator of its practical difficulty,
we tested the impact of an increasing number of Boolean
variables Nbool on the computational cost. Table IV reports the
average, the standard deviation, and the maximum of the time
needed for solving the hardest instances of the optimization
problem. The standard deviation and the maximum of the
computation time have an increasing trend, as Nbool raises.
On the other hand, the average computational time for Nbool =
5 is lower with respect to all other cases, which confirms that
increasing the size of the problem does not necessarily cause
an exponential increase in the computational cost.

This analysis, that reporting computational time on a desk-
top PC, has to be considered a preliminary assessment. The
computational time on a less performing hardware, better
matching those used in an AP, remains to be evaluated with
ad hoc implementation.

B. Performance in Training Phase

Table V reports a comparison of the results obtained in
the training phase with the two control algorithms. This
comparison is performed on two days of simulation on the
50 patients of the training pool.

The optimal tuning of the parameters allows to achieve an
improvement in every CGM-based metric with dualMPC with
respect to singleMPC. Mean glucose is closer to the target of
115 mg/dL, and glucose variability is reduced, proving tighter
glycemic control. Both the median value and the inter-quartile
range of the TIR are improved (i.e., increased) with dualMPC.
Similarly, the medians and inter-quartile ranges for all the
other glycemic intervals, as well as AUCH and AUCh , are
improved (i.e., decreased) by dualMPC.

This tighter glycemic control is achieved with a slightly
more aggressive use of insulin, as highlighted by the larger
TDI administration in dualMPC (median values from 38.88 to
39.83 U, about +2.5% median increase). Nevertheless, the
average number of daily CHO-intake suggestions is acceptably
low. The dualMPC algorithm suggests one CHO intake per day

TABLE V

RESULTS OBTAINED IN THE TRAINING PHASE WITH singleMPC AND
dualMPC, REPORTED AS MEDIAN [25th–75th PERCENTILE]. THE

SYMBOL † INDICATES A STATISTICALLY SIGNIFICANT DIFFERENCE

FOR THAT METRIC BETWEEN THE TWO ALGORITHMS

on median, whereas the 75th percentile is three suggestions
per day. The amount corresponds to 10 g per day on median
and a 75th percentile of 27.5 g. If we also consider the total
intake of extra carbs (RCs + PCs), the median for dualMPC
is 1.75 suggestions per day (or 26.25 g), whereas the median
for singleMPC is 0.5 suggestions per day (7.5 g).

These positive results shown in Table V are also supported
by parallel coordinate plots of the time spent in hypoglycamia
and euglycamia, as reported in Fig. 1. The hue of the lines
in the parallel coordinate plot depends on the relative dif-
ference in performance obtained with dualMPC with respect
to singleMPC. If time spent in hypoglycemia is reduced or
time spent in euglycemia is increased for that patient, the line
is green. Otherwise, the line is colored in red shades. This
analysis highlights how the improvement seen in Table V hold
for the large majority of the subject, with time in euglycemia
worsening for only 1/50 subject. Hypoglycemic events are
instead reduced for all the 50 subjects. Both improvements
were found statistically significant (p-value < 0.001).

C. Performance With Inferred Hyperparameters

In this section, we compare the performances of the two
control strategies on the subjects of the test set for seven days
of simulation. Both singleMPC and dualMPC are tuned with
the suboptimal hyperparameters obtained from their respective
regression models, a procedure that can be performed also in
real subjects. This testing phase represents, therefore, an in-
silico evaluation of efficacy of the personalized controller on
real subject.

Table VI reports a comparison of all the metrics listed in
Section IV-C for the two algorithms. As expected, there is a
degradation of control performances of both controllers with
respect to the results obtained on the training population in
Section VI-B. For what it concerns the comparison singleMPC
versus dualMPC, the CGM metrics are improved with the
latter strategy, consistently with the results in Section VI-B.
Specifically, the median value and interquartile range of
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Fig. 1. Boxplot, scatter plots, and parallel coordinate plots of the percentage
of time spent in various ranges with the two control strategies for the subjects
in the training set on two days of simulation.

