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Applied Pipe Roughness Identification of Water
Networks: Consideration of All Flow Regimes

Stefan Kaltenbacher , Martin Steinberger , Member, IEEE, and Martin Horn , Member, IEEE

Abstract— This article presents a mathematically rigorous
unification of the pipe roughness identification problem of water
distribution networks considering all Reynolds regimes, i.e.,
laminar, turbulent, as well as transitional flow regimes. Although
the identification procedure is based on steady-state hydraulic
network equations, the identified roughness parameters are also
key for dynamic models that can be used for model-based
controller and observer designs. While a three-cycle network
simulation example serves to illustrate the presented problem
formulation and solution in an extensive manner, the application
on a real-world drinking water network is in focus. In addition,
vital aspects, such as topology simplifications of the underlying
network and the importance of the generation and selection of
independent measurement sets, are addressed. We apply root-
finding methods instead of methods based on optimization and
thereby show that the pipe roughness identification problem may
actually be applicable to identify as well as locate leakages.

Index Terms— Laminar flow, pipe roughness identification,
roughness calibration, transitional flow, turbulent flow, water
distribution networks.

I. INTRODUCTION

DRINKING water networks are of utmost importance
for society all over the world. However, the share of

nonrevenue water, i.e., water that never reaches a registered
consumer, accounts for 25%–50% of the total amount of
supplied water when put into a global measure (and up to 75%
in the emerging markets) as stated by the International Water
Association [1]. Consequently, the potential contributions of
control system technologies to water distribution systems are
manifold and cover, e.g., the coordinated control of distributed
actuators (valves and pumps), and the detection of leakages in
the water networks [2].

The basis for advanced techniques is usually formed by
mathematical modeling of the underlying distribution network.
In the literature, two classical modeling approaches are widely
used.

1) A description based on the Navier–Stokes equations
allows to account for the full transient case [3] with
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the goal to model effects as detailed as possible. The
underlying partial differential equations are, e.g., solved
by the method of characteristics or the method of finite
differences (see [3]).

2) A second modeling approach uses the relations for the
conservation of mass and energy to deduce a description
of the main properties under steady-state conditions, as,
for example, described in [2]. The latter approach is
particularly useful for networks with a large number
of pipes and nodes to keep the modeling complexity
low. Consequently, the steady-state modeling is well
suited for tasks such as pressure control, calibration,
consumer demand prediction, and leakage detection in
large hydraulic networks and is, thus, also implemented
in standard simulation tools for water distribution net-
works such as EPANET [4], [5] provided by the United
States Environmental Protection Agency.

In both cases, pipe roughnesses and pressure head losses
are essential for the mathematical description of the water
network because the water flow distributes along the networks’
branches according to the principle of least actions. The
corresponding pressure drop due to friction at the pipe’s inner
surface strongly depends on the flow regime, i.e., on the
laminar, turbulent, or transitional (intermediate) regime with
the corresponding flow dynamics, see [2], [6], [7] for details
as well as [3], [8] for additional aspects of steady- and
unsteady-state friction losses, which are usually neglected.

Kaltenbacher et al. [9], [10] formulated dynamic models
based on the rigid water column theory. This can be seen as an
extension of steady-state relations mentioned in 2) to account
for the dynamics in pipe flows, depending on the friction
along the pipes (head losses), the pressure heads at the nodes
(also at source nodes), and the actual nodal consumption.
However, the modeling complexity is still low when compared
to the approaches in 1) since ordinary differential equations
are utilized for the mathematical description of the fluid
flows and pressure heads in the network. Pressure-driven [9]
and demand-driven versions [10] exist, depending on how
consumer nodes are handled in the mathematical formulation
(see [11] for an in-depth description). It is also shown in [10]
that the dynamical model’s equilibrium is equivalent to the
steady-state equations used in EPANET.

For dynamical models as well as for steady-state models, the
identification of the friction/roughness coefficients is crucial
since it provides the foundation of model-based techniques for
the control and observation of nodal pressures and flows [7],
[12]–[14], [15]. For example, Kumar and Kumar [16] com-
pared different controllers for water distribution networks and
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Terra et al. [17] presented an H∞ controller design for such
applications.

It is shown in [11] that an observer for the considered
water distribution networks specified by the pressure-driven
dynamical model exists if the pressure head losses along pipes
(and thus also the pipe roughnesses/friction parameters) and
the nodal consumption are known. The analysis is based on
the concept of the strong zero detectability (see [18], [19],
and references therein). In the linear case, strong zero
detectability is equivalent to strong∗ detectability in the sense
of Hautus [20]. As a result, the identification of the rough-
nesses is also necessary for techniques of fault (or leakage)
detection and isolation, where the actual behavior of the
system under investigation is compared to the nominal one.
However, observer design and fault detection techniques are
not the focus of this actual work.

To sum up, the identification of pipe roughnesses (and
consequently also the friction losses) has a significant role in
many domains of control system technologies. Nevertheless,
the identification of hydraulic friction parameters is especially
challenging because only a very limited number of sensors is
present. A vast amount of sensor data is important, e.g., for
the localization of leakages that may have a similar impact on
the steady-state behavior as increased friction parameters [21].
A positive aspect of the underlying problem is that the rough-
nesses, i.e., the pressure head loss coefficients, change very
slowly over time in real applications. As a result, real-time
requirements are not the main issue and the reidentification of
the parameters can be triggered if, e.g., new independent mea-
surement sets are available. This is detailed for the real-world
drinking water system described in the following.

One way to tackle the identification task is to formulate an
optimization problem with a certain (e.g., quadratic) cost to
be minimized subject to constraints provided by the model
description as, e.g., covered in early works as in [22] and
later on in [2]. The underlying steady-state equations for the
turbulent region are often not used directly but collapsed into a
scalar relation in such approaches. As a result, the components
of the gradients of the cost function are not independent any
more as it is the case for the original steady-state equations,
which makes it harder to find the global minimum. Conse-
quently, solvers, e.g., based on genetic algorithms, are widely
applied [23], [24]. The main goal for such algorithms is to
reproduce certain signals of interest in the network rather
than the true pipe roughnesses. This is often referred to as
calibration of water networks in the literature (see [23] and
references therein).

In [25], different approaches to directly use the underlying
steady-state equations instead of formulating an optimization
problem are presented. A comparison of Newton–Raphson-
type approaches and successive approximation approaches led
to similar results for the considered algorithms, where only
the turbulent region is considered. This work was one of the
starting points for the present work.

In [26], we primarily focus on the formulation of the
problem and deduce concrete conditions that allow to uniquely
solve the identification task. Instead of merely calibrating the
network, the emphasis is on the identification of the true
pipe roughnesses and not measured pressure heads. A set of

assumptions [26, Table 1] has thereby been introduced and
solution algorithms have been proposed in [26] and extended
in [27]. The roughness identification problem formulation in
those papers assumes that each pipe flow in the network has
to be in the turbulent regime.

This restriction is overcome in this present article using
the results of Kaltenbacher et al. [28], where they mathe-
matically formulate the transitional Reynolds region between
laminar and turbulent flow in steady state. The existence of
an explicit function of the steady-state water flow γ in the
transitional region [28], satisfying the boundary and gradi-
ent conditions [28, eqs. (i)–(iv)] to the other flow regimes,
is exploited in the following. In particular, the satisfaction of
gradient conditions at the boundaries enables one to propose a
root-finding algorithm for the roughness parameter identifica-
tion task to autonomously decide whether a pipe flow (in the
corresponding measurement set) is in the laminar, turbulent,
or even transitional regime. In contrast, EPANET applies a
simple cubic interpolation for the transitional region [29] only,
resulting in nonsmooth transitions (particularly with respect
to the roughnesses) between the flow regions as explained
in [28] and does not provide any possibility to identify the
parameters.

