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Abstract—With the growing computational complexity of sci-
ence and the complexity of new and emerging hardware, it is time
to re-evaluate the traditional monolithic design of computational
codes. One new paradigm is constructing larger scientific compu-
tational experiments from the coupling of multiple individual sci-
entific applications, each targeting their own physics, characteris-
tic lengths, and/or scales. We present a framework constructed by
leveraging capabilities such as in-memory communications, work-
flow scheduling on HPC resources, and continuous performance
monitoring. This code coupling capability is demonstrated by a
fusion science scenario, where differences between the plasma
at the edges and at the core of a device have different physical
descriptions. This infrastructure not only enables the coupling
of the physics components, but it also connects in situ or online
analysis, compression, and visualization that accelerate the time
between a run and the analysis of the science content. Results
from runs on Titan and Cori are presented as a demonstration.

I. INTRODUCTION

Code coupling is widely used in multi-scale and multi-

physics studies. Code coupling, also known as coupled simu-

lation or co-simulation, is a technique in the area of scientific

computing in which multiple models (or applications) are run

concurrently, working together in an orchestrated fashion to

create a unified result. Typically, the applications exchange

data with one another multiple times as the run progresses. The

complexity of coupled applications can vary. Each application

can be as simple as a one-off application (e.g., plotting,

diagnosis, etc.) or as complex as a large-scale multi-process

parallel simulation running on a supercomputer in which data

needs to be exchanged concurrently with many different appli-

cations. Organizing the logistics of such complex data flows

between multiple parallel applications has been a challenging

task for users.

In supporting these coupled workflows, our focus is on run-

ning code coupling in large-scale high performance computing

environments, such as DOE leadership computing facilities

(LCFs) like Titan in ORNL, Cori in NERSC, and Theta

in ANL. Running coupled simulation is non-trivial on those

platforms.

Going forward, the complexities of dealing with the novel

hardware and deep memory and storage hierarchies for exa-

scale and post-Moore’s-Law computing mean that it is even

more important to think about ways to deal with the complex-

ity of the software development process. If the code coupling

paradigm supports flexible and high-performance connections

between independently developed executables, then it allows

for a larger team of specialists to collaborate without everyone

working within a single mammoth code base. This goal, if

achieved, would have a broad impact across in situ analysis

and reduction, online analysis, and the construction of large

coupled-physics science codes.

The ability to run multiple applications cooperatively can

be accomplished in a variety of ways. MPI is the de facto

standard in high performance computing for running multi-

processes/multi-programs. However, enabling communications

between different applications outside of the MPI global

communicator (MPI_COMM_WORLD) needs extra steps; users

need to modify existing code to avoid the use of global

communicators (e.g., by using MPI_Comm_split). If users

want to run an application out of the box which depends

on the use of a global communicator, MPI will be unusable
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for code coupling. Extra services, libraries, or extensions like

MPI COMM spawn may be required to manage such intra-

communications, such as workflow systems, database services,

or pub-sub systems.

Programming coupled systems is hard enough at current

scales. With increases in hardware and code complexity,

the software development cycle gets even harder. The com-

munity needs tools and practical examples that provide a

separation of concerns between accuracy, correctness, and

performance of the coupling framework.

Our framework provides a state-of-the-art experience for

developing and executing large-scale coupled simulations so

as to directly address this requirement. One highlight of the

framework is relative ease of use. After users have achieved

correctness with basic file-based I/O to couple, we aim at re-

quiring virtually zero effort for users to convert their programs

to the performant, low-latency, in-memory coupling workflow.

Besides the changes in data flows, running coupled work-

flows requires some extra services. For example, users need

to monitor progress and capture performance information to

identify bottlenecks. Data compression may be needed to

help move data around the system efficiently while managing

accuracy. On-line data reduction and visualization mechanisms

are required to extract contents of data while the simulation

is running. It is critical to provide these services without

significantly increasing users’ management burden.

Our framework provides an easy-to-use integrated environ-

ment with extra services users can use: performance monitor-

ing, status updates, and online data analysis. Specifically, we

build our system upon a set of existing technologies developed

to address the complexities of achieving high performance

for modern HPC environments. Leveraging the Adaptable I/O

System (ADIOS), the Savanna/Cheetah runtime from the Exa-

scale Computing Project (ECP), the MGARD and SZ compres-

sion libraries from ECP, the VTK-m visualization toolkit from

the DOE Advanced Scientific Computing Research program

and ECP, and the TAU performance monitoring system, this

state-of-the-art code coupling system and its demonstration

with the Whole Device Modeling fusion application (WDM)

showcases a way forward to address a much wider set of

future scientific code development opportunities. By focusing

on this particular science application that is already a target for

scaling to the future exascale systems, we hope to demonstrate

the programmability and reusability of this approach. We have

highlighted in each section below the capabilities and practical

aspects of the coupling system’s components that can be

used more broadly. This demonstration system has allowed

us to address the software engineering challenges of working

with a diverse set of collaborators and specialists, using well-

defined interfaces and efficient code coupling technologies to

piece together a larger and more comprehensive computational

experiment.

