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Abstract—Yield forecast is essential to agriculture stakeholders
and can be obtained with the use of machine learning models
and data coming from multiple sources. Most solutions for yield
forecast rely on NDVI (Normalized Difference Vegetation Index)
data which, besides being time-consuming to acquire and process,
only allows forecasting once crop season has already started.
To bring scalability for yield forecast, in the present paper we
describe a system that incorporates satellite-derived precipitation
and soil properties datasets, seasonal climate forecasting data
from physical models and other sources to produce a pre-season
prediction of soybean/maize yield—with no need of NDVI data.
This system provides significantly useful results by the exempting
the need for high-resolution remote-sensing data and allowing
farmers to prepare for adverse climate influence on the crop
cycle. In our studies, we forecast the soybean and maize yields
for Brazil and USA, which corresponded to 44% of the world’s
grain production in 2016. Results show the error metrics for
soybean and maize yield forecasts are comparable to similar
systems that only provide yield forecast information in the first
weeks to months of the crop cycle.

I. INTRODUCTION

Agriculture is an industry sector that is benefiting strongly

from the development of sensor technology, data science, and

machine learning (ML) techniques in the latest years. These

developments come to meet environmental and population

pressures faced by our society, where reports indicate a need

of strong global agriculture yield increase to provide food for

a growing population in a warmer planet [1].

Yield forecast is one of the tasks that can be performed by

current ML algorithms [2], [3], [4]. Field sensors, satellites,

unmanned aerial vehicles (UAVs), and farming equipment can

provide a significant amount of data on soil conditions, plant

physiology, weather, climate, and several of the processes

taking place in a farm. These datasets allow the creation

of classification and forecast models that can be extremely

helpful to agriculture production.

Most of the work done in the field of yield forecasting

via ML makes use of some sort of remote sensing data over

the farm, specially in the form of Normalized Difference

Vegetation Index (NDVI) [5], a popular indicator of vegetation

activity that can be retrieved from near-infrared and red spec-

tral channels. These indexes have the advantage of providing

direct observations of a farm and can be useful to follow the

crop cycle. While these datasets provide insights on near real

time to problems such as diseases and deficiencies, they allow

yield forecasting only after planting occurs, as one can analyze

crop development and try to predict its final outcome after

harvesting.

In this paper, we introduce an ML-based system using data

from multiple sources to perform soybean yield forecasting

before the start of the crop season—process known as pre-
season forecasting. The system is composed of a recurrent

neural network (RNN) trained with precipitation, temperature,

and soil properties as features and historical observed soybean

and/or maize yield at municipality level for 1500+ cities in

Brazil and USA as labels. We considered Brazil and the

USA in our case studies as they are two of the largest

crop producers of the world, accounting for 28% and 35%

of soybean global production and 6% and 36% of maize

global production respectively as of 2016 [6]. Operationally,

the meteorological data is provided by a reanalysis-bases

seasonal forecast product of temperature and precipitation,

which allows for forecasting up to seven months in the future.

Results are comparable and in some cases superior to similar

models that need remote sensing data over the farm, thus only

capable of providing a forecast in the first weeks/months of

the crop cycle (early season forecast).

The two major contributions of this work are:

• A yield forecast system based on fewer data requirements

compared to existing yield forecast solutions which de-

mand large amounts of remote sensing data. Our system

retrieves the necessary climate and soil properties data

for a given coordinate automatically from an appropriate

source. Another advantage is that the system works also

on large regions, and provides forecasts at a resolution

compatible with best input data resolution, which in the

case is 250m originally from the soil data.

• The capability of forecasting yield before the beginning

of the crop season. This provides users the capability to

perform strategy changes, like choosing a more robust

genetic variation before planting or even changing the

crop type, in order to accommodate for extreme climatic

variations further ahead in the crop cycle.

The scalability for yield forecast comes from our obser-

vation that a neural network model can detect and exploit

redundant information coming from soil and weather data. We

also observed the neural network model can learn an implicit

representation of the cycles of the crops, which is further

detailed in this paper.

