
Building NDStore through Hierarchical Storage
Management and Microservice Processing

Kunal Lillaney∗, Dean Kleissas†, Alexander Eusman∗, Eric Perlman‡, William Gray Roncal†,
Joshua T. Vogelstein§, Randal Burns∗

∗Dept. of Computer Science, †Applied Physics Laboratory, ‡Center for Imaging Science,
§Institute of Computational Medicine, Dept. of Biomedical Engineering

Johns Hopkins University
Baltimore, Maryland

Abstract—We describe NDStore, a scalable multi-hierarchical
data storage deployment for spatial analysis of neuroscience
data on the AWS cloud. The system design is inspired by the
requirement to maintain high I/O throughput for workloads
that build neural connectivity maps of the brain from peta-scale
imaging data using computer vision algorithms. We store all our
data on the AWS object store S3 to limit our deployment costs.
S3 serves as our base-tier of storage. Redis, an in-memory key-
value engine, is used as our caching tier. The data is dynamically
moved between the different storage tiers based on user access.
All programming interfaces to this system are RESTful web-
services. We include a performance evaluation that shows that
our production system provides good performance for a variety
of workloads by combining the assets of multiple cloud services.

Index Terms—Spatial Data, Big Data, Cloud Computing,
Object Storage, Neuroscience

I. INTRODUCTION

In 2013, we developed a scalable cluster called the Open

Connectome Project [1] as a response to the scalability crisis

faced by the neuroscience community. The system design was

based on the principles of NoSQL scale-out and data-intensive

computing architecture. This project currently has grown to 80

unique datasets that total more than 200 TB across different

imaging modalities. It was deployed on the Data-Scope storage

cluster [2] at Johns Hopkins University with MySQL and

Cassandra as storage back-ends. We have recently migrated

all Open Connectome Project data to a new cloud system,

called NeuroData Store or NDStore, and continue to provide

storage and analytics services to the neuroscience community.

Neuroscience has varied workloads that differ in scale, I/O

bandwidth and latency requirements. One workload runs par-

allel computer vision algorithms at scale on high-performance

compute clusters. This workload needs to scale, requires high

I/O bandwidth, is not latency sensitive and performs large

reads and writes [3]. One exemplar detects 19 million synapses

using approximately 14,000 core hours in a 4 trillion pixel

image volume [4]. Other workloads related to annotation

of imaging data require low I/O bandwidth but are latency

sensitive for small writes. Visualization presents a different

workload that requires moderate I/O bandwidth and is very

latency sensitive with small reads. Visualization platforms such

as BigDataViewer [5] and NeuroGlancer [6] generate such

workloads.

Our previous NoSQL architecture reached its scaling limit

as neuroscience data evolved from terabytes to peta-bytes.

In 2015, Intelligence Advanced Research Projects Activity

(IARPA) announced the Machine Intelligence from Cortical

Networks (MICrONS) program [7] to reverse-engineer the

algorithms of the brain and revolutionize machine learning.

This program will image multiple mouse brains, producing

peta-bytes of data [8]. Relational databases on disk drives have

difficulty providing the high IOPS required by this workload

and are difficult to scale. Key-value stores, such as Cassandra,

are designed to hold millions of key-value pairs and scale

well. But, key-value stores that integrate solid-state storage

and disk drives results in high operating costs for peta-bytes

of data. Other considerations are the availability and reliability

of data which are critical. Any data loss is catastrophic and

inaccessible datasets can severely impede scientific discovery.

Currently, there is no single cloud service that provides peta-

scale data with high I/O throughput. However, commercial

clouds do offer many services to store data that include

object stores, archival storage, memory clusters, relational

databases, SSDs and key-value stores. To realize the reliability,

availability, scaling on demand benefits of the cloud [9], we

combine multiple services. One can use an object store to hold

the data; e.g., S3 is scalable, cheap and reliable. But object

stores are too slow for latency sensitive workloads, such as

visualization, and not ideal for the random writes generated

during annotation of imaging data. SSD’s and memory clusters

do offer low latency and work well with random writes but

are cost-prohibitive at peta-scale.

Unfortunately, the overall experience of the scientific com-

munity with respect to the cloud has been mixed. Some open

science projects have explored the idea of cloud computing for

a wide spectrum of applications ranging from understanding

Dark Matter [10], creating Montages [11], tracing DNA [12]

to utilizing unused cycles on commercial clouds [13]. Mostly,

the negatives have largely outweighed the positives with

performance playing a major role [14]. Another demerit has

been cost-effectiveness [15]. Several factors have led to this

negative experience. Most of these explorations were con-

ducted between 2008 and 2011 when there were far few

223

2018 IEEE 14th International Conference on e-Science

978-1-5386-9156-4/18/$31.00 ©2018 IEEE
DOI 10.1109/eScience.2018.00037

service providers with more basic services. Today, commercial

services such as Amazon Web Services (AWS) [16], Microsoft

Cloud [17], Google Cloud Platform [18] and IBM Cloud [19]

have evolved and offer a much mature set of services at com-

petitive prices. Also, many of explorations tried to port their

existing High Performance Computing (HPC) architectures to

the cloud, rather than redesigning the software stack around

cloud services. For example, Thakar [14] used SQL-Server

to store data and managed SQL server instances manually.

Since then, many managed databases services have emerged

that would be easier and cheaper.

We have developed and deployed a hierarchical storage

system on the cloud that replaces our NoSQL architecture.

The system uses an object store as a base tier for its scalability

and low cost and a memory cluster as a caching tier for low-

latency I/O. We do not attempt to superimpose our earlier

architecture on the cloud. Instead, we reinvent it to exploit

cloud services to their full potential. Both, object stores

and memory caches cannot be used in isolation because of

their respective drawbacks. But they complement each other,

negating the other’s shortcomings. In addition, a memory-

based fast-write buffer, called NDBlaze, accelerates random

writes to the object store.

We decompose the application using micro-services for scal-

ability, modularity and to avoid a single point of failure. Micro-

services include server-less compute, distributed queues, and

key-value stores, for ingest, data manipulation, and analysis.

The use of these services aids in our quest to keep cost low

while extracting the maximum performance possible for our

different workloads.