Many scientific workflow systems, such as Parsl [1], Ke-

pler [2], Pegasus [3], Swift [4], and Taverna [5], include

direct support for launching multiple applications. However,

in general, these workflow systems do not facilitate commu-

nication between those applications, which is critical in code

coupling to share and synchronize data as the applications

progress. Another available mechanism for coupling multiple

applications is to use a messaging system, such as pub-sub

systems, ActiveMQ, ZeroMQ, etc. These systems are tuned

for increasing network performance. Our solution allows both

file and network I/O, enabling the seamless transition between

disk-based I/O and memory-/network-supported I/O for the

best software engineering experience. Users can start develop-

ment with file I/O for debugging and verification and switch

to a code coupling workflow instantaneously when they need

to perform large-scale multi-scale/multi-physics studies. In

addition, our framework provides an integrated environment to

optimally utilize available resources in HPC environments and

to perform other data related operations such as compression

and analysis.

In this paper, we present techniques for supporting science

use cases involving coupled simulations, and share our expe-

riences in the development of needed tools and the integration

of those tools for use for scientists. In summary, the paper

makes the following contributions:

• Methods for the easy coupling of different executables

(services) along with plug-ins that provide state-of-the-art

I/O techniques. Especially, supporting transparent switch-

ing of data flows from file-based I/O, including NVMe

and burst buffers, to memory-based data exchange, such

as RDMA.

• The ability to allow for both large-scale, data-intensive

computations running at scale and large-scale collabora-

tive experiments/observations.

• The ability to compose and execute end-to-end, large-

scale analysis for near-real-time feedback using ADIOS

services.

• The capability to transparently reduce the amount of data

output from a simulation and check its accuracy.

• The ability to compose multiple services on a HPC

resource and place the right processing at the right place.

• The ability to provide performance feedback, so we can

understand the cost of the LCF simulations.

The technical achievements described are driven by both the

computational fusion science requirements and the changing

nature of the HPC software development process. A preview of

how these technologies interoperate can be seen in the desktop

shot in Fig. 1. In order to fully describe the set of innovations,

we start by discussing the motivating challenges of simulating

a complete fusion Tokamak device in § II. Then we present

more technical depth on the components of the code coupling

infrastructure in § III, including discussions of lessons learned

in § IV. Finally, we conclude in § V with a look toward the

next steps for the fusion application and for broader impact

on computational science at scale.
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Fig. 1. A dashboard style visualization of the online information produced
during a representative run, including the raw outputs from applications,
physics diagnostics, performance and data compression monitoring, and
physics data visualization.

II. BUILDING A MODERN FUSION SIMULATION

ENVIRONMENT

In this section, we consider code coupling applied to

cutting-edge fusion science simulations. Examples of this kind

are the primary motivation for the work presented in this

paper. Such simulations have diverse requirements on both

the domain science and computer science sides. In § II-A,

we contextualize the fusion science application, then provide

further details about the physics applications in § II-B. Finally,

in § II-C, we present the concrete set of coupled fusion

simulations we have worked to support.

A. Using Code Coupling to Support Whole Device Modeling

For decades, scientists and engineers have been striving to

use tokamak reactors to harness fusion energy. Tokamaks use

strong magnetic fields to confine plasmas, creating conditions

where temperature and density are high enough for nuclei to

fuse and release energy. ITER1 will be the largest fusion device

ever built, with the goal of demonstrating net power output

from a fusion reactor for the first time. However, for ITER or

other future tokamaks to be successful, there is a growing

urgency for a framework to predict with high fidelity the

fusion performance of such machines. These simulations guide

how tokamaks should be designed and operated to maintain

energy confinement and maximize the life of the machine.

Unfortunately, computational whole device modeling is very

challenging. The interplay of several different length and time

scales makes simulating the entire tokamak computationally

demanding, even in high-performance environments.

Code coupling is an appealing strategy to address these

challenges. Coupling separate codes that have been specially

optimized for specific spatial regions or for specific types of

physical phenomena could provide a more performant tool

than a single code simulating the physics of the whole device.

The High-Fidelity Whole Device Modeling program within the

Exascale Computing Project (ECP) is pursuing an approach of

this kind. The first physics coupling under investigation by the

1https://www.iter.org/

team is a spatial core-edge coupling, where two independent

applications are run and tightly coupled. Though both are gy-

rokinetic applications for simulating tokamak microturbulence,

one has been optimized for the central core region of the

device and the other has been optimized for the outer edge

of the tokamak. As the WDM project matures and the physics

of core-edge coupling is better understood, other multi-physics

codes will be coupled-in to complete the whole-device model,

such as components for modeling high-energy particles, radio

frequency heating, magneto hydrodynamics, etc.

There are numerous technical mathematical issues in whole

device modeling that will need to be tested and verified for

stability. One is interpolation between different grid types. The

core region of a tokamak is well-suited to be modeled on a

regular grid, but this is not true at the edge. Similarly, certain

Fourier-space representations are valid in the core, but not

appropriate for the edge. Rather than needing to adopt a single

large code base to support the various modules, it is often

more convenient to use a service-focused environment, with

well-defined interfaces used to couple the components, so each

individual service can be developed and debugged more or less

independently.

Coupled modules need not be limited to physics-motivated

ones. A coupling-based framework is also useful for enabling

supporting technologies that help scientists understand their

applications. For example, alongside the simulations, one can

deploy visualization services or in situ analysis to study how

the coupling is progressing or services to monitor whether

good performance is being achieved. These are especially

useful in debugging phases during early studies of a new

coupling’s stability.