The paper is organized as follows. In Section II, we discuss

existing work on yield forecast. We introduce the proposed

system containing the model RNN architecture with imple-
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Fig. 1: System Architecture. The system we built can perform yield forecasts on the fly. It is able to do so by, upon user

request (1), downloading cached weather forecast (2, 4) and soil properties data from RESTful APIs (3), and combining them

to issue yield forecasts (5) using a trained deep neural network model. Both the APIs and the system work with bounding

boxes for issuing yield forecasts for regions over the globe.

mentation justifications in Section III. In Section IV we present

the system evaluation followed by conclusions in Section V.

II. RELATED WORK

Yield forecast is an important service of agriculture com-

putational systems [7], [8]. In this section we cover a few

efforts in this area, highlighting some with machine learning

components.

Kogan et al. [9] compared different methods for winter

wheat yield forecasting: using remote sensing observations,

meteorological data and biophysical models. The two former

methods consisted respectively of linear regression models

using NDVI data at 250m resolution and data from 180

weather stations for a 13-year period as predictors. The third

method is based on the application of a biophysical process-

based crop model, an algorithm that models phenology, canopy

development, biomass accumulation, water stress and many

other plant components. In this case, the World Food Studies

(WOFOST) model [10] was used. All three approaches were

used to perform forecast 2–3 months before harvest and the

biophysical model showed the best results in terms of root

mean squared error (RMSE). The NDVI-based and the me-

teorological data-based methods showed similar performance

when minimum input data requirements were met.

In studying dryland maize in South Africa, Estes et al. [11]
developed three empirical models that were compared against

the CERES-maize model of the DSSAT platform [12]. Two

of the empirical models were based on maximum entropy

(MAXENT) [13]: one trained on all national crop distributions

points and the other trained with the top producing localities.

The third method used a generalized additive model (GAM)

trained with yield data derived from NDVI. GAM and CERES

results showed linear correlation to measured yield (R2 = 0.75

and 0.37, respectively) as did the MAXENT model trained

with high-productivity points (R2 = 0.62).

Gonzalez-Sanchez et al. [14] compared the predictive ac-

curacy of several techniques (Multiple linear regression, M5-

Prime regression trees, perceptron multilayer neural networks,

support vector regression and k-nearest-neighbors/KNN) for

crop yield prediction in ten crop datasets from western Mexico.

Predictors came from typical atmospheric data (solar radiation,

rainfall, temperature, etc) and some genetic and farm manage-

ment information like season-duration cultivar and planting

area. For these specific conditions, the regression trees and

KNN showed the lowest error metrics.

Kumar [15] performed rice yield forecasting by adaptive

neuro fuzzy inference system (ANFIS) technique. For that,

they used 27 years time series data of yield and weather.

ANFIS is an effort to integrate the benefits of neural networks

and fuzzy logic in a single framework by using linguistic

information from the fuzzy logic and learning capabilities of

an artificial neural network (ANN). Quantitative performance

assessment for rice and wheat yield observations in India

showed good applicability of the technique in yield prediction.

Dahikar et al. [2] studied the basic requirements for ap-

plications of ANNs in yield prediction. Simple network ar-

chitectures, with one hidden layer and back propagation of

errors were tested for different predictors and crops, like

cotton, sugarcane, wheat, rice and others. Soil parameters

detected to be relevant for crop yield prediction were PH

and concentrations of nitrogen, phosphate, potassium, organic

carbon, calcium, magnesium, sulphur, manganese, copper and

iron. In terms of atmospheric predictors, temperature, rainfall

and humidity were the relevant features detected.

The proposed system differs from existing solutions as (i) it

does not rely on NDVI data, which is a more scalable approach

to handle country-level forecasts, and (ii) it is able to provide

yield forecasts with a seven-month lead time, while offering

similar (or even better) results to systems that perform short

term yield forecasts.

III. ARCHITECTURE

In this work, we combined atmospheric data (accumulated

precipitation, maximum, and minimum temperature) and soil

data to produce a model capable of generating yield forecast

data—as illustrated in Figure 1. We implemented a Deep

Neural Network (DNN) as our machine learning model. This

section provides a description of the multiple data sources

required to feed our DNN model, the model itself, and its

usage in production.

