
Pilot-Streaming: A Stream Processing Framework
for High-Performance Computing

Andre Luckow1,2,3, George Chantzialexiou1, Shantenu Jha1,4

1RADICAL, ECE, Rutgers University, Piscataway,NJ 08854, USA
2Clemson University, Clemson, SC 29634, USA

3Ludwig Maximilian University, Munich, Germany
4Brookhaven National Laboratory, Upton, NY, USA

Abstract—An increasing number of scientific applications utilize
stream processing to analyze data feeds of scientific instruments,
sensors, and simulations. In this paper, we study the streaming
and data processing requirements of light source experiments,
which are projected to generate data at 20 GB/sec in the near
future. As beamtimes available to users are typically short, it
is essential that processing and analysis can be conducted in a
streaming mode. The development and deployment of streaming
applications is a complex task and requires the integration of het-
erogeneous, distributed infrastructure, frameworks, middleware
and application components written in different languages and
abstractions. Streaming applications may be extremely dynamic
due to factors, such as variable data rates, network congestions,
and application-specific characteristics, such as adaptive sam-
pling techniques and the different processing techniques. Conse-
quently, streaming system are often subject to back-pressures and
instabilities requiring additional infrastructure to mitigate these
issues. We propose Pilot-Streaming, a framework for supporting
streaming applications and their resource management needs on
HPC infrastructure. Underlying Pilot-Streaming is a unifying ar-
chitecture that decouples important concerns and functions, such
as message brokering, transport and communication, and pro-
cessing. Pilot-Streaming simplifies the deployment of stream pro-
cessing frameworks, such as Kafka and Spark Streaming, while
providing a high-level abstraction for managing streaming in-
frastructure, e. g. adding/removing resources as required by the
application at runtime. This capability is critical for balancing
complex streaming pipelines. To address the complexity in the
development of streaming applications, we present the Stream-
ing Mini-Apps, which supports different plug-able algorithms
for data generation and processing, e. g., for reconstructing light
source images using different techniques. We use the streaming
Mini-Apps to evaluate the Pilot-Streaming framework demon-
strating its suitability for different use cases and workloads.

I. INTRODUCTION

Stream processing capabilities are increasingly important to

analyze and derive real-time insights on incoming data from

experiments, simulations, and Internet-of-Things (IoT) sen-

sors [1]. Prominent examples are synchrotron light source ex-

periments, such as those at the National Synchrotron Light

Sources II (NSLS-II) or the X-Ray Free Electron Laser

(XFEL) light sources. Some experiments at these light sources

are projected to generate data at rates of 20 GB/sec [2]. This

data needs to be processed in a time-sensitive if not real-time

manner, to support steering of the experiments [3].

Further, an increasing number of scientific workflows integrate

simulations either with data from experimental and observa-

tional instruments, or conduct real-time analytics of simulation

data [4]. Workflows are stymied by the fact that capabilities

to continuously process time-sensitive data on HPC infrastruc-

tures are underdeveloped while they require sophisticated ap-

proaches for resource management, data movement and analy-

sis. The complex application and resource utilization patterns

of streaming applications critically demand dynamic resource

management capabilities. For example, minor changes in data

rates, network bandwidths, and processing algorithms can lead

to imbalanced and dysfunctional system.

We propose Pilot-Streaming, a framework designed to effi-

ciently deploy and manage streaming frameworks for mes-

sage brokering and processing, such as Kafka [5], Spark [6]

and Dask [7], on HPC systems. Underlying Pilot-Streaming is

a unifying architecture that decouples important concerns and

functions, such as message brokering, transport and communi-

cation, and processing. Pilot-Streaming is based on the Pilot-

Job concept and the Pilot-Abstraction [8]. Pilot-Streaming en-

ables application and middleware developers to deploy, con-

figure and manage frameworks and resources for complex

streaming applications. Acquired resources can be dynamically

adjusted at runtime – a critical capability for highly dynamic

streaming applications. Further, Pilot-Streaming serves as uni-

fying API layer for managing computational tasks in an

interoperable, framework-agnostic way, i. e. it allows the im-

plementation of streaming tasks that can run both in Spark

Streaming, Dask or other frameworks.

To further address the development and deployment challenges

of streaming apps, we develop the Streaming Mini-Apps frame-

work based on a systematic analysis of different scientific

streaming application [9]. The Mini-Apps provides the ability

to quickly develop streaming applications and to gain an un-

derstanding of the performance of the pipeline, existing bottle-

necks, and resource needs. We demonstrate the capabilities of

Pilot-Streaming and the Streaming Mini-Apps by conducting

a comprehensive set of experiments evaluating the processing

throughput of different image reconstruction algorithms used

in light source sciences.

This paper makes the following contributions: (i) It surveys

the current state of message broker and streaming frameworks

and their ability to support scientific streaming applications;

(ii) It provides a conceptual framework for analyzing scien-

tific streaming applications and applies it to a machine learn-

ing and light source analytics use case. The Mini-App frame-

work provides a simple solution for simulating characteristics

of these applications. (iii) It presents an abstraction and ar-

chitecture for stream processing on HPC. Pilot-Streaming is

177

2018 IEEE 14th International Conference on e-Science

978-1-5386-9156-4/18/$31.00 ©2018 IEEE
DOI 10.1109/eScience.2018.00033



Storage  and Format
(e.g. Lustre, HDFS,…)

Compute
(e.g. YARN, SLURM, Torque, PBS) 

Streaming 
Framework

ETL Hadoop
SQL

Machine 
Learning

Raw Text Columnar

Data

HDF5 Other

Broker

Broker

Broker Mutable/
Random 
Access

Message Broker Storage Stream Processing

Fig. 1. Streaming Applications Architecture: The message broker decou-
ples streaming applications from incoming data feeds and enables multiple
applications to process the data. The streaming framework typically provides
a windowing abstraction on which user-defined functions can be performed.

a reference implementation of that architecture, and (iv) It

demonstrates and evaluates the described capabilities using a

set of large-scale experiments on the XSEDE machine Wran-

gler, for streaming machine learning and different light source

reconstruction algorithms.

This paper is structured as follows: In Section II we investi-

gate the architectural components of a typical streaming in-

frastructures and applications and related work. We continue

with an analysis of streaming applications in Section III. Sec-

tion IV presents the architecture, capabilities and abstractions

provided by Pilot-Streaming. The frameworks serves as basis

for the Mini-Apps discussed in Section V. In Section VI we

present an experimental evaluation of Pilot-Streaming.

II. BACKGROUND AND RELATED WORK

We define a streaming application as an application that pro-
cesses and acts on an unbounded stream of data close to real
time. In this section we describe the current state of streaming

middleware and infrastructure and related work. There is no

consensus on software and hardware infrastructure for stream-

ing applications, which increases the barrier for adoption of

streaming technology in a broader set of application (see Fox

et al. [1]). Notwithstanding the lack of consensus, in this paper

we will explore the usage of the existing Pilot-Abstractions as

a unified layer for the development of streaming applications.

A. Streaming Middleware and Infrastructure

The landscape of tools and frameworks for stream processing

is heterogeneous (see [10] for survey). Figure 1 illustrates the

main components of a stream system are: the message bro-

ker, the storage and the stream processing engine. We will

investigate these in the following section.

Message Broker: The broker decouples data producers and

consumers providing a reliable data storage and transport.

By combining data transport and storage, the message bro-

ker can provide a durable, replay-able data source to stream-

Storm/Heron Spark Stream-
ing

Flink Dask
Streamz

Description Java/C++ with
Python API

Scala with Java,
Python APIs

Java Python

Architecture Continuous Mini-batch,
Continuous

Continuous Mini-batch

Windowing Yes Event time in-
troduced with
structured API

Yes with
event/pro-
cessing time

Fixed Time

Higher-
Level APIs

Streamlet API
(MapReduce)

Structured
Streaming
(DataFrames,
SQL)

Data Tables DataFrames
(state-less)

Guarantees Exactly once Exactly once Exactly once No

Integration Kafka Kafka, Kinesis Kafka Kafka

TABLE I
STREAM PROCESSING FRAMEWORKS

ing processing applications. For this purpose, the brokering

system typically provides a publish-subscribe interface. The

best throughputs are achieved by log-based brokering systems,

such as Kafka [11]. Facebook Logdevice [12] provides a sim-

ilar log abstraction, but with a richer API (record not byte

based) and improved availability guarantees. Apache Pulsar

is another distributed brokering system [13]. Other types of

publish-subscribe messaging system exist, such as ActiveMQ

and RabbitMQ, but are generally less scalable than distributed

log-based services, such as Kafka [5]. A message broker en-

ables application to observe a consistent event stream of data at

its own pace executing complex analytics on that data stream.