Critical Observation: Using different, specialized codes in

regions may give better performance, but the representation

differences (real-space vs Fourier, alternate meshing, etc.) can

cause stability difficulties, both mathematically and computa-

tionally.

In Practice: In contrast to the points below, solutions for

these issues will be problem-dependent, and thus are beyond

the scope of our middleware implementations. For subsequent

sections we will highlight the specific technologies employed

and provide pointers for prospective users.

B. Modeling and Implementing the Coupled Physics

The first two applications to be coupled in the WDM

project are GENE [6] for the core and XGC [7] for the

edge. Both codes solve for the evolution of the distribution

function f of each plasma species according to the same

5D gyrokinetic Boltzmann equation. Brief descriptions that

explain each code and offer an introductory sense of their

differences are included in § II-B1 and § II-B2, with comments

regarding their coupling in § II-B3; readers are referred to the

provided GENE and XGC publications for thorough details

concerning the codes.
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for step in time steps:

for stage in Runge-Kutta stages:

Core Edge
Charge density

(ADIOS)

Edge

Self-consistent solve

Core
Global field

(ADIOS)

Fig. 2. Prescription for kinetic strong coupling of core and edge fusion
simulation applications, using a self-consistent global field solve, with needed
communication facilitated through our ADIOS-based framework. Here, GENE
is the core executable and XGC is the edge executable. See § II for further
physics details.

1) GENE: GENE is an Eulerian gyrokinetic code that

solves the Boltzmann equation using the method of lines.

The distribution function is first discretized on a fixed grid

in phase space and then numerically integrated. To exploit

the anisotropy of the fluctuations, GENE employs a magnetic

field-aligned coordinate system to represent the fluctuation

fields in configuration space. The binormal direction y is

Fourier transformed and because of the tokamak axisymmetry,

linear modes have fixed Fourier mode ky , which is related to

the toroidal mode number n. GENE makes use of the so-

called δf splitting technique, expressing the actual distribution

as the sum of an equilibrium part f0 (a local Maxwellian is the

XGC-coupled context) and a fluctuating component f1, which

is numerically evolved by the code.

2) XGC: XGC is a full-f/total-f/δf Particle-in-Cell (PIC)

code that can simulate the whole plasma volume, including

the region near the outside of the tokamak volume where the

magnetic field lines are open instead of closed like in the

core. Since this region is included in the calculation, magnetic

field-aligned coordinates cannot be used due to singularities at

a location called the X-point. Instead cylindrical coordinates

are used to allow for a general representation. The torus is

discretized along its axis of rotation into poloidal planes, using

the same unstructured triangular mesh for each plane. This

meshing allows for the representation of complex diverted

geometries and wall structures. The node points of the poloidal

mesh follow the magnetic field lines to minimize interpolation

errors. In general, XGC’s background distribution function

slowly evolves over time, but the evolution can be forced to

zero for consistency with GENE’s f0.

3) GENE-XGC Coupling: An important aspect of the code

coupling between XGC and GENE concerns the consistency of

the fields with respect to the particle charge density. To ensure

consistency, the coupling must be made at the level of the

gyrokinetic distribution function, not only the charge or only

the fields. Details of the kinetic coupling are beyond the scope

of this paper but are fully detailed in Dominski et al. [8]. The

computational aspects of coupling were implemented using

two independent XGC executables: one for the core and one

for the edge. The kinetic turbulence coupling model in the

XGC-XGC study is general (except that grid interpolation was

Fig. 3. The Whole Device Modeling fusion application (WDM) workflow.

not needed), and the same kind of approach is now being used

in XGC-GENE coupling, which we present in this paper. Fig. 2

shows the data flow between the applications, implemented

in our framework. At each stage of the Runge-Kutta time

integrator, charge density information is exchanged between

the codes with ADIOS, prior to solving and sending-back

the global field equation self-consistently. Similar ADIOS-

based data movement between executables will be exemplified

and further explained in § III along with the connection to

other support services with our framework, such as in situ

visualization and analysis.

C. Assembling the Components
Fig. 3 is the workflow of a representative live demonstration.

We ran the coupled XGC-GENE simulations on the OLCF’s

supercomputer Titan, along with 9 other online analysis and vi-

sualization applications in parallel, using 3,072 MPI processes

for XGC, 1,024 MPI processes for GENE, and 1 process

for each analysis/visualization service. and fuller descriptions

will be given in § III, where we focus on the details of the

framework used for the demonstration.
All applications were independently developed and first

tested with file-based data transport, then switched to use

memory-based I/Os during the demonstration for better perfor-

mance. The framework enables a transparent transition from

one to the other and also provides performance monitoring ca-

pabilities to users in either case. Fig. 1 demonstrates the online

information produced during a representative run. Though ex-

haustive performance studies are not the focus of this paper, we

will make a few brief comments. We compared the approach

of writing everything to the parallel file system versus using

in-memory coupling. For an average total computation time

of 680s, writing files took an average of just shy of 7s (a

little more than 1% of total time) with substantial variability.

In-memory coupling, without any additional tuning, reduced

this to 1.7s (or a 0.25% decrease in run time).

