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Abstract—Background: Breakthroughs in research increasingly
depend on complex software libraries, tools, and applications
aimed at supporting specific science, engineering, business, or
humanities disciplines. The complexity and criticality of this
software motivate the need for ensuring quality and reliability.
Software metrics are a key tool for assessing, measuring, and
understanding software quality and reliability. Aims: The goal
of this work is to better understand how research software
developers use traditional software engineering concepts, like
metrics, to support and evaluate both the software and the
software development process. One key aspect of this goal is
to identify how the set of metrics relevant to research software
corresponds to the metrics commonly used in traditional software
engineering. Method: We surveyed research software developers
to gather information about their knowledge and use of code
metrics and software process metrics. We also analyzed the
influence of demographics (project size, development role, and
development stage) on these metrics. Results: The survey results,
from 129 respondents, indicate that respondents have a general
knowledge of metrics. However, their knowledge of specific SE
metrics is lacking, their use even more limited. The most used
metrics relate to performance and testing. Even though code
complexity often poses a significant challenge to research software
development, respondents did not indicate much use of code
metrics. Conclusions: Research software developers appear to
be interested and see some value in software metrics but may be
encountering roadblocks when trying to use them. Further study
is needed to determine the extent to which these metrics could
provide value in continuous process improvement.

Index Terms—Survey, Software Metrics, Software Engineering,
Research Software

I. INTRODUCTION

Researchers in a number of scientific, engineering, busi-

ness, and humanities domains increasingly develop and/or use

software to conduct or support their research. Collectively,

we refer to the software (libraries, tools, and applications)

developed by these researchers as research software. These

researchers were first described in the literature as research
software engineers (RSEs) [1]. RSEs play a major role in

definining and designing the research software and seek recog-

nition for their efforts.

Researchers draw insights and make critical decisions, at

least partially, based upon results obtained from research

software. The correctness of the design and implementation of

this software is therefore of utmost importance. Low quality

software is likely to produce less trustworthy results and may

lead to incorrect research conclusions or engineering/design

decisions.

We have observed that research software engineers often

place less importance on traditional views of software quality

and maintainability than on other scientific goals. Examples

from the literature (Section II) confirm that there have been

many efforts to understand how software engineering (SE) can

help with the development and maintenance of research soft-

ware, especially related to the development process (including

requirements engineering, design methods, and testing) and

to code complexity (including refactoring). However, most of

these efforts have not led to research software teams that value

understanding and measuring software quality over time.

Software metrics are a critical tool for building reliable

software and assessing software quality, especially in complex

domains and/or mission-critical environments. The ultimate

goal of software metrics is to provide continuous insight into

products and processes. A useful metric typically performs

a calculation to assess the effectiveness of the underlying

software or process. The established literature distinguishes

individual measures from metrics. A metric is a function,

whereas a measurement is the application of metrics to obtain

a value. A detailed description of metrics is beyond the scope

of this paper. We refer readers to authoritative texts on the

subject [4].

Our experiences working with research software

developers–who claim to embrace software development

process–suggest the importance of two general classes of

metrics: in-process (related to development process) and

code-oriented (primarily code complexity). Furthermore, our

cursory analysis of the landscape of research software, much

of which is open source, confirms that many aspects of

process are present in these projects (e.g. version control,

issue tracking, testing, and documentation).

Therefore in this paper we look beyond our anecdotal expe-

riences in order to attain a deeper understanding of perceptions

about software metrics directly from research software devel-

opers. The primary objective of this study is to understand
research software developers’ knowledge and use of software
metrics. Ultimately, we desire to understand which metrics

should be included in a software metrics suite specifically

designed to support research software development.
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To gather this information, we developed and distributed a

survey to research software developers. The survey provided

respondents an opportunity to provide feedback on the impact

various type of software metrics have had on their respective

projects.

The primary contributions of this paper are:

• An overview of the use of metrics by research software

developers;

• Identification of software metrics of interest and value to

research software developers.

• The perceived prevalence of code complexity and whether

code complexity metrics are used to manage it.

The remainder of this paper is organized as follows. In

Section II we describe previous work to motivate a series

of research questions explored in this study. In Section III

we explain the survey design. In Section IV we provide the

detailed survey results. In Section V we discuss and interpret

the survey results. In Section VI we enumerate the validity

threats. In Section VII we draw conclusions.