Kafka is one such distributed message broker optimized for

large volume log files containing event streams of data. Ama-

zon Kinesis [14] and Google Cloud Pub-Sub [15] are two mes-

sage brokers offered as “platform as a service” in the cloud.

Streaming Processing Frameworks: A heterogeneous land-

scape of infrastructures and tools supporting streaming needs

on different levels emerged. Table I summarizes the proper-

ties of four important stream processing systems. Batch frame-

works, such as Spark [6] and Dask [7], have been extended to

provide streaming capabilities [16], [17], while different na-

tive streaming frameworks, such as Storm [18], Heron [19]

and Flink [20] have emerged. Apache Beam [21] is high-level

streaming abstraction that can be used together with Flink and

Spark and is available as managed cloud service called Google

Dataflow [22]. Apache Beam’s abstraction is based on a rig-

orous model and provides well-defined and rich semantics for

windowing, transformations and other operations. The differ-

ent stream processing engines differs significantly in the ways

they handle events and provide processing guarantees: Storm

and Flink continuously process data as it arrives. Dask Streamz

and Spark Streaming rely on micro-batches, i. e., incoming

data is partitioned into batches according to a user-defined

criteria (e. g. time window). The advantage of micro-batching

is that it provides better fault tolerance, higher throughput and

exactly-once processing guarantees, while native stream en-

gines can provide lower latencies and more advanced window-

ing capabilities, e. g., tumbling and session-based windows.

Each of the described message brokers and stream processing

frameworks provides unique capabilities, e. g., specific win-

dows semantics, high-level APIs (such as streaming SQL), low

latency. However, they do not address interoperability, deploy-

178



ment on HPC and resource management. While all frameworks

provide an application-level scheduler, resource management

is typically a second-order concern and not addressed in a

generalized, holistic, framework-agnostic approach.

B. Related Work

There are several areas of related work: (i) frameworks that

allow the interoperable use of streaming frameworks on HPC,

(ii) the usage of HPC hardware features and frameworks (such

as MPI) to optimize data streaming frameworks, and (iii) the

exploration of data streaming in distributed applications.

Interoperable Streaming on HPC: Various tools have been

proposed to support open source Big data frameworks, such

as Hadoop and Spark on HPC environments on top of sched-

ulers like SLURM, PBS/Torque etc [23], [24]. Other more

streaming-oriented frameworks, such as Flink, Heron and

Kafka are not supported on HPC out-of-the-box and require

the manual implementation of job submission scripts.

While these script-based approaches is acceptable for small

applications, it has severe limitations with respect to main-

tainability and support for more complex stream processing

landscapes. For example, it is typically necessary to coordi-

nate resources among several tools and frameworks, such as

simulation and data acquisition, data message broker, and the

actual stream processing framework. Also, streaming appli-

cation are much more dynamic exhibiting varying data pro-

duction and process rates, than traditional simulation and data

analytics applications. Thus, in this paper we propose the us-

age of the Pilot-Abstraction as unifying layer for managing a

diverse set of resources and stream processing frameworks.

Optimizing Streaming on HPC: The ability to leverage

HPC hardware and software capabilities to optimize Big Data

frameworks has been extensively explored. Kamburugamuve

et al. [25] propose the usage of optimized HPC algorithms

for low-latency communication (e. g. trees) and scheduling of

tasks to enhance distributed stream processing in the Apache

Storm framework [18]. In [26] they investigate the usage

of HPC network technology, such as Infiniband and Omni-

path, to optimize the interprocess communication system of

Heron [19], the successor of Storm. Chaimov et al. [27] pro-

pose the usage of a file pooling layer and NVRAM to op-

timize Spark on top of Lustre filesystems. These approaches

can complimentary to the high-level resource management ap-

proach proposed in this paper and can be used to optimize crit-

ical parts of a stream processing pipeline. These approaches

mainly focus on low-level optimization of Big Data frame-

works for HPC. Pilot-Streaming address critical gaps in the

integration of these frameworks with the application and the

ability to manage resources across these frameworks in a high-

level and uniform way.

Streaming in Scientific Application: Fox et al. [10] identifies

a broad set of scientific applications requiring streaming capa-

bilities. Many aspects of these use cases have been explored:

For example, Bicer et al. [28] investigates different light source

reconstruction techniques on HPC. Du [29] evaluates stream-

ing infrastructure for connected vehicle applications. Both ap-

proaches focus solely on a specific aspect of a single use cases,

e. g., latencies or processing throughput. Proving a generalized

architecture and solution for many use cases addressing im-

portant shared concerns, such as resource management, is not

in scope of these approaches. Pilot-Streaming and the Stream-

ing Mini-Apps provide a holistic approach for addressing a

broad set of use cases end-to-end from data source, broker to

processing on heterogeneous infrastructure.

The implementation of scientific streaming applications re-

quires the integration of infrastructure, a diverse set of frame-

works: from resource management, message brokering, data

processing to advanced analytics. In most cases, the data

source is external making it essential for streaming application

to dynamically manage resources and frameworks.

III. STREAMING APPLICATIONS

Stream processing is becoming an increasingly important for

scientific applications. While many streaming applications pri-

marily perform simple analytics (smooth averages, max de-

tection) on the incoming data, the computational demands are

growing. For example, to run complex reconstruction algo-

rithms for light source data streams or deep learning based

computer-vision algorithms, such as convolutional neural net-

works, a vast amounts of scalable compute resources are re-

quired. In this section, we develop a taxonomy for classifying

streaming applications. Further, we will discuss light source

streaming as specific applications example.

A. Applications Characteristics

In the following we investigate different types of streaming

applications in particular with respect to types data production

(simulation, experiment) and processing:

Type 1 – Experimental Data Streaming: Experimental data

generated by an instrument that is processed by a data analysis

application and/or a simulation. An example are light source

experiments (see section III-B).

Type 2 – Simulation Data Streaming: Simulation produces

data that is processed by a data analysis application. This form

of processing is referred to as in-situ processing. Different

forms of in-situ analysis exist: the analysis tasks can e. g. run

within the same HPC job or on a separate set of nodes coupled

via shared storage and/or network. An example of co-analysis

of molecular dynamics simulations data [4].

Type 3 – Streaming with Feedback/Control Loop: Data

is processed with realtime feedback, i. e. output is used to

steer simulation respectively experiment. Both type 1 and 2

applications typically benefit from the ability to integrate real-

time insights into an experiment or simulation run.

Streaming applications involve the coupling a data source

(simulation, experimental instrument), message broker and

processing. In general, these components can be deployed

across heterogeneous, distributed infrastructure. Often, it

makes sense to run some pre-processing close to the data-

source (on the edge), transmit selected data to the cloud and

do global processing in the cloud. Resource needs are highly

179



dynamic and can change at runtime. Thus, an in-depth un-

derstanding of application and infrastructure characteristics is

required.

The coupling between data source and processing can be (i)

direct (e. g., using a direct communication channel, such as

memory) or (ii) indirect via a brokering system. The direct

couple is used when low latencies and realtime guarantees are

required. The direct coupling approach is associated with sev-

eral drawbacks: it involves a large amounts of custom code

for interprocess communication, synchronization, windowing,

managing data flows and different data production/consump-

tions rates (back-pressure) etc. Thus, it is in most cases ad-

vantageous to de-couple production and consumption using a

message broker, such as Kafka. Another concern is the geo-

graphic distribution of data generation and processing: both

can be co-located or geographically distributed. Further, the

number of producer and consumers can vary.