424



static input

(soil)

65

dynamic input

(weather)

8×3

Dense

in: 65

out: 100

Dense

in: 100

out: 100

LSTM

in: 8×3

out: 8×280

LSTM

in: 8×280

out: 8×280

LSTM

in: 8×280

out: 280

C
o
n
ca

te
n
at
io
n

i
n
:

2
8
0

+
1
0
0

o
u
t
:

3
8
0

Dense

in: 380

out: 100

Dense

in: 100

out: 100

. . . Dense

in: 100

out: 100

yield

1

4 layers

Fig. 2: DNN Architecture. Red nodes represent Long Short-Rerm Memory (LSTM) recurrent layers. Gray nodes represent dense,

fully-connected layers. The blue node represents a concatenation layer, which concatenates the intermediate representations

from the dynamic and static paths. Numbers below node names represent shapes of input and output tensors. For example,

n×m represents a n by m matrix, while single numbers represent line vectors.

A. Data Sources

Monthly precipitation data was provided by the Climate

Hazards Group Infrared Precipitation with Stations (CHIRPS)

dataset [16]. CHIRPS provides precipitation data at 0.05◦

resolution by merging satellite and weather station infor-

mation. CHIRPS uses satellite data in three ways: satellite

means are used to produce high-resolution rainfall climatolo-

gies, infrared Cold Cloud Duration (CCD) fields are used

to estimate monthly and, pentadal rainfall deviation from

climatologies. Lastly, satellite precipitation fields are used to

guide interpolation through local distance decay functions.

Monthly air temperature data, specifically minimum and

maximum temperatures for each month, were provided by re-

analysis datasets1 from ERA-Interim, one of the latest reanal-

ysis products developed by the European Centre for Medium-

Range Weather Forecasts (ECMWF) [17]. This dataset covers

the globe at a resolution of approximately 80km per pixel and

was generated using data assimilation from several sources.

The project represents a significant improvement over past re-

analysis efforts, due to advances in modeling of several climate

processes such as the hydrological cycle and assimilation of

cloud- and rain-affected satellite radiances.

Soil properties data comes from SoilGrids.org [18], an open,

global soil dataset with a resolution of 250m per pixel which

provides information for clay, silt and sand contents plus

fine earth and coarse fragments bulk density. All this data is

available in seven depths (0, 5, 15, 30, 60, 100 and 200cm).

SoilGrids data are results of predictions based on 150000 soil

profiles used for training and 158 remote sensing-based soil

covariates. These were used to fit an ensemble of random

forest, gradient boosting and multinomial logistic regression

models.

As labels for training, the model uses actual yield data.

In this work, we collected maize and/or soybean yield data

at county or municipality level from each country’s official

agency. For Brazil, we used soybean data provided by IBGE

(Brazil Statistics and Geography Bureau) [19], while for the

USA we used maize and soybean data provided by the USDA

(United States Department of Agriculture) [20]. Crop seasons

in both countries last approximately six months, although the

1Reanalysis datasets are datasets produced both from observational data
and numerical models.

TABLE I: Static features used in the Machine Learning model.

All the soil features here are available in seven layers. Latitude

and longitude of the prediction point are also included in the

static inputs. Hence, there are 9× 7 + 2 = 65 static features.

Feature Unit

Clay content (0–2 micrometer) mass fraction [%]
Silt content (2–50 micrometer) mass fraction [%]
Sand content (50–2000 micrometer) mass fraction [%]
Bulk density (fine earth) [kg/m3]
Coarse fragments volumetric [%]
Cation exchange capacity of soil cmolc/kg
Soil organic carbon content (fine earth fraction) g per kg
Soil pH x 10 in H2O —
Soil pH x 10 in KCl —
Point Latitude °
Point Longitude °

tropical climate in Brazil allows for a second mini-season

in-between main seasons. The dataset sizes used in training,

validation, and testing are described in Table III. For each

case, test sets were composed of 20% of the total data points,

while training plus validation sets were composed of the

remaining points (from which being 30% validation and 70%

for training).

