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Abstract—With the rise of the Internet as the premier news
source for billions of people around the world, the propagation
of news media online now influences many critical decisions
made by society every day. Fake news is now a mainstream
concern. In the context of news propagation, recent works in
media analysis largely focus on extracting clusters, news events,
stories or tracking links or conserved sentences at aggregate
levels between sources. However, the insight provided by these
approaches is limited for analysis and context for end users. To
tackle this, we present an approach to model implicit content
networks at a semantic level that is inherent within news event
clusters as seen by users on a daily basis through the generation
of semantic content indexes. The approach is based on an end-
to-end unsupervised machine learning system trained on real-life
news data that combine together with algorithms to generate
useful contextual views of the sources and the inter-relationships
of news events. We illustrate how the approach is able to track
conserved semantic context through the use of a combination
of machine learning techniques, including document vectors,
k-nearest neighbors and the use of hierarchical agglomerative
clustering. We demonstrate the system by training semantic
vector models on realistic real-world data taken from the Signal
News dataset. We quantitatively evaluate the performance against
existing state of the art systems to demonstrate the end-to-end
capability. We then qualitatively demonstrate the usefulness of
a news event centered semantic content index graph for end-
user applications. This is evaluated with respect to the goal
of generating rich contextual interconnections and providing
differential background on how news media sources report,
parrot and position information on ostensibly identical news
events.

I. INTRODUCTION

Internet news has become central to society in recent years,

and is now a critical component within global soft power

campaigns from elections, to advertising, to government-

sponsored propaganda operations. Due to the speed of online

news as it currently stands, and the Internet’s ascendance as

the primary information delivery mechanism worldwide, news

sourced from it is often the sole source of truth for billions

of people around the world. This shapes the reality of vast

swathes of the global population and bends what they believe

to be true or false every day.

Due to its enormous scale, and the limited time available

for people to interrogate and cross-correlate news stories

across sources, it is basically impossible for the average

citizen to understand how the news they consume everyday

originates, relates between sources (differential reporting) and

morphs across time and space without systematic investigative

research. To deal with this information deluge, a variety of

approaches, both commercial and academic have been put for-

ward. On the commercial side, many stories that people read

every day are often sourced from event aggregation systems

such as Google News or Event Registry. These systems report

and display clustered news events in summarized formats,

often delivering thousands of articles per day [1] [2]. On

the academic side, systems have been built that demonstrate

various methods of tracking information propagation online,

mostly through the use of tracking conserved content markers

on parts of an article (e.g. links, quotes, relational predicates)

[3] [4] [5] [6] [7] [8] [9] [10]. However, for actual analysis

of a news event, these systems rely on a user’s ability to

cross-correlate and contextualize the story themselves, i.e. by

physically reading each and every article. This gap is what we

attempt to address.

II. RELATED WORK

Most commercial aggregation systems, like Google News,

simply list top articles with frequency counts [1]. However,

there can often be 10s to 1000s of articles concerning an

event, most with highly duplicated information mixed in

with novel insights. It is essential to be able to tease out

the interactions between news sources and visualize them

for differential analysis by end users. The issue with most

existing systems, however, is that they stop at document

level clustering and frequency analysis, expecting a user to

consume and understand how the content within the event

cluster relates, including how it is sourced and the order

in which it was published. Using such aggregators requires

people to delve deep into the content, consume it all and then

make judgments as to the veracity, sourcing, and context of

the claims. Aggregators expect users to read and understand
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everything themselves, merely clustering together documents

but giving no sense of how content itself is interrelated [2].

Academic systems also exhibit this problem, often focusing

on the complete content graph and high level aggregated

views, at the expense of aiding individual news event anal-

ysis. Here we focus entirely on content focused modelling

approaches, which do not track specific entities through time,

or attempt to model the underlying dynamic knowledge graph

between entities [11] [12]. There are numerous approaches to

analyzing information propagation at a content level within

online news events. They can be broadly organized into

two overarching methodologies, one being the link diffusion

method and the other being the content diffusion method.

Link diffusion systems use explicit links between articles to

create a model of how information propagates over time. These

approaches simply look at each link as a pointer to generate

a propagation graph, with historical correlation indicating a

direction of flow. One of the foundational papers on link-

based information propagation is that of Adar and Adamic

(2005) who analyzed the link structure of the blogosphere

to track information epidemics [3]. They used analogies to

epidemiological models to generate a directed acyclic graph

which could be ordered by time to illustrate the flow of

information. The issue with link-based systems is that they can

only use links between articles, and not the articles themselves.

In the case of long-form unstructured content, like those found

in news articles which rarely, if ever, link directly to their

source, this is a major issue. Hence link-based information

propagation systems are severely limited to only a small

subsection of the total content graph (links). These issues are

tackled by content diffusion tracking systems.

The next generation of information tracking systems focuses

on monitoring the propagation of conserved content (repeated

strings or quotes) contained within articles. Yang and Leskovec

(2010) utilized a different approach from pure network track-

ing by avoiding the network topology altogether [4]. They

focused on conserved content such as short textual phrases

(e.g. quotes) or Twitter hashtags and used their appearance at

various nodes over time to build up a global linear influence

model for each node. The MemeTracker system by Leskovec

et al. (2009) offered an extension of the link-based approach to

quotes, which can analogously be seen as links which mutate

very little from source to source [5], i.e. they can be used as

pointers to infer connections between news sources over time.

