
Big Provenance Stream Processing for Data
Intensive Computations

Isuru Suriarachchi, Sachith Withana and Beth A. Plale
School of Informatics, Computing and Engineering, Indiana University

Bloomington, IN, USA

Email: {isuriara,swithana,plale}@indiana.edu

Abstract—In the business and research landscape of today, data
analysis consumes public and proprietary data from numerous
sources, and utilizes any one or more of popular data-parallel
frameworks such as Hadoop, Spark and Flink. In the Data
Lake setting these frameworks co-exist. Our earlier work has
shown that data provenance in Data Lakes can aid with both
traceability and management. The sheer volume of fine-grained
provenance generated in a multi-framework application moti-
vates the need for on-the-fly provenance processing. We introduce
a new parallel stream processing algorithm that reduces fine-
grained provenance while preserving backward and forward
provenance. The algorithm is resilient to provenance events
arriving out-of-order. It is evaluated using several strategies for
partitioning a provenance stream. The evaluation shows that
the parallel algorithm performs well in processing out-of-order
provenance streams, with good scalability and accuracy.

Index Terms—Big Data, Big Provenance, Stream Processing

I. INTRODUCTION

With the pervasive availability of Internet infrastructure and

data services, a commercial or research organization can easily

collect and continuously integrate large volumes of data from

both external and internal sources (e.g., social media, click

streams, sensors, IoT devices, server logs). It has become

routine for Internet scale organizations to run continuous

analysis of public and proprietary data for insight, decision

making, and predictive forecasts; the cornerstone of Big Data.

These analysis computations are called large scale, data-
intensive computations or data-intensive computations (DIC)

for short [43]. DICs share in common their utilization of data-

parallel processing frameworks such as Hadoop [6], Spark [42]

and Flink [8].

Data Lakes [19] [39] is a paradigm for Big Data man-

agement and analysis where data flows into a data lake as

streams flow into a physical lake. The strength of the Data

Lake is that it is schema-on-read where data transformations

to a particular schema are deferred to time of use [36]. That is,

data are ingested in a raw form then converted to a particular

schema immediately prior to use. This applies to structured,

semi-structured, and unstructured data; continuously arriving

or batch. The environment of the Data Lake, with multiple

simultaneously and long-running DICs, motivates our work.

Our objective is to track the lifecycle of data products -

existence and movement - in a Data Lake. That is, to be

able to produce backward and forward provenance for the

data products flowing through DICs in a Data Lake. It has

been noted elsewhere that data residing in a Data Lake, has

what can be, a confusing lifecycle [5] [30] that motivates

traceability of the data products. Suppose sensitive information

(e.g., consumer credit card data) has seeped into a dataset

that had been subjected to multiple transformations. Cleansing

requires tracing forward in time and cleaning data products

that are derived by the sensitive data.

Our earlier research [36] [37] demonstrates the feasibility

of data provenance traceability for a DIC in a Data Lake

by a reference architecture to collect, manage and analyze

provenance data captured from analysis tools integrated with

the Data Lake. The solution is evaluated using the Komadu

provenance management system [38]. However storing and

querying large volumes of provenance generated by DICs is

expensive. This paper extends the earlier work in recognition

of the need for on-the-fly processing of provenance.

There is substantial evidence accumulated through years of

provenance research that fine-grained provenance from large

scale computations can be extremely voluminous [36] [21]

[41]. Managing large volumes of provenance data for use is

identified as a challenge in Big Data provenance and named

as the Big Provenance problem [41][17]. RAMP [21] and

HadoopProv [4] are two efforts from the literature to capture

and analyze provenance from DICs. While both systems are

limited to Hadoop MapReduce, they store full provenance into

HDFS and face the Big Provenance problem.

Our approach is to use stateful, one-pass parallel stream

processing to summarize a full provenance stream on-the-fly

by preserving backward provenance and forward provenance.

It does this through maintaining state within each parallel

stream consumer. Intuitively, backward provenance begins

with an output and traces backwards in time to the subset of

input data on which the output depends. Forward provenance
begins with an input and traces forward in time to the subset

of output data elements derived by it.

Backward and forward provenance on static, stored prove-

nance graphs have been calculated using recursive traversal

through a graph [20], and maintenance of transitive closure

tables [13]. Neither technique is suitable for our needs because

of their high compute and storage overhead. So we develop

parallel-prov-stream, a parallel stream algorithm for reducing

full provenance on-the-fly by preserving backward and for-

ward provenance that is scalable, order independent and one-

pass only.

245

2018 IEEE 14th International Conference on e-Science

978-1-5386-9156-4/18/$31.00 ©2018 IEEE
DOI 10.1109/eScience.2018.00039



The stream processing approach is framed in the context of

a DIC workflow where multiple DICs run concurrent with

each other, are long lived, and are themselves distributed.

Provenance is streamed to a single, standalone provenance

stream processing system that is itself distributed. There is

an assumption that each DIC executes in batch mode. Our al-

gorithm processes the stream of provenance on-the-fly, but the

batch assumption is used to correctly determine termination of

the stream. The algorithm and processing approach is resilient

to event ordering, by being able to accommodate events out-

of-order within some time delta.

The final framing of the approach is its implicit treatment

of provenance identity. The provenance system is built based

on a log store abstraction that supports “topics” to which

provenance events are published. Topics, and their uniqueness,

is used to guarantee that provenance events are associated

with the correct DIC from which they were generated. We

assume that when a new DIC begins, it is configured to publish

provenance to a unique topic ID in the distributed log store.

Related to our research is [9] where a dependency matrix is

computed across input parameters and variable values from a

stream of data provenance from an Agent Based Model. Our

work both extends and complements [9] through application

of provenance stream processing to large scale DICs.

The primary contribution of the paper is a parallel stream

processing algorithm that reduces a stream of provenance

from a DIC on-the-fly while preserving backward and forward

provenance. The algorithm is resilient to provenance events

out-of-order. It is evaluated using a streaming system built us-

ing the Kafka distributed log store [23] and the Flink streaming

framework [8]. We evaluate three different partition strategies:

horizontal, vertical, and random, to split a graph stream of

provenance from a DIC into partitions to be processed in

parallel.