Critical Observation: The software framework allows for

the rapid integration of different software components through

well-defined interfaces, with communication costs comparable

to what would be expected for raw rewrite as a monolithic

code.
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Fig. 4. ADIOS service composition. Taking a deeper look at some of the spe-
cific connections in Fig. 3, we see how the ADIOS read and write invocations
can be connected by a number of different service implementations.

In Practice: All components leverage the ADIOS API to

obtain easily switchable access to different communication and

I/O transports through a common interface. ADIOS is mature

software available for download at https://www.olcf.ornl.gov/

center-projects/adios/.

III. COUPLING FRAMEWORK AND IN SITU PROCESSING

Many HPC scientific applications involve complex work-

flows. The workflow we have presented in Fig. 3 and orches-

trated using our framework is built upon several technologies.

Here we describe those technologies and their interactions in

our environment. Our goal is to create an HPC environment

that is both flexible and performant for scenarios with many

coupled components. Our implementation is able to run the N
applications in parallel, with flexible I/O abstractions provided

by ADIOS as a backbone for moving data between them. We

leverage state-of-the-art HPC staging software, parallel visu-

alization infrastructure, compression kernels, and performance

monitoring tools, as well as compose the workflow within a

runtime system that allows one to deploy the job in different

configurations.

The section is organized as follows. In § III-A we discuss

our use of ADIOS for data movement, with the supported

staging services highlighted in § III-B. § III-C focuses on the

visualization technology and § III-D turns to the compression

algorithms used in the workflow. Supported performance mon-

itoring is described in § III-E. Finally, § III-F concludes with

the workflow composition and runtime deployment software.

A. Leveraging Flexible I/O Abstractions

Our approach for supporting code coupling relies on three

primary functionalities related to the I/O software:

1) an abstract interface so users can easily switch between

file-based (for persistence when debugging/checking) and

staging-based (for higher throughput) I/O,

2) services to manage the staging areas,

3) online analysis routines to apply to the data in motion.

We leverage diverse ADIOS I/O capabilities to help satisfy

these needs. ADIOS [9] is an I/O framework designed primar-

ily for scalable and portable performance on high performance

computing platforms. As detailed by the authors of [9], there

is a layered software stack internal to ADIOS that allows a

user to be isolated from the details of a particular memory-to-

memory or storage optimization technique. As seen in Fig. 4,

the connections between the components occurs at different

scales and frequencies, using different transport properties,

but always using the same read and write interface in the

exectuables. For example, when users need to run on a

parallel Lustre file system, they can leverage a file-based

method optimized for Lustre. If users want to run multiple

applications in a synchronized fashion, they can easily select

a memory-based staging method. Staging is a technique used

to buffer data in memory alongside application data, or to

move data to an additional set of staging nodes. It can provide

a performance improvement compared to the use of files to

hold intermediate data, which can incur high costs associated

with I/O operations. The ADIOS file vs. staging abstraction

provides a convenient way to develop and run coupled simula-

tions. Once each application can independently read and write

ADIOS files, users can seamlessly switch to using one of the

staging methods in the coupled application, without changing

the interface (i.e., without any code rewriting).

We also leverage ADIOS plug-ins for online data trans-

formations. For example, users can compress their data and

collect statistics about compression performance while data

is in motion and before it is written to disk. Compression

methods implemented in ADIOS include lossy compression

algorithms such as MGARD, SZ, and ZFP, and lossless

techniques such as LZ4, GZIP, and SZIP. The Z-checker [10]

system provides for collecting compression-related statistics

and other diagnostics.

B. Staging services

ADIOS currently supports a wide range of staging ser-

vices. However, here we focus on two main staging services,

called DIMES and FlexPath. While DIMES [11] is a method

for memory-to-memory data transfer based on the hardware

supported remote direct memory access (RDMA) protocol,

FlexPath [12] is based on a general-purpose event transport

middleware layer called EVPath [13]. Further descriptions for

each follow below.

The best choice for users will depend on various factors

in the workflow. DIMES will perform well in systems with

RDMA-based interconnects, though it provides a fall-back

mechanism using a general-purpose protocol (TCP/IP) when

RDMA is not available. FlexPath supports a wide-range of

protocols, which can be used easily for remote site connections

(e.g., off-site remote visualization). While DIMES is based

on a client/server model that requires extra server services to

coordinate data flows, FlexPath uses conventional peer-to-peer

style communications with no extra processes or management

services.

1) DIMES: DIMES [11] is built on an RDMA-based

asynchronous memory-to-memory data transport layer called

DART [14]. DART includes a predefined set of communication

primitives that takes advantage of RDMA [15] technology and

the underlying interconnect network to provide low-latency

and high-throughput data transfer capabilities. Through pro-

viding high-level data write/read abstractions, DIMES lever-

ages DART and its capability of memory-to-memory coupling,
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to create a coordination framework that allows different HPC

application codes to exchange data asynchronously at runtime.
The DIMES framework is built on a peer-to-peer (P2P)

model, where writers hold their data in their own buffer area

(i.e., in writer’s memory space) and then readers connect to

read data directly from the writer’s memory. Before establish-

ing such P2P connections, they need to consult with the servers

which maintain only meta data (i.e., the location of data). The

DIMES server processes are executed on a staging area that

is built using a set of dedicated computing nodes, separate

from where workflow computations are performed. In order

to ensure data consistency, locking mechanisms are provided.