We choose the AWS platform to develop and deploy our

project. This choice is motivated by our prior experience with

the platform. However, our design principles are not limited

to this platform and could be implemented with other cloud

providers.

II. RELATED WORK

We draw our inspiration from hierarchical storage manage-

ment systems that we adapt to a cloud environment. Many

of the challenges we face parallel those that lead to the

development of early hierarchical storage systems [20]. These

systems were designed to use hard-drives in conjunction with

other storage media, such as tapes. The multiple levels of

storage are managed by the system so that the user sees a

single storage address space. They have been widely used for

serving videos [21], in file-systems [22] and data archives [23].

The ADSTAR Distributed Storage Manager (ADSM) [23] is

one such system used for backup and archive. This system

operated on multiple platforms and provided an illusion of

infinite storage to the user. Another example is Coda [24], a

file-system that ensured resiliency against server and network

failures in large distributed systems. Coda descended from the

Andrew File System (AFS) and allowed users to cache data

locally to ensure constant data availability. Sprite [22] used

client side caching for network file systems to increase I/O

performance and reduce network traffic.

Fig. 1. The resolution hierarchy dictates the dimensions of the cuboids at
each scale [1].

NDStore has a different usage pattern when compared with

memory caching systems such as RAMCloud [25] and Mem-

cached [26]. These memory caching systems were designed to

act as caches over read-only data for applications in which data

consistency is not an issue. They cannot ensure that the data

will remain consistent when there are updates in the cache.

We are not the first to propose the idea of hierarchical storage

in the cloud. The idea of using caches over an object store

has been used for a network edge cache [15]. However, the

motivation behind their design was to alleviate the cost of

object storage.

There have been numerous projects in the open science

community which have attempted tera or peta-scale analysis

in the cloud. CARMEN [27] is a platform developed on

AWS for data-sharing and analysis for neuroscientists. The

project moves computation close to the data and ensures

faster analysis. It also uses scalable compute in the cloud

for scaling up its workflows. CARMEN was designed to run

data workflows which were not necessarily time sensitive or

frequently updated. This system is incompatible with emerging

workloads in neuroscience, such as visualization and manual

annotation tools which require low latency I/O for practical

use. Other projects [28] have implemented scientific pipelines

on the Azure platform. However, none of their workflows are

latency sensitive and utilize a single storage tier plus compute.

III. DATA DESIGN

The basic storage structure in our database is a dense multi-

dimensional spatial array that is partitioned into rectangular

sub-regions [1]. We call these subregions “cuboids” and they

are similar to chunks in ArrayStore [29]. Figure 4 depicts a

sample cuboid structure. Each cuboid is assigned an index

using a Morton-order space filling curve. Space filling curves

organize data recursively, so that any power-of-two aligned

subregion is wholly continuous in the index [30]. They also

minimize the number of discontiguous regions needed to

retrieve a convex shape in a spatial database [31]. Morton

indexes are easy to calculate and cube addresses are non-

decreasing in each dimension so that the index works on sub-

224

Fig. 2. Architecture of NDStore in the cloud.

spaces [32]. We utilized these indexes for these reasons in

the Open Connectome Project [1]. We continue to use Morton

indexes for our hierarchical data-store because their properties

are applicable in the new architecture as well. Although data

is stored as cuboids, we do not restrict the services to cuboid

aligned regions. Users can read or write arbitrary subregions

of data comprising one or more cuboids. We store a multi-

resolution hierarchy for each image dataset as depicted in

Figure 1. Using this hierarchy, visualization and analysis can

choose the appropriate scale on which to operate.

We use a larger variant of cuboids to store the data on an

object store. Per our experience, AWS S3 prefers data access

to be in chunks of 16 MB. Cuboid sizes are generally smaller

than this, about 256 KB. We fuse multiple cuboids into a

single large cuboid, denoted super-cuboid, which is typically

4 times as large in each dimension and has 64 times as much

data for three dimensions. Figure 4 illustrates the difference

between cuboids and super-cuboids. Data is always accessed

from the object store as supercuboids, ensuring optimized I/O

size to S3. When loading data into the cache, we divide a super

cuboid into 64 individual cuboids. Smaller sizes of cuboids are

better for low latency memory access, visualization and 2-D

projections. The concept of cuboids is akin to pages in virtual

memory and that of supercuboids is similar to that of block

sizes on file systems.

IV. STORAGE ARCHITECTURE

The hierarchical architecture of NDStore and the interaction

between the different storage tiers is presented in Figure 2. The

load-balancer receives read and write requests as web-service

calls from any number of sources: visualization tools, a com-

pute cluster running HPC workflows or an individual ingesting

data. Requests are redirected by the load-balancer based on the

nature of the request. Read requests for immutable datasets

are directed to the hierarchical storage system, fast writes to

mutable datasets are directed to a memory based fast write

buffer (see Section IV-C), and ingest requests are forwarded

to micro-services (see Section V).

A redirecting load balancer allows for flexibility in deploy-

ment. Multiple web-servers can be deployed on demand and

the caching tier can span multiple nodes. This allows the

system to scale out for a surge in demand during massive

HPC runs and scale back when load decreases. We allow user

access to both tiers of the storage hierarchy depending on their

use case. Non-recurring latency independent requests at scale

for HPC workflows will be read directly from the base tier.

Recurring latency sensitive requests for visualization will be

read from the caching tier. NDBlaze, the fast write buffer, is

deployed as a separate instance under the load-balancer for

buffering random writes. All requests to data in any tier has

to go through the application layer running on the web-server

nodes. The application layer contains meta-data, including

volumetric bounds, access-control and logic for reading and

writing to unaligned regions in storage.