The remainder of the paper is organized as follows: Section

II defines backward and forward provenance in DICs and

gives a model of the provenance graph stream. The model

is illustrated through examples in Section III. The parallel

streaming algorithm is detailed in Section IV, and implemen-

tation and system architecture are presented in Section V. The

experimental evaluation is Section VI. Related work, Section

VII, and future work, Section VIII, round out the paper.

II. PROVENANCE MODEL

A Data-Intensive Computation (DIC) consists of some num-

ber of functions and executes on a framework such as Hadoop

or Spark.

Definition: A data-intensive computation (DIC) is a se-
quence of n ordered functions F1, F2, ..., Fn which satisfy the
following two conditions. Di

k is input data and Do
k is output

data for function Fk. Di
1 is input data and Do

n is output data
for the DIC as a whole.

Fk(D
i
k) = Do

k; 1 ≤ k ≤ n

Di
k = Do

k−1; 1 < k ≤ n

Each function Fk is executed in parallel on partitions of its

input data satisfying the following condition. We call such an

execution fkj(d
i
kj) a function execution.

Fk(D
i
k) = fk1(d

i
k1) ∪ fk2(d

i
k2)... ∪ fkp(d

i
kp)

In a given DIC, data flows through a sequence of functions

where each function performs some action on its input data

and produces some output which is fed into the next function.

For example MapReduce uses functions: map, combine, and

reduce while Spark and Flink has a broader set: map, filter,

reduce, sortByKey, join, and etc. These frameworks assign

multiple worker nodes to execute a function in parallel on

different partitions of input data.

A DIC workflow may consist of one or more DICs depend-

ing on the number of steps in the workflow.

Definition: A DIC workflow with input Di is a set of m
DICs C1, C2, .., Cm such that Ck(D

i
k) = Do

k; 1 ≤ k ≤ m
where Di

k ⊂ {Di ∪ D∗}, D∗ is the union of outputs from
already completed DICs in the workflow and the final output,
Do ⊂ ∪m

k=1D
o
k.

Some DICs within a workflow may execute in parallel and

they may consume data from the inputs to the workflow and

outputs from the other DICs. The final output of the workflow

may consist of the outputs from one or more DICs. The input

data to a DIC workflow often consists of differently typed data

from different sources. Figure 1 shows a DIC workflow which

consists of six DICs operating on four partitions of input data.

Each DIC is a sequence of functions.

Fig. 1. DIC workflow made up of six DICs

A. Backward and Forward Provenance

Backward provenance and forward provenance define a

minimal but sufficient type of provenance needed for several

useful provenance analysis tasks [10], [9]. Whereas RAMP

[29] [21] recursively defines provenance for any data element

in MapReduce, we generalize the definition for any data

element in a DIC.

Definition: One-function backward provenance of output
element o from function fi of a DIC is the set E of intermediate
elements contributing as input to fi. Backward provenance of
o is then the recursive union of the backward provenance for
each e ∈ E. Recursivity terminates when all inputs e are
elements in input data for the DIC.

Definition: One-function forward provenance of input ele-
ment i to function fj of a DIC is the set E of intermediate

246



elements produced as output by fj . Forward provenance of i
is then the recursive union of the forward provenance for each
e ∈ E. Recursivity terminates when all outputs e are elements
in output data from the DIC.

Backward provenance then for an output or intermediate

data element in a DIC is the subset of input data elements

(to the DIC) on which it depends. Forward provenance for

an input or intermediate data element in a DIC is the subset

of output data elements (from the DIC) derived by it. The

intermediate data is between functions in the context of a DIC.

Having established the data-intensive computation (DIC) as

the basic building block of a DIC workflow, we can extend

the above definitions to reason about backward and forward

provenance for the DIC workflow as a whole. In a workflow, a

dependency path between an input data element and an output

data element may go through one or more DICs as illustrated

in Figure 1. Backward provenance then for an output or

intermediate data element in a DIC workflow is the subset

of input data elements (to the workflow) on which it depends.

Forward provenance for an input or intermediate data element

in a DIC workflow is the subset of output data elements (from

the workflow) derived by it. The intermediate data is between

DICs in the context of a DIC workflow.

B. Provenance Streams

The two widely used provenance representation languages,

OPM [28] and W3C PROV [27] which we use, both represent

provenance as a directed acyclic graph. Provenance generated

by each DIC in a DIC workflow corresponds to a single

provenance graph.

Definition: A Provenance Graph G = (V, E, A) is a directed,
acyclic graph where a node (v ∈ V) is an activity, entity, or
agent defined in W3C PROV, an edge (e = 〈vi, vj〉 where e ∈
E and vi, vj ∈ V) represents a relationship defined in W3C
PROV directed from vi to vj and a set of attributes A(p) =
{a1, a2, ...} belongs to node or edge p.

A provenance stream can be thought of as a serialization

of a static provenance graph. A provenance stream for a DIC

is created on-the-fly during execution of a DIC. Elements that

grow a provenance graph on-the-fly correspond to provenance

relationships (edges) being established (e.g., use of a particular

data product). Frequently a node’s existence is asserted upon

its first use.

Definition: A Provenance Stream S = {s1, s2, ..., sn} repre-
senting a Provenance Graph G = (V, E, A) is an append-only
sequence of elements where an element s represents one of
the following.

1) s ∈ E
2) s = 〈Pm〉 where m ∈ V or m ∈ E, m is already found

in the stream before s and Pm ⊆ A(m)
An element in a provenance stream is a provenance rela-

tionship asserted between two vertices or a set of attributes

for either a vertex or an edge that has already appeared in the

stream before the current element. Attributes are allowed for

the edge elements when they are initially created. However in

some situations attributes need to be added later. For example,

when a function execution starts, the start time can be recorded

as an attribute in the very first edge which uses the function.

However the end time can only be added after the function

execution has completed.

The provenance stream model defined in [9] allows only

derivation relationships that are temporally ordered. Here

we extend their definition to allow other relationships and

accommodate events out-of-order.

Each DIC in a DIC workflow generates a separate prove-

nance graph stream. We call a stream of raw provenance

(before processing) a full provenance graph stream. We apply

our parallel provenance stream processing algorithm on a

full provenance graph stream generated by a single DIC to

reduce the amount of provenance on-the-fly while preserving

backward and forward provenance. Each reduced provenance

stream is stored in a provenance repository for archiving and

querying.