The third component is the actual stream data processing: in

simply cases the application utilizes non-complex analytics on

the incoming data, e. g. for averaging, scoring, classification or

outlier detection. Typically, streaming applications utilize less

complex analytics and operate on smaller amounts of data,

a so-called streaming window. There are multiple types of

windowing, e. g. a fixed, sliding or session window. Commonly

the streaming windows is either defined based on processing

time or event time. More complex application involve combine

analytics with state and model updates, e. g. the update of a

machine learning model using incoming and historical data.

This processing type requires that the model state is retained.

Further, access to additional data is often required.

The main difference between streaming applications with tra-

ditional, data- intensive batch applications is that streaming

data sources are unbounded. While this impacts some aspects

of an applications, such as the runtime and the potentially need

to carefully reason about ordering and time constraints, other

factors remain the same, e. g., the computational complexity

of the processing algorithms. In the following, we utilize the

following sub-set of properties to characterize streaming ap-

plications:

Data Source and Transfer: describe the location of the data

source in relation to the stream processing application. The

data source can be external (e. g., an experimental instrument)

or internal to the application (e. g., the coupling of a simulation

and analysis application on the same resource). Output data is

typically written to disk or transferred via a networking inter-

face. Message brokers can serve as intermediate decoupling

production and consumption.

Latency is defined as the time between arrival of new data

and its processing.

Throughput describes the capacity of the streaming system,

i. e. the rate at which the incoming data is processed.

Lifetime: Streaming applications operate on unbounded data

streams. The lifetime of a streaming application is often de-

pendent on the data source. In most cases it is not infinite and

limited to e.g., the simulation or experiment runtime.

Time/Order Constraints defines the importance of order

while processing events.

Dynamism: is variance of data rates and processing complex-

ity observed during the lifetime of a streaming application.

Processing: This characteristics describes the complexity of

data processing that occurs on the incoming data. It depends

e. g. on the amount of data being processed (window size,

historic data) and the algorithmic complexity.

B. Streaming Application Examples

In the following we utilize the defined streaming application

characteristics to analyze two example use cases: (i) a generic

streaming analytics application (Type 1 or 2), and a more spe-

cific use case (ii) light sources analytics (Type 1). Table II

summarizes different characteristics of these applications.

1) Streaming Analytics: Use cases, such as Internet-of-

Things, Internet/Mobile clickstreams, urban sensor networks,

co-analysis of simulation data, demand the timely processing

of data feeds using different forms of analysis [1], [30]. For

example, an increasing number of scientific applications re-

quire streaming capabilities: cosmology simulations require

increasing amounts of data analytics to digest simulation

data, environmental simulation require the integration of re-

mote sensing capabilities, etc. Depending on the nature of

the data source, this type of application can be classified as

type 1 or 2 application. The number of type 3 application is

still comparable low. This can be attributed to the lack of

sufficient middleware to support such complex architectures.

While the general problem architecture of data analytics and

machine learning are similar to those of batch application,

there are some subtle differences: typically the amount of data

processed at a time is small compared to batch workloads.

While the problem architecture of many machine learning al-

gorithms remains the same, different techniques for updating

the model using the new batch of data are used (e.g., averaging

using a decay factor).

2) Light Source Sciences: X-Ray Free Electron Laser (XFEL)

are a class of scientific instruments that have become instru-

mental for understanding fundamental processes in domains

such as physics, chemistry and biology [31], [32]. Such light

sources can reveal the structural properties of proteins, molec-

ular and other compounds down to the atomic levels. The light

source emits hundreds to thousands of x-ray pulses per second.

Each pulse produces an image of the diffraction pattern as re-

sults. These images can then be combined and reconstructed

into a 3-D model of the compound serving as the basis for

a later analysis. Light sources can be used to exactly observe

what is happening during chemical reactions and natural pro-

cesses, such protein folding.

Example for light sources are the Linac Coherent Light Source

(LCLS) [33] at SLAC, the National Synchroton Light Source

II (NSLS II) [2] at Brookhaven, and the European XFEL light

sources [34]. LCLS-I averages a throughput of 0.1-1 GB/sec

with peaks at 5 GB/s utilizing 5 PB of storage and up to 50

TFlops processing [3]. The European XFEL produces 10-15

GB/sec per detector [34]. In the future even higher data rates

180



are expected: LCLS-II is estimated to produce data at a rate of

more than 20 GB/sec. In the following, we focus on NSLS-II.

NSLS-II consists of 29 operational beamlines. Thirty more

beamlines are in development. Each beamline has different

data characteristics, therefore the need for developing man-

agement tools that acquires the data from the beamlines and

analyzes them is evident. As the beamtimes available to the

user are typically short, it essential that processing and anal-

ysis can be conducted in a timely manner. Thus, streaming

data analysis is an important capability to optimize the pro-

cess. This ensures that scientists can adjust the settings on the

beamline and optimize their experiment.

The Complex Materials Scattering (CMS) beamline is an

NSLS-II beamline, which generates 8 MB images at a rate of

10 images/minute. While this production data rate is not very

high, a single CMS experiment generates more than 17,000

images a day, equivalent to ∼140 GB of data. It is required that

this data be processed within 6 hours, to prepare for the ex-

periments the following day. The Coherent Hard X-ray (CHX)

beamline [35] is dedicated to studies of nanometer-scale dy-

namics using X-ray photon correlation spectroscopy can pro-

duce data at much higher rates of ∼4.5GB/s [36].

Light source applications are a Type 1 application. In most

cases, the instrument is co-located with some compute re-

sources. However, scientists often rely on additional compute

resource and also may need to integrate data from several

instruments. Thus, the ability to manage geographically dis-

tributed resources is important. Currently, data analysis is often

decoupled from the experiments. With increased sophistication

of the instruments, the demand for steering capabilities will

grow evolving this type of application toward Type 3.

The processing pipeline for light source data comprises of

three stages: pre-processing, reconstruction and analysis [37].

Pre-processing can includes e. g. normalization of the data,

filtering and the correction of errors. Various reconstruction

with different properties, e. g. computational requirements and

quality of the output, exist: GridRec [38] is based on a Fast-

Fourier transformation and is less computational intensive and

thus, fast. Iterative methods can provide a better fidelity. An

example of an iterative method is Maximum likelihood expec-

tation maximization (ML-EM) reconstruction [39]. A broad set

of analytics methods can be applied to the reconstructed im-

age, e. g. image segmentation and deep learning methods. For

the CMS experiment, simple statistical algorithms, such as the

computation of a circular average and peak finding is used.

3) Discussion: The requirements of streaming applications

vary: For use cases involving physical instruments with po-

tential steering requirement, e. g., X-Ray Free Electron Laser,

both latency and throughput are important. Other use cases

e. g. the coupling of simulation and analysis have less de-

manding latency and throughput requirements. The lifetime of

scientific streaming applications is often coupled to the life-

time of the data source. Time and message ordering is in con-

trast to transactional enterprise applications not important for

many scientific applications. With respect to the data trans-

fer and processing requirements, the need to support different

Streaming Analytics: K-Means Light Source
Data Source external or internal external

Latency medium/high latencies medium latencies

Throughput medium high

Duration data source runtime experiment runtime

Time/Order not important not important

Dynamism varying data rate varying data rate

Processing Model score: Assign data to cen-
troids/class O(num points ·
num clusters). Model up-
date: Update centroids with
in-coming mini-batch of data.
Model size: small (O(number
clusters))

Reconstruction: Reconstruc-
tion techniques with different
complexities (GridRec, ML-
EM). Analysis: data analysis
techniques, such as peak find-
ing, image processing models
utilizing GPUs.

TABLE II
STREAMING APPLICATION PROPERTIES

frameworks in a plug-able and interoperable way is apparent.

Another important difference is that streaming applications are

typically runtime constrained, i. e. they must process the in-

coming data at a certain rate to keep the system balanced.