The authors’ previous work about the smooth description of
the transitional flow together with the introduced algorithms
makes it possible to come up with an advanced identification
approach for real water distribution networks, where the actual
flow regimes in the considered pipes can be reconstructed. The
present work provides the following main contributions.

1) A roughness identification procedure is introduced that
allows to account for all three, i.e., laminar, transi-
tional, and turbulent, flow regimes. This is essential for
real-world applications in which flow directions are not
known a priori in cycled networks. Hence, all flow
regimes might be traversed in a smooth way in the
course of the solution finding the pipe roughnesses and
not measured pressure heads.

2) Two algorithms, based on Newton’s method and the
tensor approach, are introduced for the underlying iden-
tification task. A simulation example of a water network
with low complexity is presented to provide insights to
the algorithms.

3) The applicability to the real-world drinking water dis-
tribution network of Graz-Ragnitz, Austria, is shown.
It illustrates the steps to follow for the rough-
ness parameter identification by utilizing the proposed
root-finding approach considering all flow regimes. Prac-
tical issues related to topology simplifications of the
considered water distribution network as well as the
importance of the generation and selection of indepen-
dent measurement sets are discussed in detail.

Consequently, the proposed identification procedure forms the
basis for advanced model-based control techniques and fault
detection and isolation approaches, which consider all three
flow regimes.

Notation: Vectors and matrices are highlighted bold and
italic and are symbolized using lower and upper case let-
ters, respectively. Symbols 1x and 0x represent a matrix or
vector filled with ones or zeros, i.e., 13 = [1 1 1]T and
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02×3 =
�

0 0 0
0 0 0

�
. Size x is only provided if it is not clear

from the context. Empty entries in block matrices can be filled
with 0x of appropriate size x . Operator [A]i j = Ai j applied
on A ∈ Kn×m of a number field K, e.g., K = R or K = C,
selects element Ai j of matrix A in row i ∈ {1, 2, . . . , n} and
column j ∈ {1, 2, . . . , m}. The unity vector ei with i ∈ N is
defined such that ei = [0 · · · 0 1 0 · · · 0]T with appropriate
size where [ei ] j = 0 ∀i �= j and [ei ]i = 1. In the set of
integers Z{−1,0,1}, the subscript {−1, 0, 1} emphasizes that a
subset {−1, 0, 1} instead of all integers is used. Rounding to
the next higher integer is denoted by the ceil operator �·�. The
definition of derivatives of scalar, vector, or matrix functions
with respect to vectors follow [27, Appendix A].

The Hadamard product [26], [30] of A, B ∈ Cn×m is defined
by [A 	 B]i j = Ai j Bi j for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.
It is also utilized to show elementwise exponentiations in a
more compact form, e.g., [A	2]i j = A2

i j and [A	1/2]i j = A1/2
i j

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Inversions are written as
[A	−1 ]i j = A−1

i j , where [A]i j = Ai j �= 0 ∀i, j .

II. PRELIMINARIES

This section summarizes preliminary definitions and rela-
tions relevant for the identification problem. Details can be
found in [26] and [27].

A. Network Hydraulics

One distinguishes between I = {1, 2, . . . , n j } inner
nodes/vertices and S = {n j + 1, . . . , n j + ns} source nodes
of the network, which is represented by a connected graph
[26, Assumption 1]. The intersection I ∩ S = {} is empty
and the combination I ∪ S = N = {1, 2, . . . , n j + ns}
yields the entire set N of all nodes. Source nodes characterize
nodes, where the associated pressure heads [hs]i = h(i+n j )

for i = 1, 2, . . . , ns (in m) are known, as it is the case for
reservoirs and pumps. Vector [h]i = hi∈I (in m) combines
all nodal pressure heads at the inner nodes. They can be split
into n p (out of n j ) measured heads

yh = Ch h, Ch =
�
ep1 ep2 · · · epn p

�T ∈ Z
n p×n j

{0,1} (1)

and not measured heads hN = C̄h h with matrix Ch =
[e p̄1 e p̄2 · · · e p̄n j−n p

]T ∈ Z
(n j−n p)×n j

{0,1} and its complemen-

tary part C̄h consists of unity vectors ei ∈ Z
n j

{0,1} with
indices i ∈ P = {p1, p2, . . . , pn p} ⊆ I and i ∈ P̄ =
{ p̄1, p̄2, . . . , p̄n j−n p } ⊆ I, respectively, while respecting P ∩
P̄ = {} and P ∪ P̄ = I. As a result, CT

h Ch+ C̄T
h C̄h = In j has

to hold (see [10, Lemma 1]). In addition, the geographical
elevation at each inner node [z]i = zi∈I (in m) has to
be considered such that the source (pressure) heads hs are
increased by the nodal elevation at the corresponding source
nodes S.

The nodal consumption [q̄]i = qi∈I actually is volumetric
flow rates (in m3/s) and is a linear combination of P =
{1, 2, . . . , n�} edge/pipe flows (i.e., volumetric flow rates)
symbolized by [xQ]i = Qi∈P so that

AxQ = q̄ (2)

where A ∈ Z
n j×n �

{−1,0,1} denotes the incidence matrix related to
the inner nodes I. In contrast, the complete incidence matrix
[−AT C̃ s]T ∈ Z

(n j+ns)×n �

{−1,0,1} also considers source nodes S with
respect to C̃s . Influent flows to inner nodes I are counted
positively and effluent flows to inner nodes I are counted
negatively in (2). However, flows effluent of source nodes
S are counted positively for C̃s because they are influent to
the I inner nodes by definition. Examples how to build those
matrices can be found, e.g., in [26, Secs. 2 and 6].

One also has to account for nc = n�−n j linear independent
cycles in the network’s graph by considering the cycle matrix
S ∈ Z

(n �−n j )×n �

{−1,0,1} (see [26, Sec. 2]). If [26, Assumption 1]
applies, cycle matrix S and the transposed incidence matrix
AT are orthogonal, i.e., S AT = 0, where rank(S) = n�− n j .

B. Colebrook–White’s Turbulent Flow

Turbulent pipe friction is considered via the
Darcy–Weisbach formula together with Colebrook–White’s
implicit friction factor for a Reynolds number of Re ≥ 4000
(see [26]). Minor losses are neglected [26, Assumption 3]
for the actual problem formulation. The inversion of the
steady-state hydraulic network [26, Assumption 6] relations
with respect to the pipe parameter to be identified � ∈ R

n �

≥0
yields

Q = ft (�,�h) = −sign(�h)
2

ln(10)

� |�h|
k

× ln

⎛
⎜⎜⎜⎜⎝

�

3.7 d
+ 2.51

ηA

ρd



k

|�h|� � �
�(�,�h)

⎞
⎟⎟⎟⎟⎠, for Re ≥ 4000. (3)

It expresses the turbulent flow in each pipe P as a function of
the corresponding roughness � and the head loss �h. Please
note that �,�h, pipes diameter d , cross section A, k =
(l/(2dg A2)), and length l may differ for each individual pipe.
The pipe indices are omitted in (3) to improve readability. The
gravitational acceleration is denoted by g ≈ 9.81 m/s2. The
water density ρ and the dynamic water viscosity η are assumed
to be constant although they may vary with temperature.

C. Laminar Flow

A smooth distribution of the velocity profile over the pipe’s
cross-sectional area can be seen in the laminar flow condition.
Applying the relation of Hagen–Poiseuille for the laminar
friction factor, one obtains the laminar flow

Q = w�h with w = 1

32

ρ

η

d2g A

l
, for Re ≤ 2000 (4)

which is an exact mathematical result stemming from the fluid
equations of motion [6].