III. BIG PROVENANCE IN DICS

Fine-grained provenance captured from DICs is useful for

debugging and monitoring computations, for tracing the ori-

gins of derived data, and for tracing the derivation paths for

input data. Figure 2 shows an example of a MapReduce DIC

that counts hashtags in a set of tweets from an input file. When

the job is executed, each line in the input file is fed into a map

function which outputs 〈hashtag, 1〉 for each hashtag found in

that line. Once completed, the reduce function calculates the

total number of occurrences for each hashtag and produces the

output file shown.

In order to analyze how each input was processed and

how each output was generated, details on each function

execution should be recorded including their input and output

data products. Fine-grained provenance collected from both

map and reduce functions can fulfill that requirement. Figure 3

shows the full provenance graph for the above example includ-

ing inputs and outputs for all function executions. Backward

provenance for output c : 2 and forward provenance for first

tweet (input to M1) are also illustrated in the same figure.

As we defined above, backward and forward provenance for

a DIC shows dependencies between the inputs to the first

function and the outputs from the last function. Provenance of

intermediate functions are used only to derive paths between

inputs and outputs of the DIC.

Backward and forward provenance is useful in many dif-

ferent scenarios. For an example, if an increase in interest for

a certain product is seen as a result of a twitter data analysis

workflow, backward provenance can locate the subset of input

tweets for further analysis like users’ geographic distributions,

age distributions etc. Forward provenance is useful in cases

like tracing all output records which were derived by some

corrupted records in the input.

Earlier efforts to capture and analyze provenance from DICs

include RAMP [21], which uses a wrapper-based approach to

extend Hadoop to capture provenance and HadoopProv [4],

which modifies Hadoop instead of extending it, and does so to

reduce the run-time overhead of capturing provenance. Both

247



Fig. 2. MapReduce DIC for hashtag counting

solutions persist full provenance information into a storage

system. When fine-grained provenance is collected from a DIC

workflow, the amount of provenance generated can grow to

amounts that challenge most storage solutions. Going beyond

relational databases, few recent efforts tackle the volume in

provenance stores through techniques utilizing distributed file

systems [43], NoSQL stores [1], and graph databases [16].

Fig. 3. Full provenance in MapReduce illustrating forward provenance for
first tweet and backward provenance for output c : 2. Direction of arrows
follow W3C Prov convention for derivation and generation.

Irrespective of the techniques used, having to expand the

size of the storage layer by multiple times just to store

provenance is not realistic and efficient in most applica-

tions. Provenance queries frequently require extensive graph

traversal: calculating backward/forward provenance, finding all

paths through a given function, and checking whether a given

output is dependent on a given input. Graph traversal queries

are frequently supported using recursion, however, recursion

is considered extremely slow and compute intensive [20] [24]

for large graphs. Storing transitive closure tables for each node

in a graph is another technique for faster graph traversal. But

transitive closure tables consume significant space [24] and

are computationally expensive.

Fig. 4. Reduced backward and forward provenance

In this paper, we propose a stream processing approach

that runs in near real-time to the application to reduce the

volume of provenance from a DIC, saving unnecessary writes

to storage. Our stream processing techniques are applied to

a stream of full provenance from a DIC to derive a reduced

provenance graph which only contains backward and forward

dependency relationships between the inputs and outputs.

Intuitively, provenance related to intermediate data products

and function executions are removed in real-time and they

are only used to maintain dependency paths between inputs

and outputs. Figure 4 shows the reduced provenance graph

which only contains backward and forward provenance for

the example in Figure 2. For large scale DICs with multiple

functions, this reduction in graph size helps with both storage

and query efficiency.

Fig. 5. Stream processing solution for a DIC workflow

Figure 5 shows the provenance stream processing solution

for a DIC workflow which consists of multiple DICs. Prove-

nance from each DIC in the workflow is considered as a

separate stream. Each provenance stream is split into multiple

partitions to achieve scalability through parallel stream pro-

cessing. Each partition is processed by a local stream reducer

and then the reduced result is periodically forwarded into

a global reducer which provides the final provenance graph

with backward and forward provenance. Reduced provenance

graphs from all DICs in a workflow are stored and merged in

a central provenance repository to build backward and forward

provenance for the entire workflow.

Provenance queries are executed on reduced provenance

graph for the DIC workflow which is finally stored in the

provenance repository. As the depth and size of the graph is

reduced by multiple times compared to full provenance, both

storage cost and the query complexity is reduced by several

factors. Downside of reducing provenance on-the-fly is that

once reduced full provenance can not be recovered. As we

present in Section VI, advantages of reduction out-weights the

disadvantages.

IV. PARALLEL PROVENANCE STREAM PROCESSING

The provenance stream definition allows all types of W3C

PROV edges as elements in the stream. Depending on the

type of analysis, certain provenance stream elements should

be filtered out. When designing a streaming algorithm for

backward and forward provenance, we must first identify

248



the set of edge types which can exist in a derivation path

between two entities. Direct derivation between two entities

is represented by a wasDerivedFrom edge. Data derivation is

also indicated by a used edge and a wasGeneratedBy edge

connected through an activity node; and a hadMember edge

and a wasDerivedFrom edge connected through an entity node.

There are other W3C PROV edge types like alternateOf,
specializationOf etc. too which may participate in derivation

paths. However, for the purposes of this work in the context of

DICs, we consider wasDerivedFrom, used, wasGeneratedBy
and hadMember as the set of edge types that occur in a

path between two entities. Other edge types we filter out. In

addition, we further filter stream elements that add attributes

to a node or an edge (second type in the definition) as those

are not important for backward and forward provenance.

Fig. 6. Application of parallel stream processing on a partitioned stream of
full provenance to produce a reduced provenance graph preserving backward
and forward provenance

A. Parallel-prov-stream Algorithm

Our objective is an algorithm that can one-pass process

provenance in parallel while adjusting for out-of-order events,

and resulting in retention of backward and forward prove-

nance. We illustrate this in action through Figure 6 which

utilizes the full provenance graph given earlier in Figure 3. On

the left is the full provenance graph for the computation which

is streamed edge by edge as and when they are generated.

Stream of full provenance is split into multiple partitions

(using techniques in Section IV-B) and each partition is fed

into a local reducer. On the right is the final reduced output

from the global reducer which preserves backward and forward

provenance.