DIMES provides infrastructure for the various simulation,

analysis, and visualization components to share their data and

allows data access in an asynchronous manner.
2) FlexPath: The FlexPath tranport [12] in ADIOS takes

the I/O interface offered to the application and implements

process-to-process connections using a Publish/Subscribe

paradigm. In practice, this means that read and write op-

erations in the two applications are treated as message ac-

cess or submission (respectively). FlexPath is built upon

the EVPath [13] library, which offers an infrastructure for

constructing advanced messaging services, including data type

management, dynamic routing overlays, and the ability to

multiplex over different types of interconnect and networks.
As a result, FlexPath is a very configurable, peer-to-peer

system for ADIOS that can leverage both RDMA interconnect

transports and IP-based networking protocols (TCP, reliable

UDP, multicast, etc.). There is an initial rendezvous operation

that must occur so that the readers and writers can find one

another; the EVPath-level connection token allows for both

sides to advertise all of their available connection opportunities

on systems where there are multiple options. Once connected,

all subsequent configuration and decisions, such as different

selection criteria within ADIOS read operations, are handled

through a scalable peer-to-peer protocol.

Critical Observation: Leveraging staging technologies makes

it easier for an end user to gain access to advanced networking

and interconnect technologies such as RDMA.
In Practice: FlexPath and DIMES enable easy-to-use interap-

plication communication. The ADIOS Manual (available at

https://www.olcf.ornl.gov/center-projects/adios/) contains ex-

tensive information about enabling these staging services.

Once enabled, codes using the ADIOS API can be switched

to use these transports by a simple modification to the ADIOS

configuration file.

C. Visualization
Visualization plays an important role in both post-hoc un-

derstanding of the science and in runtime physics diagnostics

for the coupled science simulation. Visualizing data while it is

in memory, called in situ visualization [16], [17], allows users

to display these diagnostics and to monitor simulation data

without interfering with the running simulation. In situ visual-

izations are performed for a number of different components

Fig. 5. Overview of the construction of a third party visualization service
using ADIOS interfaces.

of our coupling demonstration including: derived physical

quantities like flux, simulation mesh data, system performance

data, and compression performance/statistics. Examples of

these were shown in Fig. 1.

The key aspect of in situ visualization is to maintain a low

profile in I/O for accessing data during a running simulation

and to perform visualization functions as efficiently as possi-

ble. As shown in Fig. 5, we integrate these service interfaces

directly with ADIOS to achieve efficient I/O performance for

accessing data from simulation. In addition, users can make

use of the ADIOS VisSchema [18] to provide data model

semantics describing the ADIOS data stream.

For high performance visualization, these visualization ser-

vices are built using the Visualization Toolkit for multi- and

many-core architectures (VTK-m) [19]. VTK-m provides the

analysis and rendering for our workflow. Originally created

to address feature gaps in the well-used VTK library [20],

VTK-m primarily provides visualization algorithms with a

fine degree of concurrency that behave well on modern pro-

cessor architectures like multi-core CPUs and GPUs. Like

its namesake, VTK-m provides both a collection of ready-

to-use visualization algorithms and a framework to simplify

the addition of new algorithms, port these algorithms across

various devices, and integrate these algorithms together. VTK-

m’s flexible data models and portability simplify its integration

into the workflow.

Critical Observation: All simulation output requires some

analysis and visualization. Accelerating the time to delivery

of these results can be made cheap, thereby enabling higher

quality runtime diagnostics and faster time to science.

In Practice: VTK-m is available for download at http://m.vtk.

org. Flexible and reusable visualization and analysis compo-

nents built with VTK-m can be easily connected to an ADIOS-

based workflow using the ADIOS VisSchema mechanism.

D. Compression

To handle large volumes of data, data compression is an

active research and development area in scientific data. Unlike

the traditional lossless data compression, lossy compression is

getting attention, specifically, but not restricted to, to handle

data streams for online processing while data is in memory.

We integrate state-of-the-art lossy compression algorithms,

MGARD and SZ, with ADIOS and provide an integrated

environment to compress data while data is in memory.
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1) MGARD: MGARD is a lossy data compression algo-

rithm for multidimensional scientific data inspired by multigrid

methods [21], [22], which frequently occur in the solution of

differential equations on regular domains and in timestepping

applications [23]. In particular, the approach permits the use

of nonuniformly spaced grids, which can prove problematic

for many types of data reduction methods. Such grids arise,

for example, in the simulation of turbulent flows, where

Chebyshev nodes are often used.

Fig. 6. Recursive decomposition and recomposition steps in MGARD.

An important feature of MGARD’s approach is the provi-

sion of guaranteed, computable bounds on the loss incurred

by the reduction of the data. Many users are leery of lossy

algorithms, and will only consider using them provided that

numerical bounds on the pointwise difference between the

original and the reduced datasets are given. Accordingly,

MGARD provides the user with techniques for bounding the

loss measured in the max norm [24]. These bounds are realistic

in the sense that they do not significantly overestimate the

actual loss. The resulting loss indicators are used to guide the

adaptive reduction of the data so that the reduced dataset meets

a user-prescribed tolerance or memory constraint.