D. Transitional Flow

The authors derived an explicit function [28, Eq. (14)
and (43)]1

Q = γ (�,�h), for 2000 < Re < 4000 (5)

1Please mind that the order of the arguments in function γ (�,�h), i.e.,
�,�h, has been changed compared to [28].
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depending on the pipe’s roughness � and the head loss �h
along the pipe, which not only satisfies the boundary condi-
tions to the turbulent and laminar flow but also the correspond-
ing gradients to a sufficient degree of accuracy in the physical
relevant range where the relative roughness remains between
0 ≤ �/d ≤ 5% according to the Moody chart. Detailed
instructions to obtain γ can be found in [28, Sec. 6] and are
not included here due to space limitations. Using abbreviation
b = 4000(Aη/ρd), the boundary from laminar to transitional
flow is located at �h = b/w and thus constant over �h and �,
whereas the boundary from the transitional to turbulent flow
is described by the curve �h = q(�) by means of function
q : [0, 0.05× �/d] → R≥0. This curve satisfies

Re = |Q|ρd

Aη

(3)= | ft (�,�h)| ρd

Aη
= 4000 (6)

for all �h and �/d ∈ [0, 5%]. Using abbreviation a =
4000(Aη/ρd), it can be shown that

ft (�, q(�)) = ft (q
−1(�h),�h) ≈ a (7)

for all �h and �/d ∈ [0, 5%] with

�h = q(�) = (q0(� + q1))
4/7 (8)

utilizing parameters q0, q1 ∈ R that are determined as indi-
cated in [28, Sec. 6].

E. Combined Flow

Given (3)–(8) while using abbreviation b = 2000(Aη/ρd),
the steady-state flow through the pipe can be explicitly
expressed by

Q(�,�h) = sign(�h)

⎧⎪⎨
⎪⎩

w|�h|, �h ≤ b/w

γ (�, |�h|), b/w < �h < q(�)

ft (�, |�h|), �h ≥ q(�).

(9)

Function (9) is central for the considered roughness identifi-
cation problem. The mathematical descriptions in the laminar
and turbulent flow regime have been validated separately in
the literature. In the laminar flow regime, the results are
exact representations based on dynamic fluid equations (partial
differential equations) as, e.g., detailed in [2] and [3]. The
equations by Colebrook–White have been validated for the
turbulent region as stated, for example, in [28]. It was shown
in [28] for the transitional water flow that the introduced
mathematical description improves the existing formulations
(e.g., by using cubic functions as in [4]) with respect to the
gradient on the boundaries to the laminar and turbulent regime.

F. Network and Sensor Configuration

In order to identify a large number of unknown roughnesses
� ∈ R

n �

≥0 and the not-measured pressure heads h(i)
N ∈ R

n j−n p

≥0
for all i ∈ M = {1, 2, . . . , nm}, several sets of linear
independent measurements [26, Assumption 5] denoted by
M are necessary. The minimal number of measurements is
nm,min =

�
n�/n p

�
[26, eq. (14)] leading to as many equations

as unknowns. Linear independency can be achieved by the
variation of the source heads h(i)

s and/or the nodal consumption

q̄(i) along the measurement sets i ∈ M, where the hydraulic
network has to be in steady state [26, Assumption 6]. In sum-
mary, the following holds.

Assumption 1 (Properties of Network and Measurements):
It is assumed that the following conditions hold.
1(a) The network’s graph is connected and has no self-loops.
1(b) The hydraulic friction functions are continuous and

strictly monotonically increasing.
1(c) Minor losses are negligible.
1(d) Pipe dimensions, source pressure, and consumption are

known.
1(e) Also, a sufficient number of independent measurement

sets is available.
1(f) Those measurements are in (hydraulic) steady state.
1(g) Mean-free, white measurement noise with a magnitude

smaller than the head loss along each pipe is considered.
All assumptions related to the identification problem are
more detailed in [26, Table 1], where the same numbering
is used. Assumptions 1(a), 1(b), 1(d), and 1(g) are not very
restrictive and Assumption 1(c) is usually presumed in calibra-
tion methods. However, providing steady-state measurements
[Assumption 1(f)] might be challenging in real applications
with a large number of pipes. Hence, the proposed identifi-
cation procedure should be successively applied to different
sections of a water distribution network. This is possible by
closing valves to isolate a specific section of the network as
explained for a real water distribution system in Section VI.
The most challenging assumption to be fulfilled is
Assumption 1(e), which is related to the number of indepen-
dent measurement sets. To satisfy Assumption 1(e), additional
outflows of the water distribution network can be initiated by
using hydrants (which are distributed over the network) to
obtain enough independent measurement sets in a steady state
(see Section VI for details).

III. PROBLEM STATEMENT CONSIDERING

ALL FLOW REGIMES

In this section, the overall parameter identification problem
is formulated. We thereby distinguish flow regimes for indi-
vidual pipes combined in vectors

[ f t(�,�h(i))] j (3)= ft, j
�[�] j , [�h(i)] j

�
(10a)

[γ (�,�h(i))] j (5)= γ j
�[�] j , [�h(i)] j

�
(10b)

[w] j (4)= 1

32

ρ

η

d2
j g A j

l j
(10c)

for all j ∈ P and i ∈M to specify the turbulent flow (10a), the
transitional flow (10b), and the proportionality factor (10c) for
the laminar flow for all pipes. Entities γ j and ft, j did receive
a dedicated index in (10) to highlight that all relations in (10)
involve parameters that also vary along P. Also, note that
γ (�,�h(i)) has to be replaced with sign(�h(i))	γ (�, |�h(i)|)
for negative �h(i) (see [28, Remark 2]).

One has to ensure that each pipeflow is unique among each
measurement set. Hence, the corresponding sets of pipe flow
indices

T (i) =
�

j ∈ P
��� �|�h(i)|�

j
≥ (q0, j (� j + q1, j ))

4/7
�

=
�

t (i)
1 , t (i)

2 , . . . , t (i)

n(i)
t

�
(11a)
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G(i) =
�

j ∈ P
��� b j/w j <

�|�h(i)|�
j
< (q0, j (� j + q1, j ))

4/7
�

=
�

g(i)
1 , g(i)

1 , . . . , g(i)

n(i)
γ

�
(11b)

L(i) =
�

j ∈ P
��� �|�h(i)|�

j
≤ b j/w j

�
=
�

l(i)1 , l(i)2 , . . . , l(i)
n(i)

L

�
(11c)

have to fulfill T (i)∩G(i) = {} ∧ T (i)∩L(i) = {} ∧ G(i)∩L(i) =
{},T (i) ∪ G(i) ∪ L(i) = P ∀i ∈M to separate the flow vector
[x(i)

Q ] j = Q(i)
j (�,�h) along the flow regimes. To be able to

formulate the problem in a unified and compact fashion for
all flow regimes, flow separation matrices

R(i)
t =

⎡
⎢⎢⎢⎢⎢⎢⎣

eT
t (i)
1

eT
t (i)
2

...
eT

t (i)

n
(i)
t

⎤
⎥⎥⎥⎥⎥⎥⎦, R(i)

γ =

⎡
⎢⎢⎢⎢⎢⎢⎣

eT
g(i)

1

eT
g(i)

2

...
eT

g(i)

n(i)
γ

⎤
⎥⎥⎥⎥⎥⎥⎦, R(i)

l =

⎡
⎢⎢⎢⎢⎢⎢⎣

eT
l(i)1

eT
l(i)2

...
eT

l(i)
n
(i)
L

⎤
⎥⎥⎥⎥⎥⎥⎦ (12)

and flow separation vectors

r(i)
t =

t (i)

n(i)
t#

j=t (i)
1

e j , r (i)
γ =

g(i)

n
(i)
γ#

j=g(i)
1

e j , r (i)
l =

l(i)
n
(i)
L#

j=l(i)1

e j (13)

are introduced. They are constructed from unity vectors e j ∈
Z

n �

{0,1} ∀ j ∈ P using the number of pipes of measurement set i

in the turbulent n(i)
t , transitional n(i)

γ , and laminar n(i)
L region.