Intermediate data items and edges are removed real-time

by local and global stream processors. Both local and global

processors maintain a state which contains the current set of

reduced provenance edges. Each local stream processor filters

out unnecessary edges first. New incoming edges are matched

with the current local state to derive new dependencies by

connecting them through common vertices. For example, if

a local processor receives elements 〈v1, v2〉, 〈v2, v3〉 and

〈v5, v6〉, it reduces the local state to (〈v1, v3〉, 〈v5, v6〉) by

transitivity. Each local processor periodically flushes its re-

duced state into downstream global processor upon processing

a fixed number (called local batch size) of stream elements.

The global processor further reduces the state by merging

compatible edges from different local processors and it also

periodically flushes the reduced state upon processing a fixed

number (called global batch size) of stream elements.

Fig. 7. Reduction through the source vertex of a new edge

Algorithm 1 gives our one-pass parallel-prov-stream al-

gorithm which is used by both local and global processors.

This algorithm maintains an internal state which contains the

current most reduced set of edges. In other words, for any edge

〈vi, vj〉 in the state, there is no other edge whose destination

vertex is vi or source vertex is vj . The algorithm maintains

two HashMaps sMap and dMap for efficient access to edges

in the state. HashMap sMap is key-value pairs where key is

a vertex id and value is a list of edges whose source is the

same vertex id. HashMap dMap is key-value pairs where key

is a vertex id and value is a list of edges whose destination is

the same vertex id. A given edge has two pointers from sMap
and dMap based on its source vertex id and destination vertex

id. For each new stream element or edge, the internal state is

checked to find possible reductions. The algorithm uses the

two HashMaps to access the edges with possible reductions

in O(1) time without scanning through the entire state.
Figure 7 shows how a reduction through the source vertex

of a new edge happens (line number 7 to 12 in Algorithm 1).

Edges 〈v1, v3〉 and 〈v2, v3〉 are already present in the local state

and 〈v3, v4〉 is the new edge. When the algorithm calculates the

new state, 〈v1, v3〉 and 〈v2, v3〉 are added to the list of edges

to be deleted (eDel), and 〈v1, v4〉 and 〈v2, v4〉 are added to

the list of new edges to be added (eAdd).

Fig. 8. Partitioning provenance from a function execution

There are two operations to process a single stream el-

ement (addEdge) and a group of stream elements together

(addEdgeGroup). This algorithm does not depend on the order

of provenance edges in the stream within the configured

batch size as it keeps unreduced edges in the state for future

reductions. Space complexity is bounded by the local batch
size for local reduction and global batch size for global

reduction.

B. Partitioning a Provenance Stream
In order to handle high rates of provenance from large

scale DICs, our streaming system should be scalable. As

249



Algorithm 1 Provenance Stream Processing Algorithm

1: sMap � map of reduced edge lists by source id

2: dMap � map of reduced edge lists by destination id

3: procedure ADDEDGEGROUP(newEdges) � newEdges:

group of new stream elements

4: list eDel � edges to delete

5: list eAdd � edges to add

6: for (ne in newEdges) do
7: if (dMap.containsKey(ne.source)) then
8: list edgesIntoSource = dMap.get(ne.source)

9: for (e in edgesIntoSource) do
10: eAdd.add(new Edge(e.source, ne.dest))

11: end for
12: eDel.addAll(edgesIntoSource)

13: else if (sMap.containsKey(ne.dest)) then
14: list edgesFromDest = sMap.get(ne.dest)

15: for (e in edgesFromDest) do
16: eAdd.add(new Edge(ne.source, e.dest))

17: end for
18: eDel.addAll(edgesFromDest)
19: else
20: INSERTEDGE(ne) � add new edge into state

21: end if
22: end for
23: if (!eAdd.isEmpty()) then
24: ADDEDGEGROUP(eAdd) � further reductions

25: end if
26: for (edge in eDel) do
27: DELETEEDGE(edge) � delete edge from state

28: end for
29: end procedure
30: procedure ADDEDGE(newEdge) � newEdge: new

stream element

31: list newEdges
32: newEdges.add(newEdge)

33: ADDEDGEGROUP(newEdges)

34: end procedure
35: procedure INSERTEDGE(edge) � inserts entries into

sMap and dMap for given new edge

36: end procedure
37: procedure DELETEEDGE(edge)� delete entries in sMap

and dMap for given edge

38: end procedure

shown in Figure 6, we split the stream of provenance into

partitions and process them in parallel. Locally processed

results from parallel stream processors are periodically merged

to compute the current global state of backward and forward

provenance. The partitioning strategy is extremely important

for the efficiency of the system. Partitions should be created

so that the local reductions are maximized.

We evaluate three different partitioning strategies. In order

to not lose dependency paths during the partitioning process,

we introduce a constraint that applies for all partitioning strate-

gies: all provenance edges generated during a single function

execution must belong to the same partition in the stream. A

function in a DIC is executed many times on small fractions

of input data and here we focus on such single execution of a

function. Consider the scenario in Figure 8 where provenance

from a single function execution is split into two partitions.

The reduced output, then, from the first partition is (〈o1, i1〉,
〈o1, i2〉) and from the second partition is (〈o2, i3〉). These

two outputs are received by the global reducer which outputs

(〈o1, i1〉, 〈o1, i2〉, 〈o2, i3〉). This output is incorrect as it lacks

three valid dependency paths 〈o2, i1〉, 〈o2, i2〉 and 〈o1, i3〉.
The constraint avoids this issue by sending all provenance

edges from a single function execution to the same partition.

In all three partitioning strategies described below, the smallest

non-separable unit for partitioning the provenance stream is a

collection of edges from a single function execution.

Horizontal Partitioning: Provenance elements from each

function (all its function executions) in the DIC are directed to

a separate partition. Each partition could only perform a one-

step reduction which creates dependencies between the inputs

and outputs of the relevant function. Horizontal partitioning

for a stream of provenance from a DIC which consists of

two functions is shown in Figure 9 in which provenance

elements from functions f1 and f2 will be processed by

separate local stream processors. Uneven load distribution

among partitions can be expected with horizontal partitioning

as different functions deal with different sizes of input data.

Fig. 9. Horizontal partitioning

Vertical Partitioning: Provenance stream is partitioned ver-

tically along the derivation paths between inputs and outputs.