TIR are better (i.e., higher) with dualMPC with respect to
singleMPC. These results are achieved while simultaneously
improving (i.e., reducing) TBR, in a statistically significant
way (p-value < 0.001). Similarly, the median and interquartile
ranges of TBR, TAR, TDh, TDH, AUCH , and AUCh are
better (i.e., lower) with dualMPC. Except for TAR, these
improvements are also statistically significant.

Parallel coordinate plots of TIR and TBR for the testing
phase are shown in Fig. 2. Most of the testing population
(>75% of the patients) achieve better BG regulation with
our dualMPC algorithm. Nonetheless, it should be noted that
the fraction of patients that do not benefit of the dual action
increased with respect to the optimal hyperparameters of
Section VI-B.

The suboptimal tuning also leads, in median, to a more
aggressive use of insulin: 40.9 U with singleMPC and 43.8 U
with dualMPC, both larger with respect to the training phase
(38.88 and 39.83 U, respectively). This means that, in the
testing phase, dualMPC uses +7% more insulin than the
singleMPC (the increase was only +2.5% in training).

Similarly, the use of CHO is increased with respect to the
training phase. The median number of total consumption is
2.86 per day, compared to a median of 0.64 with singleMPC.
Despite the significant increment with respect to the training
phase, their number is still acceptable: the 75th percentile is
four extra CHO per day (3.29 of which are suggestions trig-
gered by MPC). The median quantity of extra CHO consumed
amounts to 12.5 g with singleMPC and 32.86 g with dualMPC.

Fig. 3 shows a window of three days for a representative
virtual patient (subject #54). The three subplots in Fig. 3 show
CGM signal, insulin infusion, and CHO intake, respectively,
for singleMPC (pink dashed lines) and dualMPC (blue solid

Fig. 2. Boxplot, scatter plots, and parallel coordinate plots of the percentage
of time spent in various ranges with the two control strategies for the subjects
in the testing set on seven days of simulation.

lines). The different types of CHO intake are represented with
different markers: black circles for meals, triangles for PCs,
and crosses for RCs.

In every meal of this time window, meal-time insulin
boluses and postprandial insulin infusions are higher with
dualMPC, resulting in the decreased postprandial hyper-
glycemic peaks with respect to singleMPC. Notably, this is
achieved while simultaneously decreasing the occurrence of
hypoglycemia. For instance, in this portion, the dualMPC
faces only one short (5 min) episode of hypoglycemia (nadir:
65 mg/dL) at 23:00 of day 5, whereas singleMPC faces two
episodes: a longer and more severe one, starting at 22:50 of
day 5 and lasting 45 min (nadir: 45 mg/dL), in spite of the
reduced insulin administration and the intake of RCs; a shorter
one, lasting for just 5 min, at 10:05 of day 7 (nadir: 69 mg/dL).
It should be noticed that in both cases, the two algorithms use
the same quantity of CHO (20 g in both the cases) to contrast
the hypoglycemic episode, but the dualMPC, because of an
optimal planning of CHO consumption, is more effective in
the task.

D. Robustness Tests

Since part of the control actions have to be manually
actuated, it is important to investigate the impact of different
levels of patient compliance. To this purpose, we tested
different delays in consuming the suggested dose of CHO
and investigated the case of missed ingestions. Furthermore,
we test the control performance achieved in case of missed
meals announcement, that is, when a subject does not inform
the controller about an upcoming meal, preventing the deliv-
ery of feedforward insulin bolus and, thus, complicating



580 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 2, MARCH 2023

Fig. 3. Three days of CGM signal, insulin, meal, and extra carbs intake on a representative subject. The pink dashed lines represent singleMPC, while the
blue solid lines represent dualMPC. The dotted lines in the CGM subplot are the borders of the euglycemic range. In the last subplot, the solid black lines
with a circle marker represent the announced meal intake.

TABLE VI

RESULTS OBTAINED IN THE TESTING PHASE WITH singleMPC AND

dualMPC, REPORTED AS MEDIAN [25th–75th PERCENTILE]

the compensation of this disturbance. Finally, a preliminary
analysis aimed at assessing the impact of PE was performed.