The number of pipes in the different flow regimes may vary
between all i ∈M. Consequently, it follows that R(i)T

t R(i)
t +

R(i)T

γ R(i)
γ +R(i)T

l R(i)
l = In �

, ∀i ∈M, where In �
is the identity

matrix with dimension n(i)
t +n(i)

γ +n(i)
L = n� in which nt , nγ , nL

may also vary in each measurement set. Please do not confuse
the number of pipes n� with the number of laminar flows
nL in the i th measurement set. Although the flow separation
matrices actually depend on the variables � and h(i)

N , they are
only comprised of zeros and ones, i.e., their derivative always
yields the zero matrix.

Finally, applying (10) and the flow separation matrices (12),
one receives the equation set

� :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

AxQ(�,�h(i)) = A
$

R(i)T

t R(i)
t f t (�,�h(i))

+ R(i)T

γ R(i)
γ γ (�,�h(i))

+ R(i)T

l R(i)
l diag(w)�h(i)

%
= RT

q q(i)

�h(i) = C̃s h(i)
s − AT CT

h y(i)
h − AT C̄T

h h(i)
N − AT z

(14)

for all i ∈ {1, 2, . . . , nm} = M to be solved under the
Assumption 1. Equation set (14) is nothing but a set of nodal
Kirchhoff equations considering all flow regimes, where flows
in each component of the network are expressed as functions
of the roughness � and the not-measured pressured heads h(i)

N
at nodes with no sensors in measurement sets i ∈M that are
the unknowns to be found. Please note that the flow (9) is a
nonconvex function by nature, whenever all three flow regimes
are considered. The variation of initial conditions primarily
intends to relax Assumptions 1(e)–1(g), while it also helps to
handle the nonconvex nature of function (9) as explained in
detail next.

One does not have to take the flow regime case separation
into account explicitly, and the consideration of matrices
R(i)

l , R(i)
γ , R(i)

t is sufficient. The consideration of all flow
regimes facilitates the transition between laminar and turbulent
flow regimes in the solving of problem � (14). This allows
individual pipe flows in P, in principle, to never become tur-
bulent (or even transitional) in any of the i ∈M measurement
sets. Hence, the following assumption is imposed in addition
to Assumption 1.

Assumption 2: All individual pipe flows [x(i)
Q ] j must at

least once be in the turbulent regime in any of the i ∈ M

measurement sets, i.e., ∃ i ∈M | t (i) (11a)= j ∈ T (i) ∀ j ∈ P.
In the following, numerical algorithms are introduced to

solve (14) while incorporating the different flow regimes.

IV. SOLUTION ALGORITHMS

This section briefly introduces the algorithms presented
in [26] and [27] and their extensions to solve problem � (14).
However, an in-depth description of these algorithms can be
found in [27, Sec. 7.1] and [26, Secs. 5 and 6]. It is important
to emphasize that the authors use numerical root-finding
methods on the basis of Newton–Raphson algorithms rather
than optimization-based methods that are very common in
this research area [13], [31], [32]. This is possible due to the
actual formulation providing, at least, as many unknowns as
equations.

Generally, two different types of algorithms have to be
distinguished. Type (I) algorithms handle the classical New-
tonian iterative solution of a nonlinear yet smooth equation set
with step length variation as proposed in [26, Algorithm 1].
Since these algorithms of type (I) still require to
start in the vicinity of the real root, denoted by
x∗T =

&
�∗T

h(1)∗T

N h(2)∗T

N · · · h(nm)∗T

N

'
, for convergence, a

type (II) algorithm then launches the type (I) algorithm
(e.g., [26, Algorithm 1]) several times with different initial
values. This also accounts for the nonconvexity of the flow (9),
which is not a specific feature of the proposed approach but
a direct consequence of the considered physical phenomena
(see [28]).

The intermediate best result in terms of the residual v(x) =
|| f (x)||L1 along the different initial values is denoted by x+.
In this context, function f (x) follows from (2) and (14) such
that:

f (x) =
⎡
⎢⎣

A
. . .

A

⎤
⎥⎦
⎡
⎢⎢⎢⎣

xQ

$
�, h(1)

N

%
...

xQ

$
�, h(nm)

N

%
⎤
⎥⎥⎥⎦−

⎡
⎢⎣

q̄(1)

...
q̄(nm)

⎤
⎥⎦ = 0.

(15)

The combination of these two different kinds of algorithms is
necessary for solving � as exemplified in the authors’ previous
publications on the full turbulent case [26], [27] to relax the
necessity to start close to real root of �. Referring to [27],
the extension of second-order derivatives in the determination
of a search direction is studied. Using the iteration index k to
denote steps in the iterative solution finding, a Taylor series
is truncated after the linear term in the Newton–Raphson
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Algorithm 1 Type (I) Algorithm: Modified Line Search With
Step Length Variation (Newton or Tensor Approach)

algorithm to obtain a search direction �xk , i.e., f (xk+1) ≈
f (xk)+ Jk(xk+1− xk) and �xk = xk+1− xk = −J−1

k f (xk).
Matrix J−1

k denotes a generalized inverse of the Jacobian of
f (xk), i.e., Jk = (∂ f /∂x) evaluated at point xk .

In contrast, the tensor equation as presented in [27, eq. (12)]
for the full turbulent case also considers the second derivatives
in the Taylor series so that

f (xk)+ J k�xk +
⎡
⎢⎣

�xT
k H([ f (xk)]1)�xk

...
�xT

k H�[ f (xk)]nmn j

�
�xk

⎤
⎥⎦ = 0 (16)

where H([ f (xk)]i) denotes the Hessian of the i th component
of function f (x) (15). Although performance improvements
could be achieved with respect to the residual v(x) =
|| f (x)||L1 , this involves considerable effort in terms of the
implementation and computational demand. This is partic-
ularly true since (16) is also solved iteratively with the
MATLAB built-in fsolve(.) function in this work. Details
of this tensor method are provided in [27], whereas also,

Algorithm 2 Type (II) Algorithm: Variation of Initial Values

a customized method to vary the step length μ in xk+1 =
xk + μ�xk is applied.

Our previous results from [26] and [27] can be extended
to the actual problem formulation, i.e., the solution of (14),
by replacing partial turbulent flow derivatives p(i)

X (according
to the definition in [27] as vector) with respect to X ∈
{�,�h, �2, ��h,�h2} with

p(i)
�h ← r(i)T

t 	 p(i)
�h + r (i)T

γ 	 γ
(i)
�h + r (i)T

l 	 w (17a)

p(i)
X ← r(i)T

t 	 p(i)
X + r(i)T

γ 	 γ
(i)
X (17b)

where X ∈ {�, ��h,�h2, �2}. In addition, the partial deriva-
tives γ �(�,�h(i)) and γ �h(�,�h(i)) have to be replaced by

γ �(�,�h(i)) ← sign(�h(i))	 γ �(�, |�h(i)|) (18a)

γ �h(�,�h(i)) ← γ �h(�, |�h(i)|) (18b)

for all i ∈ M to also consider negative head losses, i.e.,
�h(i) < 0. The gradient of γ with respect to � depends
on the sign of �h(i) as can be seen in (9), which is not
the case for γ �h . Consequently, one can consider all three
flow regimes in the proposed identification approach although
the actual regime (per pipe) is not known a priori. Explicit
relations for the first and second derivatives needed for the
Newton and tensor method are stated in the Appendix. The
algorithms used in this article follow from the algorithms
in [26] and [27], where (17) and (18) as well as the additional
relations stated in the Appendix are implemented to account
for all three flow regimes. These extended forms are stated in
Algorithms 1 and 2. Either the Newton–Raphson appro-
ach (15) or the tensor approach (16) is utilized for
equation set (14). This results in different search directions
dk = −(JT

k J k)
−1 JT

k f k and dk steaming from [27, eqs. (7.59)
and (7.60)], respectively. In the latter case, dk ←
−0.1(JT

k J k)
−1 JT

k f k is used as initial condition. Minimal and
maximal parameter values are denoted as, e.g., hN and hN in
the algorithms.
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Fig. 1. Hydraulic network with one reservoir, eight pipes, three cycles, and
pressure sensors at nodes k = 2, 3, 4 (red), see [26], [27].