A. Base Storage Tier

The base tier for peta-scale neuroscience data has to be scal-

able, reliable and low-cost for long-term storage. I/O latency

is not critical because of higher-level caches. We choose S3

as the base tier in our hierarchical storage architecture. S3

is a scalable object storage service with web interfaces. It is

durable, available and secure ensuring that data is protected

against disk failures. Moreover, it is a low cost option at

$0.023 per GB per month in 2018 1. We did consider other

storage services offered by AWS, Glacier and EBS, for this

tier. Glacier is a data archive and cold storage service. It has a

much lower cost when compared to S3 at $0.004 per GB per

month. But, it is not a viable option because data retrievals can

take up to 24 hours. EBS is a persistent block storage volume

with low latency and capability to provision I/O. But storing

all our data on EBS is 5 times more expensive at a cost of

$0.10 per GB per month (see Section VI-D). Moreover, there

is size limit of 16 TB on each volume.

We prepend a hash to all the object keys to optimize I/O

access to S3. S3, unlike a file-system, has a flat structure

with no hierarchy. S3 splits it’s storage partitions based on

the key-space in which keys are sorted lexicographically. By

prepending a random hash to the key for each supercuboid, we

ensure that requests for adjacent keys are routed to different

partitions. This allows I/O to be processed and delivered in

parallel. Without randomization, I/O would be restricted to a

partitions, each limited to 100 request per second.

1) Sparsity of Data: Many neuroscience datasets have large

regions of space either empty or zero valued and we use this

property to implement storage optimizations. An example of

a sparse annotation dataset is shown in Figure 3, which de-

picts a 5000x5000 voxel section of a neuroscience annotation

dataset [33]. We choose to not store any supercuboids for blank

or zero data. This is helpful in reducing our storage footprint

and drives down storage costs. Any absent data is dynamically

1The prices are for AWS us-east-1 region as of August 2018

225

Fig. 3. An example 5000x5000 voxel section of a neuroscience annotation
dataset [33] depicting sparsity.

materialized on access, if the request is within the volumetric

bounds of the dataset.

2) Indexing Base Contents: To deal with sparsity, we

require a way to generate lists of supercuboids that contains

data. This is required for data managements tasks, such

as building scaling levels, data-migrations and deleting sub-

sections or entire datasets. Each of these tasks requires a

different supercuboid list at a different granularity level. S3

does allow a LIST operation over the bucket but this is cost

and performance prohibitive for millions of objects and is not

recommended. We could also query for each object, but every

access to S3 incurs a minor cost and this can be expensive for

millions of accesses to non-existing objects.

We construct and maintain an index the supercuboids in

DynamoDB, which is a scalable NoSQL key-value store. It

is updated at the time of supercuboid insertion into the S3

bucket. So for every supercuboid that exists in the base tier,

there is a corresponding entry in DynamoDB. We include the

dataset meta-data and supercuboid Morton index into the S3

object key to make them self describing. This feature allows us

to generate S3 object keys without any external lookup. We

use the index only for bulk data operations. For individual

supercuboid reads, we query S3 directly without checking

DynamoDB first. Although, there is a cost associated with

a GET operation for S3, this is small compared to the cost of

a DynamoDB access. Moreover, S3 accesses for object misses

have tolerable performance.

B. Caching Tier

A caching tier for peta-scale neuroscience workloads needs

to have low latency for random I/O and should be scalable to

giga-bytes of data. This tier need not be low cost per GB of

data because it is only holds a small fraction of the total data.

Also, it can be ephemeral because we commit data to the non-

volatile base tier eventually. We choose Redis [34], which is an

Fig. 4. Data layout across different storage tiers.

open-source in-memory data store, as our caching tier. Redis is

a good choice from the currently available commercial grade

systems for multiple reasons. First, it is entirely in-memory,

which offers us low latency I/O access for multiple readers

and writers. Second, it has a cluster mode of operation, which

allows us to scale out our caching tier and not get confined by

the physical memory limitations of a single node. Third, Redis

supports sorted sets and perform set operations, such as union,

difference, and intersection, which we use for managing cache

indexes.

Cuboids are stored in Redis as Blosc compressed [35]

strings. Compressing cuboids reduces their size and, thus, their

memory footprint. With reduced size per cuboid we can fit

many more in the caching tier. We adopt a different approach

for empty cuboids when compared to empty supercuboids.

Empty cuboids are stored as empty strings in Redis. This

allows us to identify that a supercuboid was fetched from the

base tier but was empty. In this way, we can avoid future S3

and DynamoDB accesses while consuming very little memory.

1) Distributed Locking: We implement a distributed

Readers-Writer lock on top of Redis services for data consis-

tency in the caching tier. We write-back data to the cache and

any writes to a cuboid need to be finished to memory before

they can be read. The lock allows concurrent read accesses

and exclusive write access. The Readers-Writer lock extends

native spin lock in Redis, using Redis channels and built-in

atomic operations to implement wait queues and distribution.

As a Redis service, multiple processes running on different

web-server nodes share the lock to realize distributed cache

consistency.

2) Indexing Cache Contents: We build a cache index using

sorted sets in Redis that record the contents of the cache. It

is used to determine what data are missing on read requests

and during cache eviction. This cache index store is different

from the supercuboid index in DynamoDB that describes all

supercuboids in the base tier. It consists of a project meta-

226

data string followed by a cuboid identifier. With this format,

we use the string prefix delete operation in Redis to evict

multiple contiguous keys or all keys from a given data set in

a single operation. Redis supports sets and sorted sets, which

are an unordered collection of non-repeating strings, that

provide basic set operations, such as union and intersection,

in O(log(n)) time given n elements in the set. We use

the intersection operation to determine which supercuboids

are missing. Similarly, we use the union operation to add

supercuboid indexes when cuboids are inserted or updated.

We choose sorted sets over sets because in sorted sets each

element can be associated with a score, in our case this is

access time. We use the score to determine the least recently

accessed elements in the cache by executing a rank operation

on the sorted set to select pages for eviction.

3) Cache Manager: The contents of an in-memory cache

are managed based on loading and evicting supercuboids,

rather than individual cuboids. This decision keeps software

simple and reclaims more space with fewer evictions. If a

cuboid is evicted from cache then all other cuboids within

its supercuboid are also evicted. The logic here is that spatial

regions tend to be accessed together (for read) and that when

you evict a single cuboid you are going to have to read the

entire supercuboid when you take a miss for that evicted

cuboid.

Small random write accesses motivate caching cuboids at a

finer granularity than the S3 supercuboid. A prevalent work-

load pattern in neuroscience has computer vision pipelines that

reads large contiguous regions of space in an image dataset.