Figure 10 shows the vertical partitioning for the same example

in Figure 9. The idea is to preserve derivation paths within

partitions as much as possible and maximize local reduction.

DIC frameworks like Hadoop and Spark consider data locality

as a major factor when scheduling functions on slave nodes.

For a group of cluster nodes located close to each other, there

is high chance that higher percentage of functions processing

the data stored on them are executed within themselves.

Therefore, as a vertical partition strategy, we propose to

partition the stream based on the node which generated each

stream element. The cluster of nodes is partitioned based on

the locality and provenance stream elements from each cluster

250



partition creates a separate vertical partition in the provenance

stream.

Fig. 10. Vertical partitioning

Random Partitioning: Randomly distributes provenance

from function executions among parallel local stream reducers.

Degree of local reduction depends on the percentage of

provenance from nearby function executions which goes into

the same partition. When the number of partitions increases,

performance of random partitioning decreases as the probabil-

ity of reducible edges falling into the same partition decreases.

If the number of partitions is small random partitioning may

perform better than horizontal partitioning.

C. Early Elimination Problem

In our parallel-prov-stream algorithm, one vertex is perma-

nently removed during each reduction. When edges 〈vi, vj〉
and 〈vj , vk〉 are reduced to 〈vi, vk〉, vertex vj is removed

and no longer available for further reductions. This leads to

incorrect results if vj participates in other edges which have

not been received by the processor yet. We call this as the

early elimination problem. Consider the scenario in Figure 11

in which a function uses a single input and generates two

outputs. At time t2, the local state is reduced to (〈o1, i1〉) by

removing f . When 〈o2, f〉 arrives at t3, there is no way to

derive its dependency on i1. We evaluate two strategies to

avoid this problem.

Fig. 11. Early elimination example

Grouping: When multiple data items are used or generated

by a function, the provenance collector sends all usage or gen-

eration edges as a single group of elements in the stream. The

parallel-prov-stream algorithm processes the group together

through addEdgeGroup operation which makes sure that the

vertices are deleted only after considering all elements in the

group for reductions.

Sliding Window: Each stream processor maintains a sliding

window which retains a configurable but limited number of

past stream elements. Both the internal state and the sliding

window is checked (an extension to above algorithm) at the

arrival of each element to compute the new local state. If a

certain deleted element in the local state is not also found in

the sliding window, dependencies will be lost and the final

result will suffer in accuracy.

V. PARALLEL PROVENANCE STREAM IMPLEMENTATION

We use a workflow consisting of two batch processing DICs

to process Twitter data and apply our parallel provenance

stream processing technique on provenance generated by the

DICs. As shown in Figure 12, a Twitter client is used to collect

tweets through the Twitter public streaming API and store

in HDFS over a period of time. For each tweet, the client

captures the Twitter handle of the author, time, language and

the full message and writes a record into an HDFS file. First

DIC which is implemented using Hadoop (v2.8.1) counts the

occurrences of each hash tag in the full Twitter dataset and

writes the results into a new HDFS file. The second DIC

in the workflow is implemented using Spark (v2.2.1) and

it produces aggregated tweet counts according to categories

(sports, movies, politics etc).

We implement our parallel-prov-stream algorithm on top

of the Flink Streaming framework (v1.3.2) [8] since Flink

provides support for stateful stream processing while produc-

ing high throughput and low latency. We employ the Kafka

(v0.11.0.1) [23] distributed log store to persist the provenance

streams generated from DICs in the workflow and to handle

partitioning. Kafka retains stream elements for a configurable

period of time and controls the data rate going into the

streaming system. Flink provides built-in Kafka connectors

which can be configured to pull stream elements from Kafka

partitions into Flink consumers.

Fig. 12. DIC workflow to categorize hash tags in twitter data

The streaming solution is applied for provenance streams

from each DIC in the workflow. Figure 13 shows the over-

all architecture of the system for our DIC workflow. The

functions in Hadoop and Spark jobs are instrumented to

capture provenance in W3C PROV JSON format; the Kafka

251



producer API is used to write streams into Kafka. There are

different approaches [21] [4] to capture provenance depending

on the system and trade-offs [35] associated with them. Our

streaming solution is independent of the provenance capture

method.

Fig. 13. Provenance stream processing architecture

Horizontal partitioning is done by assigning a separate

partition for each function in a DIC and vertical partitioning

is done by assigning a separate partition for a subset of

nodes in the Hadoop or Spark cluster. Each DIC is assigned

a separate Kafka topic and each partition in the provenance

stream maps to a separate partition in the Kafka topic. Both

local and global processors in Flink implement the parallel-
prov-stream algorithm. Each local steam processor consumes

a single partition from Kafka and performs local reduction.

Local reducers periodically emit the reduced results into the

global reducer which further reduces the global state. If no new

stream elements are received for a configurable time limit, the

global reducer deduces end of stream is reached and completes

the output reduced provenance graph. This reduced graph is

then stored to Komadu’s central provenance repository. When

the DIC workflow continues to run, reduced provenance graphs

from all DICs are stored in Komadu and merged together

using unique identifiers assigned for data items. Backward

and forward provenance for the entire workflow is obtained

by merging reduced graphs from all DICs.

VI. EXPERIMENTAL EVALUATION

The evaluation is three part: first we evaluate the accuracy of

our provenance stream processing algorithm for out-of-order

provenance streams. We use a simulator to produce out of

order streams and measure the accuracy for both “Grouping”

and “Sliding Window” methods. Second, we evaluate the scal-

ability of our streaming solution under increased parallelism.

Third, efficiency of the three partitioning strategies is evaluated

by measuring the degree of local reduction.

Environment. Experiments are run on virtual machines from

the Jetstream cloud environment [14]. We use medium size

VMs which consist of 6 CPU cores of 2.5 GHz speed, 16

GB of RAM and 60 GB of disk space per instance. The

Hadoop cluster consists of six nodes with one master and five

slave nodes. Total of 10.1 GB twitter data was collected and

stored on HDFS. Two nodes are allocated for the Kafka cluster

where the master node runs the zookeeper instance and both

nodes run Kafka brokers. Up to six nodes are used for Flink

streaming cluster depending on the experiment where one node

is always used as the master and all others acting as slaves.

Another VM is allocated for Komadu which persists reduced

provenance graphs coming out of the streaming system.