Fig. 2. Consumption pattern to produce five independent measurement sets.

The presented algorithms are first applied to a three-cycle
network for illustration purposes and then to the real-world
water distribution system of Graz-Ragnitz in the following.

V. THREE-CYCLE NETWORK EXAMPLE

A hydraulic network with low complexity is used to show
the main steps to apply the algorithms described in Section IV
for solving equation set � (14).

A. Configuration

The network shown in Fig. 1 consists of a reservoir, i.e.,
ns = 1, that provides the source head hs , n� = 8 pipes,
n j = 5 nodes (n p = 3 pressure nodes), and nc = 3 cycles.
Consumer nodes 2, 3, and 4 are equipped with pressure
sensors. The roughnesses of the pipes are given by � =
[0.25 0.5 0.75 1 1.25 1.5 1.75 2]T mm.

For analysis purposes, two measurement sets additional
to the minimal required nm,min =

�
n�/n p

� = 3 linear
independent measurement sets M were generated to inves-
tigate performance improvements by accounting for more
than nm,min measurement sets. In addition, (mean-free white)
measurement noise is added to the pressure sensors and the
consumption data q2, q3, and q4 (e.g., records of fireflows).
Fig. 2 shows the consumer pattern that is chosen for the
simulation example. Steady-state simulation results of the
dynamic PDu model, as presented in detail in [11], are taken
as artificial measurement sets. This dynamic model applies a
pressure-driven consumption approach, where the consumer
demand is determined by the pressure at respective nodes
instead of a priori values for the consumption (cf. Fig. 3).
The set of “measured” values in the steady-state time frames

Fig. 3. Measured nodal heads yh + Ch z and source hs .

Fig. 4. Reynolds numbers over time showing laminar steady-state flows Q(3)
5

and Q(4)
8 in set i = 3, 4 and no transitional (steady state) flows.

shown in Figs. 2 and 3 is utilized for the subsequent pipe
roughness identification by averaging with the aim to mitigate
noise effects, which should also be done when using real-
world data. Steady-state pipe flow 5 in measurement set 3,
i.e., Q(3)

5 , as well as steady-state pipe flow 8 in measurement
set 4, i.e., Q(4)

8 , are laminar as can be seen in the zoom window
in Fig. 4. All other flows are in the turbulent regime. See
Figs. 2 and 3 for the time windows that correspond to the
different measurement sets i .

Two particular reasons, which render this current con-
figuration interesting, shall be highlighted. First, it will be
clarified if the derived transitional flow γ (5) is eligible
to provide the transition from turbulent to laminar flow in
solving � (14). Second, insight will be given to which extent
mean-free measurement noise in yh and q interferes with the
roughness identification.

B. Results and Discussion

Tables I–VI represent the results of the roughness
identification, i.e., the solution of equation set � (14)
using either the Newton approach (see [26, Algorithm 1]
in combination with [26, Algorithm 2]) or the ten-
sor approach (see [27, Algorithm 3] in combination
with [27, Algorithm 4]). Works [26, Algorithm 2] and
[27, Algorithm 4] are called for a fixed number of 13 times.
Works [26, Algorithm 1] and [27, Algorithm 3], which vary
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TABLE I

THREE-CYCLE NETWORK: TENSOR RESULTS FOR nm = 3 (� [mm], h [m], v(x+) [107 m3/s]). COMPUTATIONAL DURATION: 280.0 s

TABLE II

THREE-CYCLE NETWORK: NEWTON RESULTS FOR nm = 3 (� [mm], h [m], v(x+) [107 m3/s]). COMPUTATIONAL DURATION 7.2 s

TABLE III

THREE-CYCLE NETWORK: TENSOR RESULTS FOR nm = 4 (� [mm], h [m], v(x+) [107 m3/s]). COMPUTATIONAL DURATION: 143.6 s
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TABLE IV

THREE-CYCLE NETWORK: NEWTON RESULTS FOR nm = 4 (� [mm], h [m], v(x+) [107 m3/s]). COMPUTATIONAL DURATION: 4.4 s

TABLE V

THREE-CYCLE NETWORK: TENSOR-RESULTS FOR nm = 5 (� [mm], h [m], v(x+) [107 m3/s]). COMPUTATIONAL DURATION: 164.8 s

the initial conditions, are evaluated 50 times (see [26], [27] for
a detailed description of the algorithms). The computational
duration stated in the tables result for an implementation
of the proposed algorithms in MATLAB2 on a low-power
notebook from 2015 with an Intel dual-core i5 processor and
8-GB RAM. The focus is not on real-time requirements since
the roughness parameters change very slowly over time. Thus,
the use of a standard notebook is sufficient in the present case
to point out the main properties of the proposed approach.

The intermediate best result in terms of the residual v(x+) is
highlighted in Table VI. The initial values xT

0 = [�T
0 xT

hN ,0] are
chosen as �0 = 0.0004 · 1n �

and xT
hN ,0 = [70.53 55.08 52.08

26.69 49.02 22.68 43.82 14.81 41.16 10.85]. Initial values

2https://www.mathworks.com/ (accessed on 02.11.2021).

xT
hN ,0 are the estimated mean values for the pressure heads,

where the knowledge of the source, the pressure sensors,
as well as the network structure (Fig. 1) are exploited.

In Tables I–VI, different numbers of measurement sets are
used to show their impact on the identification of the pipe
roughnesses and not measured head losses hN,1 and hN,5 at
nodes 1 and 5 (see Fig. 1) in different measurement sets,
respectively.

One can see that the results are noticeably consistent,
cf. values of the identified parameters in the columns with
the lowest values for v(x+), which are marked in green. The
residual of the results is approximately two orders of magni-
tude smaller than the one of the real root v(x∗) (especially in
Tables I and II) as the exact solution of � without measure-
ment noise.



KALTENBACHER et al.: APPLIED PIPE ROUGHNESS IDENTIFICATION OF WATER NETWORKS 685

TABLE VI

THREE-CYCLE NETWORK: NEWTON RESULTS FOR nm = 5 (� [mm], h [m], v(x+) [107 m3/s]). COMPUTATIONAL DURATION: 7.0 s

Concerning the regime case separation, the tensor as well as
Newton method managed to successfully identify Q(3)

5 (in case
of nm = 3) as well as Q(3)

5 and Q(4)
8 (in case of nm = {4, 5}) as

laminar and all other steady-state flows as turbulent by evaluat-
ing (9) for x+ or by checking the flow separation vectors (13).
This underpins the applicability of the transitional flow char-
acteristics γ (5) for the complete roughness identification
problem � (14). Note that the consideration of laminar flows
improves the reconstructability of original roughnesses as the
known linear (laminar) terms indeed facilitate solving �. This
can be seen when comparing tables considering nm = 3 with
ones considering nm = 4 measurement sets as the results in the
former ones are much closer to the original root. In addition,
the inclusion of measurement set i = 5 in the problem setup
aggravates the solution finding as additionally uncertainties
come into play.