It then detects features or structures in that data that are

written out as annotations to a co-registered spatial database.

There are substantial performance benefits from reading and

writing smaller cuboids (256K) to memory rather than larger

supercuboids (16M).

Although Redis provides a built-in LRU eviction policy,

we implement a custom cache manager to enforce dependen-

cies among all cuboids in a supercuboid. The Redis man-

ager operates on individual keys and would evict individual

cuboids. Evicting individual keys results in read-modify-write

when a cuboid is dirty and other cuboids in the supercuboid

have already been evicted. Our policy of evicting/loading all

cuboids in a supercuboid together avoids read-modify-write to

S3. Our cache manager daemon runs in the background and

periodically queries Redis for it’s memory usage. When the

Redis memory usage exceeds an upper bound, we perform

cache eviction in three steps. First, we determine the least

recently used supercuboids from the cache index stored as

sorted sets. Second, we lock the cache to ensure that it

remains consistent and no more data is added. Third, we call

a delete operation on all the cuboids associated with those

supercuboids. Fourth, the cache is unlocked to resume read

and write operations. We continue to loop over these four steps

until the memory usage of the cache drops below our lower

bound. This process competes with other I/O to ensure that a

cache eviction does not starve other I/O operations.

4) Cache Operation: We manage the multiple tiers of

storage for the user and present a single transparent layer for

access during a read request. Figure 5 depicts the operation of

the cache for a read request in 11 steps. (1) The cuboids for

that region are identified using Morton indexes and are mapped

to their respective supercuboid indexes. (2) We acquire a read

lock on the cache for identified supercuboid indexes and (3)

use the cache index store to identify the missing supercuboids.

(4) The missing supercuboids are fetched from the base tier

and broken into cuboids. (5) We acquire a write lock over

the cache for the missing supercuboid indexes to ensure there

is no inconsistency. (6) Cuboids are inserted in the caching

tier and (7) the respective supercuboid indexes added to the

cache index store. At this point, we update the access times on

the cache indexes for those supercuboids that were requested

but not fetched. This ensures that we can correctly evict least

recently used supercuboids. (8) The write lock is released. (9)

We read all the requested cuboids from the caching tier and

(10) release the read lock. (11) The cuboids are organized into

the volume requested and returned to the user.

Similarly, when a sub-region of data is written to the system,

the multiple tiers of storage are transparent to the user. We

identify the respective cuboids using their Morton indexes. We

acquire a writer lock over the cache for the respective cuboids.

These cuboids are merged with any cuboids present in caching

tier and then written back to the cache. The cuboid indexes are

mapped to their respective supercuboid indexes and updated

in the cache index store. For cuboid indexes already present

in the cache index store, the access times are updated. Finally,

we release the write lock and return a success to the user.

The system also allows a direct I/O mode to read and

write supercuboids to the base tier. This mode is used when

ingesting data through web services and performing sequential

reads. A direct write does not overwrite the object present in

S3, rather it is merged with the existing object with a read-

modify-write process. In this mode the cache index lookup,

readers-writer lock and cache index store are all bypassed.

C. Buffer for Random Writes

We develop NDBlaze, a memory based fast write buffer, to

accelerate bursts of random writes to spatial data. NDBlaze

improves upon the performance of writing to the in-memory

caching tier by storing written data to memory directly with-

out de-serialization. It then asynchronously de-serializes data,

merges multiple writes to the same spatial region, aligns the

written data to supercuboids and writes supercuboids to the

base tier. NDBlaze inherits the principle of asynchronous

merging from amortized write data structures, such as the

log-structured merge tree [36]. Neuroscience workloads for

machine and manual annotation of data generate many small

random writes, e.g. writing small patches of sparse data as

seen in Figure 3. These workloads degrade I/O performance

and decrease utilization of processors that have to wait for

I/O. NDBlaze improves user-perceived write throughput many-

fold. It is implemented with Redis and Spark.

227

Fig. 5. Operation of the hierarchical storage model for a read request.

NDBlaze minimizes write latency and maximizes the peak

throughput of write bursts. NDBlaze sits between the load

balancer and the base tier. It is independent of the caching

tier and utilizes its own Redis instance. This ensures that in

case of a burst of random writes we do not overflow our

cache and cause disruption to latency sensitive reads. We also

choose not to write data from NDBlaze to the caching tier so

that the asynchronous merging and write-back process reduces

memory pressure. We make two key modifications for write

optimization. We do not break the data blobs into cuboids

before inserting them into memory. Instead we place written

data into memory directly, saving time on de-serialization of

data. Corresponding timestamps for each write are baked into

the key of the blob to ensure correct ordering. We do build

secondary index using sets in Redis to maintain a mapping

between data blobs and Morton indexes. Second, there is no

cache locking for writes in NDBlaze; it is unnecessary. We

order the writes based on their timestamps and the secondary

index determines which writes affect need to be merged into

each supercuboid based Morton index. We use Spark to merge

these writes. NDBlaze does allow consistent reads over the

buffered data, albeit at a slower rates than the caching tier

because multiple writes may need to be merged to serve a

read request.

V. MICROSERVICE PROCESSING

Several micro-services offered by AWS are used to over-

come workload bottlenecks. We utilize AWS Lambda, which

is an event-driven server-less computing service. It runs

workflows in parallel without provisioning servers and scales

applications based on the number of triggers that data requests

generate. Lambda’s pay-as-you-go models offers a cost benefit

as well, because you pay for the number of triggered events

at a milli-second granularity. We also use the AWS Simple

Queue Service (SQS), reliable and scalable message queuing,

to coordinate workflows across multiple servers and services in

the cloud. SQS ensures that enqueued workloads are processed

reliably.

A. Data Ingest

Modern microscopes can generate several terabytes of data

in an hour [37] and storage buffers located at data collection

points are not managed storage and are not large enough

to store data over long periods of time. It is essential to

move this data to a remote reliable data-store quickly. It is

a challenge to deposit this data in the cloud, because we are

limited by network and I/O speeds. We use AWS Lambda

to help overcome these challenges. Figure 6 depicts a sample

data ingest workflow, divided into three phases: tile collection,

cuboid generation and tile cleanup.