Thus, a good understanding of application characteristics is

even more critical for streaming applications. Minor changes

in the data rates, the processing approach (e. g. change of the

processing window, sampling approaches or the need to pro-

cess additional historic data or available resources) can lead to

imbalance and a dysfunctional system. Thus, the ability the dy-

namically allocate additional resources to balance the system

is critical. We use the characteristics identified in this section

to design the Streaming Mini-Apps that aids the evaluation of

complex streaming systems (see section V).

IV. PILOT-STREAMING: ABSTRACTIONS, CAPABILITIES

AND IMPLEMENTATION

Pilot-Streaming addresses the identified challenges and gaps

related to deploying and managing streaming frameworks and

applications on HPC infrastructure. Pilot-Streaming makes two

key contributions: (i) it defines a high-level abstractions that

provide sufficient flexibility to the application while supporting

the resource management and performance needs of streaming

applications are essential, and (ii) the reference implementa-

tion supports different stream processing and brokering frame-

works on HPC resources in a plug-able and extensible way.

Pilot-Streaming provides a well-defined abstraction, i. e. a sim-

plified and well-defined model that emphasizes some of the

system’s details or properties while suppressing other [40], for

managing HPC resources using Pilot-Jobs and deploy stream-

ing frameworks on these. The Pilot-Stream abstraction is based

on the Pilot-Job abstraction. A Pilot-Job is a system that gen-

eralizes the concept of a placeholder job to provide multi-level

scheduling to allow application-level control over the system

scheduler via a scheduling overlay [8]. Pilot-Jobs have been

proven to provide efficient mechanisms for managing data

and compute across different, possibly distributed resources.

The Pilot-Abstraction is heavily used by many HPC appli-

cation for efficiently implementing task-level parallelism, but

also advanced execution modes, such as processing of DAG-

based task graphs. Examples for using the Pilot-Abstraction

are molecular dynamics simulations [41] and high energy ap-

plication [42]. Further, we have explored the applicability of

the Pilot-Abstraction [43] to data-intensive applications on

HPC and Hadoop environments [44], [45].

181



The Pilot-Streaming reference implementation allows the man-

agement and deployment of different message brokers and

stream processing frameworks, currently Spark, Dask and

Kafka, as well as its ability to serve as unified access layer

to run tasks across these in an interoperable way. Further,

these frameworks can be deployed side-by-side on the same

or different distributed resources a capabilities which is criti-

cal for many streaming pipelines. The framework is designed

in extensible way and can easily be extended to support Flink,

Heron and other stream processing frameworks. Another key

capability is the ability to dynamically scale these frameworks

by adding resources. This is essential to deal with varying data

rates and compute requirements. Further, framework continu-

ously monitors the applications and thus, provides an enhanced

level of fault tolerance, which is essential as stream applica-

tions typically run longer than batch jobs. We continue with a

discussion of the Pilot-Streaming abstraction in section IV-A

and the reference implementation in section IV-B.

A. Pilot-Abstractions and Capabilities

In this section, we describe the provided abstraction from de-

veloper point of view. The abstraction is based on the Pilot-

abstraction, which provides two key abstractions: a Pilot repre-

sents a placeholder job that encapsulates a defined set of user-

requested resources. Compute-Units are self-contained pieces

of work, also referred to as tasks, that are executed on these

resources. Pilot-Streaming utilizes multi-level scheduling and

can manage Compute-Units in a framework-agnostic way. For

this purpose, Pilot-Streaming interfaces with the schedulers of

the different frameworks, e. g. the Spark scheduler, which then

manage the further execution of the Compute-Units. The key

features of Pilot-Streaming are:

Unified and Programmatic Resource Management: The

Pilot-Abstraction provides a unified resource management ab-

straction to manage streaming frameworks for processing and

message brokering on HPC environments. It allows the or-

chestration of compute and data across different frameworks.

Streaming Data Sources: While our previous work focused

on integration static datasets and compute units managed by

Pilot-Jobs [44], Pilot-Streaming extends this ability to stream-

ing data sources, such as Kafka topics.

Interoperable Streaming Data Processing: For the process-

ing of streaming data applications can utilize the Pilot-API

for defining Compute-Units. Compute-Units can either rely

on native HPC libraries and applications or can integrate with

stream processing frameworks, such as Spark-Streaming. This

enables applications to utilize the different capabilities of these

frameworks in a unified way.

Extensibility and Scalability: Pilot-Streaming is extensible

and can easily be extended to additional message brokers and

streaming frameworks. It is architected to scale to large (po-

tentially distributed) machines both at deploy and runtime.

The framework exposes two interfaces: (i) a command-line

interface and (ii) the Pilot-API for programmatic access. The

API is based on a well-defined conceptual model for Pilot-

Jobs [8]. The Pilot-API allows reasoning about resources and

performance trade-off associated with streaming applications.

It provides the means necessary to tune and optimize applica-

tion execution by adding/removing resources at runtime. List-

ing 1 shows the initialization of a Pilot-managed Spark cluster.

The user simply provides a pilot compute description object,

which is a simple key/value based dictionary.

from pilot.streaming.manager import PilotComputeService
spark_pilot_description1 = {

"service_url":
"slurm+ssh://login1.wrangler.tacc.utexas.edu",

"number_cores": 48,
"type":"spark"

}
pilot1 = PilotComputeService.create_pilot(

spark_pilot_description)

Listing 1. Pilot-Streaming: Creation of Spark Cluster

A key capability of Pilot-Streaming is the ability to dynam-

ically add/remove resources to the streaming cluster by just

referencing a parent cluster in the Pilot-Description. If the re-

sources are not needed anymore, the pilot can be stopped and

the cluster will automatically resize. This capability not only

allows application to respond to varying resource needs, but

also provides the ability to work around maximum job size

limitations imposed by many resource providers.

Pilot-Streaming provides several hooks to integrate with the

managed streaming frameworks. It supports custom configu-

rations, which can be provided in their framework native form

(e.g., spark-env format etc.) and can easily be managed on per

machine basis. This ensures that machine-specific aspects, e.g.,

amount of memory, the usage SSD and parallel filesystems,

network configurations, can optimally be considered.

Pilot-Streaming supports interoperability on several levels. The

API provides a unified way to express stream computations

agnostic to specific framework. Listing 2 illustrates how to

execute a Python function can be executed as a Compute-Unit

in a interoperable way. This is suitable for simple stream-

processing tasks, such as tasks that can be expressed as map-

only job. Using the unified API, functions can easily be

run across frameworks, e. g. to utilize advanced, framework-

specific capabilities, such as parallel processing, windowing

or ordering guarantees. For more complex tasks, the API pro-

vides the ability to access the native API of each framework

allowing the implementation of complex processing DAGs.

def compute(x): return x*x
compute_unit = pilot.submit(compute, 2)
compute_unit.wait()

Listing 2. Pilot-Streaming: Interoperable Compute Unit

Listing 3 illustrates how the Context-API provides the abil-

ity to interface with the native Python APIs from these frame-

works. The context object exposes the native client application,

i. e., the Spark Context, Dask Client or Kafka Client object.

Having obtained the context object, the user can then utilize

the native API, e.g., the Spark RDD, DataFrame and Struc-

tured Streaming API.

sc = spark_pilot1.get_context()
rdd = sc.parallelize([1,2,3])
rdd.map(lambda x: x*x).collect()

Listing 3. Pilot-Streaming: Native Spark API Integration

182



HPC Resources 
(Slurm, Torque, SGE)

Spark
Compute Unit

App 1

Pilot-Abstraction

R
es

ou
rc

e 
Le

ve
l

M
id

dl
ew

ar
e

A
pp

li-
ca

tio
n

Cloud Resources

Message Broker
(Kafka, Kinesis, Google Pub/Sub)

Dask
Compute Unit

Compute Unit

App 2 App n…

Data Processing 
(Spark, Flink, Dask)

Flink
Compute Unit

Resource Access
(SAGA-Python)

Fig. 2. Pilot-Streaming Architecture: Pilot-Streaming allows the manage-
ment of message brokers and stream processing frameworks on HPC.