Comparing tensor with Newton results for all nm ,
no significant improvements could be achieved when
considering the second-order derivatives concerning the
tensor method. Actually, a slightly smaller residual was
found by the Newton method for nm = 5 as can be seen by
comparing Table V with Table VI. This has three reasons.
First, the second derivatives of γ (see the Appendix) are
neglected in the solution finding of the search direction
via the tensor equation (16). Second, when solving (16)
iteratively with the MATLAB built-in fsolve(.) function,
it occasionally happens that a search direction is taken,
which has a comparably high residual measurement set i in
solving iteration k of � . In this context, one can observe that
the tensor method indeed takes more iterations on average
to converge or abort. Third, as long as measurement sets
are sufficiently independent, the application of the Newton
method might presumably suffice in combination with
[27, Algorithm 4] to obtain a solution that features
an even smaller residual v(x+) than the original
root v(x∗).

In view of the results in Tables I–VI, the comparably high
deviation in the solution of the not-measured pressure head at
node 1, i.e., h(i)

N,1 ∀i ∈M, is also noteworthy. The deviation in
h(i)

N,1 is inherently connected with the deviation in the rough-
ness of the first pipe. Although the estimated roughness of the
first pipe, i.e., �1, is close to the original one �∗1 in all the above
tables (particularly for the case nm = 4), the error in h(i)

N,1 ∀i ∈
M is visible. The major reason for this can again be found in
the nonlinear friction relation, where comparably small differ-
ences in roughness lead to a substantial deviation in the head
loss and thus in the nodal head due to the high flow in pipe 1.

In sum, the collection of suitable measurement sets is
key for the reconstruction of the pipes’ roughness. The best
indicator for the quality of the measurement sets is given
by the differences among yh + Ch z (cf. Fig. 3) and the
differences in the consumption q (see Fig. 2). However, when
considering minor losses (violating the assumption about the
minor losses), i.e., nonzero minor loss parameters [9], and
measurement noise that features a nonzero mean, solving
� becomes substantially more challenging in a sense that
one commonly receives estimated roughnesses outside their
physical range (above 5% of the pipe’s diameter). These
solutions, which lie outside the considered physical range,
sometimes indeed have comparably low residuals, due to
the aggressive search by [27, Algorithm 4]. Nevertheless,
in the opinion of the authors, solving problem � (14) offers
the best chance to reconstruct individual roughnesses per pipe.
However, it is very common to group pipes’ roughnesses for
the solution finding, meaning to assign a single roughness
value to multiple pipes in order to compensate for additional
unknowns.

The three-cycle network example gives valuable insights
about the applicability of the presented roughness identifica-
tion scheme as follows.

1) Adverse effects due to measurement noise have been
studied.
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Fig. 5. Original graph representing the water distribution network of
Graz-Ragnitz with about 9.1 km of total pipe length. Nodes with pressure
sensors, hydrants, and the source (a reservoir-like water basin) are highlighted.

2) The consideration of laminar flows turns out to facilitate
the solving of �.

3) The functionality of γ (5) to allow a transition from
turbulent to laminar flow (or vice versa) in the solution
finding of � has been demonstrated.

4) The analysis of considering more than nm,min measure-
ment sets reveals that it does not always facilitate solving
�, but a careful selection of measurement sets may be
necessary.

In Section VI, the proposed approaches are applied to real-
world measurement data.

VI. ROUGHNESS IDENTIFICATION ON A REAL NETWORK

The application of the proposed roughness identification
approach is now shown for the real-world drinking water
distribution network of Graz-Ragnitz, Austria [33]. The mea-
surements used for this analysis were conducted prior to the
involvement of the authors with the help of the local water
utility in the course of a project with the Institute of Urban
Water Management, Graz University of Technology.

A. Topology and Its Simplification

During the time frame where measurements have been
recorded, the network according to Fig. 5 was isolated by
valves from other parts connecting itself to a larger distrib-
ution network. The topology of this isolated network (part)
as presented in Fig. 5 consists of the elements stated in
Table VII. Hence, given the number of n� = 627 pipes and
n p = 13 pressure sensors, one would need to produce at least
nm,min =

�
n�/n p

� = 48 independent measurement sets with
only nq = 4 fireflows. It is reasonable to assume that there
is no way to produce so many independent measurement sets,
especially on a high fireflow level necessary to produce enough
head loss. The only chance is to simplify the topology to
the highest extent possible and thereby reduce the number
of pipes and nodes in order to result in a sufficiently small
nm,min =

�
n�/n p

�
. This is explained in detail in the following.

TABLE VII

CHARACTERIZATION OF THE ORIGINAL TOPOLOGY (FIG. 5)

Fig. 6. Result of combining adjoining pipes with the same diameter. Nodes
with more than two connections, which are used to simplify the topology, are
highlighted in green.

1) Dead Ends: The first step of the topology simplification
involves the removal of dead ends, which also include nodes
that represent real consumers (not hydrants) in the original
topology. However, as it has to be assumed that they do
not retrieve water during the identification measurements
(at night), they have to be removed as no corresponding
roughness values can be identified.

2) Combine Adjoining Pipes With the Same Diameter:
The next step involves the detection and then combination
of adjoining pipes with the same diameter by removing the
node in between, i.e., the new combined pipe’s length has to
be adjusted. Pressure and hydrant nodes have to be excluded
from this removal. In Fig. 6, one can see the result of the
iterative rejoining of pipes with the same diameter. In this
process, the x- and y-coordinates of the original nodes have
been preserved, which causes, for instance, the small cycle at
“HG3933” seen in Fig. 5 to seemingly disappear in Fig. 6.
This cycle is still present in the graph of Fig. 6 at this point
of simplification, and however, one would have to zoomed-in
view substantially.

3) Remapping Pressure Nodes and Hydrant Nodes: This
section lists four measures to simplify the graph’s topology.

1) As pressure nodes with no hydrants on the same link do
not have any head loss along this link, it is feasible to
remap the pressure nodes to the next respective junction,
i.e., a node with more than two connections. In the
course of this process, one has to carefully consider the
difference in elevation between the pressure node and
the final junction node as the height difference has to
be considered in the corresponding pressure readings.
Thus, the pressure nodes, i.e., the nodes with pressure
sensors, are moved to the green junctions in Fig. 6.
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Fig. 7. Final graph obtained by the topology simplification of the graph
in Fig. 6.

2) It turned out that two deployed pressure sensors,
namely, “HG3445” and “HG4215,” are redundant for
all measurements sets, i.e., “HG3420” and “HG3445”
or “HG4162” and “HG4215” have the same pressure
readings as there is no flow in the links of these
two sensor pairs. Hence, the corresponding nodes are
removed from the graph. This then enables to move
pressure nodes “HG3420” and “HG4215” to the next
higher junction with more than two connections.

3) In analogy to 2), the (small) cycle (seen in Fig. 6)
enclosing pressure node “HG3933” does not have any
hydrant to cause water to flow into this network part.
As a result, there should be no head loss in this entire
cycle, leading to a uniform head distribution up to
the next junction. As side note, this is of course only
feasible if no background consumption/leakage occurs
there. Effectively, the pressure readings of “HG3933”
are moved to the next higher junction also accounting
for differences in nodal elevation.

4) Similar to 1), as hydrants are also located on dead-end-
like links, they are moved to the next higher junctions
that are colored in green. This is only feasible due to
the assumption to take the measurements in steady state
only.