In addition to providing realistic error bounds, MGARD

also provides the user with the possibility of generating

partial decompressions. This is illustrated in Fig. 6, where the

decomposition step consists of successively splitting the input

u into Δ�u and Q�−1u where � ∈ [0, L]. Here L corresponds

to the maximum number of refinements (levels), and Q� is

the projection operator to level �. The decomposition then

continues by splitting Q�−1u while Δ�u can be sent to storage.

Recomposition in MGARD mirrors the decomposition, so Q�u
is repeatedly constructed from Δ�u and Q�−1u. Hence the user

can choose to perform a partial decompression by deciding

on the number of decomposition cycles. This is possible as

(Q�u)
L
�=0 is a sequence of representations of u with increasing

fidelity.

2) SZ: SZ [25], [26] is a state-of-the-art, error-bounded

lossy compressor for significantly reducing the data size of

extreme scale scientific simulations. SZ compression contains

three fundamental steps: (I) value prediction on each data

point for the sake of decorrelation (as illustrated in Figure 7),

(II) linear-scaling quantization surrounding the predicted value

with equal-sized bins (as illustrated in Figure 7), and (III)

variable-length encoding used to encode the integer indices

of the bins. In step I, SZ performs a single-dimensional or

multi-dimensional prediction for each data point based on its

Fig. 7. Illustration of Step I and II in SZ compression for 2D data.

neighbor data points (the dimension of the prediction depends

on the dimension of the data set). A set of consecutive bins

with each twice the error bound in length are constructed in

Step II, and the index of the bin containing the real value

of the data point (called the located bin) are encoded by a

customized Huffman encoding in step III. Steps I and III

are both lossless procedures, which means that these two

steps will not introduce data loss during their corresponding

decompression steps.

In order to guarantee that the difference between the original

data value and the decompressed value is always bounded

within the user-specified error bound, SZ performs the data

prediction based on the decompressed values instead of the

original data values. As shown in Figure 7, in order to

strictly respect the error bound for the compression of data

point (i,j), we need to predict its value by the decompressed

values x′′(i−1,j), x′′(i,j−1), and x′′(i−1,j−1) rather than

the original values x(i − 1, j), x(i, j − 1), x(i − 1, j − 1).
If the predicted values are too far from their real values,

they are treated as unpredictable data points and compressed

by truncating the insignificant bits of their IEEE 754 binary

representations according to the required error bounds.

SZ provides multiple ways to control the lossy compression

errors for users on demand: (1) absolute error bound is a

constant value uniformly applied onto each data point; (2)

relative error bound is a ratio value compared with each data

point’s value for the error control (i.e., the larger the value,

the larger the compression error of that data point); (3) peak

signal-to-noise ratio (PSNR) is a statistical metric to evaluate

the overall compression error and SZ allows users to compress

data by a given PSNR. SZ also allows combining the above

different types of error bounds in the compression to fit diverse

data sets more flexibly.

3) Z-checker: Z-checker [10] is an efficient toolkit/library

for assessing the lossy compression quality of specific datasets.

Compared to the previous version of Z-checker [10] that can

only work with an offline mode (performing offline analyses

based on existing data files), the new version coupled with

the ADIOS framework supports an online execution mode.

The complete design framework of Z-checker is illustrated

in Figure 8. With online execution support, users can run Z-

checker with HPC simulations in parallel, such that the com-

pression quality of each snapshot/timestep can be dynamically
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Fig. 8. Design framework of Z-checker with online execution mode.

observed at runtime. It can help compression developers and

application users deeply understand the impact of data changes

on compression quality.

By integrating the online interface of Z-checker, our cou-

pling framework supports a rich set of parallel analysis met-

rics related to lossy-compression quality, including 1D auto-

correlation, 3D auto-correlation, distribution of compression

errors, spectrum analysis based on Fast Fourier Transform

FFT), structural similarity index (SSIM), KS-test, peak signal-

to-noise-ratio (PSNR), compression/decompression rate, com-

pression ratio, entropy, etc.

Critical Observation: In lossy compression, there is trade-off

between the fidelity of the reconstructed data and the degree

of compression. Users need detailed diagnostic information to

understand these choices between methods and parameters in

order to achieve their overall goal.

In Practice: A variety of compression routines have been

incorporated into the ADIOS Transformation Layer. Users

should follow the ADIOS build instructions to link specific

compression routines for use at runtime. The Z-checker toolkit

is available at http://github.com/CODARcode/Z-checker.

E. Performance monitoring

One of the goals of the coupled application was to provide a

performance “dashboard” for the user, in order to monitor the

distribution and general characteristics of the overall workflow.

Through such an interface, the user could identify whether the

allocation was being used efficiently and/or identify potential

problems such as out-of-memory errors or load imbalances,

address them if possible, and potentially correlate those be-

haviors with the runtime state. To provide application per-

formance measurement, we integrated the TAU Performance

System [27], which contains a broad set of utilities and mea-

surement libraries for parallel applications. Global, runtime

access to performance information from multiple distributed

codes requires an aggregation infrastructure, and for this

project we integrated SOSflow [28], [29] – a flexible, scalable,

and programmable framework for observation, introspection,

feedback, and control of HPC applications.