We split the input data into two main categories: static for

the soil data and dynamic for the weather data. The rationale

behind this decision is that for the time scales considered

in this work soil properties do not change over time, while

meteorological data presents seasonal variability. Knowing

the data we used has different characteristics allows us to

approach them differently when building an ML model. The

static features (corresponding to the soil data) we used to train

the model are shown in Table I, and the dynamic features

(corresponding to the atmospheric data) we used to train the

model are shown in Table II.

B. Neural Network Description

As we split the data into dynamic and static sets, the data

follow different pathways in the model before the joining

the internal representations of both data types (Figure 2).

For the static set, the data flows through a two-layer fully-

connected neural network before proceeding in the compu-

tational graph—each layer with a hundred hidden units. The

dynamic set flows through a three-layer LSTM neural network,
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TABLE II: Dynamic Features used in the Machine Learning

model. All the features in here are available for eight months

covering the crop cycle in each geography (September to April

in Brazil; April to October in US). Hence, there are 3×8 = 24
dynamic features.

Feature Unit

Minimum Temperature [°C]
Maximum Temperature [°C]
Precipitation [mm]

each with 280 memory cells and eight time steps (one for

each month in the seasonal forecast), before proceeding in the

computational graph. LSTM [21] units are recurrent neural

network modules that are useful when dealing with data with

a temporal relationship, and can learn to recognize temporally

extended patterns in noisy sequences. Hence, they were chosen

to model the dynamic input in our model.

The aforementioned describes the process outlined in the

upper part of Figure 2 before the node labeled “Concatenation

Layer”. When both data paths are computed, the network

joins them together through the concatenation of internal

representations. After the concatenation, the network processes

the joined data through five fully-connected layers, each with

a hundred hidden units. Finally, the network outputs a single

value: the forecasted yield. The model uses the Mean Absolute

Error as cost function and uses scaled exponential linear units

(SELUs) [22]. The SELU activation function is given by

selu(x) = λ

{
x if x > 0,

αex − α if x ≤ 0
. (1)

In Equation (1), α and λ are chosen in a way that the mean and

variance of the inputs are preserved between two consecutive

layers. Hence, such an activation leads to Self-Normalizing

Networks with the property of being robust to perturbations,

and not having high variance in training errors [22].

A full description of the model as implemented in

Keras [23] is shown in Figure 3 and represents everything that

is needed to replicate the model described in this section, and

ensures reproducibility of the results described in this work

(Section IV-B).

C. Production System

As described in the previous section, after the DNN is fully

trained, one can forecast the yield of a single point: given a pair

p = (latitude, longitude), one can query the meteorological

and soil properties datasets, extract the data corresponding to

p and perform a forecast. Although this would work for any

point in the globe, the model was trained with Brazil and US

yield data so it wouldn’t make practical sense to use it outside

these geographies. Moreover, it is possible to integrate the

DNN into a bigger system for on-the-fly yield forecast. We

implemented the DNN as a component in a decision-support

tool for agriculture. To forecast yields for future dates, we

replaced the ERA-Interim data with seasonal forecasts (which

are also based on reanalysis data) for the dynamic features

dynamic_input = Input(shape=(8,3), dtype=’float32’)
inner_lstm1 = LSTM(280, return_sequences=True)(dynamic_input)
inner_lstm2 = LSTM(280, return_sequences=True)(inner_lstm1)
lstm_out = LSTM(280)(inner_lstm2)

static_input = Input(shape=(len(stat_cols),))
inner_stat1 = Dense(100, activation=’selu’)(static_input)
inner_stat2 = Dense(100, activation=’selu’)(inner_stat1)

x = concatenate([lstm_out, inner_stat2])
for _ in range(5):

x = Dense(100, activation=’selu’)(x)

dynamic_output = Dense(1, activation=’selu’)(x)

model = Model(inputs=[dynamic_input, static_input],
outputs=[dynamic_output])

model.compile(loss=’mae’,
optimizer=Adam(lr=0.0005))

Fig. 3: DNN used in this work as a model implemented in

Keras.

and continued using SoilGrids data. Due to its relatively high

resolution, the SoilGrids data allows the system to also forecast

with a resolution of 250m per pixel.