1) Delayed CHO Intake: The impact of increasing delays
in the CHO ingestion was tested by introducing a systematic
delay between when the CHO suggestion was issued by the
controller and when the CHO was actually eaten by the patient.
Table VII reports the results for TBR and TIR obtained without
delay (dualMPC) and with a delay of 20 min (delay20),
40 min (delay40), and 1 h (delay60). Table VII also reports the

TABLE VII

RESULTS OBTAINED WITH dualMPC, dualMPC WITH DELAYED PC
CONSUMPTION, AND singleMPC, REPORTED AS MEDIAN

[25th–75th PERCENTILE]

results obtained with singleMPC. These results are obtained
on patients of the test set in a seven-day simulation.

A certain level of performance deterioration is clearly
expected, and the large variability complicates the interpre-
tation of the data, but the results show that the tested levels
of incompliance do not cause major control performance
deterioration nor pose the patient at risk.

Median TBR gradually increases, from 0.12% with
dualMPC to 0.22%, 0.37%, and 0.52% with delay 20, 40,
and 60 min, respectively, and similar increasing trend is
observed in the 75th percentile. With a delay of 60 min, the
performances overlap with those of the singleMPC. The delay
impact seems smaller on TIR, where the improvement with
respect to the singleMPC on the 25th percentile seems to
persist.

2) Suggested CHO Not Eaten: A major concern is what
can happen if the patient does not ingest the CHO required
by the MPC algorithm. It should be acknowledged that this
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TABLE VIII

RESULTS OBTAINED WITH dualMPC, dualMPC WITH MISSED PC
CONSUMPTION, AND singleMPC, REPORTED AS MEDIAN

[25th–75th PERCENTILE]

situation is a non-negligible source of risk that should be
avoided as much as possible, first of all by proposing the
dualMPC strategy only to highly compliant patients and by
including several risk-mitigation measurements. One of them
is the “do-not-disturb” zones mechanism: if a subject does not
feel in the position to follow the algorithm suggestion, she/he
can set up a period of time in which the algorithm is not
allowed to produce CHO suggestions. A second mechanism
to minimize accidental omission is to request to the patient to
confirm the CHO ingestion. If the controller does not receive
such an acknowledgment, it will repropose the CHO.

Still, a fraction of the CHO suggested by the MPC may
be not consumed. To investigate this condition, we simu-
lated increasing probability of missing a CHO intake: 5%
(miss5), 10% (miss10), and 20% (miss20). The simulation
was performed on the test set subjects and lasted seven
days. The results obtained with these simulations are reported
in Table VIII, together with the results obtained with the
dualMPC (0% missed suggestion) and singleMPC.

Also, in this case, a performance deterioration is expected,
but the result in Table VIII suggests that the tested levels
of incompliance do not cause a major deterioration of BG
control nor pose the patient safety at risk. A progressive
performance degradation seems to emerge, although the large
variability complicates the interpretation of the data. In fact,
the median TBR and the 75th percentile of this metric increase,
as the probability of missing the CHO intake increases. When
20% of the suggested CHOs are not ingested, the median
TBR of dualMPC surpasses the one achieved with singleMPC
(although the 75th percentile remains lower). Also, in this
case, TIR seems to be less affected by the disregarded CHO
suggestion.

3) Unannounced Meal: As the majority of AP that reached
the market, both singleMPC and dualMPC require the user
to inform the controller about meal intake (the so-called
meal announcement). The announcement triggers a feedfor-
ward control action (through the term ī0 and discussed in
Section III). When this information is missing, the perfor-
mance of the controller deteriorates.

To test the performance of the two controllers, we run a
simulation in which meal announcements were forgotten with
a probability of 20%. The simulation lasted seven days and
involved the 50 subjects of the test set. Table IX reports
the results achieved with singleMPC and dualMPC in this
scenario.

