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EXTENDED ABSTRACT

In scientific data management systems like Rucio[1], the

possibility to know when a file transfer is going to be finished

at the moment of submission opens a wide range of opportu-

nities to improve the schedule techniques actually being used,

and therefore to optimize the use of the available resources.
We developed a model that can predict the number of

pending transfers in a file transfer system[2] queue at a

given time, and therefore, with some level of confidence,

the estimated time to complete for each transfer. Using data

analytics methods on historical data, we also managed to make

predictions about the average rate of the transfers based only

in their sizes.
The models use information about the submission time

stamp, i.e., the moment the transfer enters to the data man-

agement system, and the size of the transfer in bytes, to

calculate the starting time stamp, i.e., the beginning of the

usage of the network, and finishing time stamp. The rate of

each transfer needs to be known or approximated. Also, the

limits of concurrent active transfers need to be known. We got

the rate approximation doing fit using ordinary least squares

regression from scipy optimize package[4] to the function

described in Equation (1) on 500 random transfers in the first

dataset.

Trate = Tsize/((Tsize/rate) + overhead) < disklimit (1)

Here, rate, overhead and disklimit are the parameters of the

fit. Trate is the average rate for a transfer of a file of Tsize

bytes. The overhead parameter is associated to TCP connec-

tion delays, which we assume exist for every transfer. Also,

disklimit is a parameter that describes potential throughput

limitations or delays of the involved storage systems.
The observed average rate and maximum number of active

concurrent transfers can be calculated. From this data, it is

possible to know a posteriori how much time a particular

transfer spent in the queue and how much time the actual

transfer took on the network. Models vary slightly in the way

they calculate the available bandwidth for each transfer. The

observed average rate for each transfer cannot be calculated

before the transfer ends. Two of the models use a posteriori

analysis from historical data to calculate the observed rate

of each transfer. The three other models use a method to

approximate the observed average rate for each transfer re-

lying only on information available at submission time. These

models differ slightly in the way they limit the number of

active concurrent transfers in the link during the simulation.

Fig. 1. Average rate of a transfer as a function of its size for transfers in the
first dataset, in blue. Prediction for the average rate from a fit of Equation 1
over 500 random observed points, in orange.

Fig. 2. Histogram of the errors (observed - predicted) in the number of queued
files for 600K seconds of simulation of the first dataset.

The models were tuned using a sample dataset that repre-

sents the transfers of one week. Validation was done using a

second dataset with transfers of a different week.

Table I shows the errors that allow to compare the mod-

els against each other. The Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE), R2 score, average of

(observed − prediction) or (μE), and standard deviation of

(observed− prediction) or (σE) is calculated. Models B, D

and E show comparable results in both the first and second

dataset, with zero-centered μE and small σE. Models A and C

perform acceptably, with R2 well above zero, against the first

dataset, but worse against the second, so they are not general

enough. R2 scores for Models B, D and E are very very close

to 1 for both datasets.

Models A through E where created by adding improvements

incrementally to the approximations of rate and number of

actives, imposing restrictions on the available information the
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TABLE I
MODEL PERFORMANCE (1ST DATASET)

Model MAE RMSE R2 μE σE

A 0.79 4.25 0.84 0.52 4.22

B 0.26 1.46 0.98 0.19 1.45

C 1.91 6.89 0.59 -1.79 6.65

D 0.95 3.99 0.86 0.92 3.88

E 0.42 2.26 0.95 0.39 2.23

model had at a given moment and understanding the sources

of inaccuracies and addressing these issues.

Model A

As was determined by in-depth analysis, the bandwidth

available for transfers is not constant. But by assuming that

it is constant during some time period however, it is possible

to estimate the transfer rate. Model A uses the size of the

transfers and the started at and transferred at timestamps

to predetermine the rate based on active islands. The total

volume of bytes transferred during this time is then divided

by the number of active transfers.

An empirical search was conducted to find the scaling factor

in the previous equation, and the best performance of the

models over the first dataset was obtained with f = 0.66.
We couldn’t find a consistent explanation for this value in the

observed data. This factor seems to be not constant as Model

A behaves very well only in selected time spans. The reason

why f is not 1, and not constant is unclear, and will be kept

as a bias to be determined from historical data.

Model B

Doing post-mortem analysis it is possible to calculate the

average rate of each transfer instead of the average of a group

of transfers. The modifications to Model A involve adding

a new predetermined rate to the simulated transfer structure.

This rate is used at simulation time to make the transfer finish

successfully.

This is the model that achieves the best results, but also the

one that has the most information about the transfers available.

Most of the data used to feed this model is not available at

submission time though. Therefore, this model is not suitable

to implement in online systems to make predictions about the

transfers in real time, but only allows to validate the underlying

model and is useful to make predictions about changes in the

configuration of the underlying systems.

Model C

Model C replaces the rate calculation of Model B with a

function, as described in Equation (1), which allows to predict

the rate as a function of the size of the transfer. As this value

is known at submission time, models that use this approach

are suitable to be used in real time predictions of the number

of queued transfers.

Model C however doesn’t behave well when the bandwidth

is underestimated. As some transfers take more time to finish

in the simulation than in the observed data, the maximum

number of actives used is the observed one, some new transfers

could remain in the queue, where the maximum actives are

zero, and these transfers will not exit until the next set of

transfers trigger the max actives above zero. This problem had

been seen in Model A and in with some insignificant effects,

also seen in Model B.

Model D

To avoid queue starvation due to lack of actives the simplest

solution is to limit the minimum max active transfers to 1,

meaning if there are transfers in the queue at any given

moment the simulator can take a transfer off the queue,

and progress it. Model D uses this approach to approximate

the maximum number of concurrent active transfers. This

approach yields good results, comparable with Model B.

Model E

Model E uses a more sophisticated method to avoid star-

vation due to lack of active transfers. This method involves

smoothing and shifting the observed number of concurrent

actives. In some cases, the method outperforms the results

obtained to Models B and D. Yet, overall, Models B and D

are more general, simpler, and with comparable results, thus

preferred over Model E.

Model B outperforms all the other models, with a R2 score

well above 0.95 and a RMSE which the lowest in both datasets.

The agreement between observations and predictions from

Models D and E is also good according to R2. These models

only need the size of the transfers to approximate the rate.

This study uses transfers exclusively from Chicago (MWT2)

to Michigan (AGLT2). Accuracy of the models using other

links needs to be studied. Inclusion of other observables,

like number of transfers exiting the source or arriving the

destination and the impact in the predictions, needs to be

studied as well.

The work also present preliminary analysis of the power

of the models to predict the time to complete of individual

transfers. In these results, network time is predicted more

accurately than queue time. More in-depth analysis is needed,

but the preliminary results look promising.
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