4) Final Graph: The final graph’s topology used for the
roughness identification is shown in Fig. 7. Mind that the
identifiers (IDs), e.g., “HG3537,” are actually used to denote
individual nodes of the original graph in Fig. 5, meaning
that the highlighted pressure and hydrant nodes of the final
graph in Fig. 7 do have different names, i.e., IDs, internally.
However, in order to not confuse the reader, the original
IDs have been preserved to support identifiability with the
corresponding sensors. Effectively, one can see that the graph
has been simplified substantially in comparison to the original
one in Fig. 5, as shown in Table VIII. Given the simplified
graph, at least

�
n�/n p

� = 7 independent measurement sets are
needed to reconstruct suitable roughness values for n� = 74
(combined) pipes in the drinking water distribution network.

TABLE VIII

CHARACTERIZATION OF THE FINAL TOPOLOGY (FIG. 7)

Fig. 8. Head readings of all (relevant) pressure sensors according to the graph
in Fig. 7. The steady-state time frames used for averaging are highlighted with
black dashed lines at the starting and end points. For instance, the fourth time
frame can be found between t ∈ [5080, 5140] s.

This is a significant improvement compared to nm,min = 48
when considering the original topology in Fig. 5.

B. Sensor Readings and First Assessments

Generally, hydrants are equipped with flow sensors in order
to record the fireflow, treated as “consumption” q, while the
pressure sensors record the nodal pressure heads yh during the
minimum night flow where the real, unknown consumption
(also including losses) is lowest. In Fig. 9, one can see the
individual fireflow measurements at the nq = 4 hydrants,
whereas Fig. 10 compares the sum of all fireflows of the four
hydrants with the total network’s inflow that was measured
separately at the link where the source connects to the rest of
the network (cf. topology in Fig. 7). Counting the peaks in
Fig. 9, one can see that there are potentially 15 measurement
sets available. However, it will turn out that approximately half
of these sets are not suitable for identification. In Fig. 8, one
can see all relevant head readings of the pressure sensors with
respect to the IDs found in the graph of Fig. 7. Considering
Figs. 8 and 9, observations and the applied approaches are
summarized in reference to the assumptions made in this work:

1) Assumptions 1(a), 1(b), and 1(d) are fulfilled for the
current application.

2) It is, in principle, possible to cause sufficiently large
head loss by fireflows to satisfy Assumption 1(g)
and thereby provide sufficiently independent sets, see
Assumption 1(e).

3) Referring to head readings, Assumption 1(f) to only
measure in steady state does seem legitimate yet in very
small time frames only. The numerous occurrences of
oscillating heads and peaks indicate frequent transient
events.
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Fig. 9. Fireflow readings over all measurement sets.

Fig. 10. Comparison of the measured inflow via the source pipe (blue) and
the sum of all fireflows (red).

4) No assessment can be made about the validity of
Assumption 1(c) or if all pipes are at least once in the
turbulent regime.

5) Fig. 10 shows the presumably major issue of these
measurements as the unknown background consumption,
i.e., the difference between blue and red curve, makes up
to approximately 40% (between t ≈ [2900, 2960] s) of
the total consumption in the corresponding measurement
set. The only possibility to circumvent this is to avoid
high-erroneous measurement sets, with respect to the
background consumption, from � (14) and to take
only those were the error is smallest, e.g., the first time
frame at t ≈ [2380, 2450] s, as shown in Figs. 8 and 10.

6) Three time frames of comparably small fireflows around
t ≈ 6000, 7000, 12 000 s at a level of 1 l/s in Fig. 9
actually do not cause any notable head loss as shown
in Fig. 8 and are therefore completely unsuitable for
the consideration in �.

7) The chosen nm = 8 time frames, i.e., measurement sets,
for the averaging of measurements had to be chosen con-
siderably small to avoid any possibly transient events,
see time frames between the dashed lines in Fig. 8.

8) The minimum night flow, which gives a good estimate
of the total water loss, can be identified in the range of
1.2 l/s according to Fig. 10. These background losses
are potentially problematic for any identification scheme
that is based on the satisfaction of nodal Kirchhoff equa-
tions, see � (14). However, this is a general problem

with all sorts of roughness identification algorithms as
these background losses at the time of the identification
measurements ultimately lead to mistakenly increased
friction parameters. One can hardly detect and localize
leakages in an uncalibrated hydraulic network, meaning
that all leakages prior to the identification (identification
of friction parameters) are likely to remain invisible to
the observer. This certainly depends on the size of the
leakage nonetheless. If it exceeds a critical size, the
detection and localization become feasible at some point.

C. Initial Values

A crucial point for the considered problem is the selection
of the measurement sets and the stochastic variation of the
initial values for the launch of the roughness identification
concerning � (14) as described in Section IV. This is due to
the fact (see also [28]) that the considered flow (over all three
regimes) is characterized by a nonconvex relation (9) due to
the underlying physical principles.

In particular, the selection of suitable initial values for
the nodal pressure head values at nodes with no sensors
concerning h(i)

N ∈ R
n j−n p

≥0 for all i ∈ M = {1, 2, . . . , 8}
is challenging and leaves a lot of potential variables to be
adjusted. However, the stochastic variation of initial values
as explained in Section IV helps to relax the requirement of
already starting with values close to the ones to find.

Similar to the three-cycle network in Section VI-B, the
initial values for hN are chosen by means of averaging heads
between pressure nodes. Details about the choice of initial
conditions can be found in [11]. As in the previous example,
the initial roughness values for launching the identification
are selected as 1% of the corresponding pipe’s diameter.
Mind that according to the proposed algorithm, these initial
roughnesses are already varied before launching Newton or
tensor algorithms.

D. Results and Discussion

The obtained roughness results are presented when applying
a few iterations of [27, Algorithm 4], which itself launches
[27, Algorithm 3]. This process is then stopped after a few
iterations because a clear trend can be observed, which will
be subject to discussion.

To begin with, the equation set � (14) to be solved features
576 (nodal) equations and 562 variables from which only
74 elements are the roughness values of particular interest.
The residual could be reduced from a total error of v(x0) =
33.2020 m3/s to v(x+) = 8.4101 m3/s at the 576 nodes
considered in solving. Looking at the average error on each
node over all eight measurement sets, a presumably more
distinctive value for analysis, the error could be reduced from
57.6 to 14.6 l/s. Considering that the fireflows never exceed the
16 l/s mark (see Fig. 10), the error is in a range, which raises
questions about the quality of the data. To put the residual in
a different perspective, 20.7 nodes exceed the 5-l/s error and
29.1 nodes exceed the 1-l/s error from the total of n j = 74 on
average over all eight measurement sets.

Fig. 11 shows the results for the obtained relative roughness
values directly on the corresponding pipes and highlights
32 pipes that have a relative roughness greater or equal to



KALTENBACHER et al.: APPLIED PIPE ROUGHNESS IDENTIFICATION OF WATER NETWORKS 689

Fig. 11. Obtained relative roughness values in percent along the pipes of
the simplified network’s graph highlighting in red those which are greater
or equal to �/d = 6%. Nodes with an error greater or equal than 10 l/s in
one of the eight measurement sets are highlighted in red. Nonpressure nodes,
whose head values are not inside their considered range in the respective
measurement set (cf. Fig. 8), are mentioned in the legend.

�/d = 6% (red lines). Fig. 11 also highlights nodes with
an error greater or equal than 10 l/s in one of the eight
measurement sets (red dots). One can clearly see that there is a
correlation between high-erroneous nodes and unrealistically
high roughness values. Please note that we aim to find the
roughness parameters for all pipes in the considered water
distribution system. However, the real roughness values, which
would allow a comparison to the identified values, cannot be
found for real applications with a reasonable effort. Under
the assumption that leakages can be present at each of the
n j inner nodes, one would need n j pressure sensors and
n� flow sensors. In the other extreme case, where no leakages
are present, one would need n j pressure sensors and nc flow
sensors. Neither case is realistic in real water distribution
networks.