B. Reference Implementation: Architecture and Interactions

Figure 2 illustrates the high-level architecture of Pilot-

Streaming. Pilot-Streaming provides a unified access to both

HPC and cloud infrastructure. For resource access we utilize

the SAGA Job API [46], a lightweight, standards-based ab-

straction to resource management systems, such as SLURM,

SGE and PBS/Torque. The framework provides two key capa-

bilities: the management of message broker on HPC and the

management of distributed data processing Engines on HPC.

These two capabilities are encapsulated in the message broker

and data processing module. The interface to the framework

is the Pilot-Abstraction [8], a proven API for supporting dy-

namic resource management on top of HPC machines. The

application logic is expressed using so-called Compute-Unit,

which can be executed in either (i) a task-parallel process-

ing engine, such as Pilot-Jobs (e. g., RADICAL-Pilot [47],

BigJob [43] or Dask), or (ii) a streaming framework, such as

Spark Streaming. Case (i) typically requires the manual im-

plementation of some capabilities, e. g. the continuous polling

of data. In case (ii) the developer can rely on the streaming

framework for implementing windowing. Both scenarios have

trade-offs: while scenario (i) allows the interoperable execu-

tion of CUs across frameworks, scenario (ii) is often faster to

implement. Pilot-Streaming supports both cases.

Figure 3 shows the interaction diagram for Pilot-Streaming.

In the first step the application requests the setup of Spark,

Dask or Kafka cluster using a Pilot-Description as specifica-

tion. Then the Pilot-Manager initiates a new Pilot-Job, a place-

holder job for the data processing or message broker cluster,

via the local resource manager. The component running on

resource is referred to as Pilot-Streaming-Agent (PS-Agent).

After the job and framework has been initialized, the applica-

tion can start to submit Compute-Units or initiative interactions

with the native framework APIs via the context object.

Pilot-Streaming is an extensible framework allowing the sim-

ple addition of new streaming data sources and process-

ing frameworks. By encapsulating important components of

streaming applications into a well-defined component and

API, different underlying frameworks can be used support-

ing a wide variety of application characteristics. It utilizes the

SAGA-Python [48] implementation to provision and manage

resources on HPC machines.

Resource 1

Pilot-Abstraction

PS-Agent

Resource 2 Resource n

Streaming App 

Dask Scheduler

Dask 
Worker

Dask 
Worker

Kafka 
Broker
Kafka 
Broker

Zoo-
keeper
Kafka 
Broker

PS-Agent PS-Agent

Spark Master

Spark 
Worker

Spark 
Worker

Manager
Dask Plugin Kafka Plugin  Flink Plugin

1. Create 
Pilot

2. Submit Pilot-Job/6. Submit App to 
Framework

3. Start Framework

4. Get 
Context

5. Submit
Compute-Unit

Resource Access (SAGA-Python)

 Spark Plugin

Fig. 3. Pilot-Streaming Interaction Diagram: The figure shows the control
flow used by Pilot-Streaming to manage frameworks and applications.

Data Source Adhoc deployment of broker and processing close to data

Latency Framework selection, co-location of data/compute resource

Throughput Framework selection, optimization of resource configuration
to data rate

Fault Toler-
ance

Monitoring of Jobs through Pilot-Job Management and
Agent

Time/Ordering Orderting, Windowing mechanism of underlying framework

Dynamism Add/Remove resources at runtime via Pilot-Job Mechanism
TABLE III

STREAMING CHALLENGES ADDRESSED BY PILOT-STREAMING

The streaming frameworks specifics are encapsulated in a plu-

gin. A framework plugin comprises a simple service provider

interface (SPI) and a bootstrap script executed on the resource.

As depicted in Listing 4, the interface has six functions, e. g.,

to start/extend a cluster, to retrieve cluster information, such

as state and connection details.

class ManagerPlugin():
def __init__(self, pilot_compute_description)
def submit_job(self)
def wait(self)
def extend(self)
def get_context(self, configuration)
def get_config_data(self)

Listing 4. Pilot-Streaming Plugin Interface

Discussion: Data and streaming applications are more hetero-

geneous and complex than compute-centric HPC applications.

Pilot-Streaming allows the usage of different message brokers

and data processing engines in an interoperable way on HPC

infrastructures. Table III summarizes how Pilot-Streaming ad-

dresses the requirements of streaming applications.

Pilot-Streaming removes the need for application developers

to deal with low-level infrastructure, such as resource manage-

ment systems. Running Spark, Kafka and Dask clusters across

a flexible number of Pilot-Jobs provides the ability to dynam-

ically adjust resources during runtime. Further, the framework

provides a common abstraction to execute compute tasks and

integrate these with streaming data. It supports the interop-

erable execution of these CU across different frameworks.

In addition, Pilot-Streaming provides the ability to also uti-

lize the higher-level APIs provided by the frameworks. Cur-

rently, Pilot-Streaming supports Kafka, Spark, and Dask. It

can be extended via a well-documented plugin-interface. Pilot-

Streaming is open-source, maintained by an active developer

community and available on Github [49].

183



Mini-App Framework

Mini-App Streaming
Source

Cluster

Pilot-Streaming

Mini-App Streaming
Analytics

Kafka

MLlib TemplateTemplate

Dask Spark-
Streaming

Benchmark Suite

Fig. 4. Streaming Mini-Apps: The framework is based on Pilot-Streaming
and provides two components: the MASS (MiniApp for Stream Source) emu-
lates different streaming data sources and the MASA (MiniApp for Streaming
Analysis) provides different synthetic processing workloads.

V. STREAMING MINI-APPS

Developing streaming application pipelines is a complex task

as it requires multiple parts: data source, broker and process-

ing component. Every one of these components typically relies

on different programming and middleware systems making it

highly complex to develop such pipelines. During develop-

ment process the real data source is often not available. Often

developers have to rely on a static dataset, which results in

significant efforts for setting setup a real test and develop-

ment environment that is capable of mimicking non-bounded

datasets as well as non-functional requirements, such as dif-

ferent data rates, message sizes, serialization formats and pro-

cessing algorithms. If available, real applications are often not

as parameterizable and tunable to characterize and optimize

application, middleware and infrastructure configurations.

The Streaming Mini-Apps [50] addresses these challenges.

Figure 4 shows the architecture of the framework. The frame-

work is based on Pilot-Streaming, which provides the ability

to rapidly allocate different size of cluster environments. The

core of the framework consists of two main components: (i) the

MASS (Mini-App for Stream Source) can emulate a streaming

data source, which can be tuned to produce streams with dif-

ferent characteristics: data rates, messages size. (ii) the MASA
(Mini-App for Streaming Analysis) provides a framework for

evaluating different forms of stream data processing.

The MASS app includes a pluggable data production func-

tions. The current framework provides two types of func-

tions: A cluster source generates random data points follow-

ing certain structures, e. g., for evaluation of streaming cluster

analysis algorithms. The second type: template produces an

unbounded stream based on a static template dataset. Data

rates, message sizes etc. can be controlled via simple con-

figuration options. Using these two base data source the ma-

jority of streaming applications can be emulated. For exam-

ple, KMeans or other cluster algorithms for detecting outliers

in data streams can be developed and tested with the cluster

source. The template algorithms is great for migrating batch

workloads to streaming. It can be used to emulate important

application, such as light sources.

Similarly, the MASA app enables the user utilize machine

learning algorithms from MLlib [51] or to provide custom data

processing functions. Currently, it is based on Spark Stream-

ing, but the framework can easily ported to other streaming

frameworks as it is based on Pilot-Streaming. The processing

function is data-parallel by nature. The machine learning algo-

rithms provided by MLlib are capable of utilizing distributed

resources supporting both data and model parallelism. In par-

ticular, we provide pre-configured support for KMeans cluster-

ing [52] and for reconstructing light source data. The K-Means

algorithm has a complexity of O(cn) where c is the number of

cluster centroids and n is the number of data points. The light

source reconstructing algorithm is based on Tomopy [37], a

framework that is commonly used for pre-processing raw light

source data, e. g., image reconstructions, and for further anal-

ysis. Different reconstruction algorithms are supported by the

Mini-Apps, e. g., GridRec [38] and ML-EM [39].