The dualMPC performs better than singleMPC for what
it concerns time in hypoglycemia: TBR went from 0.37%

TABLE IX

RESULTS OBTAINED WITH singleMPC AND dualMPC WITH UNAN-
NOUNCED MEAL CONSUMPTION, REPORTED AS MEDIAN [25th–75th

PERCENTILE]. THE SYMBOL † INDICATES A STATISTICALLY SIG-
NIFICANT DIFFERENCE FOR THAT METRIC BETWEEN THE TWO

ALGORITHMS

[0%–1.44%] with singleMPC to 0.1% [0%–0.79%] with
dualMPC (p-value < 0.001). A non-significant variation
of TIR and TAR was observed, but the time spent
with CGM > 250 mg/dL was significantly reduced: TDH
went from 3.08% [1.34%–5.8%] with singleMPC to 2.78%
[0.79%–5.36%] with dualMPC (p-value < 0.001), suggesting
that the dualMPC is slightly more effective in mitigating
postprandial hyperglycemic spikes because of a slightly more
aggressive use of insulin. This is also confirmed by the
increased TDI: in median, 39.98 U with singleMPC and
42.68 U with dualMPC (p-value < 0.001).

4) Physical-Exercise-Like Perturbation: PE can be benefi-
cial to patients with T1D, and this is why it is often part of
their therapy. In healthy individuals, PE has a hypoglycemizing
effect due to the increased insulin-mediated glucose uptake
in skeletal muscles and increased insulin sensitivity [67].
This effect is counteracted by the autonomous suppression of
insulin secretion and by an increased activation of counter-
regulatory hormones. On the other hand, patients with T1D
have an impaired hormonal counter regulation, and modulat-
ing the suppression of insulin infusion to match PE-induced
glucose depletion is no easy task. For this reason, proper
regulation of BG levels and avoidance of hypoglycemic events
during and after PE are the main challenges of AP systems.

Unfortunately, the effect of PE is not rigorously included in
the UVA/Padua simulator. As a preliminary investigation of its
impact, we emulated PE glucose lowering effect by applying
an extra-insulin delivery of +100% of the patient basal insulin.
This perturbation was applied for 2 h, between 4 sc p.m. and 6
P.M. of the second day of simulation, and without announcing
this increase to the controllers. The simulation lasted two days
and involved the 50 subjects of the training set.

Table X reports the results obtained with singleMPC
and dualMPC in this scenario. By suggesting CHO con-
sumption, dualMPC is capable of reducing the time spent
in hypoglycemia with respect to singleMPC: in terms of
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TABLE X

RESULTS OBTAINED WITH singleMPC AND dualMPC WITH PE,
REPORTED AS MEDIAN [25th–75th PERCENTILE]. THE SYMBOL †

INDICATES A STATISTICALLY SIGNIFICANT DIFFERENCE FOR THAT

METRIC BETWEEN THE TWO ALGORITHMS

median [25th–75th] percentile, TBR is reduced from 1.13%
[0.00%–3.30%] to 0.62% [0.00%–1.21%] (p-value < 0.001),
whereas TDh is decreased from 0.00% [0.00%–0.69%] to
0.00% [0.00%–0.00%] (p-value = 0.001). Because of a smart
planning of CHO consumption, the decreased hypoglycemia is
achieved without deteriorating the time in range. Nonetheless,
this comes at the cost of an increased total amount of CHO
ingested (from a median of 17.50 g with singleMPC to 40 g
with dualMPC, p-value < 0.001). This is a notable draw-
back especially when PE is performed for weight reduction
purposes.

VII. CONCLUSION

The state-of-the-art, single-hormone AP systems for T1D
treatment use exclusively insulin infusion to control BG levels.
In these systems, CHO intake is suggested only as an emer-
gency measure to avoid hypoglycemic events. On the other
hand, the experience with bihormonal AP suggests that com-
bining insulin infusion with a glucose-increasing control input,
such as glucagon, can significantly improve BG regulation.

In this work, we propose a MPC algorithm for AP that
uses both insulin infusion and proactive planning of CHO
consumption to control glycemic levels. The second control
input, that serves as the glucose-increasing input of this
strategy, has to be manually actuated by the patient. Therefore,
a major concern in this study was to minimize the burden of
this therapy and the possible errors that patients may commit
following it. We satisfied these requirements by constraining
CHO-intake suggestions to be sparse in time and quantized.
This was made possible by reformulating the control problem
as a mixed-integer quadratic programming problem and by
introducing ad hoc linear inequality constraints.