They tracked short textual phrases, called "memes", that were

enclosed in quotes. They tracked how these memes rose and

fell over time. They isolated them by generating an acyclic

graph of similar quotes (quotes that were substrings of other

quotes), whose root node best represented the full content of

that chain of quotations (longest quote in the chain). They

achieved this by identifying what they call phrase clusters, that

is groups of strings that exhibit substantial textual similarity.

As partitioning this graph is an NP-hard problem, they utilized

heuristics. To partition the graph they simply deleted low

weight connections until the phrase cluster graph decomposed

into a series of disjoint mutational quote chains, with shorter

quotes feeding into a single long quotation. However the

system was extremely computationally expensive and tracking

all content interconnections between news sources at a global

level would not be possible.

The successor to MemeTracker, dubbed NIFTY by Suen et

al. (2013), attempted to mitigate the extreme computational

costs of tracking incrementally changing quotations by uti-

lizing an incremental meme-clustering algorithm [6]. It uses

the same underlying insight of connecting each quotation to

a longer quotation that is a close subsequence as part of

a large directed acyclic graph, with long strings being the

cluster assignments and the longest versions of the quotations.

To improve the performance they attempt to keep the graph

size essentially constant, by freezing old clusters that haven’t

changed for some time, and constructing new ones when they

don’t fit into existing clusters. The goal of both of the previous

tracking systems was to track how "memes" spread rapidly

throughout online media, and in turn, lead to the observations

of short-term events. However, these abstractions do not allow

differential content analysis. Another significant failing of

these systems is that, just like the link-based systems, they only

rely on a portion of the content served by news organizations

about an event, namely things enclosed in quotes. As such,

they are more targeted towards analyzing event bursts, rather

than observing propagation between sources or comparative

analysis.

Colavizza et al. (2015) tried a different attack to analyze

information propagation by focusing on text reuse in early

modern newspapers [7]. Their insight was understanding that

barring explicit links, the vast majority of early newspaper

information flows would essentially be primarily conserved

content, i.e. directly repeated text reporting facts between

papers over time. They analyzed gazettes from the year 1648

using OCR (optical character recognition), string kernels (as

similarity measures) and local text alignment (to determine

overlaps) to track how information flowed in early Italian

newspapers. Through this method, they were able to ana-

lyze the relationships and differential reporting between news

sources about very similar events by observing the propagation

of news during an event. Despite the apparent difference

between modern-day news systems and early modern news-

papers, the pattern of newspaper propagation still follows a

similar source to source content similarity flow, operating

on the order of weeks rather than hours. However, despite

the power of such a generalizable approach, it has failings

outside of its specific application. This system requires exact

or near exact text alignment in the content between two articles

(e.g. exact copying) and doesn’t generalize to content that is

semantically similar. Its advantage over other systems is that

it can extend to unstructured text levels as it tolerates noisy

substring overlaps.

Another approach to these challenges was attempted in the

work of Vakulenko et al. (2016) [8]. Their goal was to improve

upon the previous information diffusion models and provide a

useful abstract content dissemination graph that could be used

by journalists to shed light on how news propagates online.
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Their approach was to track n-gram like grammatical relations

through the news media. Their core insight was to parse

news articles and convert them into a bag or relations, rather

than conserved content, or sequential n-gram strings. Despite

the power of this system, it has numerous shortcomings. It

requires the creation of specific language grammatical parsers.

It requires users to define the query and search through

the content space to generate graphs. Due to its simplifying

assumption of a bag of relations at a sentence level, it is

unable to track more complicated content relationships. It is

also dependent upon synsets in Wordnet [13].

III. APPROACH AND IMPLEMENTATION

As identified, the vast majority of systems only focus on

a single or small aspect of news articles, namely links or

highly conserved content. Hitherto, there has not been sig-

nificant research into utilizing unsupervised semantic systems

to rapidly organize, at a paragraph and sentence level, the

mass of semantic interrelations found within news events, and

especially those that focus on mainstream online news. In this

work, we define news events to be clusters of articles based

on document similarity and time of co-occurrence.
The aim of our system is to fundamentally augment the abil-

ities of researchers and typical news readers, not through the

generation of unfocused content graphs like other approaches,

or high level summarizations of news events, but through the

creation of useful views on the content at a semantic (implicit)

level and to deal with any arbitrary news event. To achieve

this, we use a simplifying assumption to keep computational

costs bounded: namely we focus our analysis on what users

would find most useful through the analysis of specific news

events, rather than attempting to create a global news index.

This makes the generation of the content semantic index both

tractable and useful, and greatly reduces the number of false

positive connections that would be seen in a global graph.
Rather than reinvent existing clustering systems, we work

in the frame of an actual user consuming news from event

aggregation systems. Specifically, we leverage such systems

to increase the reliability of our semantic relation algorithms,

by focusing them within news events thereby reducing false

positive connections. This also caps our complexity by break-

ing the news into discrete chunks that can be processed in

constant time, and subsequently boost the power of semantic

models by ensuring that cross connections are those that are

already found to be highly relevant.
This paper focuses on tracking contemporaneous events,

rather than retrospective tracking. This is representative since

the vast majority of events are often surfaced and consumed

within a day or so of their existence, and as such, this is the

time when they will have the most impact.
To address these issues we propose a system built on

unsupervised paragraph vector models. These models are used

to generate vector indexes for all the paragraphs and sentences

within a news event. We train these models by utilizing just

the news data itself. We then use standard clustering and

graphing workflows to generate views on the content graph

for demonstration applications that aid analysis. We show that

these applications can help users analyze, at a paragraph and

sentence level, how information propagates across sources,

compare news reporting between sources, and observe news

source inter-relationships at an aggregate level. We also verify

the power of our entirely unsupervised self-training system

against a set of reference models on a series of standardized

semantic evaluation tasks. Ultimately the goal is to provide

users with global insight into the news events they read every

day.