IV. EVALUATION

The goal of the evaluation is to demonstrate the effective-

ness of the proposed yield forecast model against existing

solutions that rely on remote sensing data, e.g. NDVI. We used

five comparison metrics in the evaluation related to accuracy

of the yield forecast.

A. Experimental Setup

Data for the 3 cases (US-Soybean, US-Maize and Brazil-

Soybean) was used in training and testing the DNN model.

For each case, 80% of the total data points were selected as

training set and the remaining 20% as test set. During training,

30% of the training set was selected for a validation set. All

of these sets were randomly chosen, so the model could learn

from many different scenarios of weather, soil and forms of

growing. The sizes of each set are detailed in Table III.

Model training for each case took around 300 epochs until

a minimum validation loss value was achieved. The evolution

of training and validation losses is shown in Figure 4. Losses

show a typical neural network behaviour of continuous decay

for training loss, eventually decoupling from validation loss.

The training made use of the EarlyStopping callback

function from the keras library, with a patience parameter

(the number of epochs with no improvement after which

training is stopped) equal to 50. The DNN model could be

successfully trained using a relatively modest GPU (Tesla

K40m) in reasonable time (~10 minutes). Test sets for each

geography and crop example were used for evaluation of the

model performance in forecasting crop yield at pre-season time

and are discussed in Section IV-B.

B. Result Analysis

The model was used to perform yield forecast for the points

in the test set and the results shown in Table IV. Since

the training and test sets were randomly selected from the
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(a) US soybean model (b) US maize model

(c) Brazil soybean model

Fig. 4: Loss for training and validation sets across epochs for Brazil/USA soybean/maize models. Dashed lines indicate the

chosen model, which is the one with minimum validation loss.

TABLE III: Datasets sizes used in training, testing and vali-

dation.

Brazil-Soybean US-Soybean US-Maize

# of counties 1529 1814 2204
# of data points 16767 16939 19692
Training set size 9389 9485 11027
Validation set size 4023 4065 4725
Test set size 3354 3388 3819

complete input dataset, a good performance in the test set

indicates the model generalizes well for different seasonal

climates, agriculture management practices, soil and other

geographical characteristics. Figure 5 shows comparison of

observed and forecasted yield for each geography and crop.

When comparing geographies, model results for the US are

slightly better than the ones found for Brazil. It is important

to notice the specific methodologies in gathering yield data

for both countries. The former relies more on self-reporting

information provided by farmers [19], whereas in the latter

case there is a data gathering effort by the governmental

agency [20]. These different methods are reflected on both

raw datasets: the one for Brazil showed a higher number of

missing information and in a relevant number of counties the

reported yield remains unchanged along some years, which

suggest the data is a gross estimation.

Model performance of the US-Soybean forecasts was su-

perior to US-Maize. This initially indicates that the DNN

architecture is better in creating a function that maps the

physical relation between soil plus climate to yield in the

soybean case. Physiological differences between soybean and

maize determine the performance in each case. To account for

the temperature influence on both crops, we can analyze the

typical values of accumulated growing degree days (AGDD).

Soybean typically has lower AGDD values (around 1100

°C) [24] than Maize (around 1450 °C) [25]. In terms of water

needs, studies have showed maize has a higher vulnerability

to moisture deficiency when compared to soybean [26]. All

of these indicate that maize is more sensitive to the climate

variables (temperature and precipitation) used in model train-

ing than soybean, meaning any uncertainties brought by the

climate data input sources will have a stronger impact in the
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(a) US soybean model (b) US maize model

(c) Brazil soybean model

Fig. 5: Scatter plots of model performance according to country and crop.

maize yield forecast, which could explain the difference in

performance of the model for the two crops.

The comparison of these results to other yield forecasting ef-

forts should take in consideration several differences amongst

these studies, including the selected statistics reported and its

appropriate units. Metrics like the coefficient of determination

R2 and the ones that compute errors as a ratio of some average

field (MAPE, RMSPE) can be compared across different crops

and regions, besides being commonly reported. Table V shows

some of these metrics reported in several studies. All of

these efforts make use of some sort of remote-sensing, most

frequently NDVI. The performance of this work is comparable

with these studies but with a lot less data requirements and is

able to provide useful information for agriculture operations

before the seeding occurs.