In summary, the Streaming Mini-Apps provide optimal cus-

tomizability with the ability to plug in custom data produc-

tion and processing functions and control various configura-

tion parameters, such as data rates, message sizes, etc. The

framework provides comprehensive performance analysis op-

tions, e. g. it includes standard profiling probes that enables to

measure common metrics, such as production and consump-

tion rate allowing the benchmark of application and stream-

ing middleware components making it easy to understand per-

formance bottlenecks as well as the impact of changes. This

is an essential capability to develop, test and tune streaming

pipelines under complex, real world loads. In particular com-

ponents like the message broker are difficult to analysis as the

write/read load can vary significantly depending on the num-

ber consumers and producers. Further, the Mini-Apps allow

for easy reproducibility of such experiments. The Streaming

Mini-Apps provide a powerful tool to develop, optimize ap-

plications, and empirically evaluate streaming frameworks and

infrastructure. In contrast to other approaches [53], the stream-

ing mini app framework focuses on data-related characteris-

tics, in particular the need to produce, transport and process

data at different rates. In addition, the framework can emulate

the application characteristics of K-Means application.

VI. EXPERIMENT AND EVALUATION

The aim of this section is to investigate different infrastruc-

ture configuration with respect to their ability to fulfill defined

application requirements in terms of latency and throughput.

For this purpose, we use the Mini-Apps to simulate differ-

ent data production and processing characteristics. All exper-

iments are conducted on Wrangler, an XSEDE machine de-

signed for data-intensive processing. Each Wrangler nodes has

128 GB of memory and 24 cores.

A. Startup Overhead

There are two main steps for setting up Spark and Kafka on

HPC: (i) Running the batch job that sets up the Kafka/Spark

cluster and (ii) initiating an actual session with the broker

respectively starting a Spark job by initializing a Spark session.

Figure 5 compares the startup times for different size Kafka,

Spark and Dask clusters. The startup time for Kafka increase

significantly with the number of nodes indicating that some

184



0

20

40

1 2 4 8 16

Number Cluster Nodes

S
ta

rt
up

 T
im

e 
(in

 s
ec

)

Framework Dask Kafka Spark

Fig. 5. Kafka, Spark, and Dask Startup Time on Wrangler: Kafka start
involves the startup of both Zookeeper and the Kafka brokers and thus, is
most of the times longer than Spark. Dask has the shortest startup times. For
Kafka, the startup time increase with the number of nodes. The Spark and
Dask startup times did not significantly change for larger clusters.

optimizations are necessary for larger clusters. Spark and Dask

utilize parallelism to startup the cluster and thus, show no

significant increase.

The measured startup times are short compared to the overall

runtime of streaming application. In particular, considering the

benefits of Pilot-Streaming: improved isolation of application

components, the ability to independently scale parts of the

streaming pipeline to the application needs, better diagnose-

ability, debug-ability and predictability of the application, this

is an acceptable overhead.

B. Producer Throughput

In this section, we analyze the performance for publishing

data into the Kafka system using the MASS app. The pro-

duces batches of random 3-D points, which are serialized to

a string and pushed to Kafka using PyKafka [54]. We utilize

different data source types: (i) KMeans: every message con-

sists of 5,000 randomly generated double precision points.

The average serialized size of message is 0.32 MB; (ii) Light-

source Micro-Tomography (Light-MT): every message con-

sists of raw input dataset in the APS data format and an av-

erage encoded message size of 2 MB. (iii) Lightsource CMS

(Light-CMS): every message consists of one image generated

from the CMS Beamline. The size of each image is 8 MB

(HDF5) and 18 MB (serialized). The scenarios were chosen to

demonstrate the variety characteristics with respect to number

messages and message sizes streaming application can exhibit.

We investigate the throughput and its relationship to different

MASS types and configurations as well as to different Kafka

broker cluster sizes. For the experiment, we utilize different re-

source configuration parameters determined in a set of micro-

experiments: the number partitions is fixed at 12 per node. On

every producer node, we run 8 producer processes in Dask.

While each node possesses 24 cores, the performance per node

deteriorated drastically when using more producers/node due

to network and I/O bottlenecks. We evaluate four scenarios:

KMeans-Random, KMeans-Static, Light-MT and Light-CMS.

The KMeans-Random scenario uses the cluster MASS plugin

to generate points randomly distributed around a defined num-

ber of centroids. Kmeans-Static and both light scenarios use

a static message at a configured rate.

Figure 6 shows the results. The KMeans-Random configura-

tion is bottlenecked by the random number generator. Thus, the

● ● ● ● ●

● ● ● ●
●

●
● ● ● ●

●

● ●

● ●

●

●

●
●

●

● ●

● ●

●

●
● ● ● ●

● ● ● ● ●

● ● ● ● ●●
● ● ● ●

●

●

●
●

●

●

●
●

● ●

●

●
● ● ●

●

●

●

●

●

●

●

●
●

●

●
● ● ● ●

● ● ● ● ●●
●

● ●
●

●

●

●
● ●

●

●
● ●

●

●

● ● ●
●

●

●

● ●

●

●

●

●
● ●

●
● ● ● ●

1 Broker(s) 2 Broker(s) 4 Broker(s)

M
B

/sec
M

essages/sec

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

0

100

200

300

400

500

0

50

100

150

200

250

Number Producer Nodes
Application KMeans−Random KMeans−Static Light−MT Light−CMS

Fig. 6. MASS Producer Throughput for Different Data Sources Types
and Resource Configurations: We utilize up to 16 producer nodes with 8
processes/node and 4 Kafka nodes. The achievable throughput depends on the
message size: KMeans: 0.3 MB, Light-MT: 2 MB and for Light-CMS: 18 MB.

KMeans-Static setup has on average a 1.6x higher throughput

than KMeans-Random. The light scenarios show a significant

MB/sec throughput mainly due to larger message sizes: Light-

CMS uses a much larger message size (18 MB) compared to

Light-MT (2 MB), thus the throughput is in many cases higher

for Light-CMS than for Light-MT. As expected, the message

throughput is lower for Light-CMS due to the larger message

sizes. Both the message throughput and high variance in the

measured bandwidth indicate that the performance is network

bound. Also, it must be noted that the network is a shared

resource and external factors likely lead to the high variance

in the measured bandwidths for Light-CMS and Light-MT.

The usage of more brokers does not improve the performance

in all scenario due to the overhead associated with access-

ing a multi-node Kafka cluster, e. g. concurrent connections

and partitioning overhead. A multi-node Kafka cluster is par-

ticular advantageous when a larger number of medium-sized

messages need to be handled, such as for Light-MT.

C. Processing Throughput
We use the MASA Mini-App to investigate the throughput of

three different processing algorithms: a streaming KMeans that

trains a model with 10 centroids and makes a prediction on

the incoming data, and two light source reconstruction algo-

rithms: GridRec and ML-EM. We use the distributed KMeans

implementation of MLlib and the GridRec, ML-EM of To-

moPy. In the experiment we utilize the MASS Mini-App with

1 node and 8 producer processes to continuously produce mes-

sages of 0.3 MB/5000 points for KMeans and 2 MB/1 point

for the light source scenarios. This way are able to simulate a

complex read/write workloads on the Kafka broker. We use 12

partitions/node for the Kafka topic. The Mini-App uses Spark

Streaming with a mini-batch window of 60 sec.

Figure 7 shows the results of the experiment. The processing

throughput depends on various aspects, such as the bandwidth

to the message broker, computational complexity, and the scal-

ability of the processing algorithm. The KMeans application

shows the highest throughput. It scales both increasing num-

ber of processing nodes. For example, it is apparent that in the

185



●
● ●

● ●

●
●

●

● ●
● ● ●

● ●● ● ● ● ●

●

●

●
●

●

●

●

●

● ●
● ●

● ● ●
● ● ● ● ●

●

●

●
●

●

●

● ●

● ●

●

●

●
●

● ● ● ● ●

1 Broker(s) 2 Broker(s) 4 Broker(s)

M
essages/sec

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
0

100

200

Number Processing Nodes
Application KMeans Light (GridRec) Light (ML−EM) Light (SIRT)

Fig. 7. MASA Throughput for KMeans and two Light Source Recon-
struction Algorithms: KMeans scales well with increasing numbers of nodes.
GridRec shows a higher throughput than ML-EM as it less computation com-
plex. Scaling of both reconstruction algorithms is limited by I/O contention.