II. RESEARCH QUESTIONS

In this section, we define our research questions based upon

a discussion of the related work. These research questions

drive the survey design.

A. Metrics

Research software developers often have a general interest

in metrics, including some that are not directly related to

software development. The literature describes a number of

these non-traditional metrics along with why those metrics are

important in the research software domain.

First, performance (speed of execution) is critical for a

segment of the research software developer population. There-

fore, it is not uncommon for research software developers

to have an interest in measures like FLOPS (floating point

operations/second) or I/O (reads or writes per second) and

network throughput (MB/second). The Top500 list1, which

ranks the performance of supercomputers while executing a

common benchmark, is an example of a research software

metric that is not common in traditional SE environments.

Even though the benchmark does not cover all aspects of

performance, the Top500 is an example of a metric that the

community perceives to be useful.

Second, beyond performance, many research software de-

velopers have a relatively new interest in green comput-
ing [6]. This interest increases the relevance of concepts like

energy costs and sustainability. Specifically, some research

software developers focus on energy efficiency and carbon
emissions [11].

Third, in some subdisciplines of research software (e.g.

simulation and modeling), developers find correctness and

reproducibility important. The lack of these characteristics can

decrease the “velocity of science.” There is a need for metrics

that allow developers to describe their results, along with the

1http://top500.org

acceptable level of error tolerance, so that other researchers

can reproduce the results [17].
Fourth, the failure rate of software, that is frequency with

which the software fails to produce a correct answer (or to

produce an answer at all), is critical for some types of research

software. For example, it is important for research software

developers to measure and understand the failure rate when

the software is targeted at at very large (i.e. 10,000 node)

computers [15]. Similarly, in computer vision software (a

subcategory of research software), it is important for research

software developers to measure how often their algorithms fail

to reach the correct decision for a given image [18].
Finally, research software engineers (discussed in the in-

troduction) seek recognition for their work on defining and

developing research software. Baxter et al describe two ends

of the research software spectrum that seek recognition:

(1) researcher-developers, who want to be judged on their

scientific output but are mostly producing code in support

of research and (2) research software engineers, who not

only produce code but produce tools that help others to do

research [1],.
Although these metrics are different than the metrics tra-

ditionally found in the general SE literature, they are highly

relevant to many research software developers. Therefore, they

help to inform our overall understanding of the types of

metrics that research software developers perceive to be useful.
Given the fact that we were not able to identify many papers

that discuss the use of traditional software metrics, prior work

by Carver and Heaton also helps to inform our research [2].

Although developers indicated they had sufficient knowledge

to do their jobs, a survey of research practitioners (from this

same work) revealed some interesting findings about software

engineering knowledge within the research community.

• Most research practitioners have little formal SE training

and tend to be self-taught.

• One-third of the respondents thought that overall the

research communities’ SE skills were not adequate.

• Familiarity of SE methods was higher than use of those

methods.

• Code reviews and agile methods were rarely used, sug-

gesting a lack of collaborative development practices.

• The knowledge and perceived relevance of agile methods

was low.

The last observation is interesting because agile practices

most closely resemble how the typical research team operates.

While these findings are about general SE and SE process,

they inform the study of SE metrics by suggesting that re-

search software developers may perceive they have significant

knowledge of metrics but may not use that knowledge as

frequently. Similarly, Carver and Heaton’s systematic review

found a number of claims made about the use of software en-

gineering practices in the development of research software [7]

including:

• There is a limited use of testing;

• Many research teams embrace (perhaps unconsciously)

an agile mode of development.
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With this background to understand metrics usage and

SE knowledge within research software teams, we pose the

following research questions to gain a better understanding

of the knowledge and use of metrics by research software

developers:

• RQ1–What is the overall level of metrics knowledge and
use by research software developers?

• RQ2 – Which metrics are most commonly used?
• RQ3 – What is the relationship between knowledge of

metrics and their perceived usefulness?

B. Code Complexity

Beyond general metrics, research software developers are

interested in gaining an understanding of code complexity,

which is a nagging problem in research software. In our expe-

rience, research software often contains innate complexity. In

addition, developers often introduce additional complexity into

research software through various compiler pragmas, concur-

rent/parallel language features, and/or programming libraries

for code optimization. A good example of this complexity

is parallel matrix multiplication [14], a common assignment

in university courses. The algorithm is one of the relatively

straightforward research examples when written for sequential

processing. When scaling up to multiprocessors and clustered

systems, however, it requires much more complex code, some-

times of an architecture-specific nature.