The new algorithm is obtained starting from the Pavia/Padua
MPC, an MPC formulation for AP that has proved safe
and effective in real-life clinical testing. The Pavia/Padua
algorithm was expanded with the proposed MIQP extension.

By comparing the original algorithm and the new expanded
one, it was possible to elucidate the impact of the new CHO
suggestion module without confunding factors.

This comparison was performed on the UVa/Padua T1D
simulator, an accurate large-scale simulator of the metabolic
system in type 1 diabetic subjects. This tool was accepted by
the FDA as a replacement of preclinical animal trials. In silico,
the novel strategy leads to a statistically significant and almost
systematic improvement of glucose regulation with respect
to state-of-the-art single hormonal systems. Furthermore, the
results show that the algorithm employs a limited number of
CHO-intake suggestions (2.86 suggestions per day in median,
equivalent to 32.86 g).

Nevertheless, one should note that this therapy still implies
an increased commitment by patients, who are required to
undertake some further actions along the day to improve
their glucose control. Whether this could be perceived as an
acceptable trade-off or not should be the object of dedicated
clinical investigations. It should also be noted that not all
patients might be willing or be allowed to resort to extra CHO
(e.g., those in strict dietary regimens).

Further work includes an evaluation of the computation
time requested for the solution of the MIQP problem on a
hardware platform comparable with those used in the AP
system. Moreover, it should be stressed that the UVa/Padua
simulator, while far from being a toy example, remains a
simplified testing setup. Final conclusions on the clinical
efficacy of the proposed approach can be drown only with
suitable clinical investigation.

As a final comment, it should be noticed that, while the
MIP formulation has been proposed in this work to expand
the Padua/Pavia MPC, the same reasoning could be applied
to introduce parsimonious CHO suggestions in other MPC
formulation for AP (e.g., zone MPC, individualized MPC,
or even dual-hormone MPC).

The proposed strategy allowed to trade-off a certain level
of human engagement in favor of a better control, and this
strategy could be extended to other biomedical applications
(including but not limited to smart drug delivery), where
human intervention to assist in the control can be invoked,
but such an intervention in burdensome, risky, or costly.

APPENDIX I
STATE ESTIMATE

As described in [23], to design the KF, we introduced the
model noise vx(k) and measurement noise vy(k) into model (1){

x̄(k + 1) = Ax̄(k) + Bī(k) + Md̂(k) + vx (k)

ḡ(k) = Cx(k) + vy(k).
(16)

We assumed that v = [vx, vy]T is a multivariate, zero-mean,
white Gaussian noise with covariance matrix

V =
[

Qx 0
0 Ry

]
∈ R

14×14.

Following [23], the measurement noise covariance matrix is set
to Ry = 9.8496 mg2/dL2. The process noise covariance matrix
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TABLE XI

DIAGONAL VALUES OF THE MATRIX Qx EMPLOYED IN THE KF

Qx ∈ R
13×13 is a diagonal matrix whose diagonal elements

q1, . . . , q13 are reported in Table XI.
We can then formulate the KF as

x̂(k + 1|k) = Ax̂(k|k) + Bi(k) + Md̂(k) (17)

x̂(k|k) = x̂(k|k − 1) + L(ḡ(k) − Cx̂(k|k − 1)). (18)

The KF is initialized with x̄(0) = 0 and

L = PCT
(
CPCT + Ry

)−1
. (19)

The matrix P in (19) is the unique, positive-definite solution
of the algebraic Riccati equation

P = APAT + Qx − APCT
(
CPCT − Ry

)−1
CPAT . (20)

APPENDIX II
HYPERPARAMETERS TRAINING

A. Optimal Tuning

For what it concerns the scalar function that evaluates the
control performance achieved with a certain hyperparame-
ters choice, we used the weighted area outside target range
(wAOTR), defined as

wAOTR = (αAUCh + βAUCH )λ (21)

where the parameters α and β are used to assign different
weights to hypoglycemia and hyperglycemia. Specifically,
we set α = 103 and β = 1 to penalize hypoglycemic
excursion more than hyperglycemia, since it is more dangerous
for patients in the short time. The factor λ penalizes repeated
requests of manual intervention: λ is set to λ = 1 if the average
number of daily CHO intakes (including both PC and RC) is
smaller than ndaily = 5, while is increased λ = 100 otherwise.