The tile collection phase transfers microscope data (image

tiles) from point of collection to the cloud. Initially, the data

collection site populates the tile upload queue with a manifest

of all tile names to be uploaded. Then, multiple processes

at the data collection site use this task queue to select and

upload tiles to an S3 bucket in parallel. The task queue ensures

that after a client failure the upload process can be resumed.

Every upload of tile to the tile bucket triggers a Lambda job.

This Lambda job updates the received tile in an tile index

DynamoDB table and removes the task from the upload queue.

We maintain the tile index table to ensure that all tiles for

a supercuboid are uploaded before ingest. When a Lambda

job confirms that the bucket holds all tiles necessary for the

228

Fig. 6. Different phases of the parallel data ingest service.

supercuboid, it inserts a supercuboid generation task in the

supercuboid queue and triggers another Lambda job for ingest.

The supercuboid generation phase converts the transferred

tiles into supercuboids. The Lambda job reads all the relevant

tiles from the tile bucket, packs them into a supercuboid,

inserts the packed data into the supercuboid bucket, and

updates the DynamoDB supercuboid index table. Then, this

Lambda job inserts a cleanup job in the cleanup queue,

triggers a cleanup Lambda job, and removes the supercuboid

generation task from the cuboid queue.

The Tile Cleaning phase deletes tiles from S3 for ingested

data to reclaim storage. The Lambda cleanup job removes all

the tiles from the tile bucket, removes the tile indexes from

the tile index table, and removes the cleanup task from the

cleanup task queue.

The multiple, staggered phases of ingest ensure reliability

and maximize parallelism with low resource consumption and

fine-grained control. We prefer three phases to one monolithic

Lambda job. Memory consumption in phases 1 and 3 is low,

whereas phase 2 uses lots of memory. Different Lambda jobs

settings are employed for each phase in order to fine tune

memory consumption and drive down costs. We choose to

dequeue tasks in each phase only when we have inserted

another task in the next phase. This ensures that tasks are

not lost in case of Lambda job failures. Also, each phase has

different amounts or granularities of parallelism. Tile upload

performs a Lambda for each tile whereas phases 2 and 3

perform a Lambda for each supercuboid. In this way, tiles

can be uploaded in parallel, independently of their order in

the supercuboid. This also gives a user the desired control

over each phase and more Lambda jobs can be allocated for

a particular phase. A user may prioritize tile collection and

delay the other phases to reduce storage at the microscope.

Similarly, one can delay tile-cleanup if supercuboid generation

is a priority.

B. Building Scaling levels
We use DynamoDB indexing and Lambdas to generate

scaling levels over the stored data. For large neuroscience data,

it is customary to store data in a resolution hierarchy with each

level downscaling images by a factor of 2 in all dimensions for

isotropic data or just the X and Y dimensions for anisotropic

data, e.g. serial section samples. This practice allows map-style

visualization tools to zoom in quickly, loading the minimum

amount of data for the screen resolution [6]. Every four

(anisotropic) or eight (isotropic) supercuboids at any given

level, create a single supercuboid at a lower level. Using the

DynamoDB supercuboid index, we build a manifest of all

supercuboids to be generated. For each entry in the manifest,

we insert a task in an SQS propagate queue and create a

Lambda job to build that cube. The SQS queue allows us

to detect and rerun failed Lambdas. Lambda jobs fetch four

or eight supercuboids, generate data at the lower scaling level,

and insert it into S3.

VI. EXPERIMENTS

The principal performance measure for NDStore is I/O

throughput. We conduct throughput experiments against sev-

eral different deployments; one, two and four web-server nodes

with a single cache tier node running Redis. (We found that

Redis provides higher throughput for a single node than in

any cluster.) These experiments provide a view of the scale-

up capability of NDStore. All experiments are conducted

with supercuboid of 16 MB. Each thread reads a different

subregion in the volume so that we do not read the same

region twice and try to have all S3 reads go to disk. Cuboids

and supercuboids are compressed for I/O across both tiers.

Neuroscience imaging data in general has high entropy and

tends to compress between 10-20% with Blosc compression

used in these experiments.
A load balancer is deployed in front of our web-server

nodes. We use compute optimized instances for the web-

severs, general purpose instances for the Spark cluster and

229

0

100

200

300

400

500

600

1 2 4 8 16 32 64 128 256 512

M
B

/s
ec

Number of Threads

Deployment Mode
1-direct
2-direct
4-direct

1-hot-cache
2-hot-cache

4-hot-cache
1-cold-cache
2-cold-cache
4-cold-cache

Fig. 7. Read Throughput with each thread reading 16 MB of data. The
numbers 1, 2, 4 denote the number of web-servers used during benchmarks.

memory optimized instances for the Redis deployments. Each

web-server node is a single c4.4xlarge instance with 16

vCPU’s and 30 GB of memory. The cache tier is a single

r4.4xlarge with 16 vCPU’s and 100 GB of memory. NDBlaze

is a single r4.4xlarge instance with 16 vCPU’s and 100 GB

of memory. The Spark cluster consists of a single master and

four slave m4.4xlarge instances, each with 16 vCPU’s and 64

GB of memory. We run a total of 16 Spark workers each with

a single executor: 4 vCPU’s and 16 GB of memory. We set

the PySpark serializer to Kyro and the serialization buffer is

allocated 1 GB. All instances have a default single root drive

of 8 GB on EBS. The Lambda functions are deployed with

a memory of 128 MB, minimum possible, and a maximum

possible running time of 100 seconds. AWS limits concurrent

Lambda job executions to a 1000 per region but these can

be increased on request. We use the default limit of 1000

concurrent job executions for these experiments.