A. Data Analysis Stack
We utilized the Anaconda scientific platform with both

Python 2.7 (training/generating vectors) and 3.5 (pars-

ing/manipulating articles) versions [14]. In addition, we also

used the sci-kit learn library for the standard implementation

of clustering and distance algorithms, NetworkX was used for

the generation of content networks, and gensim for the training

and generation of paragraph vectors [15] [16] [17]. Stanford

CoreNLP was also used in the preprocessing of the article

dataset into tokens [18]. The generated graph visualizations

use the Cytoscape graphing library [19].

B. Datasets
1) The Signal Media 1-Million Article Training Dataset:

The system uses the Signal 1-Million News Article dataset for

model training purposes [20]. We chose this dataset as it was

a standardized, reasonably large crawl of news articles that

accurately represented the type of data we wish to analyze.

The dataset is a cross-section of news articles from September

2015 which includes a mix of mainstream news sources, as

well as blogs, and other publications [20]. It comprises nearly

93,000 real-world news sources and differs from the cleaner

single source datasets used to train reference models [21].

Thus it gives us an accurate representation of the semantic

performance that could be achieved by a system and especially

those that are to handle massive streams of real-world news

data.
As the crawl is from thousands of real online sources, the

dataset includes liberal amounts of duplication, noisy data,

incorrect language articles and code snippets that cannot be

easily parsed. As such, this provides an extremely realistic

dataset on which to train unsupervised models. In essence, it

allows one to observe how robust paragraph vector models are

on what is essentially a continuous stream of real-world news

data.
2) Analyzed Events: To illustrate the applications of our

approach we take events from two news event clustering

systems: Google News and Event Registry [1] [2]. These

sources provide us with a real-world set of news articles that

have been aggregated into news event clusters for actual users.

We extract one above the fold event cluster from Google News

(that is news articles deemed most important on the main page

of the event) [22]. This event concerned the ceasefire brokered

between the main parties involved in the Syrian Civil War (the

Syrian event). We chose this event because it was a popular

world news story, and by using the most interesting articles

listed above the fold on Google News, it provides a good
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representation of the articles that real-world users are actually

likely to browse.
To extend our system to the long tail of news reporting, we

extracted a series of events from Event Registry that allow us

to demonstrate how our system is able to scale up from just a

few dozen articles to thousands. The first news event concerns

a recommendation by the World Health Organization (WHO)

that urged countries to tax high sugar drinks to alleviate obesity

and health issues (the WHO event) [23]. This event contains a

couple of hundred articles. The second news event cluster from

Event Registry concerned the release of Amazon’s unlimited

music streaming service (the Amazon event) [24]. This event

contains a couple of hundred articles. The third news event

cluster from Event Registry concerns the performance of

U.S. presidential nominee Hillary Clinton at the third U.S.

presidential debate against Donald Trump (the Hillary event)

[25]. This event comprised a couple of thousand articles.

C. Semantic Models
1) Word Vectors: For the implementation, we used para-

graph (document) vectors generated by doc2vec from the

gensim python library [17]. However, before introducing the

relevant concepts and details of paragraph vectors, it is

necessary to understand, at a high level, how word vectors

(generated by word2vec, also from gensim) are generated.
The core concept for both approaches is based on a shallow

neural network from Mikolov et al. (2013) [26]. The goal of

the word vector model is to generate high dimensional vectors,

often on the order of 100-300 dimensions, which essentially

encode the semantic position of a word. These vectors are a

distributed representation of a word and are effectively the

result of smearing the word’s semantic meaning across all

of the numeric values [27]. The goal of the shallow neural

network at the heart of the model is to force vectors that

represent similar words (which start out as random weights) to

be located near similar locations in a higher dimensional vector

space [27]. It achieves this by relying on the Distributional

hypothesis which argues that, given similar words are used

in similar contexts, we can simply push the vectors of words

that share similar contexts together over time to encode their

semantic meaning [26]. The power of this approach is the fact

that it is totally unsupervised.
2) Paragraph Vectors: Paragraph vectors are a natural ex-

tension of word vectors to a sentence, paragraph or document

level. The goal of paragraph vectors is similar to that of word

vectors, namely generating string vector embeddings that can

be used to semantically compare various texts. The core theory

is extended by Le and Mikolov (2014) from word vectors to

paragraph vectors [28].
Once again 100-300 dimensional vectors are learned for

each sentence or paragraph, with paragraphs or sentences

that are semantically similar having their vector embeddings

pushed together in a similar manner to that of word vectors.

The method of optimization is the same as previous models,

e.g. stochastic gradient descent on the predictive output with

back propagation for weighted embeddings of the input and

output [28].