Workload. The workload is a DIC workflow composed of

two DICs: DIC1 runs on Hadoop and DIC2 runs on Spark, as

shown in Figure 13. Each DIC produces a separate provenance

stream and each is processed in isolation. The provenance

results, once reduced to backward and forward provenance

for both DICs, are brought together in Komadu [38] to build

workflow level provenance.

Fig. 14. Percentage accuracy of backward and forward provenance results
against the percentage of out-of-order elements for “Grouping” and “Sliding
Window” methods of our algorithm and Chen algorithm

In the first experiment, we measure the accuracy of our

parallel-prov-stream algorithm for out-of-order provenance

streams and compare results with [9]. Accuracy is measured

by calculating the percentage of correct backward and forward

provenance relationships exist in the output provenance graph.

The algorithm in [9] is not designed to handle out-of-order

stream elements. Therefore, the intention of this experiment

is not to show that our algorithm performs better. But we

use their algorithm as a base case to show the importance of

handling out-of-order elements for accuracy.

As [9] is not a parallel algorithm, the provenance stream

from DIC1 is considered as a single partition and consumed

by only one stream processor in this experiment. Same ex-

periment is executed against both algorithms to measure the

accuracy of the final results against varying out-of-order levels.

As we need to vary the percentage of out-of-order elements

in the stream, we developed a simulator tool which produces

streams with required levels of ordering errors, consuming

a recorded file with correctly ordered provenance elements

(from DIC1). A subset of 1.1 GB input data was used for this

experiment and it generated 2.86 GB of provenance.

We measure the accuracy of both “Grouping” and “Sliding

Window” (window size set to 1000 elements) approaches

of avoiding early elimination problem. According to results

shown in Figure 14, all three algorithms provide 100% ac-

curacy for perfectly ordered streams (0% out-of-order ele-

ments). As the fraction of out-of-order elements increases, our

252



algorithm remains 100% accurate with “Grouping” method

while “Sliding Window” method showing some inaccuracy.

This is expected as the early elimination problem can not

be completely solved using “Sliding Window” method using

a finite window size. Accuracy of Chen’s algorithm reduces

considerably as it does not handle out-of-order elements. We

use “Grouping” method in all remaining experiments as it

provides best accuracy.
The second experiment evaluates the scalability of the sys-

tem through speedup: the proportional reduction in execution

time for increasing parallelism against a fixed load. The dataset

used is 10.1 GB Twitter dataset; the local batch size is set to

20000 and the global batch size is set to 100000. For each

level of parallelism in Flink streaming job, the same number

of Kafka partitions are created. Vertical partitioning is used as

the partitioning strategy where provenance from each node in

the Hadoop cluster contributes to a single partition.
Our approach shows sub-linear speedup with the increasing

parallelism, as shown in Figure 15. Speedup deviates from

ideal due to cross partition edges which do not allow 100%

reduction within a partition and possible communication over-

heads in the streaming system with increasing parallelism.

The system shows a maximum throughput of 6.044 MB/s per

partition during this experiment.

Fig. 15. Speedup (parallelism = 1 time/parallelism = n time) of the system
against increasing parallelism. Input data size is fixed at 10.1 GB and local
batch size is 20000.

In the third experiment, we evaluate the efficiency of

horizontal, vertical and random partitioning strategies by mea-

suring the degree of local reduction for the same computation

under same range of local batch size. The stream partitioning

strategy and local batch size are both determinant factors

affecting the degree of local reduction. The degree of local

reduction is measured by counting the total number of edges

emitted by parallel local reducers towards the global reducer

during the entire computation. We use the full 10.1 GB dataset

for this experiment and run five Hadoop slaves and five Flink

slaves.
Vertical partitioning performs best as it leads to maximum

reduction along derivation paths, see Figure 16. Random parti-

tioning also shows better reduction with increasing local batch

size. This is due to the increasing probability of provenance

from functions sharing same data products falling under the

TABLE I
SIZE (IN GB) AND NUMBER OF EDGES IN PROVENANCE GRAPHS

Input Local out Global out

Size (GB) 28.43 8.11 1.47

Num of edges (millions) 127.73 32.98 17.13

same partition. However the degree of reduction is less com-

pared to vertical partitioning. Horizontal partitioning shows

almost constant reduction with varying local batch size. This

is expected as a horizontal partition can only have provenance

from function executions of a single function. Reductions

across multiple function executions are not possible and the

chance of reductions does not increase with the batch size.

Fig. 16. Number of edges emitted by local reducers against the local batch
size (in number of elements) for horizontal, vertical and random partitioning
strategies

Table I shows the comparison of size (in GB) and number of

edges (in millions) among input, local output and global output

provenance graphs generated for the full twitter dataset of 10.1

GB with vertical partitioning and local batch size set to 20000.

The results show that our parallel stream processing solution

leads to a size reduction ratio of 19.34 and edge reduction

ratio of 7.46 between the input and output provenance graphs

while preserving backward and forward provenance.

VII. RELATED WORK

Provenance capture, query and visualization on traditional

scientific workflows is a well studied area. Early systems like

Chimera [15] and MyGrid [44] and provenance protocols

such as Groth et al. [18] focus on capturing coarse-grained

provenance from scientific workflows running on grids. Karma

[34] and its predecessor, Komadu [38], are standalone prove-

nance repositories; independent of any workflow system and

ingesting events on topic-based channels.

Provenance from Big Data processing frameworks pose

challenges in storage, scalability, and querying [41] [17]. Wang

et al. [12] captures provenance in MapReduce workflows

by integrating Hadoop into Kepler and using provenance

capabilities of Kepler. RAMP [21] extends Hadoop to capture

provenance by propagating input identifiers through the com-

putation. They have built wrappers for Hadoop which automat-

ically record provenance when a job is executed. HadoopProv

253



[4] modifies Hadoop to reduce provenance capturing overhead.

Both RAMP and HadoopProv capture fine-grained provenance

which include intermediate data as well. They persist full

provenance into HDFS files and are capable of supporting both

backward and forward provenance between inputs and outputs.

Titian [22] is a modified version of Spark which automatically

captures provenance from any function applied on a dataset.

However all these systems suffer the issues of handling and

querying Big Provenance as they store full provenance for

offline processing.