A. Read Throughput: Base Tier vs Hot Cache vs Cold Cache

NDStore achieves read throughput of 600 MB/sec for

cached data from Redis and 450 MB/sec from S3. Figure 7

shows the read throughput directly from S3 compared to that

from a cold and a hot Redis cache as a function of number of

threads. In the case of hot cache, all of the requested data is

already present in the caching tier. For cold cache experiments,

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32 64 128 256 512
M

B
/s

ec

Number of Threads

Deployment Mode
1-direct
2-direct
4-direct

1-cache
2-cache
4-cache

Fig. 8. Write Throughput with each threads writing 16 MB of data. The
numbers 1, 2, 4 denote the number of web-servers used during benchmarks.

the data has to be fetched from the base tier. Cold cache has

the slowest performance owing to additional processing. The

data are read from S3, decompressed, broken up into cuboids,

re-compressed and inserted in to Redis. The cold cache peak

throughput is about 225 MB/sec with 128 threads and is CPU

bound. We see increases in throughput until we reach the

vCPU count of the web servers, 16 per server, at which point

performance flattens.

These experiments show that it is better to read directly from

the base tier for non-recurring sequential reads. We achieve

good I/O parallelism; the S3 object store was designed for

this workload. Serving recurring reads from the cache achieves

maximum performance. NDStore supports high read through-

put in the cloud for a variety of workloads and knowledge of

the data access pattern is important for readers to use the right

web service, direct I/O to S3 or cached I/O.

B. Write Throughput: Base Tier vs Cache vs Write Buffer

Using NDBlaze, we can accept bursts of random writes

that exceed the write throughput of S3. We preform two sets

of experiments for write throughput. First, we test the write

throughput to both tiers of our hierarchical storage system.

Figure 8 show the write throughput directly to S3 compared

to that from a Redis cache as a function of number of

threads. A peak write throughput of about 400 MB/sec can be

achieved for the caching tier with 512 threads. We achieve 300

MB/sec directly to S3. Second, we test the write throughput

230

0

5

10

15

20

25

30

35

16 32 64 128 256 512

G
B

/s
ec

Data blob size (MB) per Thread

Number of Threads
1
2

4
8

16
32

64
128

Fig. 9. Accelerated write throughput to NDBlaze using a single Redis node
deployment.

for NDBlaze, our fast write buffer. Figure 9 represents the

write throughput for NDBlaze as a function of data blob

size. NDBlaze achieves a peak burst throughput of about 30

GB/sec for 512 MB request with 128 threads. NDBlaze is

an order of magnitude faster for write bursts when compared

with the caching tier, because its write optimizations and

avoidance of serialization. The time integrated performance

of NDBlaze (and of the caching tier) will eventually decrease

to S3 performance, because all data must eventually make it

to disk.

C. Parallel ingest via Lambda

The cuboid generation phase of data ingest jobs achieves

a write throughput of 1GB/sec, which exceeds the data gen-

eration rates of state-of-the-art high-throughput microscopes.

Cuboid generation includes I/O to and from S3 and Lambda

processing. It does not include data transfer from the mi-

croscope to S3. We choose not to measure end-to-end per-

formance for data ingest, because network performance from

neuroscience labs into the cloud tends to be quite slow and

variable. Figure 10 shows the Lambda write throughput for

the cuboid generation phase as a function of Lambda jobs.

In this experiment, each Lambda job reads 64 512x512 PNG

tiles of 256 KB each from S3. Tiles are combined to form a

supercuboid of 16 MB, which is written back to S3. The write

throughput scales well for about 1000 concurrent Lambda jobs

1

10

100

1000

10000

1 2 4 8 1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

M
B

/s
ec

Number of Lambda Jobs

cuboid-generation

Fig. 10. Lambda memory throughput for the cuboid generation phase.

and then tapers off slightly. By default, AWS limits an account

to 1000 concurrent Lambda jobs, queuing additional requests.

We see throughput increases beyond 1000 jobs. We see a peak

throughput of 1 GB/s at 4096 concurrent Lambdas. Having

outstanding Lambda requests ensures that queues are full in

the presence of skew. The low cost of Lambda, $0.000000208

per 100ms for 128 MB of memory, ensures that we ingest data

at a fraction of the storage cost.

D. Storage Cost Analysis

The hierarchical storage model implemented in NDStore is

5 to 11 times cheaper per MB/sec of I/O when compared with

EBS. We do a sample analysis on storing 1 TB of data based

on AWS us-east-1 region prices (as of August 2018), which

is where our production system is deployed.

TABLE I
COST ANALYSIS OF EBS VS OUR MODEL FOR 1 TB OF DATA. COST FOR

READ AND WRITE ARE INDICATED BY R AND W RESPECTIVELY.

EBS S3
Storage cost per 1 TB $125 $23
Operating Cost $1300 $79.60
Total Cost $1425 $102.60

Cost of 1 MB/sec I/O $4.45R,W $0.82R, $0.41W

A monthly storage cost for a 1 TB of EBS is $125 at a

price of $0.125 per GB per month. The corresponding cost

for S3 is $23, at a price of $0.023 per GB per month; 10

231

times lower than EBS. For EBS, we provision 20,000 IOPS,

maximum possible per volume, so that we attain a maximum

raw throughput of 320 MB/sec. This costs $1300 per month

at the price of $0.065 per provisioned IOPS per month. The

read access cost for S3 GET’s is $4 a month, assuming ten

million reads, at a price of $0.0004 per 10,000 requests. The

write access cost for S3 PUT’s is $50 a month, assuming the

same number of writes as reads, at a price of $0.005 per 1000

requests. For the S3 approach, we incur additional costs on

DynamoDB to maintain supercuboid indexes. On DynamoDB,

our cost comes to about $25.60 per month for a provisioned

capacity of the 50 read and 50 write units. Our hierarchical

storage system costs are about 13 times lower at $102.60 per

month as compared to EBS at $1425 per month. Our system,

assuming a single node deployment with co-located cache, can

achieve a maximum read throughput of about 125 MB/sec for

cold cache reads and a maximum write throughput of about

250 MB/sec to cache. Our read I/O cost is $0.82 MB/sec

per dollar and write I/O cost is $0.41 MB/sec per dollar. The

comparative read and write I/O cost for EBS is 4.45 MB/sec

per dollar.

Our analysis omits compute costs on EC2. These are similar

for both deployments and the amount spent on EC2 varies

widely depending upon the chosen instance type. We also omit

costs for NDBlaze.