There are two main methods of training: distributed memory

(DM) and distributed bag of words (DBOW). DBOW is

analogous to the skip-gram model with negative sampling. In

practice DBOW is found to exhibit higher performance and

be a more robust method, hence it is adopted here [21].
3) Reference Models: We utilize two state of the art

reference models with differing hyperparameters from Lau

and Baldwin (2016) trained on two single source datasets

(Wikipedia and AP News datasets) [21]. These are used as

benchmarks for comparison against our trained models on

standard semantic evaluation tasks. These reference models

are referred to as ap_dbow, and enwiki_dbow, as they are in

the original paper. We then use these best practice hyperpa-

rameters to train paragraph vectors on noisy multi-source real-

world online news article data (the Signal 1M News Article

Dataset). These models will be referred to as ap, intersect_ap,

wiki, and intersect_wiki.
The difference between our general ap/wiki hyperparameter

models and the intersect_ap, intersect_wiki variants is that

during the vocabulary generation phase of the paragraph vector

model training, we intersect the word embeddings found in

the larger ap_dbow, and enwiki_dbow models into ours. By

comparing the general models with the intersection models, we

are able to see if utilizing pre-trained word vectors increase

performance, as was argued in the original paper.
By comparing our models trained on what is essentially a

stream of real-world scraped news articles (Signal 1M dataset)

against the two reference models we can observe the best

combination of hyperparameters for a continuous unsupervised

training system. In doing so, we can demonstrate how by

only ingesting news articles with the best hyperparameters,

we should be able to scale up our solution to real-world news

data streams.
We demonstrate this by training on the Signal 1M Article

Dataset, which despite being smaller than those used by

the reference models, is still highly representative of online

news data streams. Our goal is to show that even with a

limited amount of noisy real-world multi-source news data

that contains significant amounts of poorly formatted, noisy

and duplicated content, we are still able to reach near state of

the art performance with our paragraph vector models.
4) Model Evaluation: For model evaluation we use the

English Semantic Textual Similarity (STS) tasks from the

*SEM and SemEval for the years 2012-2016 [29] [30] [31]

[32] [33].
Concretely these tasks are all simply sets of sentence pairs,

across multiple domains, that are manually annotated by se-

mantic similarity with a score of 5 being that the two sentences

are perfectly semantically similar, e.g. "Many statements made

online are false", and "There are often statements made online

that are false", with scores falling away to 0 as the sentences

differ.
STS allows us to test the performance of semantic models

by applying them to a variety of different language domains

where they are made to estimate the similarity of a pair of

sentences. The generated ratings from 0 to 5, with 0 meaning

the two sentences are not remotely semantically similar, and
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5 meaning they are perfectly semantically similar, are then

compared to human ratings using a correlation measure.
To evaluate the model performance against human ratings

we calculate the standard Pearson’s R-correlation using the

STS toolkit. The closer this correlation is to 1, the better the

model is said to perform. Comparing different models is as

simple as observing which models exhibit the higher Pearson’s

R.
We qualitatively evaluate the graphs and clusters generated

in the applications stage to generate useful abstractions or

views of the content graph. We rely on the fact that the STS

results will give an indication as to a paragraph vector model’s

power in general. Using this as a base, we can build upon the

paragraph vector models as an abstraction that supports the

organization of sentences and paragraphs. In turn, this allows

one to display their interrelationships so that rapid analysis of

a news event at a content level can occur.

D. System Algorithms
1) Cosine Similarity: For the system implementation, we

utilize the standard measure of similarity between vectors

known as cosine similarity [34]. The method calculates the

amount of similarity between two vectors by observing that

the cosine of the angle between two vectors gives a dimension-

less measure of their similarity. This similarity is calculated

through a combination of a dot product between two vectors

and then a normalization based on their multiplied magnitudes.
2) k-Nearest Neighbours: We used k-Nearest Neighbours

(k-NNs) along with cosine similarity throughout the system

for the generation of the exploration, content, and source

propagation graphs. In essence, k-NNs involve the calculation

of all pairwise distances between all pairs within a list of

vectors using some distance metric [35], which in our case

is cosine similarity, and where the vectors are our sentences

and paragraphs. We then order the distances of a particular

vector’s neighbors by their similarity and extract those closest

to it using some thresholding value, whether that is a similarity

threshold or simply the number of neighbors required.
We utilized a single nearest-neighbor model for the creation

of propagation and source analysis graphs. We used a multi-

neighbor model for the generation of the exploration graph.

We threshold the neighbors we retrieve by ~10-20 which we

found worked well in practice, or by a similarity threshold of

0.6 for the generation of the exploration graph data structure.
3) Hierarchical Agglomerative Clustering: We utilized hi-

erarchical agglomerative clustering (HAC) with cosine dis-

tances to generate semantically similar content clusters [36].

We used these clusters as seeds for the generation of a content

propagation graph in conjunction with k-NNs. HAC takes

a list of vectors and assigns each to a singleton cluster. It

then iteratively works its way up from each singleton cluster

by linking together any two clusters that exhibit the greatest

similarity, until a single global cluster exists.
The reason for choosing HAC over other methods was due

to the fact that it accurately represents how the underlying

content is structured. At a high level, due to the massive

amount of similarity in sentences between news reports, we are

able to rapidly cluster them together in a bottom-up approach.

This lets us generate a content dendrogram that accurately

represents how the content is interrelated at a local and global

level. Another advantage of this system is that it does not

require the definition of the number of clusters within an index.

This allows it to scale to any number of sentences, paragraphs

or articles by using a linkage metric with an inconsistency

criterion.

The similarity metric used to join clusters is called the

linkage metric, and for our purposes, we found that the com-

plete linkage method produces the best qualitative results [36].

Using the complete linkage method we calculate the maximum

pairwise distances between clusters. We do this by finding

the two most dissimilar items between all cluster pairs. We

then join the two clusters whose maximum pairwise distance

for the two most dissimilar items is the global minimum

across all cluster pairs at each iteration. To calculate the

complete linkage using a similarity metric formally, we find

the minimum similarity between any two vectors in clusters A

and B by using cosine similarity. We then join the two clusters

that exhibit the maximum complete linkage similarity.