The hyperparameter optimization was performed via
Bayesian search [68] on the 50 subjects of the training set.
The algorithm is initialized with 12 random evaluation points,
after which the objective function is evaluated 48 times.

Fig. 4 reports the boxplot of the distribution of the opti-
mal hyperparameter r̃ for the singleMPC and the dualMPC.
This hyperparameter regulates the algorithm aggressiveness in
using insulin (the lower the value or r̃ , the more aggressive the
controller). As expected, the dualMPC can be more aggressive
with insulin because of the possibility of compensating with
carbs.

Fig. 4. Boxplots of log10(r̃opt) for singleMPC and dualMPC.

B. Regression Models

The optimal hyperparameters are inferred from easily acces-
sible patient data, such as BW, and therapy parameters, such
as CRavg, CF, or ibavg , where CRavg and ibavg are the average of
the daily patterns of CR and ib(k), respectively. This is done
via least square regression on a subset of these variables.

Let us consider the pth patient in the training set, p =
1, . . . , 50, and let us denote with rs(p) the optimal value of r
for the singleMPC in the pth patient. Similarly, we denote
with rd(p) and sd(p) and the optimal values of r and s
for the dualMPC in the same patient. Finally, the values of
CR(p), BW(p), . . . are the accessible parameters of patient
p. The following linear regression model between the optimal
hyperparameters and the accessible parameters is assumed:

log(h(p)) = φh(p)θh(p) + εh(p). (22)

With h, we indicate one of the hyperparameters, h ∈
{rs, rd, sd}. The vector φh(p) ∈ R

1×nreg contains a subset of
nreg regressors in patient p, i.e., a suitable subset of accessible
patient data. The subset of regressors varies depending on
the considered hyperparameter and was selected via step-wise
regression as described in the following.

The vector θh ∈ R
nreg×1 is the unknown vector linking

accessible parameters and the hyperparameter under analysis.
Finally, εh(p) is the regression error.

The model parameters θh are computed on the data of the
P training patients via linear least squares regression, i.e.,
minimizing the regression error εh(p)

θ̂h = (
�T �

)−1
�T

[
log(h(1)), . . . , log(h(P))

]T

where � ∈ R
P×nreg is the matrix obtained by concatenating

the P regresses vector φ of the patients.
The regression model can then be used to estimate suitable

hyperparameters for a (possibly new) patient l as

ĥ(l) = eφh(l)θh . (23)

Notably, (23) can be used also for real subjects.
The regressor selection was performed via step-wise

selection on the pool of possible accessible parameters
{BW, CRavg, CF, ibavg}. The stepwise procedure was performed
with the MATLAB function stepwisefit, starting from the
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TABLE XII

PEARSON CORRELATION COEFFICIENT ρ (AND ASSOCIATED p-VALUES)
BETWEEN OPTIMAL HYPERPARAMETERS AND POSSIBLE REGRESSORS

constant model. The maximum p-value of the F-statistic for
adding a new term to the model was set to 0.05, and the
minimal p-value for removing a term was set to 0.15.

The final sets of selected regressors are

φrs(p) = φrd(p) = [
1, C R(p), BW (p)

]
φsd(p) = [

1, C R(p)
]
.

The regressors choice of the procedure is in agreement
with the finding of Toffanin et al. [23] for single-action MPC
and with the univariate Pearson correlation coefficient of each
accessible parameter and the optimal parameter in Table XII.

The parameters θh obtained are reported as follows:
θrs = [ −5.340 0.163 0.056

]T

θrd = [ −7.212 0.196 0.062
]T

θsd = [
5.929 −0.087

]T
.
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