There have been multiple attempts to address the challenges

of the sheer volume of provenance through techniques utilizing

distributed file systems [43], NoSQL stores [1], and graph

databases [16]. However the cost of storage and querying [20]

[24] could still be challenging when applied in the context of

DICs.

As a provenance stream is frequently represented as a

graph, graph streaming techniques are applicable in prove-

nance stream analysis. Application of static graph analysis

methods on graph streams is considered a difficult problem

specially when the graph is directed [25]. Algorithms for

problems like triangle count [7] and page rank [33] have been

studied. There are few studies on graph stream clustering [2]

and mining [11] as well.

Vijayakumar et al. [40] develops techniques to capture

coarse-grained provenance among data streams whereas [26],

[31], [32] studies fine-grained provenance capturing. San-

srimahachai et al. [31] treat provenance captured from stream-

ing data as a separate stream and apply on-the-fly queries on

top of it.

To the best of our knowledge, our earlier work [9] is unique

in using stream processing techniques to compute backward

or forward provenance. It maintains a dependency matrix of

input parameters and variable values in real time, and can

process unlimited amount of data with limited memory. It

has been applied to interpreting provenance emerging from

Agent Based Models (ABMs). The research described here

complements this earlier work along several dimensions. The

earlier definition of a provenance stream includes only deriva-

tion relationships; a limitation in most applications. Too, the

stream of provenance is ordered by time of generation. We lift

both assumptions to support multiple provenance relationships,

and be resilient to out of order events as DICs are inherently

distributed so subject to network delays, lost packets, re-

transmits etc. Finally the algorithm in [9] is not executable

in parallel and we address this limitation too.

VIII. CONCLUSION AND FUTURE WORK

We propose a provenance stream processing algorithm

that processes fine-grained provenance in parallel and on-

the-fly to reduce the stream while preserving backward and

forward provenance in support of large scale data-intensive

computations. We demonstrate that our algorithm performs

well for out-of-order provenance streams and scales well with

increasing parallelism.

An important area of ongoing work is to lift the assumption

that DICs are batch oriented and the provenance stream

is finite. Infinite provenance streams continuously generated

from stream processing DICs requires provenance queries to

be executable in real-time on the streaming system instead

of queried after the provenance is persisted to a provenance

repository.

Watermarks [3] is an alternate solution to the early elim-
ination problem that merits evaluation. In addition, we plan

to extend our system to other real-time provenance stream

analyses such as detecting slow nodes in a compute cluster

and detecting missing intermediate data items in the future.

The provenance stream processing algorithm and associated

tools can be found at the following Git repositories:

• https://github.com/Data-to-Insight-Center/streaming-prov

• https://github.com/Data-to-Insight-Center/komadu

ACKNOWLEDGMENT

This work is funded in part by a grant from the National

Science Foundation under grant #0940824. Thanks to Peng

Chen, Instagram for valuable feedback on this manuscript.

REFERENCES

[1] J. Abraham, P. Brazier, A. Chebotko, J. Navarro, and A. Piazza.
Distributed storage and querying techniques for a semantic web of
scientific workflow provenance. In 2010 IEEE Int’l Conference on
Services Computing, pages 178–185, July 2010.

[2] C. C. Aggarwal, Y. Zhao, and P. S. Yu. On clustering graph streams.
In Proc SIAM Int’l Conference on Data Mining, pages 478–489. SIAM,
2010.

[3] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle. Millwheel: Fault-
tolerant stream processing at internet scale. Proc. VLDB Endow.,
6(11):1033–1044, Aug. 2013.

[4] S. Akoush, R. Sohan, and A. Hopper. Hadoopprov: Towards provenance
as a first class citizen in mapreduce. In Proc 5th USENIX Workshop
on the Theory and Practice of Provenance, pages 11:1–11:4. USENIX
Association, 2013.

[5] A. Alserafi, A. Abelló, O. Romero, and T. Calders. Towards information
profiling: Data lake content metadata management. In Proc. IEEE 16th
Int’l Conference on Data Mining Workshops (ICDMW), pages 178–185.
IEEE, 2016.

[6] ASF. Apache hadoop. Available: https://hadoop.apache.org.
[7] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in streaming

algorithms, with an application to counting triangles in graphs. In Proc
13th ACM-SIAM symposium on Discrete algorithms, pages 623–632.
Society for Industrial and Applied Mathematics, 2002.

[8] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink: Stream and batch processing in a single
engine. Bulletin IEEE Computer Society Technical Committee on Data
Engineering, 36(4), 2015.

[9] P. Chen, T. Evans, and B. Plale. Analysis of memory constrained live
provenance. In M. Mattoso and B. Glavic, editors, 6th Int’l Provenance
and Annotation Workshop: Provenance and Annotation of Data and
Processes, pages 42–54, Cham, 2016. Springer Int’l Publishing.

[10] J. Cheney, A. Ahmed, and U. a. Acar. Provenance as dependency
analysis. Mathematical. Structures in Comp. Sci., 21(6):1301–1337, Dec.
2011.

[11] G. Cormode and S. Muthukrishnan. Space efficient mining of multigraph
streams. In Proc 24th ACM SIGMOD-SIGACT-SIGART symposium on
Principles of Database Systems, pages 271–282. ACM, 2005.

[12] D. Crawl, J. Wang, and I. Altintas. Provenance for mapreduce-based
data-intensive workflows. In Proc 6th Workshop on Workflows in Support
of Large-scale Science, pages 21–30. ACM, 2011.

[13] G. Dong, L. Libkin, J. Su, and L. Wong. Maintaining transitive closure
of graphs in sql. Int’l Journal of Information Technology, 51(1):46,
1999.

254



[14] J. Fischer, S. Tuecke, I. Foster, and C. A. Stewart. Jetstream: A
distributed cloud infrastructure for underresourced higher education
communities. In Proceedings of the 1st Workshop on The Science of
Cyberinfrastructure: Research, Experience, Applications and Models,
SCREAM ’15, pages 53–61, New York, NY, USA, 2015. ACM.

[15] I. Foster, J. Vockler, M. Wilde, and Y. Zhao. Chimera: a virtual data
system for representing, querying, and automating data derivation. In
14th Int’l Conference on Scientific and Statistical Database Manage-
ment, pages 37–46. 2002.