First, code complexity is critical for a segment of the re-

search software developer population that focuses on trying to

make code run on parallel architectures. For example Munipala

et al. explored the use of SLOC and cyclomatic complexity in

a collection of diverse GPGPU software packages (a subset of

the research software community). They used the commercial

McCabe IQ tool to measure cyclomatic, design, and essential

complexity metrics in the software packages. While the results

of the study were inconclusive about whether SLOC or com-

plexity metrics were more prominent, the tools helped identify

potentially large and/or complex modules [12]. This example

shows that there is at least some interest in the research

software community for applying code complexity tools that

perform static analysis to identify potential complexity issues.

Second, module size is critical for a segment of the research

population. In another case study on complex open source

software, aimed at understanding both the implications of

structural quality and the benefits of structural quality analysis,

Stamelos et al. found that the average component size (a

dimension of code complexity but a separate metric) of an

application is negatively related to user satisfaction [16]. While

this particular paper did not focus directly on research soft-

ware, it is relevant to our work, because many research projects

are released as open source and are both large and complex in

nature. Similar to Munipala et al.’s work, which also included

module size, this result shows that both research and open

source communities have concerns about code complexity.

Based on this discussion, we pose the following research

questions to gain a better understanding of whether code

complexity is encountered by research software developers:

• RQ4 – Do research software developers perceive code
complexity as a problem?

• RQ5 – Is the frequency of complexity problems related to
the use of or perceived helpfulness of metrics?

III. SURVEY DESIGN

To answer each research question defined in Section II,

we enumerated a series of survey questions. We took care in

writing the questions to ensure their wording did not bias the

respondents. For example, we asked a free-response question

about metrics rather than providing a pre-determined list. We

grouped the survey questions by topics to help respondents

focus. Figure 1 shows the portion of the survey that we include

in this analysis. The figure contains the questions along with

the possible answer choices for each question (note ’[free

response]’ indicates a free-response question).

To reach a broad audience of research software domains

we used three solicitation methods. First, we sent the survey

invitation to a series of mailing lists that target developers

and users of mathematical, science, and engineering software.

Those mailing lists included: hpc-announce@mcs.anl.gov (a

mailing list based at Argonne National Laboratory that targets

researchers who use high-performance computing in their

work), the PI list for the US National Science Founda-

tion SI2 (Software Infrastructure for Sustained Innovation)

PI mailing list, and Carver’s list of previous participants

in the SE4Science workshop series (http://www.SE4Science.

org/workshops). Second, a collaborator sent the survey to

the mailing list of Research Software Engineers in the UK.

Third, we advertised the survey in a column in Computing
in Science & Engineering [3] where many research software

developers/practitioners would be likely to see it. In both cases,

we also asked people to forward the survey invitation within

their own networks. As a result of our solicitation approach,

we are not able to estimate the number of people who received

the invitation.

IV. RESULTS

In this section, we present the results of the survey orga-

nized around the survey themes. In the subsequent discussion

section, we use these results to answer the research questions.

In total, we received 129 responses to the survey. Note that

throughout this discussion, the survey questions refer to the

numbers in Figure 1.

A. Demographics

For each demographic, we give a brief explanation for

why the demographic is relevant and any implications the

demographic has for the survey analysis. We use these demo-

graphics in the next subsection to better understand the overall

results. The discussion of results is based upon the data from

the respondents who completed the survey (i.e. we exclude

partial responses).

214



Fig. 1. Survey Questions

General Questions
GQ1 Which of the following best describes your project? [Scientific Computing Software, Computer Science

Software, General Application Software, Other]

GQ2 How many FTEs of developers are currently on your project? [free-response]

GQ3 Which best describes your role on the project? [Developer, Architect, Manager, Executive, Other]

GQ4 Which best describes the current development stage of your project? [Planning/Requirements Gathering, Initial

Development/Prototyping, Active Development/Unreleased Software, Active Development/Released Software,

Maintenance/No New Development Planned, Other]

Metrics Questions
MQ1 What is your level of knowledge about software metrics in general? [Very Low, Low, Average, High, Very

High]

MQ2 List any software metrics with which you are familiar [free-response]

MQ3 How often are software metrics useful to your project? [Very Low, Low, Average, High, Very High]