The TAU (Tuning and Analysis Utilities) Performance

System gathers performance data from parallel applications

through several methods, including source instrumentation,

binary instrumentation, profiling interfaces, runtime callbacks,

and periodic sampling. For the purposes of the integrated

performance monitoring, the XGC and GENE applications

were each linked with the TAU measurement library – no

other modification to the binaries was necessary. TAU uses

the MPI standard profiling interface [30] to provide instru-

mented measurement of communication events within each

of the applications. In addition, version 1.13 of the ADIOS

library provides a callback API to allow development tools

to monitor ADIOS calls without the need to instrument or

modify the ADIOS library. TAU has integrated support for

the ADIOS callback API and can measure the communication

between XGC and GENE as the interpolation boundary is

exchanged between the applications, as well as when each

of the applications writes out checkpoint data, analysis data

or any other output using the ADIOS library. TAU is also

integrated with PAPI [31], which provides portable access to

hardware counters. The measurement was configured to cap-

ture time spent in application code, floating point operations,

and monitor the memory high water mark (HWM) and resident

set size (RSS). TAU was also configured to integrate with

SOSflow.

The Scalable Observation System (SOS) performance model

used by SOSflow allows a broad set of online and in situ capa-

bilities including remote method invocation, data analysis, and

visualization. SOSflow can couple together multiple sources

of data, such as application components and operating envi-

ronment measures, with multiple software libraries and perfor-

mance tools, efficiently creating holistic views of performance

at runtime. For this integration, SOSflow was configured to

aggregate data from all of the application processes over a

network of listener and aggregator daemons organized as a

broad, shallow tree. For the large scale execution, 256 listeners

and 4 aggregators were used to collect the TAU performance

data. An analysis client was launched on the same node as

one of the aggregator processes. This client queried each of

the aggregator daemons to extract the performance data from

the most recent time period, as it became available. This data

was then staged as ADIOS data to be visualized in the user’s

performance desktop, as shown in Fig. 1.

Critical Observation: Having performance information en-

ables detecting and identifying runtime problems which typ-

ically are difficult to anticipate or to observe in a complex

computing environment with coupled applications.

In Practice: TAU is well-established, and available for

download at http://www.cs.uoregon.edu/research/tau/home.

php. SOSFlow may be found at https://github.com/cdwdirect/

sos flow. We recommend that users contact the authors of [28]

for assistance in integrating SOSFlow with existing workflows.

F. Scalable workflow management

Managing the runtime execution of coupled workflows can

become quite burdensome. Several applications may need
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to be launched, each with its own input parameters and

parallelization setup. Different architectures or schedulers may

require different submission syntaxes. Resource provisioning

between the applications may have a significant impact on

performance, and how to achieve the best load balance is not

necessarily obvious.
We leverage the Savanna runtime infrastructure [32] in our

experiments to orchestrate the complete workflow consisting

of the two simulation applications and multiple analysis and

visualization components. Savanna provides a way to manage

complex workflows consisting of multiple coupled compo-

nents, with the objective of exporting a comprehensive list of

data events and associated actions that can be taken dynami-

cally. Savanna provides a Python-based specification that can

be used to define an experiment. An experiment specification

consists of a definition of all application components, how to

launch them, and the dependencies between them. Savanna

works on several leadership class supercomputers, including

Titan. Performance of the runtime components was generated

at runtime using the SOSflow library and visualized using

VTK-m.
Application scientists can use Savanna to create an abstract

workflow specification that is independent of the underlying

system. The specification describes the different codes that

compose the workflow and how they interact with each other.

Savanna provides native support for all the tools we have

described in this paper including ADIOS, DIMES, FlexPath,

TAU, and SOSflow. Different I/O options can be explored such

as turning on transforms or staging. Parallelization settings (the

number of MPI processes, threads, etc.) can be adjusted and

nodes can be configured to co-located multiple applications

if desired. Savanna automates actions such as spawning the

correct number of DIMES servers and SOSflow daemon

processes depending on the configuration of all these workflow

components and determining the minimum number of nodes

to run the job.

Critical Observation: Executing coupled applications and

analysis components requires more sophistication than launch-

ing a monolithic MPI code. Support from workflow environ-

ments to make composition and deployment easier for end

users is a requirement for broader adoption.
In Practice: The Savanna runtime is currently packaged to-

gether with the Cheetah exascale codesign testing framework.

It is available at https://github.com/CODARcode/cheetah.

IV. RESULTS AND DISCUSSION

We present here some of the performance details from the

runs described in § II-C. Each piece represents a specific set

of performance measurements on either the science data or

on the infrastructure of the framework. Other than the staging

performance survey, the others are drawn from Fig. 1.
Staging performance: Given the emphasis in this work

on using memory-to-memory coupling technologies within the

ADIOS I/O framework, it is natural to ask what the perfor-

mance comparison is between traditional ADIOS files and an

ADIOS memory-based method, DIMES. By using the XGC-

GENE coupling case, presented in § II-C, we measured the I/O

time spent in XGC for writing field data and reading density

data from GENE and compared i) the file-based method

(i.e., writing/reading file objects through parallel filesystem)

and ii) in-memory coupling with the DIMES method (i.e.,

writing/reading in process memory) on Titan at ORNL. We

also performed the same experiment on Cori at NERSC, where

we could also evaluate file coupling by way of the DataWarp

Burst Buffer system [33].
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Fig. 9. Comparison of the performance improvements with different coupling
methods, normalized against the file-based method which appears at 100%.
On Cori, we also measured the relative improvement of file-based coupling
with the DataWarp system.