VII. CONCLUSION AND FUTURE WORK

We have developed a hierarchical storage system in the

cloud, NDStore, to economically provide high I/O through-

put for different neuroscience workloads. Furthermore, we

utilize multiple cloud micro-services to build new ser-

vices and redesign current workflows. This system is cur-

rently deployed for our project called NeuroData (http:

//neurodata.io) and the Open Connectome Project (http:

//openconnecto.me). All software described in this paper

are open-source and available for collaborative develop-

ment and reuse at our github repositories (NDStore: https:

//github.com/neurodata/ndstore, NDBlaze: https://github.com/

neurodata/ndblaze, Readers-Writer Lock: https://github.com/

kunallillaney/blaze-lock). Limitations on local cluster deploy-

ments and cost of a cloud deployment had been two major

factors in our ability to process peta-bytes of neuroscience

data. The deployment of NDStore overcomes these shortcom-

ings and has transformed our ability to support large-scale

neuroscience.

Additional engineering will allow NDStore to extend its

performance even further. We have identified many possible

optimizations. We plan to pre-fetch cuboids into our caching

tier. This optimization will decrease cache misses and drive

up read throughput. We can optimize cuboid and supercuboid

aligned I/O by avoiding serialization and de-serialization of

data. An aligned request will be returned to the requester.

This additional overhead is currently incurred for all I/O,

affecting performance. We plan to utilize Lambdas for data

movement between the two tiers of NDStore. Currently, the

number of processors on web-server nodes limits inter-tier data

movement. Lambdas will scale-out data movement without

launching new nodes and drive down compute costs. Integrat-

ing newer services, such as Lambdas with dead letter queues

and step functions, will simplify workflow. Currently, we drive

workflows manually through SQS and have to manage queues

for completion, failure and restart. When we designed our

parallel ingest process, these services were not available.

We had a positive experience building our system on the

cloud and we would recommend that other open-science

projects take a similar approach. Some points to keep in mind

based on our experience: (1) Do not try to superimpose your

current architecture on the cloud; (2) redesign the software to

leverage the rich suite of services available and (3) minimize

cost. A cost analysis of your workflows is essential. Cost

effectiveness remains a major impediment for migration to the

cloud for open-science projects. Design your system around

cost and use micro-services to help keep costs low. Understand

the intricacies of cloud services. Every cloud service has its

own caveats and tricks. Finally, the available services keep

increasing and often provide better performance or lower

cost. Integrating with new services will help keep the system

relevant over time.

ACKNOWLEDGEMENTS

This work was supported by grants from the National

Institutes of Health (NINDS 1R01NS092474 1U01NS090449)

and the National Science Foundation (IOS-1707298 ACI-

1649880 OCE-1633124). The authors would like to thank

additional members of the Neurodata Project that contributed

to this work. We would also like to thank our collaborators

Narayanan Kasthuri, Davi Bock, Forrest Collman, Wei Chung

Lee, and Dan Bumbarger.

REFERENCES

[1] R. Burns, K. Lillaney, D. R. Berger, L. Grosenick, K. Deisseroth,
R. C. Reid, W. G. Roncal, P. Manavalan, D. D. Bock, N. Kasthuri,
M. Kazhdan, S. J. Smith, D. Kleissas, E. Perlman, K. Chung, N. C.
Weiler, J. Lichtman, A. S. Szalay, J. T. Vogelstein, and R. J. Vogelstein,
“The Open Connectome Project Data Cluster: Scalable Analysis and
Vision for High-throughput Neuroscience,” in Proceedings of the 25th
International Conference on Scientific and Statistical Database Man-
agement, 2013.

[2] A. S. Szalay, K. Church, C. Meneveau, A. Terzis, and S. Zeger, “MRI:
The Development of Data-Scope—a multi-petabyte generic data analysis
environment for science,” Available at https://wiki.pha.jhu.edu/escience
wiki/images/7/7f/DataScope.pdf, 2012.

[3] W. R. G. Roncal, D. M. Kleissas, J. T. Vogelstein, P. Manavalan,
K. Lillaney, M. Pekala, R. Burns, R. J. Vogelstein, C. E. Priebe, M. A.
Chevillet et al., “An automated images-to-graphs framework for high
resolution connectomics,” Frontiers in neuroinformatics, vol. 9, p. 20,
2015. [Online]. Available: https://www.frontiersin.org/article/10.3389/
fninf.2015.00020

[4] D. M. Kleissas, W. Gray Roncal, P. Manavalan, J. T.
Vogelstein, D. D. Bock, R. Burns, and R. J. Vogelstein,
“Large-Scale Synapse Detection Using CAJAL3D,” Neuroinformatics,
2013. [Online]. Available: http://www.frontiersin.org/neuroinformatics/
10.3389/conf.fninf.2013.09.00037/full

[5] T. Pietzsch, S. Saalfeld, S. Preibisch, and P. Tomancak, “BigDataViewer:
visualization and processing for large image data sets,” Nature Methods,
vol. 12, no. 6, pp. 481–483, 2015.

[6] “NeuroGlancer,” https://github.com/google/neuroglancer. [Online].
Available: https://github.com/google/neuroglancer

232

[7] “Machine Intelligence from Cortical Networks (MI-
CrONS) ,” https://www.iarpa.gov/index.php/research-programs/microns/
microns-baa, 2014. [Online]. Available: https://www.iarpa.gov/index.
php/research-programs/microns/microns-baa

[8] A. Abbott et al., “Solving the brain,” Nature, vol. 499, no. 7458, pp.
272–274, 2013.

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View
of Cloud Computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr.
2010. [Online]. Available: http://doi.acm.org/10.1145/1721654.1721672

[10] K. R. Jackson, K. Muriki, L. Ramakrishnan, K. J. Runge, and R. C.
Thomas, “Performance and Cost Analysis of the Supernova Factory on
the Amazon AWS cloud,” Scientific Programming, vol. 19, no. 2-3, pp.
107–119, 2011.