MQ4 Which specific software metrics are most useful to your project? [free-response]

MQ5 How often are software metrics used to evaluate individual productivity on your team? [Never, Rarely,

Sometimes, Most of the Time, Always]

MQ6 How often are software metrics used in the aggregate to evaluate overall team productivity? [Never, Rarely,

Sometimes, Most of the Time, Always]

Code Complexity Questions
CQ1 How often is code complexity a problem in your software? [Never, Rarely, Sometimes, Most of the Time,

Always]

CQ2 How frequently does your team use code complexity metrics? [Never, Rarely, Sometimes, Most of the Time,

Always]

CQ3 How often do code complexity metrics actually help your team to understand and reduce code complexity?

[Never, Rarely, Sometimes, Most of the Time, Always]

CQ4 Which specific code complexity metrics do you use? [free-response]

1) Project Types: The goal of this demographic is to

understand whether we reached the target audience. Question

GQ1 lists the possible responses. In the actual survey, we

provided examples to clarify the meaning of each option. The

fact that majority of the respondents indicated that they worked

on Scientific Computing Software indicates that the survey did

reach the target demographic (79.8% working on Scientific

Computing Software).

2) Project Size: In Figure 2 we show the distribution of

responses to the question about the number of FTSs currently

on the project (Question GQ2). Most respondents worked

on smaller teams. As smaller teams may be likely to use

fewer metrics, this distribution could impact the findings of

the study. Based on prior work by Carver and Heaton [2]

(see Section II-A), we know that many smaller teams at least

unconsciously use agile software process and therefore are

likely to choose the subset of software engineering practices

and metrics they find useful.

3) Project Role: A developer’s project role(s) could affect

his/her perception of software metrics (Question GQ3). Iden-

tifying the distribution of respondent roles provides two types

of insights: (1) it helps us judge whether the survey reached a

broad, diverse set of research software developers, and (2) it

Fig. 2. Number of Developers

allows us to examine whether people in different types of roles

favor different types of metrics. The results in Figure 3 show

that the respondents were skewed more towards technical roles

(e.g. developers and architects) than towards non-technical

roles. Note that because respondents could choose more than

one role, the total in the figure is larger than the total number

of respondents.

4) Project Development Stage: Project stage helps deter-

mine which types of metrics may be most useful. Question

GQ4 lists the choices for project stage. As we show in
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Fig. 3. Respondents’ Role on Project

Figure 4, the projects represented by the survey respondents

were overwhelmingly in the released stage. This result is

important because projects at that stage should have already

established metrics programs that they deem useful for moni-

toring development and early-stage maintenance.

Fig. 4. Project Stage

B. Overall Analysis

Regarding the respondents’ general knowledge of metrics

(Question MQ1), the majority indicated they had low or

very low knowledge of metrics (Figure 5). Regarding the

respondents’ overall perception of the usefulness of metrics

(Question MQ3), just under half of the respondents indicated

they never or rarely found metrics useful (Figure 6).

Fig. 5. Knowledge of Metrics

One would expect a relationship between general knowledge

of metrics and perceived usefulness of those metrics. To

Fig. 6. Perceived Usefulness of Metrics

TABLE I
PERCEIVED USEFULNESS OF METRICS VS. KNOWLEDGE OF METRICS

Knowledge
Very Low Low Average High Very High Total

U
se

fu
ln

es
s

Never 15 5 3 1 0 24

Rarely 6 12 8 4 1 31

Sometimes 2 6 9 4 0 21

Often 1 7 5 1 0 14

Always 0 1 4 3 0 8

Total 24 31 29 13 1 98

determine whether this relationship is present in our results,

Table I shows the comparison of the respondents’ general

knowledge of metrics (Figure 5) with their perception of the

usefulness of those metrics (Figure 6). A tau-c test for indepen-

dence (appropriate for comparing two ordinal variables) shows

that these two distributions are not independent (p < .01)

indicating that general knowledge of metrics and perceived

usefulness are related.

Next, we conducted a qualitative analysis of the specific

metrics that respondents indicated they knew (MQ2) and used

(MQ4) in their projects. In total, the respondents listed 89

unique metrics, indicating they were aware of a large number

of metrics. We grouped these 89 unique responses into the

following six high-level categories (The detailed list of metrics

can be found in the paper appendix):

• Code Metrics – includes those metrics that measure
complexity (e.g. McCabe, # of classes, and coupling)
and that measure other characteristics of code (e.g. #
of clones, and defect density).