1 and 2 broker scenario, the I/O to the broker constraints the

performance. With additional broker nodes, the available band-

width and parallelism increasing. Spark Streaming assigns 1

task per Kafka partition. This is visible in a significant in-

crease in throughput. With KMeans we were able to achieve

a maximum throughput of 277 messages/sec and thus, were

easily able to sustain the generated data rate.

The throughput of the light source reconstruction algorithms

is significantly worse with maximum 63 message/sec for

GridRec and 22 messages/sec for ML-EM. As describe it-

erate algorithms, such as ML-EM are more demanding than

GridRec. Additional broker nodes yielded in significant perfor-

mance improvements. Additional processing nodes improved

the performance as long the bandwidth to the resource broker

was able to keep up with the additional processing resources.

The amount of data transferred is with 2 MB/message sig-

nificant larger than in the KMeans scenario. Further, we ob-

served some resource contentions caused by running multiple

instances of the algorithm on the same node and the need

to buffer a significant number of messages. The results show

the importance of resource management - only if the band-

width and read-parallelism to the data source or broker is large

enough additional compute resources are beneficial.

Discussion: As demonstrated, the overhead for Pilot-

Streaming is small: the startup time for dynamically starting

Kafka, Dask and Spark clusters is outweighed by the bene-

fits of improved flexibility, resource isolation (per application

components), and the ability to scale components indepen-

dently (at runtime if needed). We demonstrated the scalability

of the framework by managing large streaming landscapes

of Dask, Spark and Kafka concurrently on up to 32 nodes,

1536 virtual cores, and 4 TB of memory achieving through-

puts of up to 390 MB/sec for the lightsource scenario. This

throughput is large enough to sustain the LCLS-I data stream

with a high enough sampling rate. At the current setup, the

processing side is the bottleneck. We are only able to pro-

cess a fraction of the data. Scaling stream processing is more

difficult than scaling batch analytics workload as it requires

a careful balance of bandwidth to/from the data source re-

spectively the broker and compute resources. In particular,

it can be difficult to diagnose bottlenecks in the broker, as

the varying mixture of write/read I/O makes the performance

often unpredictable. Pilot-Streaming provides the necessary

abstractions to manage resources effectively at runtime on

application-level.

The Streaming Mini-Apps simplify streaming application de-

velopment and performance optimizations. Using the Stream-

ing Mini-Apps, we were able to emulate various complex ap-

plication characteristics. It is apparent that the different frame-

works and application components each have unique scaling

characteristics and resource needs. Even for optimization of

just one component a large number of combinations of exper-

iments is required. On streaming application-level this leads

to a combinatorial explosion of configurations. The Stream-

ing Mini-Apps and Pilot-Streaming provide essential tools for

automating this process. In the future, we will use both frame-

works as foundation for higher-level performance optimization

approaches, e. g., modeling the performance of each compo-

nent, the usage of experimental design and machine learning

techniques for performance predictions.

VII. CONCLUSION AND FUTURE WORK

Pilot-Streaming fills an important gap in supporting stream

processing on HPC infrastructure by providing the ability to

on-demand deploy and manage streaming frameworks and ap-

plications. This capability is crucial for an increasing number

of scientific applications, e. g., light source sciences, to gener-

ate timely insights and allow steering. The landscape of tools

and frameworks for message brokering, data storage, process-

ing and analytics is diverse. Pilot-Streaming currently inte-

grates with Kafka, Spark Streaming, Dask and Flink. Its flex-

ible, plug-in architecture allows the simple addition of new

frameworks. Streaming applications can have unpredictable

and often, external induced resource needs, e. g. driven by the

data production rate. Pilot-Streaming addresses these needs

with a well-defined resource model and abstraction that allows

the adjustments of the allocated resources for each component

at runtime. Another important contribution are the Stream-

ing Mini-Apps, which simplifies the development of streaming

pipelines with the ability to emulate data production and pro-

cessing. We demonstrated the variety of features of this frame-

work with several experiments using a streaming KMeans and

different light source analysis algorithms.

This work represents the starting point for different areas of

research: We will extend Pilot-Streaming to support highly

distributed scenarios enabling applications to push compute

closer to the edge for improved data locality. The Streaming

Mini-Apps will be the basis for the development and charac-

terization of new streaming algorithms, e. g. additional recon-

struction algorithms and deep learning based object classifi-

cation algorithms. We will explore the usage of accelerators

(such as GPUs) to support compute-intensive deep learning

workloads. Another area of research are steering capabilities.

Further, we will continue to utilize the Streaming Mini-Apps

to improve our understanding of streaming systems and em-

bed this into performance models that can inform resource and

application schedulers about expected resource needs.

186



Acknowledgements: We thank Stuart Campbell and Julien Lhermitte (BNL) for guidance
on the light source application. This work is funded by NSF 1443054 and 1440677.
Computational resources were provided by NSF XRAC award TG-MCB090174.

REFERENCES

[1] Geoffrey Fox, Shantenu Jha, and Lavanya Ramakrishnan. Stream 2015
final report. http://streamingsystems.org/finalreport.pdf, 2015.

[2] Brookhaven National Laboratory. National synchrotron light source ii.
https://www.bnl.gov/ps/, 2017.

[3] Amedeo Perazzo. Lcls data analysis strategy. https://portal.slac.stanford.
edu/sites/lcls public/Documents/LCLSDataAnalysisStrategy.pdf, 2016.

[4] Preeti Malakar, Venkatram Vishwanath, Christopher Knight, Todd Mun-
son, and Michael E. Papka. Optimal execution of co-analysis for large-
scale molecular dynamics simulations. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Stor-
age and Analysis, pages 60:1–60:14, Piscataway, NJ, USA, 2016.

[5] J. Kreps, N. Narkhede, and J. Rao. Kafka: A distributed messaging
system for log processing. In Proceedings of 6th International Workshop
on Networking Meets Databases (NetDB), Athens, Greece, 2011.

[6] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working sets.
In Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud
Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010.
USENIX Association.

[7] Dask Development Team. Dask: Library for dynamic task scheduling.
http://dask.pydata.org, 2016.

[8] Andre Luckow, Mark Santcroos, Andre Merzky, Ole Weidner, Pradeep
Mantha, and Shantenu Jha. P*: A model of pilot-abstractions. IEEE 8th
International Conference on e-Science, pages 1–10, 2012.
http://dx.doi.org/10.1109/eScience.2012.6404423.

[9] Geoffrey C. Fox, Devarshi Ghoshal, Shantenu Jha, Andre Luckow, and
Lavanya Ramakrishnan. Streaming computational science: Applications,
technology and resource management for hpc. http://dsc.soic.indiana.
edu/publications/streaming-nysds-abstract.pdf, 2017.

[10] Supun Kamburugamuve and Geoffrey Fox. Survey of distributed stream
processing. Technical report, Indiana University, Bloomington, IN, USA,
2016.

[11] Guozhang Wang, Joel Koshy, Sriram Subramanian, Kartik Paramasi-
vam, Mammad Zadeh, Neha Narkhede, Jun Rao, Jay Kreps, and Joe
Stein. Building a replicated logging system with apache kafka. PVLDB,
8(12):1654–1665, 2015.

[12] Mark Marchukov. Logdevice: a distributed data store
for logs. https://code.facebook.com/posts/357056558062811/
logdevice-a-distributed-data-store-for-logs/, 2017.

[13] Joe Francis and Matteo Merli. Open-sourcing pulsar, pub-sub
messaging at scale. https://yahooeng.tumblr.com/post/150078336821/
open-sourcing-pulsar-pub-sub-messaging-at-scale, 2016.