As our goal is to generate well defined and well-separated

content clusters, we found that the complete linkage metric

produced the best results over other methods due to the fact

that it preferentially generates tight small clusters which accu-

rately represents the underlying sentences and paragraphs [36].

This is as opposed to single link clustering which involves

chaining sentences that were not well separated.

To generate clusters it is necessary to cut the dendrogram

using some adaptive metric. We utilize flat clustering on our

linkage structure with the default inconsistency method using

sci-kit learn’s fcluster [15]. The inconsistency method operates

by cutting clusters based upon the dynamics of the linkage

structure [37]. In essence, it observes that if a join link

generated during HAC occurs with a much greater distance

than the average of the joins at its level, then it likely defines

a cluster boundary. This method provides distinct and tight

clusters on top of which it is possible to generate useful content

propagation graphs.

4) News Article Pre-Processing: In the process of our

analysis, we found that for both Google News and Event

Registry anywhere from 50%-90% of articles published within

the long tail of news sources were near exact duplications

of existing content from either press agencies or other news

sources. As our goal is to demonstrate differential analysis of

sources from differing viewpoints on similar data, as well as

to illustrate hidden semantic connections between sources, we

filtered out these duplicates. This is because, with duplicates

intact, they overwhelm the graphs we generate and the similar

content we find. This makes them work effectively like noise,

providing little insight, as they simply cover up differential

reporting and hidden correlations. To filter out these duplicates

we used a combination of exact headline matching as a

heuristic for similar documents, as well as a simple top-level

sentence filter that collates and removes articles that exhibit a

significant number of exact sentence matches. When combined
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these heuristics drastically reduce the number of duplicates.

The articles were then tokenized by Stanford CoreNLP [18]

at a sentence and paragraph level.

E. Summary
In this section we provide a step by step summary of the

entire workflow.
1) Model Training:
● Acquire a batch of representative news articles, in this

case from the Signal 1M Article Dataset;

● convert them into a series of paragraphs;

● tokenize and lower case the paragraphs with Stanford

CoreNLP;

● build a vocabulary of words within the paragraphs, inter-

secting word vectors if required;

● train a paragraph vector model with best practice hyper-

parameters using gensim;

● shuffle paragraphs randomly on every iteration to improve

performance, and

● measure the performance using standard semantic evalu-

ation tasks.

2) Content Index Generation:
● Take a batch articles that comprise a news event from an

existing clustering system (Google News, Event Registry)

to leverage their algorithms, crawlers and to demonstrate

integration with existing workflows;

● take each article in the event and split it up into a list of

paragraphs or sentences, depending on the type of content

to be analyzed;

● take a trained paragraph vector model and convert each

paragraph or sentence into a paragraph vector, and finally

● use these vectors as paragraph or sentence indexes on top

of which we can apply clustering and graphs to generate

a view of the content graph.

3) Generating Views on the Content Graph: By integrating

all of the content in an event (e.g. sentences/paragraphs) with

a combination of paragraph vector models, k-NNs and HAC,

we can generate useful graph data structures. We use these

graphs to explore differential analysis, e.g. to observe how

a piece of content propagates over time, and observe the

interrelationships between different news sources.

IV. RESULTS

A. Semantic Results
1) Semantic Results Discussion: In general, the results of

the STS evaluations are clear, noisy real-world news data

models, especially if the dataset is smaller than the reference

models, will under-perform on much larger single source

datasets across all domains (see Figure 1 for a representative

year, we omit the others for brevity). Specifically enwiki_dbow

was trained on the entirety of English Wikipedia, and ap_dbow

was trained on nearly 5 years of articles from a single news

agency [21]. This is in comparison to our Signal 1M article

dataset which comprises only a single month of noisy real-

world online news article data.
However our goal was not to prove that our workflow would

operate better than models trained on cleaner single source

Fig. 1. A graph representing the STS2016 evaluation task comparing the
Pearson’s R-correlation across multiple domains and models.

TABLE I
PERFORMANCE ACROSS ALL SEMEVAL YEARS FOR TRAINING MODELS

Model ap intersect_ap wiki intersect_wiki

No. Times best at News Headlines 0 0 2 3
No. Times best at Any 1 2 9 13

datasets, but to show that, despite how badly formatted or

noisy the input stream of news articles is, our paragraph vector

models will still rapidly approach state of the art performance,

even on limited data, and especially in in-domain areas. This

demonstrates that we should be able to scale up our system

on a constant stream of news events to both train our system

as well as to generate useful applications that are completely

unsupervised.
Across the evaluation, we noticed that in general, our

models perform surprisingly well across many domains, and

specifically, they work well in domains of particular relevance

to news, e.g. headlines, image caption and plagiarism com-

parisons (STS2016, STS2015, STS2014). Thus we should be

able to scale up both the training and graph generation of

our systems by simply continuously ingesting news events,

giving us close to state of the art performance across hyper-

parameter models for our in-domain tasks. We compare the

relative performance between our trained models in the next

section.
2) Best Trained Model: We calculated the best overall

performing trained model by simply counting which trained

models performed best across all domains (e.g. max score)

with a separate class focusing on the in-domain dataset of

news headlines only. As can be seen in Table I the wiki hyper-

parameters appear to give better overall results, both across

domains and specifically on the in-domain headline section.