• Process Metrics – includes metrics that are collected
over longer periods of time and provide insight into
the software development process (e.g. productivity, cycle
time, or # of commits).

• Testing Metrics – includes metrics that measure and
monitor testing activities by giving insight into test
progress, productivity, and quality (e.g. code coverage or
# of tests).

• General Quality Metrics – includes metrics related to
desirable properties of software that are not easy to
measure as part of the development process or through
analysis of the source code (e.g. interoperability, porta-
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bility, or sustainability).
• Performance Metrics – commonly of interest for soft-

ware executing on high-performance computing plat-
forms, the metrics address execution time, storage (e.g.
RAM or disk space), or scalability (e.g. time vs. CPUs/-
cores).

• Recognition Metrics – includes metrics that measure
how a project or its developers quantify outside interest
in their work (e.g. citations or downloads).

It is interesting to note that in addition to the four categories

that are commonly found in the software metrics literature

(Code, General Quality, Process, and Testing), we identified

two categories of metrics (Performance and Recognition) that

are not found in the traditional software metrics literature.

These new categories are often of interest to research software

developers working in high-performance computing environ-

ments. Recognition is particularly timely as research software

developers are increasingly interested in being recognized and

receiving proper credit for developing research artifacts such

as software, tools, and libraries [5], [8], [9], [10]. Table II

provides an overview of the responses.

TABLE II
CATEGORIES OF METRICS USED

Category Number of Known Used
Unique Metrics (frequency) (frequency)

Code 24 94 17

General quality 14 23 16

Performance 13 41 33

Process 21 28 9

Recognition 5 15 8

Testing 12 48 24

Finally, in Figure 7, we show the results of survey questions

MQ5 and MQ6 asking whether research software teams use

metrics, for individual or team evaluation. As the figure shows,

the vast majority of the respondents indicated that metrics

were never or rarely used to evaluate individual or team

productivity.

Fig. 7. Frequency of using Metrics for Evaluation

Similar to the analysis above, we analyzed whether there

was a relationship between perceived usefulness of metrics

(Figure 6) and the use of metrics for evaluation (Figure 7).

For both individual and team productivity, the tau-c test for

independence showed the distributions were not independent

(p < .01). Once again, this result shows a relationship between

perceived usefulness of metrics and the likelihood of using

those metrics for evaluation.

C. Influence of Demographics

In this section, we examine whether the demographics

defined in Section IV-A affect overall knowledge of metrics,

overall perceived usefulness of metrics, knowledge of specific

types of metrics, or use of specific types of metrics. For

each demographic, we describe the analysis separately in the

following subsections.

To facilitate the analysis (and appropriately use the number

of data points we have), we divide the values for each demo-

graphic into two categories, as defined below. These divisions

do not result in equal sized groups, so in the following

analysis we normalize the data. First, for the influence of the

demographics on overall knowledge and overall perception of

usefulness, each respondent could give only one answer, so we

analyze the responses as percentages (e.g. the percentage of

respondents in the group that gave each answer). Second, for

the influence of the demographics on the knowledge and use of

specific metrics, each respondent could give multiple answers,

so we normalize the responses with the size of the group and

report the number of each type of metric per respondent (e.g.

how many code metrics were reported per person in the group).

1) Influence of Project Size: We grouped respondents into:

small teams (less than five participants) and large teams (five

or more participants). The analysis shows that respondents

from smaller projects appear to have less overall knowledge

of metrics (Figure 8) and see metrics as less useful (Figure 9)

than respondents from larger teams. Both of these results are

significant using a χ2 test with p-value < .001. This result

could be due to the typically smaller amount of resources

smaller teams have to devote to metrics. Note that in both

cases the responses are generally skewed leftward, which is

not suprising given the results in Figures 5 and 6.

Fig. 8. Influence of project size on overall knowledge of metrics

Turning to specific metrics, larger teams have knowledge

of more metrics in four of the six categories (Figure 10).

Conversely, use of metrics is more consistent between large

and small teams with two notable exceptions. Large teams use
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Fig. 9. Influence of project size on percieved usefulness of metrics

about 2.5 times as many code metrics as small teams and small

teams use about three times as many recognition metrics as

large teams.