[16] A. Gehani and D. Tariq. Spade: support for provenance auditing in
distributed environments. In Proc 13th Int’l Middleware Conference,
pages 101–120. Springer-Verlag New York, Inc., 2012.

[17] B. Glavic. Big data provenance: Challenges and implications for
benchmarking. In Revised Selected Papers of the First Workshop on
Specifying Big Data Benchmarks - Volume 8163, pages 72–80. Springer-
Verlag New York, Inc., 2014.

[18] P. Groth, M. Luck, and L. Moreau. A protocol for recording provenance
in service-oriented grids. In Proceedings of the 8th International
Conference on Principles of Distributed Systems, OPODIS’04, pages
124–139, Berlin, Heidelberg, 2005. Springer-Verlag.

[19] A. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, and
S. E. Whang. Managing google’s data lake: an overview of the goods
system. Data Engineering, page 5, 2016.

[20] T. Heinis and G. Alonso. Efficient lineage tracking for scientific work-
flows. In Proc. 2008 ACM SIGMOD Int’l conference on Management
of data, pages 1007–1018. ACM, 2008.

[21] R. Ikeda, H. Park, and J. Widom. Provenance for generalized map and
reduce workflows. 2011.

[22] M. Interlandi, K. Shah, S. D. Tetali, M. Gulzar, S. Yoo, M. Kim, T. D.
Millstein, and T. Condie. Titian: Data provenance support in spark.
PVLDB, 9(3):216–227, 2015.

[23] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging
system for log processing. In Proc. NetDB, pages 1–7, 2011.

[24] T. Malik, A. Gehani, D. Tariq, and F. Zaffar. Sketching Distributed
Data Provenance, pages 85–107. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[25] A. McGregor. Graph stream algorithms: a survey. ACM SIGMOD
Record, 43(1):9–20, 2014.

[26] A. Misra, M. Blount, A. Kementsietsidis, D. Sow, and M. Wang.
Provenance and annotation of data and processes. chapter Advances
and Challenges for Scalable Provenance in Stream Processing Systems,
pages 253–265. Springer-Verlag, Berlin, Heidelberg, 2008.

[27] P. Missier, K. Belhajjame, and J. Cheney. The w3c prov family of
specifications for modelling provenance metadata. In Proc 16th Int’l
Conference on Extending Database Technology, pages 773–776. ACM,
2013.

[28] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers, B. Plale, Y. Simmhan,
E. Stephan, and J. V. den Bussche. The open provenance model core
specification (v1.1). Future Gener. Comput. Syst., 27(6):743–756, June
2011.

[29] H. Park, R. Ikeda, and J. Widom. Ramp: A system for capturing and
tracing provenance in mapreduce workflows. In 37th Int’l Conference
on Very Large Data Bases (VLDB). Stanford InfoLab, August 2011.

[30] C. Quix, R. Hai, and I. Vatov. Metadata extraction and management
in data lakes with gemms. Complex Systems Informatics and Modeling
Quarterly, (9):67–83, 2016.

[31] W. Sansrimahachai, L. Moreau, and M. J. Weal. An on-the-fly prove-
nance tracking mechanism for stream processing systems. In 2013
IEEE/ACIS 12th Int’l Conference on Computer and Information Science
(ICIS), pages 475–481, June 2013.

[32] W. Sansrimahachai, M. J. Weal, and L. Moreau. Stream ancestor
function: A mechanism for fine-grained provenance in stream processing
systems. In 2012 Sixth Int’l Conference on Research Challenges in
Information Science (RCIS), pages 1–12, May 2012.

[33] A. D. Sarma, S. Gollapudi, and R. Panigrahy. Estimating pagerank on
graph streams. Journal of ACM (JACM), 58(3):13, 2011.

[34] Y. L. Simmhan, B. Plale, and D. Gannon. Query capabilities of the
karma provenance framework. Concurrency and Computation: Practice
and Experience, 20(5):441–451, 2008.

[35] M. Stamatogiannakis, H. Kazmi, H. Sharif, R. Vermeulen, A. Gehani,
H. Bos, and P. Groth. Trade-offs in automatic provenance capture.
In Proceedings of the 6th International Provenance and Annotation
Workshop on Provenance and Annotation of Data and Processes -

Volume 9672, IPAW 2016, pages 29–41, Berlin, Heidelberg, 2016.
Springer-Verlag.

[36] I. Suriarachchi and B. Plale. Crossing analytics systems: A case for
integrated provenance in data lakes. In Proc 2016 IEEE 12th Int’l
Conference one-Science (e-Science), pages 349–354. IEEE, 2016.

[37] I. Suriarachchi and B. Plale. Provenance as essential infrastructure for
data lakes. In Int’l Provenance and Annotation Workshop, pages 178–
182. Springer, 2016.

[38] I. Suriarachchi, Q. Zhou, and B. Plale. Komadu: A capture and
visualization system for scientific data provenance. Journal of Open
Research Software, 3(1), 2015.

[39] I. Terrizzano, P. M. Schwarz, M. Roth, and J. E. Colino. Data wrangling:
The challenging journey from the wild to the lake. In CIDR, 2015.

[40] N. N. Vijayakumar and B. Plale. Towards low overhead provenance
tracking in near real-time stream filtering. In Proc. 2006 Int’l Conference
on Provenance and Annotation of Data, IPAW’06, pages 46–54, Berlin,
Heidelberg, 2006. Springer-Verlag.

[41] J. Wang, D. Crawl, S. Purawat, M. Nguyen, and I. Altintas. Big data
provenance: Challenges, state of the art and opportunities. In 2015 IEEE
Int’l Conference on Big Data (Big Data), pages 2509–2516, Oct 2015.

[42] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In Proc. 2Nd USENIX
Conference on Hot Topics in Cloud Computing, pages 10–10. USENIX
Association, 2010.

[43] D. Zhao, C. Shou, T. Malik, and I. Raicu. Distributed data provenance
for large-scale data-intensive computing. In Proc 2013 IEEE Int’l
Conference on Cluster Computing (CLUSTER), pages 1–8. IEEE, 2013.

[44] J. Zhao, C. Goble, R. Stevens, and S. Bechhofer. Semantically linking
and browsing provenance logs for e-science. In Semantics of a Net-
worked World. Semantics for Grid Databases, pages 158–176. Springer,
2004.

255