V. CONCLUSION

Agriculture yield forecasts are a very useful tool for farm

management and can help stakeholders to perform critical

decisions in their agricultural operations. Many available meth-

ods provide yield forecast information, the vast majority of

them through the use of some sort of remote sensing data

TABLE IV: Model scores.

Brazil - Soybean US - Soybean US - Maize

MAEa 288.39 270.18 1031.00

MAPEb 10.70% 9.80% 11.31%
RMSEc 385.81 354.08 1393.02

RMSPEd 14.31% 12.85% 15.28%
R2e 0.55 0.75 0.71

a Mean Absolute Error
b Mean Absolute Percentage Error

c Root Mean Square Error
d Root Mean Square Percentage Error

e Coefficient of determination

(like NDVI) from the farm fields. While this allows for high-

resolution forecasts, it comes with the high cost of acquiring

and processing these extra datasets, which can be relevant

depending on the properties dimensions.

Machine-learning is one of the techniques gaining popular-

ity for agriculture applications, specially with the increasing

number of new data sources being developed in the latest

years. We propose a machine learning system that provides

pre-season yield forecasting, meaning farmers can make farm
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TABLE V: Comparison of yield forecasting methods to the ML system proposed in this work.

Study Crop R2
α MAPEβ [%] RMSPEγ [%] ML System

Kolotii, A et al., 2015 [27] Wheat 0.50 - 0.80 - - 0.55 - 0.75α
Capa-Morocho, M et al., 2016 [28] Wheat, Maize - - 2.1 - 13.2 NA - 15.28γ

Meroni, M et al., 2016 [29] Grain crops 0.62 - 0.91 - - 0.55 - 0.75α
Morell, F et al., 2016 [30] Maize - - 20 - 34 2.85 - 15.28γ

Johnson, D 2014 [31] Maize, Soybean 0.47 - 0.77 - - 0.55 - 0.75α
Pagani, V et al., 2018 [32] Rice 0.21 - 0.89 - - 0.55 - 0.75α
Kumar, N et al., 2014 [33] Rice, Wheat 0.53 - 0.58 - - 0.55 - 0.75α

Bose, P et al., 2016 [34] Wheat - 0.13 - 27.97 - 9.8 - 11.31β
Satir, O and Berberoglu, S, 2016 [35] Maize, Wheat, Cotton 0.50 - 0.67 6.30 - 7.30 - 0.55 - 0.75α & 9.8 - 11.31β

α, β, γ subscripts indicate which metric is being shown for the ML System

management decisions (like choosing different crops or genetic

variations) before seeding occurs.

The system proposed in this work is formed by a neural

network where inputs are treated separately. Static soil data

in handled by fully-connected layers while dynamic mete-

orological data is handled by recurrent LSTM layers. This

particular architecture was trained with historical data for

several soil properties, precipitation, minimum and maximum

temperature against historical yield labels at county level for

two crops (maize and soybean) and two geographies (Brazil

and US), which production correspond to 44% of the global

grain production [6]. After training, the model was tested in a

separate dataset and showed comparable results with existing

yield forecasting methods that make use of extensive remote-

sensing data. The major lesson learnt from our experiments

is that it is possible obtain scalable yield forecast because

the proposed neural network model can detect and exploit

redundant information both in the soil and in the weather

data. Additionally, the model may have been able to learn

an implicit representation of the cycles of the crops evaluated

in this paper, considering the seasonal atmospheric data used

as input.

Our results show that farmers and agriculture stakeholders

can benefit from useful information with significantly fewer

data requirements and maintain useful accuracy values. The

global availability of the input datasets also allows the system

to easily scale across different regions if local yield data is

present. Although the used input datasets allow for relatively

high-resolution forecasts (250m), the existing system can be

used as a foundation for future precision agriculture services

by assimilating more traditional NDVI and similar datasets.
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