Fig. 10. Influence of project size on known metrics

Fig. 11. Influence of project size on used metrics

2) Influence of Project Role: We grouped respondents into:

technical (consisting of developers and architects) and non-
technical (consisting of manager, executives, and other). Note

for this analysis, respondents can appear in both categories

if they gave both types of responses (see Section IV-A3),

resulting in total percentages greater than 100. The analysis did

not show any significant effect of project role on either overall

knowledge or overall perception of usefulness. The fact that

we allowed respondents to choose multiple roles in response

to GQ3 resulted in respondents who were in both categories.

While, given the nature of research software development, this

result is not surprising, it likely contributed to the lack of

significant findings.

3) Influence of Project Stage: We grouped respondents into:

released software (including those in released and maintenance

phases) and unreleased software. The analysis showed that

level of overall knowledge (Figure 12) and overall perception

of usefulness (Figure 13) differed significantly between the

groups (p-value < .01 on the χ2 test in both cases). Exam-

ining the distributions, we can observe that respondents with

unreleased software had more people with very low and more

people with high knowledge than those with released software.

The results for perceived usefulness mirror these results. This

result could be caused by respondents at different phases of

unreleased software viewing metrics differently.

Fig. 12. Influence of project stage on overall knowledge

Fig. 13. Influence of project stage on perceived usefulness

For knowledge of specific types of metrics, project stage

had very little differentiating effect. Conversely, for use of

specific types of metrics (Figure 14), respondents from unre-

leased software found performance metrics more useful while

respondents from released software found testing metrics more

useful.

D. Code Complexity

The survey respondents perceived code complexity to be

a problem. In Figure 15, we show the responses to survey

question CQ1. Most respondents indicated code complexity is

a problem at least sometimes. Interestingly, while respondents

considered complexity to be a problem, the respondents an-

swers to survey question CQ2 (Figure 16), the vast majority

said they never used code complexity metrics, with only a

small number using them more often than rarely.
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Fig. 14. Influence of project stage on specific metrics used

Fig. 15. Frequency of Code Complexity Problems

Fig. 16. Use of Code Complexity Metrics

Of those that used complexity metrics (e.g. rarely or above

in Figure 16), the responses to CQ3 indicated that the majority

found the metrics were never useful (Figure 17). Finally,

there was no significant relationship between the frequency of

complexity problems and the use or helpfulness of complexity

metrics.

V. DISCUSSION

In this section we discuss key insights related to each

research question.

RQ1–What is the overall level of metrics knowledge and use
by research software developers?

In general, the majority of respondents reported very low
to low knowledge of metrics, while just under half indicated

that metrics are rarely or never useful. However, respondents

Fig. 17. Usefulness of Code Complexity Metrics

were able to name so many SE-related metrics in the free-

form response questions. While the respondents reported items

in the free-response questions that were not metrics by the

traditional definition, they did report most of the metrics that

appear in classic metrics texts [4].

RQ2 – Which metrics are most commonly used?

Respondents reported performance and testing as the most

known and used metrics. The presence of performance met-

rics is reasonable given that many research teams use high-

performance architectures and computers to do their work.

The high use of testing metrics is a positive result because

our experience suggests that mean teams lack resources for

performing adequate testing.

One interesting result relates to code metrics. The results in

Table I show that respondents reported the most unique code

metrics and reported the highest frequency of knowing code

metrics across all six categories. Conversely, the reported use

of code metrics was dreadfully low compared with the ratio

between known and used for the other categories.

The data in the survey did not provide the type of informa-

tion necessary to explain why this result may have occurred.

Nevertheless, it is both interesting and potentially worrisome.

One potential explanation is that while respondents were aware

of many different code metrics, they did not believe that

these metrics were actually useful in their research software

projects. Further research is needed to better understand this

discrepancy and identify and necessary solutions that can

reduce the gap.

Based on the results, we make some additional observations

about the metric categories:

• Testing metrics – Respondents used testing metrics sec-

ond only to performance metrics. This result is encourag-

ing, considering their appearance in the SE literature [4]

and TDD [13].

• General quality – While these metrics do not always

correspond directly to methods established in SE liter-

ature, they are interesting because they shed light into

how research software developers view quality in general.

We were also encouraged to see interest in sustainability,

which is an area of growing importance within the

research software community [8], [9], [10].

219



• Performance metrics – These metrics are clearly of

value on the types of systems typically used by research

software developers. When the software is written to run

on a high-performance computer, for example, lack of

performance is a negative characteristic.