[14] Amazon kinesis. https://aws.amazon.com/kinesis/, 2017.

[15] Google pub/sub. https://cloud.google.com/pubsub/, 2017.

[16] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13, pages 423–438, New
York, NY, USA, 2013. ACM.

[17] Matthew Rocklin. Dask streamz. https://streamz.readthedocs.io/en/
latest/, 2018.

[18] Twitter. Storm: Distributed and fault-tolerant realtime computation. http:
//storm-project.net/.

[19] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ra-
masamy, and Siddarth Taneja. Twitter heron: Stream processing at scale.
In Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’15, pages 239–250, New York, NY,
USA, 2015. ACM.

[20] Apache Flink. https://flink.apache.org/, 2018.

[21] Apache Beam. https://beam.apache.org/, 2018.

[22] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, and Sam Whittle. The dataflow
model: A practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing. Proceedings
of the VLDB Endowment, 8:1792–1803, 2015.

[23] Sriram Krishnan, Mahidhar Tatineni, and Chaitanya Baru. Myhadoop -
hadoop-on-demand on traditional hpc resources. Technical report, San
Diego Supercomputer Center, 2011.

[24] Ekasitk. Spark-on-hpc. https://github.com/ekasitk/spark-on-hpc, 2016.
[25] Supun Kamburugamuve, Saliya Ekanayake, Milinda Pathirage, and Ge-

offrey Fox. Towards high performance processing of streaming data
in large data centers. In HPBDC 2016 IEEE International Workshop
on High-Performance Big Data Computing in conjunction with The
30th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS 2016), Chicago, Illinois USA, Friday, 2016.

[26] Supun Kamburugamuve, Karthik Ramasamy, Martin Swany, and Geof-
frey Fox1. Low latency stream processing: Twitter heron with infiniband
and omni-path. In Technical Report, 2017.

[27] Nicholas Chaimov, Allen Malony, Shane Canon, Costin Iancu, Khaled Z.
Ibrahim, and Jay Srinivasan. Scaling spark on hpc systems. In Proceed-
ings of the 25th ACM International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’16, pages 97–110, New
York, NY, USA, 2016. ACM.

[28] T. Bicer, D. Gursoy, R. Kettimuthu, I. T. Foster, B. Ren, V. De Andrede,
and F. De Carlo. Real-time data analysis and autonomous steering of
synchrotron light source experiments. In 2017 IEEE 13th International
Conference on e-Science (e-Science), pages 59–68, Oct 2017.

[29] Y. Du, M. Chowdhury, M. Rahman, K. Dey, A. Apon, A. Luckow, and
L. B. Ngo. A distributed message delivery infrastructure for connected
vehicle technology applications. IEEE Transactions on Intelligent Trans-
portation Systems, PP(99):1–15, 2017.

[30] Dennis Gannon. Observations about streaming data an-
alytics for science. https://esciencegroup.com/2016/05/23/
observations-about-streaming-data-analytics-for-science/, 2016.

[31] Wolfgang Eberhardt and Franz Himpsel. Next-generation photon sources
for grand challenges in science and energy. https://science.energy.gov/
∼/media/bes/pdf/reports/files/Next-Generation Photon Sources rpt.pdf,
2009.

[32] Eric Hand. X-ray free-electron lasers fire up. Nature, 461(7265):708–
709, oct 2009.

[33] Stanford. Linac coherent light source. https://portal.slac.stanford.edu/
sites/lcls public/Pages/Default.aspx, 2017.

[34] A Münnich, Steffen Hauf, Burkhard Heisen, Friederike Januschek,
Markus Kuster, Philipp Micheal Lang, Natascha Raab, Tonn Rüter,
Jolanta Sztuk-Dambietz, and Monica Turcato. Integrated detector con-
trol and calibration processing at the european xfel, 10 2015.

[35] CHX team. Chx.pdf. https://www.bnl.gov/nsls2/beamlines/files/pdf/
CHX.pdf.

[36] Mark Sutton. Streaming data analysis tools to study structural dynamics
of materials. https://www.bnl.gov/nysds16/files/pdf/talks/NYSDS16%
20Abeykoon.pdf, August 2016.

[37] D. Gursoy, F. De Carlo, X. Xiao, and F. Jacobsen. Tomopy: A framework
for the analysis of synchrotron tomographic data. Journal of Synchrotron
Radiation, 21, Aug 2014.

[38] Betsy A. Dowd, Graham H. Campbell, Robert B. Marr, Vivek V. Na-
garkar, Sameer V. Tipnisand Lisa Axe, and D. Peter Siddons. In De-
velopments in synchrotron x-ray computed microtomography at the Na-
tional Synchrotron Light Source, volume 3772, pages 3772 – 3772 – 13,
1999.

[39] J. Nuyts, C. Michel, and P. Dupont. Maximum-likelihood expectation-
maximization reconstruction of sinograms with arbitrary noise distribu-
tion using nec-transformations. IEEE Transactions on Medical Imaging,
20(5):365–375, May 2001.

[40] Mary Shaw. The impact of modelling and abstraction concerns on mod-
ern programming languages. In Book: On Conceptual Modelling: Per-
spectives from Artificial Intelligence, Databases, and Programming Lan-
guages, Springer New York, 1984.

[41] Vivekanandan Balasubramanian, Iain Bethune, Ardita Shkurti, Elena
Breitmoser, Eugen Hruska, Cecilia Clementi, Charles Laughton, and
Shantenu Jha. Extasy: Scalable and flexible coupling of md simula-
tions and advanced sampling techniques. In e-Science (e-Science), 2016
IEEE 12th International Conference on, pages 361–370. IEEE, 2016.

[42] Matteo Turilli, Mark Santcroos, and Shantenu Jha. A comprehensive
perspective on pilot-job systems. ACM Comput. Surv., 51(2):43:1–43:32,
April 2018.

[43] Andre Luckow, Lukas Lacinski, and Shantenu Jha. SAGA BigJob: An
Extensible and Interoperable Pilot-Job Abstraction for Distributed Appli-
cations and Systems. In The 10th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pages 135–144, 2010.

187



[44] Andre Luckow, Mark Santcroos, Ashley Zebrowski, and Shantenu Jha.
Pilot-data: an abstraction for distributed data. Journal of Parallel and
Distributed Computing, 79:16–30, 2015.

[45] Andre Luckow, Ioannis Paraskevakos, George Chantzialexiou, and
Shantenu Jha. Hadoop on HPC: integrating Hadoop and pilot-based
dynamic resource management. In Parallel and Distributed Process-
ing Symposium Workshops, 2016 IEEE International, pages 1607–1616.
IEEE, 2016.

[46] Andre Merzky, Ole Weidner, and Shantenu Jha. Saga: A standardized
access layer to heterogeneous distributed computing infrastructure. Soft-
wareX, 1:3–8, 2015.

[47] Andre Merzky, Matteo Turilli, Manuel Maldonado, Mark Santcroos, and
Shantenu Jha. Using Pilot Systems to Execute Many Task Workloads
on Supercomputers. JSSPP 2018 (in conjunction with IPDPS’18), 2018.
http://arxiv.org/abs/1512.08194.

[48] SAGA-Python. http://saga-project.github.io/saga-python/, 2018.
[49] Pilot-streaming: Managing stream processing on hpc. https://github.com/

radical-cybertools/pilot-streaming, 2018.
[50] Streaming mini-apps. https://github.com/radical-cybertools/

streaming-miniapps, 2018.
[51] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram

Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,
Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh,
Matei Zaharia, and Ameet Talwalkar. Mllib: Machine learning in apache
spark. J. Mach. Learn. Res., 17(1):1235–1241, January 2016.

[52] Spark-streaming: K-means. https://spark.apache.org/docs/2.1.0/
mllib-clustering.html, 2017.

[53] A. Merzky and S. Jha. Synapse: Synthetic application profiler and em-
ulator. In 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 1259–1268, May 2016.

[54] Andrew Montalenti. Pykafka: Fast, pythonic kafka, at last! http://blog.
parsely.com/post/3886/pykafka-now/, 2016.

188