Thus if we were to scale up our system, we should utilize the

wiki hyper-parameters, with an incremental performance boost

by intersecting the enwiki_dbow word vectors (intersect_wiki).
We believe that the wiki hyper-parameters outperform the

ap hyper-parameters because they essentially filter out a sig-

nificant amount of the noise within the Signal 1M News

Article dataset by using threshold parameters that act as a

high pass filter. Specifically, the min_count hyper-parameter

which only allows words that appear a certain number of
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TABLE II
PERFORMANCE ACROSS ALL SEMEVAL YEARS FOR REFERENCE MODELS

Model apnews_dbow enwiki_dbow

No. Times best at News Headlines 4 1
No. Times best at Any 16 10

times to be included in the vocabulary is greater for wiki

(20 occurrences) vs. ap (10 occurrences). This leads us to

hypothesize that the ap hyper-parameter models learn lower

quality vector representations due to the fact that the signal

within the dataset is washed out by the neural network learning

noise.
3) Best Overall Model: In the case of reference models,

it appears that the benefits and disadvantages of the hyper-

parameters are reversed (see Table II). With a large, clean

single source dataset, it seems that the ap hyper-parameters

are more likely to learn better representations of the under-

lying semantics. Another contributing factor may be that as

Wikipedia is a community generated dataset, it approximates

content more like that found in our Signal 1M Article dataset,

reducing performance.
Thus to train the system on real-world noisy data it appears

that a high thresholding hyper-parameter setting improves

performance by filtering out the noise, but on a high quality

professionally created document dataset, like the AP, learning

at a lower frequency level aids performance. However, as

apnews_dbow best represents a scaled up version of our

underlying dataset for processing news articles, albeit with far

more noise, we use that model as the semantic index generator

for our demonstration applications, as it represents the kind of

performance expected in a scaled up system.

B. Clustering Qualitative Evaluation

1) k-Nearest Neighbours: We found that in practice k-

NNs were an extremely fast and efficient way of generating

lists of neighbors. k-NNs allow creating undirected content

exploration graphs by joining semantically similar content. We

found that k-NNs were far better for content exploration tasks

for the simple fact that they are far more serendipitous. This

is because their goal isn’t to find isolated content clusters

but merely to connect related content. We found that when

combined with HAC clusters as connection cluster seeds,

we were able to select sections of the content graph for

examination, and by ordering these graphs over time, we were

able to generate approximate content propagation graphs.
2) Hierarchical Agglomerative Clustering: HAC acts com-

plementary to k-NNs and allows one to select well defined

and disjoint content clusters, rather than a continuous range

of overlapping content. We found using HAC was critical for

graph analysis applications, specifically for selecting content

clusters for investigation, and for removing a significant num-

ber of connections which at a higher level of k-NNs make

graphs difficult to read.

C. Classification Computational Performance

Fig. 2. An example of the content graph generated by connecting nearest
neighbours from the Syrian event [22].

1) Index Generation: With any system used to address the

enormous amount of news that consumers see every day, being

able to process the content rapidly is of paramount impor-

tance. Hence we perform a speed/computational performance

evaluation on the paragraph vector models to see how many

paragraphs or sentences the training system can consume, and

in turn, how quickly a single computer can generate content

indexes.
We find that we are able to scale up linearly with the size

of the dataset for the generation of paragraph vectors at both

a sentence and paragraph level, with paragraphs taking less

time (see Table III). We find that there are occasions where

there are pathological inputs, such as strings from search farms

involving thousands of tags. These can be trivially filtered out,

but are a factor when processing a large number of noisy news

articles. In general we find the performance to be consistent

at the recommended inference hyper-parameters (start_alpha

= 0.01 and infer_epochs=1000) [21].
2) Clustering: We observed that in practice the computa-

tional cost of HAC overwhelms the cost of k-NNs. As such,

we focused on the costs of HAC as it dominates clustering

costs. The reason why can easily be seen in the progression

of time taken to process the vector index (see Table IV). As

HAC with complete linkage clustering is O(n3) in complexity,

it rapidly increases in processing time as it scales up from

news events that contain dozens of articles to those that are

comprised of hundreds to thousands of articles [36]. However,

due to the fact that we process events as singular news event

clusters, with the largest events being capped in practice to a

few thousand articles, coupled with a reasonable news article

de-duplication scheme, we can essentially keep the time cost

per event to no more than a few minutes. In the future, we

would look into capping the HAC cost using pre-processing

steps such as those found in the NIFTY system to break up

the vector space [6].
3) Content Graph Visualization: In this section, we visual-

ize a select view of the content graph by connecting the nearest

neighbor sentences for the Syrian event [22] with the best

performing model. This effectively gives us a high-level view

that demonstrates the inter-relationships we exploit within our

applications to help users rapidly analyze and observe events

at both a local and global level.
As we see in Figure 2, the content, which in this case are

sentences represented by semantic vectors generated by the

ap_dbow model, naturally fall into semantically similar clus-
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TABLE III
TIME TAKEN FOR SEMANTIC CONTENT INDEX GENERATION FOR THE PROCESSING OF SENTENCE/PARAGRAPH INDEXES FOR VARIOUS EVENTS

COMPARED TO THE DOCUMENT SIZE

Events Number of Paragraphs Number of Sentences Paragraph Time (s) Sentence Time (s)

Syrian event 271 380 7.37 7.58
Amazon event 2,008 3,578 87.12 95.10
Hillary event 7,544 11,812 206.14 226.71