• Process metrics – Respondents reported high usage of

metrics of interest to agile software developers. Given that

many of the responses came from small-to-medium sized

teams, most of these suggest the use of agile processes.

• Recognition – From a traditional SE perspective, this set

of metrics would be somewhat unexpected. Respondents

reported many metrics as being significant for addressing

recognition. The presence of these metrics reinforces the

current notion that developers of research software need

more and better ways to formally track and quantify their

contributions to research.

RQ3 – What is the relationship between knowledge of metrics
and their perceived usefulness?

In general, we found that as perception of the usefulness of

metrics increases so does the likelihood that research software

developers will use those metrics to evaluate individuals and

teams. This disparity suggests that research software devel-

opers may struggle to adopt metrics in their software unless

they are better informed about their merits. Based on our

results, we found that smaller teams tend to have stronger

negative perceptions of metrics. Among all metrics, however,

both small and large teams reported the greatest knowledge of

code metrics.

RQ4 – Do research developers perceive code complexity as a
problem?

Most survey respondents indicated that code complexity is

at least sometimes a problem. While this result was not entirely

a surprise, given our experiences of observing complexity

in research software, it was good to see respondents self-

reporting that this issue is worthy of attention. Furthermore,

this result suggests that the research community has significant

interest in code complexity but struggle to adopt relevant

metrics in their software projects.

RQ5 – Is the frequency of complexity problems related to the
use of or perceived helpfulness of metrics?

Although research software developers report code com-

plexity as problematic, they rarely or never consider complex-

ity metrics to be useful. This result is surprising (and somewhat

troubling), given the prevalence of code complexity problems.

Additionally, the results showed no significant relationship

between the frequency of complexity problems and helpfulness

of complexity metrics. We need further study to understand

whether the low use of complexity metrics is caused by their

perceived lack of relevance or by the lack of support for

those metrics in the programming languages research software

developers commonly use, or by some other reason.

VI. THREATS

In this section we discuss the threats to validity from the

survey.

A. Internal Threats

This survey faces two primary internal validity threats. The

first is the potential for introducing bias through the survey

design. Because the members of the target survey population

are not traditional software developers, it is possible that they

lacked the necessary knowledge to properly answer the survey.

To prevent introducing bias in this situation, we purposefully

phrased survey questions in a neutral manner (without provid-

ing the names or types of any metrics), thereby allowing the

respondents to reveal their own understanding of metrics.

The second potential validity threat is selection. It is pos-

sible that some survey respondents were not actually research

software developers. Although the vast majority of respondents

indicated that they are working on research software, some did

not. Given the nature of the research software domain, it is

possible that some of the survey respondents work on software

that supports research software (like middleware or tools)

rather than directly on research software itself. Nevertheless,

the number of responses (129) represents a relatively large set

of responses for a community that is likely smaller than other

communities traditionally surveyed in software engineering

research. Therefore, we find this threat to be minimal.

B. External Threats

The survey sample may not be representative of all research

software developers. Although we took great care to send our

survey to research software developers, due to the particular

mailing lists we used, it is possible that some segments

of this population, like those from US-based national labs

and HPC-related groups are over-represented in the sample.

These segments of the population are clearly research software

developers, but they may not represent the way all research

software developers think.

Furthermore, the respondents who chose to respond to

the survey may not be an accurate representation of all

research software development groups. For example, members

of corporate research software development groups may be

even more inclined to embrace more formal/defined software

processes. Conversely, smaller research software teams with

less formal support and resources may be less likely to use

well-defined software processes and the related metrics.

C. Construct Threats

It is always possible that survey respondents misunderstand

the survey questions. In our case, however, we went out of our

way not only to provide questions but to give clear directions

for how to respond to those questions, without biasing the

respondents.

The other primary construct validity threat is whether the

respondents understood the software engineering and software

metrics concepts in the same way as we intended them.

While we did not specifically evaluate this issue in the survey,
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previous surveys have shown that research software developers

generally understand SE concepts in the traditional manner.

Furthermore, based on the fact that respondents reported many

of the metrics traditionally included in the SE literature as well

as some that are specifically important in the research software

domain, we are reasonably confident that the questions were

clear.

VII. CONCLUSION

In this paper, we report on the results of a survey of

research software developers to assess knowledge and use

of software metrics. In all 129 respondents, most of whom

were true research software developers completed the survey.