In Fig. 9, we present the percent improvement in I/O

time relative to the file-based methods on Titan and Cori. We

observed about 3.8x and 12.7x writing performance improve-

ment and 5.7x and 21.5x reading performance improvement

with the in-memory method on Titan and Cori, respectively.

We also observed 9.4x and 19.7x improvement with the file-

based method on the Cori DataWarp system, which is a clear

improvement over the parallel file system but still less than

the in-memory based method. These performance gains open

the door to higher fidelity coupling at an increased frequency.
Memory high-water mark: TAU integration with ADIOS

can provide an option to easily turn on performance moni-

toring of the applications’ I/O usage through ADIOS, just as

the PMPI tool interface allows for MPI. Users can monitor at

runtime application’s memory usage, CPU performance, MPI

communications, etc.

In the demo, we built XGC and GENE with ADIOS and

TAU integration. During execution, we captured a set of

performance numbers at every second (which is about 3-4

simulation time steps). Fig. 10 shows one of those performance

numbers captured during the run. In Fig. 10, (a) high-water

memory usage and (b) total flops are plotted at each rank. The

first 3,072 ranks represent XGC processes and the last 1,024

ranks are for GENE. In the plot, we identified an unusual

memory usage pattern; memory usage in XGC is not well

balanced, which might affect performance in the later time

steps. Developers can pay attention for this memory issues in

the next development step.
Entropy and compression ratio: In the XGC-GENE

simulations, plasma turbulence is modeled, and the coupled

application outputs data to monitor the turbulence’s behavior.

This output is saved at high frequency, and lossy data reduction

was tested, with statistics about the reduced data’s properties
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Fig. 10. Performance information captured by TAU during the XGC-GENE
coupling performed on Titan. The memory high water mark and total FLOPS
measurements of each MPI rank for XGC (rank < 3,072) and GENE (rank
> 3,072) were captured. These measurements are at about timestep 2,000.

(a) (b)

(c) (d)

Fig. 11. Compression ratio and entropy results for early (a) and late (b)
timesteps. Panels (c) and (d) show the changes in the quantities as a function
of time. MGARD and SZ were used for data compression. (SZ plots are
shown in the figure.)

collected in transit. Here, we focus on the compression ratio

and entropy measurements collected by Z-checker.

The online compression and analysis was performed at each

time step, applying SZ and MGARD to the appropriate data

through Z-checker. Fig. 11 shows the results. Panels (a) and

(b) visualize the evolution of the plasma: (a) is an early

step (timestep 200) and (b) shows a later timestep (timestep

2000). Panels (c) and (d) show the changes of the entropy and

compression ratios with time.

Qualitatively, the trends are plausible. The simulations are

seeded with random variations, which is why the entropy starts

the highest. Over time, the fluctuation become more correlated.

Compression ratios decrease because the fluctuations grow in

magnitude, which is harder to compress under the constraint

of point-wise error limits.

Physics Diagnostics: Several of our in-situ visualizations

(Fig. 1) were diagnostics to help study the stability of the

coupling. Though explaining the physics content of all of

these is beyond the scope this paper, panels (a) and (b)

of Fig. 11 themselves offer a simple qualitative check. The

dashed boundary is the coupling region between GENE and

XGC in which data is exchange. If there were numeric

instabilities or other problems with the coupling algorithm,

a likely outcome would be discontinuities or suppression of

the features in this region. No such issues appear. Other

diagnostics compared the results from the coupled runs to

results from reference simulations, to confirm that both indeed

converged to the same answer.

V. CONCLUSIONS

With the growing computational complexity of science as

well as that of new and emerging hardware, it is time to re-

evaluate the traditional monolithic design of computational

codes. Code coupling, also known as coupled simulation or

co-simulation, is widely used in multi-scale and multi-physics

studies. However, the complexity of code coupling frameworks

and of the novel hardware and deep memory and storage

hierarchies for future computing (exascale and post-Moore’s-

Law) poses a huge burden to users.

To address these concerns, we present a new framework

that is constructed by leveraging high performance capabilities

such as in-memory communications, workflow scheduling

on HPC resources, and continuous performance monitoring.

Specifically, we utilize a combination of the Adaptable I/O

System (ADIOS), the Savanna/Cheetah runtime, the MGARD

and SZ compression libraries, the VTK-m visualization toolkit,

and the TAU performance monitoring system. Evaluated at

several leading computing facilities, this framework has been

applied to solve a complex multi-physics simulation of Toka-

mak fusion devices.

Through this effort we have collected a large number of

critical observations on the requirements of any such frame-

work when working with real scalable science simulations.

Of these, the key overall observation is that integrative science

teams need new support and computational services in order to

function effectively. Balancing the productivity requirements

and the science complexity that comes with a push towards

exascale science is difficult for a single research team or

monolithic code base to achieve. However, with attention to

management of the interfaces between collaborating compo-

nents, exascale-ready frameworks can offer both performance

and the runtime diagnostic capabilities that make full use of

the promise of extreme scale platforms today and tomorrow.
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