[11] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The
Cost of Doing Science on the Cloud: The Montage Example,” in
Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
ser. SC ’08. Piscataway, NJ, USA: IEEE Press, 2008, pp. 50:1–50:12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1413370.1413421

[12] M. C. Schatz, B. Langmead, and S. L. Salzberg, “Cloud computing and
the DNA data race,” Nature Biotechnology, vol. 28, no. 7, p. 691, 2010.

[13] J. L. Hellerstein, K. J. Kohlhoff, and D. E. Konerding, “Science in
the Cloud: Accelerating Discovery in the 21st Century,” IEEE Internet
Computing, vol. 16, no. 4, pp. 64–68, July 2012.

[14] A. Thakar, A. Szalay, K. Church, and A. Terzis, “Large science
databases–are cloud services ready for them?” Scientific Programming,
vol. 19, no. 2-3, pp. 147–159, 2011.

[15] M. R. Palankar, A. Iamnitchi, M. Ripeanu, and S. Garfinkel, “Amazon
S3 for Science Grids: A Viable Solution?” in Proceedings of the 2008
International Workshop on Data-aware Distributed Computing, ser.
DADC ’08. New York, NY, USA: ACM, 2008, pp. 55–64. [Online].
Available: http://doi.acm.org/10.1145/1383519.1383526

[16] “Amazon Web Services,” https://aws.amazon.com/. [Online]. Available:
https://aws.amazon.com/

[17] “Microsoft Cloud,” https://cloud.microsoft.com/en-us/. [Online].
Available: https://cloud.microsoft.com/en-us/

[18] “Google Cloud Platform,” https://cloud.google.com/. [Online].
Available: https://cloud.google.com/

[19] “IBM Cloud,” https://www.ibm.com/cloud-computing/. [Online].
Available: https://www.ibm.com/cloud-computing/

[20] C. Johnson, “IBM 3850: Mass Storage System,” in Proceedings of the
May 19-22, 1975, National Computer Conference and Exposition, ser.
AFIPS ’75. New York, NY, USA: ACM, 1975, pp. 509–514. [Online].
Available: http://doi.acm.org/10.1145/1499949.1500051

[21] D. W. Brubeck and L. A. Rowe, “Hierarchical Storage Management in
a Distributed VOD System,” IEEE multimedia, vol. 3, no. 3, pp. 37–47,
1996.

[22] M. N. Nelson, B. B. Welch, and J. K. Ousterhout, “Caching
in the Sprite Network File System,” ACM Trans. Comput. Syst.,
vol. 6, no. 1, pp. 134–154, Feb. 1988. [Online]. Available:
http://doi.acm.org/10.1145/35037.42183

[23] L.-F. Cabrera, R. Rees, S. Steiner, W. Hineman, and M. Penner, ADSM:

A Multi-Platform, Scalable, Backup and Archive Mass Storage System.
IEEE, March 1995.

[24] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H.
Siegel, and D. C. Steere, “Coda: A Highly Available File System
for a Distributed Workstation Environment,” IEEE Transactions on
computers, vol. 39, no. 4, pp. 447–459, 1990.

[25] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,
D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman,
and S. Yang, “The RAMCloud Storage System,” ACM Trans. Comput.
Syst., vol. 33, no. 3, pp. 7:1–7:55, Aug. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2806887

[26] B. Fitzpatrick, “Distributed Caching with Memcached,” Linux J.,
vol. 2004, no. 124, pp. 5–, Aug. 2004. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1012889.1012894

[27] P. Watson, P. Lord, F. Gibson, P. Periorellis, and G. Pitsilis, “Cloud
Computing for e-Science with CARMEN,” in 2nd Iberian Grid Infras-
tructure Conference Proceedings. Citeseer, 2008, pp. 3–14.

[28] J. Li, M. Humphrey, C. Van Ingen, D. Agarwal, K. Jackson, and Y. Ryu,
“eScience in the Cloud: A MODIS Satellite Data Reprojection and
Reduction Pipeline in the Windows Azure Platform,” in Parallel &
Distributed Processing (IPDPS), 2010 IEEE International Symposium
on. IEEE, 2010, pp. 1–10.

[29] E. Soroush, M. Balazinska, and D. Wang, “Arraystore: A Storage
Manager for Complex Parallel Array Processing,” in Proceedings of the
2011 ACM SIGMOD International Conference on Management of data.
ACM, 2011, pp. 253–264.

[30] E. Perlman, R. Burns, Y. Li, and C. Meneveau, “Data Exploration
of Turbulence Simulations Using a Database Cluster,” in Proceedings
of the 2007 ACM/IEEE Conference on Supercomputing, ser. SC ’07.
New York, NY, USA: ACM, 2007, pp. 23:1–23:11. [Online]. Available:
http://doi.acm.org/10.1145/1362622.1362654

[31] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz, “Analysis of
the Clustering Properties of the Hilbert Space-Filling Curve,” IEEE
Transactions on knowledge and data engineering, vol. 13, no. 1, pp.
124–141, 2001.

[32] K. Kanov, R. Burns, G. Eyink, C. Meneveau, and A. Szalay, “Data-
Intensive Spatial Filtering in Large Numerical Simulation Datasets,” in
High Performance Computing, Networking, Storage and Analysis (SC),
2012 International Conference for. IEEE, Nov 2012, pp. 1–9.

[33] N. Kasthuri, K. J. Hayworth, D. R. Berger, R. L. Schalek, J. A.
Conchello, S. Knowles-Barley, D. Lee, A. Vázquez-Reina, V. Kaynig,
T. R. Jones et al., “Saturated Reconstruction of a Volume of Neocortex,”
Cell, vol. 162, no. 3, pp. 648–661, 2015.

[34] S. Sanfilippo and P. Noordhuis, “Redis,” http://redis.io. [Online].
Available: http://redis.io

[35] V. Haenel, “Bloscpack: a compressed lightweight serialization format
for numerical data,” arXiv preprint arXiv:1404.6383, 2014.

[36] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (LSM-tree),” Acta Informatica, vol. 33, no. 4, pp. 351–385,
Jun 1996.

[37] J. W. Lichtman, H. Pfister, and N. Shavit, “The big data challenges of
connectomics,” Nature neuroscience, vol. 17, no. 11, pp. 1448–1454,
2014.

233