The results showed that while research developers knew and

used metrics (in general), they did not as commonly use

traditional SE metrics in actual projects. Although research

teams report code complexity to be a nagging problem, the

research software developers who responded to the survey

only used code metrics on a limited basis on their projects

and generally do not perceive them positively. Conversely, the

survey respondents appeared to be relatively familiar with code

complexity metrics, based upon the fact that this category of

metrics represents the largest set of responses to the free form

questions about metrics.

Furthermore, the results show that research software devel-

opers are very familiar with and frequently use performance

and testing metrics. The use of performance metrics is logical

given that many research software developers develop math-

ematical or scientific algorithms that are expected to have

good performance or else risk not being used in real-world

applications.

The frequent knowledge and use of testing metrics is a bit

more surprising. One potential explanation for this observation

is that, according to the literature, many research software

projects unconsciously embrace agile processes, which em-

phasis test-driven development (TDD) as part of their process.

We need to conduct further study to understand more about

the software development process used by research software

development teams to identify which particular metrics would

be the most useful. Although the survey responses suggest a

significant number of teams that use agile processes, further

study would be required to understand the prevalence of agile

vs. other processes and how this influences metrics perceptions

and use.

In conclusion, this work shows that various software metrics

could be of value to research software development teams.

While work remains to be done to increase knowledge of

metrics within this community, we hope that this work can

be a first step toward helping research development teams

see the potential merits of using metrics that are based upon

the SE methods that they already employ in their projects

(development process and testing).
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APPENDIX

SPECIFIC METRICS IDENTIFIED

This appendix provides more detail about the specific met-

rics that we grouped into the high-level categories in Table II.

The following list provides the specific metrics we grouped

into each category. The numbers in parentheses represent how

many respondents indicated knowledge of the metric and use

of the metric, respectively. That is (1,0) indicates one person

knew the metric, but no one actually used it. each metric was

mentioned as known and as used, respectively.

• Code Metrics: afferent couplings (1,0), binary size (1,1),

clarity (1,0), code evolution metrics (1,0), code to com-

ment ratio (2,0), cohesiveness (3,0), comment density

(1,1), coupling (7,3), cyclic dependency (1,0), cyclomatic

complexity (16,3), defect density (3,1), depths (1,0),

function points (4,0), Halstead programming effort (1,1),

information entropy (1,0), lines of code (LOC) (40,8),

McCabe (1,0), number of classes (1,0), number of clones

(2,0), number of modules (2,0), and program size (2,0);

and

• General Quality Metrics: accuracy (1,1), barrier of entry

(1,1), code language (1,0), encapsulation (1, 0), feature

usage count (1,0), formal correctness (1,1), interoperabil-

ity (1,1), mailing list activity (1,0), maintainability (4,3),

number of bugs (3,1), portability (3,3), reproducibility

(1,1), sustainability (1,1), technical debt (1,0), and us-

ability (3,3); and

• Performance Metrics: build time (1,1), compile time

(2,0), computing (1,1), CPU (1,0), execution time (12,9),

FLOPS (1,1), FLOPS per [US] dollar (1,1), memory

footprint (2,1), memory usage (5,5), performance (10,9),

resource usage monitoring (1,1), scalability (3,3), and

scaling with problem size (1,1); and

• Process Metrics: amount of documentation (1,0), app

launch count (1,1), authors/committers (1,0), cycle time

(3,3), development hours/story (1,1), development man

[person] years (1,0), documentation (1,0), feature de-

livered (1,0), files (1,0), forks (2,0), functionality (1,1),

GitHub (1,0), JIRA to track development (1,0), number

of commits (4,0), number of developers (1,0), produc-

tivity (1,1), recursive validation (1,1), Redmine project

management (1,0), reliability (1,1), request count (2,0),

size of ticket tracker (1,1), test failures (1,0), and volume

of mailing list traffic (1,0); and

• Recognition Metrics: citations (4,3), downloads (5,3),

number of users (4,1), number of projects adopting code

[code adoption] (1,1), and page views (1,0); and

• Testing Metrics: bug tracking and monitoring (10,4), code

coverage (17,12), days between failed tests (1,0), days to

fix failing test (1,0), number of passing tests (2,2), number

of platforms covered by tests (7,1), number of tests (1,1),

test time (1,1), testability (3,0), and testing (2,2)
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