TABLE IV
TIME TAKEN FOR HAC FOR PROCESSING OF THE SENTENCE INDEX FOR

VARIOUS EVENTS

Events Time Taken for HAC (s)

Syrian event 0.03
Amazon event 8.78
Hillary event 320.01

ters which can be explored and analyzed. This demonstrates

at a local level what each of the connections and clusters

represents. Each edge is a weighted similarity connection

joining two nearest neighbors using k-NNs.
This is merely one example of a view on the content vectors

at a sentence level. By utilizing different combinations of

neighbors, or indeed by using HAC to select out particular

disjoint clusters to seed an analysis, we can rapidly develop

and display various views that aid the local and global analysis

of a news event. To support this, we generate exploration

graphs comprised solely of k-NNs, content propagation graphs

that utilize HAC disjoint clusters as seeds for their genera-

tion, and news source analysis graphs that aggregate content

connections at a source level to demonstrate implicit content

networks.

V. APPLICATIONS AND CASE STUDIES

Numerous applications can be developed by generating

views on the content graph. One can differentially analyze

how news is reported on an article by article basis, or scale

up to a global view to observe how sources are interrelated.

This allows users to see the fractal global context behind any

piece of content, and observe the differences and similarities

in reporting between sources. We break up the applications

into two main types, exploratory analysis and graph analy-

sis. We focus on the sentence index for the following case

studies, with vectors generated by ap_dbow, however as our

paragraph vectors are generalizable, all applications can use

the paragraph index.

A. Exploratory Analysis
Exploratory analysis is an extension of the browsing and

exploration of habits of news consumers at the content level.

We demonstrate applications of views on the content graph by

exploring applications in related content, contextual compari-

son and analyzing different reporting between articles.
1) Related Content: Related content consumption extends

related article or video paradigms used in online media sys-

tems to leverage sentence and paragraph levels. By displaying

a group of nearest neighbors of a sentence dynamically we can

Fig. 3. An example of a related content application developed using the
content graph and k-NNs allowing users to click and navigate related content
and articles by sentence for rapid consumption or to see alternative viewpoints.
In this example we use the Syrian event [22].

Fig. 4. An example of an in-context comparison application developed using
the content graph allowing users to click and read related sections and jump
to them in context for rapid consumption and comparison of alternative
viewpoints. This example uses the Syrian event [22].

show different reporting and viewpoints on the same semantic

content. The application seen in Figure 3 lists the k-NNs

neighbors for any sentence in the Syrian and WHO events

respectively, illustrating how different news sources report on

the same event, which aspects they emphasize, and how they

position the story. This allows users to click and list the related

content for any sentence, or paragraph, and just like related

content in other contexts, navigate to similar articles, and

highlight the relevant sentences.
The sentence backgrounds have their sentence transparency

set by how related they are in terms of cosine similarity.

The exploration graph is generated by thresholding the k-

NNs by a value that works well in practice, which we find

to be ~10-20, or with a cosine similarity threshold (~0.6-0.7).

The related neighbors are ordered by their similarity, with the

most similar at the top, and the least similar at the bottom.

HAC is too stringent for this application because the clusters

it produces are disjoint, leaving little room for serendipity in

the exploration of the content graph.
2) In-Context Comparison: A logical extension to related

content comparison and exploration of differential reporting

is comparing and contrasting semantically similar content be-
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Fig. 5. An example of an in-context comparison application developed using
the content graph allowing users to click and read related sections and jump
to them in context for rapid consumption and comparison of alternative
viewpoints using shading. This example uses the Syrian event [22].

tween articles within their respective contexts. The application

in Figure 4 operates similarly to the above, but rather than

navigating to the article that contains the sentence and merely

highlighting it with its neighbors, it instead converts the related

content pane into another article, with the clicked content

highlighted. This lets one compare and contrast the reporting

of a single fact within the context of two separate articles.
3) Comparative Analysis: A logical extension to in-context

navigation is comparative analysis. We essentially extend the

in-context view to every related piece of content between two

articles and then highlight each pair with the transparency set

by how related the two pieces of content are. This allows a

user to rapidly visualize how similar two pieces of reporting

are and how they are structured in a rapid and visual manner.

As can be seen in Figure 5, two articles can be immediately

compared utilizing unique colors and transparencies for similar

content, with voids in the articles indicating differences such

as additional opinions, quotes or news content. These voids

can also be immediately isolated and compared.

B. Graph Analysis

Graph analysis is a key capability for analyzing news

media. From observing how content propagates to observing

how news sources inter-relate, it is important to see at a

high level how news media interacts. We achieve this by

leveraging toolkits developed by the biomedical community,

namely Cytoscape, an open source graphing library to observe

how content propagates and interrelates between sources [19].

We also use NetworkX to generate graphs that are used by

Cytoscape [16]. Our first application is observing how a single

cluster of related content, such as a series of similar sentences

or paragraphs, changes in reporting between sources, and

our second application involves the aggregation of content

connections at a source level to observe inter-relationships.
1) Content Propagation Graphs: A content propagation

graph utilizes the clusters from the HAC system as seeds for

the generation of a content graph with the nearest k-NNs.

This shows how the system can be used to apply a "mask"

to the content graph and extract a well-connected cluster of

related content for analysis. By utilizing times taken from the

event source, we can simply organize the content by time,

allowing to generate a graph that shows content propagation

Fig. 6. An example of a propagation graph showing clusters from the content
graph using HAC with k-NNs weighted connections.