Effectively, two major issues make it difficult to solve �

and obtain a smaller residual. First, the occurrence of the
comparably high background consumption/leakage seen in
Fig. 10 causes inherently higher than actual roughnesses.
Due to the nonlinear friction relations, an unrealistically high
roughness might be necessary to compensate for the unac-
counted flow at respective nodes. Second, it turned out that
apart from the background leakage, a valve in the lower left
corner in Fig. 11 was closed partially during the measurement.
Interestingly, however, one can actually see that the exact area
of the partially closed valve was identified by the presented
roughness identification scheme. This demonstrates that the
developed approach may also be suitable to identify network
parts inconsistent with the measurement data, e.g., due to
leakages. The area close to pressure sensor “HG3933” hap-
pens to be red-colored because of the significant background
leakage/consumption in the removed cycle. Nevertheless, this
cycle had to be removed as no hydrant was opened in this
cycle during the measurements.

The results for hN remain in their physical range, except
at nodes that are highlighted in Fig. 11 in the respective
measurement set (see legend). This range violation is very

minor for the yellow and orange colored nodes, for instance,
the orange colored nonpressure node results in hN + z =
497.9588 m, which exceeds the identified upper limit hN+z =
497.9061 m by a mere 5.27 cm. Also, regarding the orange
and yellow nonpressure nodes of Fig. 11, heads hN tend to
leave their intended range at exactly those nodes adjacent
to pipes with very high roughness values, which indicates a
correlation between them. The red-colored node of Fig. 11 has
hN + z = 476.3744 m but should actually be above hN + z =
480.7406 m. Knowing that there was a partially closed valve
as shown in Fig. 11, the developed identification algorithm is
able to confidently find discrepancies in the measurement data.

When taking the results as initial value for the next iteration
of, e.g., [27, Algorithm 3] and relax the requirement for the
not-measured pressure heads hN to remain inside their selected
limits xhN ∈ [hN , hN ], one indeed manages to obtain smaller
residuals. However, the roughnesses exceedingly leave their
physical range and therefore do not represent results, which
can be seriously applied. The effect of nonzero minor losses
thereby violating the assumption about negligible minor losses
may be of particular interest in this context.

1) Flow Regimes: For the considered water distribution
network, there are n�nm = 592 pipe flows to be categorized
among the three flow regimes. Thereby, only 238 pipe flows
have been identified to be in the turbulent regime, 219 in
the transitional regime, and hence 135 in the laminar regime.
This result underlines the importance to distinguish among
the three flow regimes in the solving process of �. Violating
Assumption 2 [1(a)], pipes have flows, which never reach
the turbulent regime in any of the eight measurement sets.
According to the results of the roughness identification, there
is only a single pipe whose flows never become turbulent
nor transitional in any of the measurement sets. As shown
in Fig. 11, the obtained roughness of this pipe then also
exceeds the physically reasonable values, as the variation of
this roughness value has no effect on the residual of � in
the solving process. Looking at Fig. 7 for instance, it is clear
why this pipe can neither have turbulent nor transitional flow
as there cannot be any flow between “HG4118” (a hydrant)
and “HG4150” (a pressure sensor) according to the hydrant
configuration.

This is a remarkable result nonetheless and proves the
applicability of γ (5) with respect to � to properly distinguish
among flow regimes.

In analogy, the pipe whose flow never reaches the turbulent
regime in Fig. 11 has a very high relative roughness of 43.3%
according to Fig. 11. Knowing that the smoothness and validity
of γ are only preserved in the range of �/d ∈ [0, 5]% of
the pipe’s diameter (see [28]), the root-finding algorithm for
� particularly struggles to handle roughness values greater 5%
when being in the transitional regime. Once in the transitional
regime and outside the physical limitation, the algorithm
cannot again converge to the turbulent regime.

2) Linear Independency: Recall that nm ≥ nm,min =�
n�/n p

�
is only a necessary condition to satisfy the assump-

tion about the number of linear independent measurements.
Apart from that, the best indication about the linear inde-
pendency is given by the rank of the Jacobian, which is a
function of the solution in the iteration step k, i.e., J(xk).
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This Jacobian has size J ∈ R576×562 for the eight measurement
sets. One obtains rank(J(x0)) = 545 in x0, and in the solution
corresponding to the roughness values in Fig. 11, it reaches
rank(J(x+)) = 549, i.e., its deficiency concerns at least
13 variables among n� + nm(n j − n p) = 562. This has two
reasons. First, as discussed previously, there are pipes whose
flows are never in the turbulent regime making it impossible
to find the corresponding roughnesses. Second, although there
is, in principle, enough head loss along some pipes according
to the final graph in Fig. 7, this presumably does not apply
to all n� = 74 pipes when inspecting Fig. 8. Mind the
assumption about the measurement noise in this context. The
only possibility to improve on this is to consider further and/or
different measurement sets with other fireflow configurations,
whereas additional fireflows provided by other than the nq

hydrants may be particularly valuable in this regard.

VII. CONCLUSION

The basic applicability of the developed roughness iden-
tification on a real drinking water distribution network was
demonstrated, considering all three flow regimes. The dif-
ficulties and uncertainties when using real-world data were
discussed, whereas the problems in the solution finding and
results could be traced back to inconsistencies in the data
and, for instance, background consumption. The legitimacy
of Assumptions 1 and 2 have been studied and turn out to be
attainable to a large extent. Nevertheless, the validity of the
neglection of minor losses concerning Assumption 1(c) has
yet to be verified in greater detail. In short, the authors believe
the developed identification scheme not only to be eligible for
roughness identification but for the detection and localization
of leakages in water distribution systems, which is subject to
further research.

APPENDIX

DERIVATIVES OF THE COMBINED FLOW

A. First Derivatives

The derivatives of turbulent flow are given in [26].
In addition, the partial derivatives of the transitional water
flow γ (5) with respect to the roughness �, i.e., [γ �] j , and its
derivative with respect to the pressure head loss, i.e., [γ �h] j ,
are shown in

∂γ j
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respectively. Please note that the indices in q0, q1, a, b, and
w along G(i) ⊆ P are neglected. One can write

∂γ (i)

∂�
= diag

�
γ �(�,�h(i))

� = diag
�
γ (i)

�

�
(21)
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for all i ∈M for the first transitional flow derivatives where,
again, the main information can be stored in vectors γ �(�,�h)
and γ �h(�,�h) that are functions of � and �h. Concerning
the Jacobian (according to the definition in [27]), one gets
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for all i ∈ M, where the flow separation vectors r allow to
write and implement the relations in a compact form.

B. Second Derivatives

For the application of the tensor method, the second-
transitional-flow derivatives are needed. As the contribution
of the laminar, thus linear, flow vanishes, only the second
derivatives γ

(i)
�2, j , γ

(i)
�h2, j , and γ

(i)
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j
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∂2γ
(i)
j

∂�∂h(i)
N

= ∂2γ
(i)
j

∂h(i)
N ∂�

= −γ
(i)
��h, j AT C̄T

h (25b)

for all j ∈ G(i) ⊆ P ∧ i ∈ M are considered, where A =
[a1 a2 · · · an �

] in this context. As first-order γ -derivatives
(19) and (20) are already complex expressions, the second-
order γ -derivatives, i.e., γ

(i)
X , j for X ∈ {�2, ��h,�h2}, have

been neglected in this work. Details can be found in [27],
where p (in the sense of [27], i.e., p only applies for the
turbulent regime) has to be replaced by γ.
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