Fig. 7. Strong connections from content from the BBC with other sources
indicating a top level sourcing interaction unfolding during the Syrian event
[22].

through time. By utilizing the semantic vectors generated by

the paragraph vector models, we are able to connect together

these relations using a combination of HAC and k-NNs.
We applied this workflow to the Syrian event and selected

one cluster from the content propagation graph in Figure

6 [22]. The strength and size of the inter-relations indicate

the level of similarity between content, and each connection

indicates a nearest neighbor relation. We can extend these

connections in numerous ways, however, for this case study

we simply utilized a single neighbor to illustrate strong

connections and left to right time ordering to indicate the

temporal flow. This allows us to visualize how content changes

or is reported over time and is useful for investigating specific

sentences and paragraphs at a lower level. We extend this idea

in the next section by aggregating these similarities at a source

level to aid in news source analysis.

2) News Source Analysis: Another core application for

analyzing news media is understanding the inter-relationships

between sources. In practice, we see large amounts of dupli-

cation between sources which makes it difficult to make sense

of who sources from whom, and if they do, by how much. The

problem is made even more complicated by the fact that news

sources, unlike social media, or even other normal websites,

often refer to each other only with text with no or few direct

links.
To solve this problem our system takes the idea of im-

plicit content inter-relationships and then aggregates them at

a source level. We demonstrate an application of this by

generating a source graph which involves the aggregation

of weighted k-NN connections between sources. We then

display the results by leveraging toolkits developed for an

analogous task in biomedical science, specifically that of

looking for interrelationships between genes in DNA. We
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Fig. 8. Selection of the AP news source for the Hillary event zoomed out
[25]. As seen, it has interrelations across numerous sources. Indeed the tightly
linked center indicates the mass of near-duplicate or duplicate sources from
press agencies, with the periphery in general being more analytic reporting
like the Wall Street Journal (WSJ) or Wired.

again use the Cytoscape graphing library and NetworkX to

produce the resultant graphs [19] [16]. By leveraging software

designed to solve an analogous problem, and combining it

with ideas observed in the literature review, we generate a

powerful visualization of how news sources are related to

one another. The result of this abstraction is akin to a "river"

map of the media landscape, where the strength and direction

of the connections between sources illustrate how they are

interconnected. By ordering them over time, we can see how

news "flows" from one source to another, in turn allowing

users to make judgments as to how the news they read appears

on their screens. We observe that news often originates from

a single source, or a few original sources, which are often

hard to find. The content is then filtered through top-level

media, before being fanned out to social media, by making

connections between Rodriguez et al. (2010) as well as Myers

et al. (2012) [9] [10]. Our system can essentially resolve the

interconnections that occur at the top level. This lets users

understand which news sources are similar or different to each

other, and with which sources they are most likely "aligned"

with.
Indeed when we aggregate the k-NN single nearest neigh-

bors at a source level, we approach something as shown

in Figure 7 with the core-periphery information structure as

found in Rodriguez et al. (2010) [9]. These are likely due to

the source of external driving factors found to influence social

network diffusion as identified by Myers et al. (2012) [10].

The weight of connections can be seen in the transparency

and width of the connections between sources, letting users

understand how different sources interact with each other

during a news event.
We demonstrate the scalability of the approach by extending

it to the considerably larger Hillary event (see Figure 8).
3) Generative Art: A perhaps novel, if not directly ap-

plicable, result of producing very large graphs is often they

have a certain beauty to them. Although not a news analytic

application per se, figures such as those found in Figure 9 do

give on an appreciation for the enormous complexity of the

news media we consume every day.

VI. CONCLUSION

In this paper, we demonstrate a totally unsupervised plat-

form with the capability to reveal the semantic content and

Fig. 9. By organizing the interrelationships in a circular pattern between the
news sources for the Amazon event, we produce images demonstrating the
complexity of online news media [24].

implicit interrelated structure of news events for the purposes

of differential and network analysis at a fractal level. Through

an analysis of the field from a wide variety of perspectives,

we focused on the analysis of semantic content propagation,

that was both generalizable and useful at both paragraph

and sentence levels. By combining document vectors with

clustering algorithms at an index level on every aspect of

content within all the articles of a news event, we generate

views on the implicit content graph to support a range of end-

user applications.
We address issues of scalability and generalizability through

the use of high-performance document vector models and

illustrate the robustness through evaluation on existing online

news datasets showing the diversity and full end-to-end ca-

pability. We demonstrated this capability on the Signal 1M

News Dataset, which despite having numerous quality issues

endemic to online news media, with numerous duplications,

mixed in code and poor formatting, with a smaller coverage

set, we were able to rapidly approach state of the art for in-

domain datasets. We demonstrate this with an evaluation of

multiple years of SemEval STS English tasks against reference

models.
We demonstrate the effectiveness of document vector mod-

els at producing vector content indexes from news event article

clusters found in real-world systems. By leveraging existing

news event clustering systems used in practice, we were able

to develop several novel applications. We did so by generating

implicit graphs on the semantic content indexes by using

combinations of HAC and k-NNs. We found in practice that

k-NNs operated exceptionally well in exploration applications

and differential reporting, whilst HAC was good at extracting

out salient groups of entities for analysis.
We demonstrated the platform through support for both

exploration analysis (differential reporting) as well as higher

level graph analysis (source analysis). Exploration analysis

was aided by k-NNs in multiple demonstrator applications.

We then demonstrated how by aggregating k-NNs and HAC

for salient entity extraction, we were able to develop novel

visualization into source to source interactions within a news

event. In doing so, we are able to give novel insights into how

online news propagates all around us.
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